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A B S T R A C T   

Multiple myeloma (MM) treatment regimens have vastly improved since the introduction of immunomodulators, 
proteasome inhibitors, and anti-CD38 monoclonal antibodies; however, MM is considered an incurable disease 
due to inevitable relapse and acquired drug resistance. Understanding the molecular mechanism by which drug 
resistance is acquired will help create novel strategies to prevent relapse and help develop novel therapeutics to 
treat relapsed/refractory (RR)-MM patients. Currently, only homozygous deletion/mutation of TP53 gene due to 
“double-hits” on Chromosome 17p region is consistently associated with a poor prognosis. The exciting discovery 
of XPO1 overexpression and mislocalization of its cargos in the RR-MM cells has led to a novel treatment options. 
Clinical studies have demonstrated that the XPO1 inhibitor selinexor can restore sensitivity of RR-MM to PIs and 
dexamethasone. We will elaborate on the problems of MM treatment strategies and discuss the mechanism and 
challenges of using XPO1 inhibitors in RR-MM therapies while deliberating potential solutions.   

Introduction 

Multiple myeloma is an acquired malignant plasma cell disorder that 
typically develops late in life, having a median age at diagnosis of 69 
years. Although it is a rare disorder accounting for just 1.8% of all new 
cancer cases in the United States (US) and a lifetime risk of just 0.76%, it 
is the second most common hematological malignancy. Furthermore, 
due to an aging US population, a lack of curative therapy, and improved 
outcomes overall, the prevalence of MM is increasing [1]. In the last two 
decades, there has been a rapid development of novel classes of drugs, 
including proteasome inhibitors (PIs), immunomodulators (IMiDs), 
monoclonal antibodies, and immunotherapies such as bi-specifics and 

chimeric antigen receptor T-cell therapy (CAR-T). With the advent of 
new therapeutics and the increasing utilization of high-dose melphalan 
and autologous stem cell transplantation (ASCT) [2], 5- and 10-year 
overall survivals (OS) have improved across all age, race, and ethnic 
groups [3]. In the year 2000, the estimated 5-year OS for 
newly-diagnosed MM (ND-MM) patients was 35.6%, while in 2018 it 
was 56.6% [1]. With novel combination therapy, the progression-free 
survival (PFS) of relapsed refractory (RR)-MM has improved and is 
now frequently greater than two years [9]. While MM patients have seen 
significant improvements in short- and long-term outcomes, these ben-
efits are more tempered in those with high-risk disease with R-ISS stage 
III patients having only a 24% 5-year PFS and 40% 5-year OS [4]. 

Abbreviations: ASCT, autologous stem cell transplantation; CDC, complement-dependent cytotoxicity; ADCC, antibody-dependent cell-mediated cytotoxicity; 
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Overall, MM is still an incurable disease with only 10–15% of MM pa-
tients achieving or exceeding expected survival compared to the 
matched general population. 

During the last decade, significant efforts have been made to un-
derstand both the genomics of the disease as well as the molecular 
mechanisms of drug resistance in MM. One of the major observations is 
the aberrant subcellular localization of proteins in RR-MM cells, spe-
cifically the increased cytosolic accumulation of nuclear exportin 
cargoes. Such aberrant localization of proteins is associated with 
increased expression and activity of the nuclear export protein exportin 
1 (XPO1), making XPO1 an attractive therapeutic target for RR-MM 
treatment. In this paper, we will review the recent advances in our un-
derstanding of resistance mechanisms to the most commonly utilized 
therapeutics. We will focus specifically on XPO1 inhibition as a novel 
target that has led to the approval of KPT 330 (or selinexor) in the 
treatment of RR-MM. XPO1 inhibition in general will be explored as an 
avenue to overcome resistance, particularly for high-risk RR-MM pa-
tients who continue to have dismal outcomes. 

Current advances and challenges in the treatment of multiple 
myeloma 

Treatments for ND-MM patients 

During past two decades, significant improvements in the treatment 
of ND-MM have been achieved. The advent of modern induction began 
with the introduction of IMiDs, namely thalidomide, in the late 1990s. 
Subsequently, the therapeutic landscape evolved rapidly with the 
development of multiple agents within drug classes which include IMiDs 
(thalidomide, lenalidomide, pomalidomide, and iberdomide), PIs (bor-
tezomib, carfilzomib, and ixazomib), and monoclonal antibodies (dar-
atumumab, isatuximab, and elotuzumab). 

Current standard induction regimens for ND-MM patients (regardless 
of bone marrow transplant eligibility) includes several triplet combi-
nations: VRd (bortezomib, lenalidomide, and dexamethasone), VTd 

(bortezomib, thalidomide, and dexamethasone), VCd (bortezomib, 
cyclophosphamide, and dexamethasone) and KRd (carfilzomib, lenali-
domide, and dexamethasone) (Fig. 1A). Among them, the most 
commonly used treatment combination is VRd which was established as 
the standard of care and lead to an improved PFS (44 v 29 months; p =
0.003) and OS (median not-reached v 69 months; p = 0.0114) compared 
to Rd (lenalidomide and dexamethasone) [5]. Other triplet combina-
tions, including the recently completed MAI study evaluating DaraRD 
(daratumumab, lenalidomide, and dexamethasone) have produced 
promising results [6–9]; however, randomized clinical trials demon-
strated that no single triplet combination has been shown to be superior 
in terms of either PFS or OS. With the advent of better-tolerated and 
extremely active daratumumab-based therapy, quadruplicate-based in-
ductions are increasingly evaluated in ND-MM patients. The recently 
completed GRIFFIN study comparing VRD to VRD plus daratumumab 
(Dara-VRD) in induction, as well as in consolidation following up front 
ASCT, lead to an impressive minimal residual disease (MRD – 10− 5) rate 
of 51% in the Dara-RVD compared to just 20.4% in the RVD arm (p < 
0.0001) with median PFS and OS not yet reached. 

ASCT is the standard consolidative approach following induction 
therapy in eligible patients with ND-MM. Several international ran-
domized trials have compared up-front ASCT and non-ASCT therapy, 
including the EMN02/H095,[10] EMN-411 [11], RV-MM-2019 [12], 
and IFM/DFCI 2009 [13]. All of these studies have shown consistent 
improvement in median PFS in the 1-2-year range, with some studies 
showing improved OS [11,12]. After modern induction therapy, ASCT 
consolidation can enforce a deep remission in many cases [14]. The 
median PFS in up-front ASCT-eligible patients now easily exceeds 4 
years. However, for those patients who are not eligible for trans-
plantation, additional cycles of triplet or quad combinations are rec-
ommended for consolidation therapy. 

Post-consolidation, lenalidomide maintenance is standard therapy 
until the development of progressive disease based on several random-
ized trials, including but not limited to the IFM-2009 trial [13] and the 
CALGB(Alliance) 100104 trial [15]. Maintenance therapy consistently 

Fig. 1. Current treatments for ND-MM (A), early relapsed MM (B) and RR-MM (C). VRd (Bortezomib, Lenalidomide, and Dexamethasone); VTd (Bortezomib, 
thalidomide, dexamethasone); VCd (Bortezomib, cyclophosphamide, dexamethasone); Dara-VTd (VTd plus daratumumab); Dara-VRd (VRd plus daratumumab); KRd 
(carfilzomib, lenalidomide and dexamethasone); autologous stem cell transplantation (ASCT); PVd (pomalidomide, bortezomib, dexamethasone); DaraRd (dar-
atumumab, lenalidomide and dexamethasone); DaraKd (daratumumab, carfilzomib, dexamethasone); DaraPd (daratumumab, pomalidomide, dexamethasone); IsaKd 
(Isatuximab, carfilzomib, dexamethasone); IsaPd (Isatuximab, pomalidomide, dexamethasone); EloPd (elotuzumab, pomalidomide, dexamethasone); EloRd (elotu-
zumab, lenalidomide and dexamethasone) and SelVd (selinexor, bortezomib, dexamethasone). 
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shows improved PFS in the 18 months to 2-year range and frequently 
shows improvement in OS as demonstrated by a recent meta-analyses 
[16] With the ability to detect low-level disease using MRD analyses, 
there is optimism that some MM patients may be effectively cured. Thus, 
there is hope to develop a response-based de-escalation of therapy for 
these MRD-negative cases. This approach is currently being evaluated in 
both the MASTER trial (NCT03224507) [17] where preliminary results 
look promising, as well as the ongoing SWOG1803 DRAMMATIC study 
evaluating both doublet vs single agent maintenance therapy and 
maintenance discontinuation dependent on MRD negativity 2 years 
post-ASCT [18]. 

Treatments for RR-MM patients 

Despite advances in the treatment of ND-MM, relapse is inevitable 
for most patients even for those who achieve deep remission. Relapse is 
primarily due to the acquired resistance of the MM cells to the drugs 
used in maintenance regimens; therefore, the triplet combinations used 
in initial induction therapy may still be effective for most first-relapse 
cases. However, for second- and third-relapsed cases, myeloma tumor 
cells might also acquire resistance to the drugs used in induction and 
consolidation treatments; thus, it is recommended that the new triplet 
combinations for relapsed patients include 2 drugs to which the patient 
is not refractory towards (Fig. 1B and C). Many triplet regimens con-
taining daratumumab or carfilzomib have been extensively studied 
[19–21]. For example, in the APSIRE trial [9], KRd in 1st relapse showed 
an impressive median PFS of 26.3 months, whereas DaraRd (Rd and 
daratumumab) triplet regimen in the POLLUX trial [22] and DaraKd 
(daratumumab, carfilzomib, and dexamethasone) triplet regimen in 
CANDOR trial showed an impressive PFS of 44.3 months and not 
reached, respectively [23]. Furthermore, quad-based regimens are 
increasingly being explored in the relapsed setting as well. Nevertheless, 
increasing efficacy requires careful balance with toxicity and 
cost-effectiveness. For these heavily pre-treated RR-MM patients, novel 
treatment agents with different molecular mechanisms of action to those 
administered prior are urgently needed. 

Recently, several new drug classes have been approved by the FDA as 
later lines of therapies for RR-MM, including the following: (1) a lipo-
philic peptide-conjugated alkylator melphalan flufenamide (melflufen); 
(2) anti-BCMA antibody drug conjugates belantamab; (3) a novel BCMA 
targeted chimeric antigen receptor T-cell product (CAR-T) idecel; (4) 
anti-SLAMF7 monoclonal antibody elotuzumab; (5) a non-selective 
histone deacetylase inhibitor panobinostat; and (6) an XPO1 inhibitor 
selinexor [24–32]. Several pomalidomide-containing triplet combina-
tions, including PVd (pomalidomide, bortezomib, and dexamethasone), 
IsaPd (isatuximab, pomalidomide, and dexamethasone), EloPd (elotu-
zumab, pomalidomide, and dexamethasone), and DaraPd (dar-
atumumab, pomalidomide, and dexamethasone), have been evaluated 
in multiple clinical trials [33–35] (Fig. 1B). All of these combinations 
have shown very promising clinical effects, the results of which have 
been discussed by other review papers [36,37]. 

Overexpression of XPO1 has been linked to an increase in MM bone 
disease, relapse, and poor clinical outcomes. Selinexor represents a 
novel treatment for RR-MM with a complete novel mechanism distinct 
from all conventional treatments [38–41]. In the following sections, we 
discuss the potential molecular mechanisms by which tumor cells 
become resistant to conventional therapeutics; we will also focus on the 
mechanisms by which selinexor restores drug sensitivity in RR-MM cells. 

The mechanisms underlying resistance of MM cell to 
conventional treatment medications 

Given the diverse pathways targeted and mechanisms of action of the 
various myeloma drug classes, the resistance mechanisms leading to 
relapse varies depending on the therapyemployed. This in turn is why 3- 
and 4-drug combinations synergistically kill MM cells but can still 

overcome drug resistance [42,43] (Fig. 2). 

The molecular mechanisms underlying PI resistance 

Different from most other cell types, the malignant plasma cells in 
MM patients produce a large amount of immunoglobulins which make 
such cells highly dependent on proteasome-mediated degradation of 
misfolded proteins for their survival. PIs selectively inhibit the protea-
somal degradation of misfolded proteins in malignant plasma cells by 
directly targeting the catalytic subunits (PSMB5 for bortezomib and 
ixazomib; PSMB2 for carfilzomib) [44,45]. The accumulation of mis-
folded proteins induces an unfolded protein response (UPR). ATF6a, 
IRE1-XBP1s, and PERK-eIF2a, as well as three UPR pathways that have 
been found to mediate the UPR. In normal conditions, activation of these 
3 pathways induce an adaptive UPR to prevent cellular death by opti-
mizing protein folding and ER quality control. Such adaptive responses 
are mediated by inducing IRE1-dependent decay of mRNA (RIDD), 
repressing eIF2a-mediated global translation, stimulating ER-associated 
protein degradation (ERAD), and/or activating ATF4-mediated selective 
gene expression. However, sustained activation of these pathways will 
result in asevere, prolonged ER-stress and will subsequently lead to 
cellular apoptosis by stimulating a maladaptive UPR-related JNK-BID, as 
well as CHOP apoptotic signaling [46–49]. In addition, PIs also inhibits 
NF-κB-mediated survival signaling by preventing the degradation of the 
negative-regulators of NF-κB, such as IκBα. 

Studies suggest that acquired PI resistance of MM cells is primarily 
due to the mutations or loss of proteasome subunit gene expression, 
and/or IRE1-XBP1 pathway gene expression. For example, mutations of 
proteasome subunit genes, including PSMB5, PSMB8 and PSMD1, have 
been reported in PI refractory MM patients [45,50,51]. Downregulation 
of 19S proteasome subunits and/or overexpression of PSMB5 and 
PSMA3 are also suggested to induce PI resistance [52–58]. Additionally, 
XBP1 mutations and XBP1 downregulation have been identified in re-
fractory MM patients and are associated with PIs resistance [59,60]. 
Furthermore, increased expression of drug transporters such as ABCB1 
and microenvironmental proteins (such as interleukin-6 and insulin 
growth factor-1) are also implicated in resistance [61,62]. Other 
mechanisms are associated with PI resistance, including a cellular shift 
of MM cells to a less-differentiated state and, as they are less-dependent 
on UPR, a metabolic shift with increased anti-oxidative capacity 
alongside a heightened compensatory autophagy. 

Activating KRAS, NRAS, and BRAF mutants enhance proteasome 
capacity and reduce ER stress in MM through a MEK/MAPK/ELK (ETS 
domain-containing protein)-1/POMP pathway [63]. Interestingly, it was 
found that mutations in NRAS (but not KRAS) were associated with 
bortezomib resistance [64,65]. The molecular mechanism of this resis-
tance still needs to be determined. 

The molecular mechanisms underlying IMiD resistance 

IZKF1 (Ikaros) and IZKF3 (Aiolos) are two essential transcription 
factors for plasma cell differentiation. In MM cells, IKZF1 and IKZF3 
upregulate IRF4 and c-MYC, which form a positive autoregulatory loop 
necessary for survival and proliferation [66]. The levels of IKZF1 and 
IKZF3 are controlled by Cereblon (CRBN)-DDB1-CRL4-axis-mediated 
ubiquitination and proteasomal degradation machinery. IMiDs kill MM 
cells by interacting with CRBN at residue 391, which disrupts protein 
homeostasis by inducing the degradation of IZKF1 and IZKF3 [67–74]. 
IMiDs also carry numerous effects on T-cells/NK cells and contribute to 
anti-tumor effects by modulating the immune microenvironment in an 
anti-angiogenic-inflammatory manner [75,76,99,100]. Mutation or 
downregulation of CRBN-Ikaros axis genes (including CRBN, CUL4B, 
IRF4, and IKZF1), as well as upregulation of the IL-6/STAT3 pathway, 
have been associated with IMiD resistance [70,74,77–84]. PTPRD is a 
phosphatase of STAT3 that represses its activity. PTPRD mutations 
promote STAT3 signaling from interleukin-6 and IMiD resistance [85]. 
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In addition, upregulation of other CRBN substrates such as RUNX1/3 are 
also implicated in IMiD resistance. These substrates prevent IKZF1/3 
degradation by competing with CRBN for the binding of IKZF1/3 [86]. 

The molecular mechanisms underlying resistance of monoclonal antibodies 

Antibody drugs kill malignant plasma cells by recognizing the spe-
cific cell surface proteins to induce complement-mediated cell lysis. 
Although several targets have been evaluated in the treatment of MM 
including CD20 [87], Interleuken-6 (siltuximab) [88], CS1/SLAMF7 
[89], BCMA (SGNBCMA-001) [90], and many others [91], CD38 is by 
far the most developed with the FDA approval of both daratumumab 
(utilized in the newly-diagnosed and relapsed setting) and isatuximab 
(relapsed setting only). Recently, more studies have focused on targeting 
BCMA for RR-MM treatment due to its selective expression in both 
normal and tumor plasma cells [92,93]. Belantamab, an anti-BCMA 
antibody-drug conjugate, received FDA approval in August 2020 for 
the treatment of RR-MM patients who have previously received at least 4 
therapies including PIs, IMiDs, and anti-CD38 monoclonal antibodies. 
Similar to most other antibody-drugs, anti-CD38 and anti-BCMA anti-
body-drugs exert anti-MM activity via antibody-dependent cell-me-
diated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis 
(ADCP), complement-dependent cytotoxicity (CDC), and immunomod-
ulatory effects. Deregulation of these pleiotropic mechanisms may cause 
resistance development. For example, loss of CD38 expression (either 
low at baseline or downregulation with therapy) has been shown to lead 
to daratumumab resistance and disease relapse [94]. There is also data 
demonstrating that daratumumab resistance can be mediated via 
reduction of ADCC efficacy through dysfunctional bone marrow stroma 
cell support that can be overcome by small-molecular inhibition of 
survivin by YM155 [95]. ADCP-mediated resistance may occur via 
up-expression of CD47 via the binding of CD47 to the signal-regulatory 
protein alpha (SIRPα) on tumor-associated macrophages [96]. The 
CD47/SIRPα complex acts as a “don’t eat me” signal that induces SIRPα 
phosphorylation and association to Src-homology phosphatase 1 domain 
(SHP-1) on macrophages, resulting in the inhibition of phagocytosis 
[97]. This “do not eat me” signal is the focus for different mAb therapies 
that can block CD47 [98]. CDC resistance may be mediated by an 

increase in the expression of complement inhibitory proteins such as 
CD55 and CD59 [94]. Finally, there is increasing data showing that 
immune-mediated resistance leads to relapse with RNA-sequencing of 
BMSCs cells depleted of CD138+ MM cells which exhibit a different gene 
expression profile between progressed and daratumumab-naïve patients 
[97]. 

The molecular mechanisms underlying resistance of chimeric antigen 
receptor T-Cell therapy 

A relatively-recent therapeutic advancement, BCMA directed CAR-T 
cell therapy, has shown impressive results in MM. Despite rapid- and 
deep-remissions in heavily pre-treated patients, relapse is inevitable, 
and the mechanisms of resistance/relapse are being evaluated [99]. 
CAR-T cell intrinsic factors have been implicated, including the per-
centage of CD8+ T-cells with a naïve or stem memory phenotype which 
correlates with better outcomes [100]. MM cell intrinsic factors have 
also been shown to impact relapse risk, including BCMA 
down-expression that has demonstrated a correlation with relapse 
following BMCA [100–102]. Finally, immunosuppressive elements 
commonly present in the MM cell tumor microenvironment may play a 
role in relapse;this is being exploited by combining CAR T-Cell therapy 
with conventional myeloma treatments to augment T-cell function 
[103]. The beneficial effect of IMiDs on T-cells have been pre-clinically 
confirmed on CAR-T cells, as well as with providing a strong biological 
rationale to explore the combination of CAR-T cell + IMiDs [104]. 

The molecular mechanisms underlying corticosteroid resistance 

The glucocorticoids (GC), such as dexamethasone, kill MM cells by 
inducing pro-apoptotic signaling and repressing anti-apoptotic and 
metabolic pathways. GC play such a role by binding GC receptors (GCRs) 
which then translocate to the nucleus to modulate gene expression [105, 
106]. Resistance to GC is associated with a decrease in GR expression 
and GCR NR3C1 mutations [107,108]. Additionally, an increased tumor 
environment paracrine secretion of IL-6, IGF, and VEGF has also been 
associated with GC resistance. 

Fig. 2. Molecular mechanisms by which the conventional drugs kill MM cells and potential mechanisms explain drug-resistance. PIs function through inhibition of 
the proteasome to induce ER-stress/UPR and repress NF-κB signaling. IMiDs function by inducing CRBN-mediated IKZF1/3 degradation. GC kills MM cells by 
inducing the expression of pro-apoptotic genes and repressing the expression of pro-survival genes through activation of GCR and inactivation of NF-κB. Chemo-
therapy drugs kill MM cells by inducing DNA damage, while antibody drugs kill MM cells by recognizing specific surface antigens and inducing complement- 
mediated cell lysis. The potential mechanisms of drug-resistance are listed. Figure created with BioRender.com. 
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The molecular mechanisms underlying alkylating agent resistance 

Chemotherapies such as melphalan kill MM cells through alkylation 
to induce DNA damage. Increased drug efflux, increased expression of 
DNA repair factors, and TP53 mutations are all associated with 
chemotherapy-refractory disease and relapse [109,110]. 

Two common strategies exist to address the issue of drug resistance 
in MM. First, in response to drug resistance resulting from the mutations 
of drug substrates, next-generation drugs were developed in order to 
target different interaction sites and surfaces of the mutant substrates or 
new substrate targets. For example, bortezomib resistance can be due to 
either by mutation or by over-expression of PSMB5 and next generation 
PIs such as Ixazomib and carfilzomib were developed. Ixazomib targets 
PSMB5 on an interaction site distinct from bortezomib, while carfilzo-
mib targets PSMB2 [44,45]. Disease progression following anti-CD38 
monoclonal antibody treatment, novel drugs such as anti-BCMA anti-
body were developed. Secondly, drug resistance resulting from activa-
tion of compensation pathways combination therapies are used to 
inhibit the compensation machinery. For example, activation of the 
IL-6/STAT3 pathway is commonly associated with IMiD resistance. 
Thus, a combination of an IMiD with a STAT3 inhibitor is in develop-
ment [85]. If disease progression occurs after CAR-T cell therapy, 
possible resistance mechanisms may be due to the upregulation of im-
mune checkpoints; thus, the addition of immune checkpoint inhibitors 
have been evaluated in clinical trials. Nevertheless, almost all of these 
therapies kill tumor cells by inducing mitochondrial apoptosis, which is 
at least partially TP53-dependent. This explains why many patients at 
time of relapse or refractory disease develop a “double-hit” of their TP53 
gene (biallelic TP53 mutations/deletions), and incorporating novel 
therapies such as XPO1 inhibition that can kill tumor cells by inducing 
TP53-independent types of death are necessary [111]. 

Targeting XPO1 for RR-MM treatment 

Molecules greater than 40 kDa, including larger proteins, RNAs, and 
other biological moieties, rely on energy-dependent specialized carriers: 
karyopherin family proteins (including inportins and exportins) which 
can transport through the nuclear pore complex. The activities of such 
carriers are regulated by the RCC1-Ran axis [111,112]. Among 7 
well-defined exportins, XPO1 (also known as chromosome maintenance 
1 protein, CRM1) is the only one that functions through recognizing 
specific nuclear export signals (NES) on the cargoes [113]. In addition, 
XPO1 is selectively-responsive to a subset of RNA exports. Unbiased 
genetic screens using CRISPR and RNAi library screens have validated 
XPO1 as a therapeutic target in sarcoma, diffuse large B-cell lymphoma 
(DLBCL), MM, and KRAS-mutant lung cancer [114–116]. Selinexor 
(KPT-330) is one of the SINE (selective inhibitors of nuclear export) 
compounds and is FDA approved in both relapsed MM and DLBCL [40]. 

Molecular cargoes of XPO1 

At least 221 NES-containing nuclear proteins have been identified 
and can be found in the NESdb at http://prodata.swmed.edu/LRNes. 
XPO1 is responsible for transporting all these NES-containing proteins 
from the nucleus to the cytoplasm. Many of these proteins are tumor 
suppressors and cell cycle negative-regulators, including p53, RB1, p21, 
p27, BRCA1, BRCA2, CEBPα, PAR4, NPM1, PU.1, PP2A, MDM2, FoxOs, 
GCR, TOP2A, Fbw7, and DDR. Other XPO1 cargoes include proteins 
involved in signaling mediators (such as APC in Wnt/β-catenin and IκBα 
in NF-κB), growth regulators (KIT, EGFR, FLT3, BRAF, RAS-PI3K/AKT, 
PTEN, Ras-GRF1, and BCR-ABL), cell survival (survivin, cIAP1, MCL1, 
Igfbp2, Nrf2, and TERT), cell cycle positive regulators (CDK1 and cyclin 
B1/D1), autophagy (beclin 1, centrin, STK38, and YAP1), and others 
including PPAR-γ and SNAIL [117,118]. mRNA is primarily exported by 
the NXF1-mediated pathway, while miRNA and tRNA precursors are 
primarily exported by XPO5 and XPO3, respectively [119,120]. XPO1 

preferentially exports ribosomal RNA (60S and 40S subunits), regulating 
ribosomal biogenesis. In addition, XPO1 is responsible for selectively 
transporting certain subsets of mRNAs, miRNA, and snRNA through 
exporting several RNA-binding proteins and adaptor proteins [119, 
120]. For example, XPO1: (1) selectively mediates the alternative export 
of both m7G-capped mRNAs and snRNA by binding to CBC20/80 [121]; 
(2) preferentially exports a subset of mRNAs encoding oncoproteins, 
such as Myc, CDC25A, BRD4, Bcl-2, Bcl-6, Mcl-1, Bcl-xL, cyclins, 
androgen receptor, and Pim1 by exporting several RNA-binding pro-
teins, including LRPPRC, eIF4E, NXF3, and HuR; XPO1 thereby regu-
lates the translation of these oncoproteins [121–129]; (3) exports 
U-snRNAs into the cytoplasm for modification and assembly, thus 
playing a critical role in the regulation of mRNA splicing through 
binding the adaptor protein PHAX; and (4) mediates the alternative 
export of both microRNAs and tRNAs. 

The role of XPO1 in cancer pathogenesis and drug-resistance 

Altered nuclear export signaling is recognized as a driver of onco-
genesis. XPO1 overexpression is observed in many types of cancers such 
as MM, pancreatic, gastric, prostate, and colorectal cancer [130–138]. In 
many of these cancers, XPO1 overexpression is induced by c-Myc and/or 
the loss of p53 [139]. XPO1 overexpression in cancer cells is associated 
with disease progression, treatment resistance, and inferior OS or PFS. 
Additionally, gain-of-function mutations of XPO1 (E571, R749, and 
D624) have been detected in many types of cancers, specifically in B-cell 
malignancies. For example, the XPO1E571K mutation was detected in 
33% of primary mediastinal B-cell lymphoma, 14% of classic Hodgkin 
lymphoma, 2% of DLBCL, and 3% of chronic lymphocytic leukemia 
[140]. XPO1E571K mutation has been shown to cooperate with MYC and 
BCL2 in promoting lymphomagenesis. Furthermore, several XPO1 
binding partners and adaptor proteins such as RAN, HuR, eIF4E, 
LRPPRC, and NXF3, are also frequently overexpressed in human cancers 
and correlate with a poor prognosis [120,141–146]. Overexpression of 
XPO1 contributes to cancer pathogenesis through the 
nuclear-to-cytoplasmic export of tumor-suppressor proteins such as p53, 
BRCA1, P21, P27, APC, IκB, FOXO1A, FOXO3A, PP2A, maspin, and P63 
[147,148]. These proteins are usually located in the nucleus and play 
their roles through regulating target gene expression. In addition, 
overexpression of XPO1 also results in cytosolic retention of survival 
proteins, including cIAP, surviving, and MCL1, as well as abnormal 
activation of survival and proliferation signaling,such as that of NF-κB 
and β-catenin, which are associated with disease progression. 

XPO1 has been identified as a critical player for drug resistance in 
many types of cancers [149,150]. Several molecular cargoes of XPO1 
might contribute to global drug resistance, including tumor repressors 
(TP53, BRCA1, P21, and P27) and survival proteins (cIAP, survivin and 
MCL1). The elevated cytosolic levels of these proteins might be 
responsible for the resistance of many types of drugs [151–157,158]. In 
vitro studies suggest that XPO1 promotes the expression of many 
recognized DNA damage repair proteins, including CHEK1, MLH1, 
MSH2, RAD51, and PMS2, most likely through a MYC-dependent 
fashion. Selinexor restores sensitivity to drug-resistant cells by retain-
ing these substrates and repressing the expression of DNA-damage repair 
proteins (Fig. 3A). 

Some of the cargoes of XPO1 may mediate drug-specific resistance. 
Correspondingly, this resistance may be overcome (Fig. 3B–D) by 
inhibiting XPO1. For example:  

(1) In many cancer types, nuclear TOP2A inhibitor anthracycline 
resistance is driven by the cytosolic mislocalization of the tran-
scriptional inhibitor E2F7 and topoisomerase TOP2. Mis-
localization of E2F7 leads to the derepression of SPHK1; SPHK1 
converts sphingosine to sphingosine-1-phosphate, conferring 
resistance to anthracyclines in these cancer types. Selinexor 
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restores the anthracycline sensitivity in cancer cells by retaining 
E2F7 and TOP2A in the nucleus [159–162].  

(2) The increased cytosolic localization of β-galactosidase-binding 
protein galectin 3 has been linked with the resistance of 
platinum-based drugs such as cisplatin. This protein regulates the 
β-catenin signaling pathway through GSK-3β phosphorylation 
and is modulated by XPO1.  

(3) Increased cytoplasm distribution of DDX17, an ATP-dependent 
DEAD box RNA helicase, has been linked to TKI gefitinib resis-
tance in patients with EGFR-mutant non-small-cell lung cancers. 
DDX17 plays such a role by disassociating E-cadherin/β-catenin 
complexes, causing nuclear translocation of β-catenin.  

(4) In PIK3CA-mutant ER+HER2− metastatic breast cancers, an 
increased nuclear export of CEBP-β results in PI3K inhibitor- 
resistance due to CDK4-mediated cell cycle progression. In all 
these situations, inhibition of XPO1 can restore drug sensitivity 
by retaining corresponding cargoes in the nucleus. 

In many types of MM cells, XPO1 has been defined as a critical player 
for resistance to both bortezomib and TOP2 inhibitors [163–166]. Many 
XPO1-associated proteins including SMC1A, RCC2, CSE1, NUP88, 
NUP50, TPR, HSPA14, DYNLL1, RAD21, and RanBP2 are upregulated in 
bortezomib-resistant MM cells. XPO1 overexpression seems to be linked 
with bortezomib resistance and an unfavorable prognosis in MM pa-
tients. The subcellular localization of tumor suppressors or other key 
proteins may function as biomarkers of prognosis and/or treatment 
outcome. Selinexor restores the sensitivity of bortezomib and anthra-
cyclines in cell line models, mouse models, and in patient-derived cells 
[165,167]. Selinexor plays this role via the nuclear retention of IκB, 
TOP2A, FOXO3a, and pro-survival proteins (cIAPs, Survivin and MCL1), 
as well as a down-regulation of MYC and its target genes [165–169]. 
Interestingly, the anti-tumor effects of selinexor are independent of the 

function of key tumor suppressor proteins RB, TP53, and p21 
[170–172]. FOXO3a mediates selinexor-induced PUMA expression in a 
p53-independent fashion, explaining the clinical response of 
TP53-deficient MM to selinexor treatment [173]. 

Selinexor in MM treatment 

Selinexor is a small-molecule, first-in-class, oral SINE, which acts 
through blockading XPO1. Selinexor was granted accelerated approval 
by the FDA in July 2019 for penta-refractory MM and is now a cat-
egory2A recommendation from the NCCN. It is also FDA approved along 
with bortezomib and dexamethasone as a third-line therapy. Although 
the efficacy of selinexor monotherapy (NCT01607892) was modest with 
only a 4% ORR and 21% clinical benefit rate [174], the effectiveness of 
selinexor and dexamethasone (Sd) combination greatly increased the 
ORR to 21-50%. STORM II was a phase II study which included 123 
patients with RR-MM (median 7 prior lines of therapy); treatment with 
the Sd regimen (Selinexor 80 mg plus dexamethasone 20 mg twice 
weekly as part of a 28-day cycle) induced a total ORR in 26% of patients 
with a median duration of response of 4.4 months [39,40]. The median 
PFS and median OS were 3.7 and 8.8 months, respectively [39]. Based 
on this result, the Sd regimen was granted accelerated FDA approval in 
July 2019 for patients with MM who are refractory to at least 4 prior 
lines of therapy and whose diseases are refractory to at least 2 PIs, at 
least 2 IMiDS, and an anti-CD38 monoclonal antibody. 

In a randomized phase III open-label BOSTON trial (KCP-330-023, 
NCT03110562) which included 402 patients with RR-MM (1–3 prior 
lines of therapy Vd [1.3 mg/m2 bortezomib and 20 mg dexameth-
asone twice weekly]) was compared to SelVd (selinexor 100 mg once 
weekly plus 1.3 mg/m2 bortezomib and 20 mg dexamethasone 
twice weekly). SelVd induced both an improved ORR of 76.4% vs 62.3% 
(P = 0.0012) and improved PFS to 13.9 vs 9.5 months (P = 0.0066) 

Fig. 3. Molecular mechanisms by which XPO1 inhibitors restore drug sensitivity to resistant MM cells. Cytosolic retention of: A. TP53, cIAP/surviving/MCL1 and 
PP2A contribute to globe drug-resistance; B. galectin 3, DDX7 and IκB contribute to resistance of PIs, TKIs, platinum agents and gemcitabine due to the activation of 
β-catenin and NF-κB signaling. C. E2F7 and TOP2A cause resistance of anthracyclines. D. CEBPβ leads to resistance of PI3Ka inhibitors. Figure created with Bio-
Render.com. 
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[40,175,176]. Based on this study, on December 18, 2020, the FDA 
approved selinexor in combination with bortezomib and dexamethasone 
for the treatment of adult patients with RR-MM who received at least 
one prior line of therapy. Detailed analysis of patient information and 
clinical parameters demonstrated that benefits of SelVd treatment over 
Vd were more pronounced in patients treated earlier in their disease 
course who had either received only one prior therapy, had never been 
treated with a PI, or had prior ASCT [177]. In addition, SelVd conferred 
benefits to patients over Vd regardless of cytogenetic risk [178]. 
Furthermore, SelVd is safe and effective in patients regardless of age and 
frailty scores [179]. 

Adverse effects of selinexor 

The most common grade 3 or 4 adverse events are hematologic, 
including thrombocytopenia, anemia, and neutropenia. The most com-
mon non-hematological adverse events are gastrointestinal disturbances 
including nausea, vomiting, decreased appetite, and diarrhea, as well as 
peripheral neuropathy, fatigue, upper respiratory tract infection, weight 
loss, which are all primarily grade 1 or 2 but can also be grade 3. 
Electrolyte imbalances, including asymptomatic hypophosphatemia, 
hyponatremia, and hypokalemia, have also been commonly observed 
[175–177,179,180]. Approximately 19.5% of patients experienced 
ocular adverse events, including blurred vision and/or dry eye syn-
drome. Some patients showed progression of age-related nuclear scle-
rosis (cataract) [181]. Fortunately, all of these adverse events are 
manageable and generally reversible. Hematopoietic side effects are 
dose dependent and can be overcome by combining hematopoietic 
protective drugs and dose modifications [182]. However, most intestinal 
and non-hematological side effects seem associated with a brain 
neuronal response; therefore, development of SINEs with less 
blood-brain barrier penetration, such as KPT-8602, might be a potential 
solution [183]. 

Perspectives moving forward 

Several SINE compounds including KPT-185, KPT-249, KPT-251, 
KPT-276, KPT-330 (selinexor), KPT-335 (verdinexor), KPT-8602 (elta-
nexor), and SL-801 (felezonexor) are being investigated; however, seli-
nexor is currently the only FDA approved SINE fo MM treatment. KPT- 
330, KPT-8602, and SL-80 have been advanced to early clinical trials. 
Clinical studies demonstrated that selinexor treatment only benefits a 
proportion of MM patients and has significant side effects. Some of the 
XPO1 cargoes such as HER2, YAP, and GSK3β might promote disease 
progress and drug resistance when accumulated in the nucleus 
[184–186]. Thus, to better use SINEs for MM treatment, it is important 
to (1) identify the predictive biomarkers (such as genetic abnormalities 
and/or gene expression profiling) to determine which patients are likely 
to respond to such inhibitors, avoiding unnecessary toxicity; (2) define 
novel and more effective selinexor combination regimens in order to 
improve response and reduce adverse effects; and (3) develop more 
selective and potentially less-toxic XPO1 inhibitors. KPT-8602 is a 
second-generation SINE [183] that retains XPO1 inhibitory activity as 
demonstrated in cell culture studies [187]. However, its penetration 
across the blood-brain barrier is 30-fold less than selinexor. It is sug-
gested that KPT-8602 has less intestinal side effects and can offer a 
better tolerability profile while maintaining comparable efficacy. 

Selinexor has been assessed in the preclinical setting for RR-MM and 
with other cancer treatments in combination with novel agents, 
including the Bcl2 inhibitor venetoclax, Bcl-xL inhibitors, azacitidine, 
tyrosine kinase inhibitors, topoisomerase inhibitors, the MDM2 inhibi-
tor nutlin 3a, and immune checkpoint PD-1 inhibitors. However, these 
agents might preferentially benefit a certain subset of patients. For 
example, selinexor + venetoclax might benefit patients with t(11;14) 
who demonstrate high expression of BCL-2 [188]; selinexor + nutlin 3a 
might only benefit patients with at least one allele of TP53 expression; 

selinexor + azacitidine might benefit patients with mutations in epi-
genomic regulator genes such as EZH2 and PHF19; while selinexor + a 
MAPK inhibitor or a NF-kB inhibitor might benefit patients with muta-
tions in KRAS/NRAS-MAPK and NF-κB pathways, respectively [189]. 
Thus, future studies need to focus on the correlation of genetic and 
epigenetic abnormalities to the specific combinations in order to 
develop more specific targeted therapies. While targeting therapeutic 
combinations based on individual patient genomic mutations appears 
attractive and has been shown to be effective in certain myeloid ma-
lignancies, branching evolutionary patterns at relapse, polyclonal dis-
ease, and increased mutational burden in general paralleling disease 
relapse will pose a challenge and necessitate multi-agent combinations 
moving forward [190]. 

Many MM patients acquire a “double-hit” of their TP53 gene 
(resulting in complete loss of TP53) after multple rounds of treatment 
and become resistant to most of the convertional myeloma therapeutics. 
Selinexor seems at least partially able to overcome this challenge by 
inducing TP53-independent apoptosis. However, “double-hit” muta-
tions of the TP53 gene will still be an issue if a MM clone is unable to be 
completely eliminated. Different from TP53-expressing cancer cells, 
TP53-deficient cancer cells are entirely dependent on the G2/M check-
points to maintain genome integrity and survival due to the tight feed-
back regulation of TP53 and mitotic kinases (eg, WEE1, PLK1, NEK2, 
BUB1, TTK, AURKB, and PLK1) [191,192]. Additonally, P53-deficient 
cells have also been reported to be dependent on the p38MAPK/MK2 
pathway for survival following treatment with DNA-damaging agents. In 
consequence, TP53-deficient cancer cells are more sensitive to genotoxic 
stress when treated with inhibitors of these kinases [193–197]. Future 
studies need to test whether selinexor can more effectively kill 
P53-deficient MM cells when combined with the selective inhibitors 
these kinases. 
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