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Survival analysis is a collection of statistical techniques which examine the time it takes for an event to occur, and it is one of the
most important fields in biomedical sciences and other variety of scientific disciplines. Furthermore, the computational rapid
advancements in recent decades have advocated the application of Bayesian techniques in this field, giving a powerful and flexible
alternative to the classical inference. %e aim of this study is to consider the Bayesian inference for the generalized log-logistic
proportional hazard model with applications to right-censored healthcare data sets. We assume an independent gamma prior for
the baseline hazard parameters and a normal prior is placed on the regression coefficients. We then obtain the exact form of the
joint posterior distribution of the regression coefficients and distributional parameters. %e Bayesian estimates of the parameters
of the proposed model are obtained using the Markov chain Monte Carlo (McMC) simulation technique. All computations are
performed in Bayesian analysis using Gibbs sampling (BUGS) syntax that can be run with Just Another Gibbs Sampling (JAGS)
from the R software. A detailed simulation study was used to assess the performance of the proposed parametric proportional
hazard model. Two real-survival data problems in the healthcare are analyzed for illustration of the proposedmodel and for model
comparison. Furthermore, the convergence diagnostic tests are presented and analyzed. Finally, our research found that the
proposed parametric proportional hazard model performs well and could be beneficial in analyzing various types of survival data.

1. Introduction

%e healthcare domain has evolved significantly in recent
years as a result of computational developments. %e use of
Bayesian statistics in healthcare has encouraged the appli-
cation of computational developments, providing a powerful
and versatile alternative to traditional methodologies used in
healthcare [1]. %e progress of Bayesian approaches in
healthcare aims to make an individual’s life more affordable

and comfortable, similar to how smartphones have made life
easier [2]. Despite the fact that the idea of applying com-
putational Bayesian statistics to survival analysis dates back
to the 19th century, McMC techniques are now garnering
more attention in the literature because of abundant and
cheap computation [3]. %e application of deep learning to
the context of parametric survival models was discussed by
[4]. %rough an efficient training process, the quality of the
developed system improves. Data portioning is done three
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times to confirm the trained algorithms (training-testing-
validation) [5]. %e main goal of this article is to present the
Bayesian parametric proportional hazard model using BUGs
syntax.

%e statistical analysis of survival data is an essential
topic in many fields, including medicine, biology, envi-
ronmental science, healthcare, economics, engineering,
social science, and epidemiology, among others. Probability
distributions serve as the foundation for survival models.
%e family of distributions can be parametric, semi-
parametric, or nonparametric. %e parametric survival
models lead to more efficient and smaller standard errors of
the estimates than semiparametric and nonparametric
models [6] if the distributional assumption is correct, to be
more specific.

In analyzing survival data, parametric survival models
are crucial. %e benefits of using parametric survival models
include the following: (1) handling all types of censored data
(left, right, interval, double, and middle); (2) application of
survival analysis in a healthcare care problem and (3)
producing better estimation when you have a theoretical
expectation of the baseline hazard; also, (4) they can apply
random effects—frailty models—and can also be used to
estimate expected lives, not only hazard ratios like the
accelerated failure time models [7].

%e proportional hazards (PH) model, in which cova-
riates affect the hazard rate function, and the accelerated
failure time (AFT) model, in which covariates affect both the
hazard rate and time scale, are the two most common
methods for developing parametric regression models for
survival data [8]. However, other class of models have also
been proposed such as the accelerated hazard (AH) model
[9] and the proportional odds (PO) model [10].

One of the first steps in using a parametric approach to
model survival data is to choose a suitable baseline distri-
bution that can capture significant features of the obser-
vations of interest. Certain probability distributions are
widely used in the modelling of survival data. Only a few are
closed under the proportional hazard model, and none are
flexible enough to describe a wide range of survival data [11].
Most of the distributions closed under the PH assumption
fails to model a nonmonotone (i.e., bathtub and unimodal)
survival data sets.

%e log-logistic (LL) distribution has a wide range of
applications in survival data analysis and can accommodate
unimodal survival data sets. %e distribution is closed under
both proportionality odds (PO) and multiplication of failure
time (AFT) frameworks [7]. It is not a PHmodel, but an AFT
model. However, when the log-logistic distribution is gen-
eralized, it has the appealing feature of being a member of all
classes of parametric hazard-based regression models of the
survival analysis because its failure rate function is quite
versatile and its cumulative hazard function (chf) has a
tractable form.

Extensive efforts have been made over the last decades to
extend classical distributions to use as a baseline distribution
for parametric hazard-based regression models. Many
modifications to the LL distribution have been introduced to
make it more adaptable to a wide range of hazard shapes

[12–16]. %e generalized log-logistic distribution (GLL) is
one such model, which modifies the log-logistic distribution
by inducing an additional shape parameter [17]. %e model
is tractable and closed under the PH assumption and can
account for both nonmonotone and monotone hazard rates
[11]. On the other hand, recent computational advances
have advocated for the use of Bayesian techniques in the field
of survival and reliability analysis.

%e motivating ideas behind our work on Bayesian
parametric proportional hazard (PH) model with GLL
baseline hazard are as follows: (i) despite the fact that there
are some classical distributions closed under the PH
framework, none of which is flexible enough to incorporate
both monotone and nonmonotone hazard rate; (ii) Bayesian
inference does not rely on asymptotic approximation for
statistical inference; (iii) the availability of software makes
Bayesian implementation for hazard-based complicated
models relatively more straightforward and simple than
classical inference [18]; (iv) parametric PH model may lead
to more precise estimates than the semiparametric PH
model; and, last but not the least, (v) the use of generalized
distributions that can capture both monotone and non-
monotone hazard rate functions is what makes our work
unique and more appealing to biostatisticians, epidemiol-
ogists, healthcare workers, and other applied researchers in
multiple disciplines.

To the best of author’s knowledge, no Bayesian infer-
ences study has been conducted on the PH model with
generalized log-logistic baseline hazard. As a result, in this
paper, we consider the Bayesian inference for the generalized
log-logistic proportional hazard model, beginning with the
PH model formulation and assumptions, revising the gen-
eralized log-logistic distribution, and verifying that the GLL
distribution is closed under the PH framework. In addition,
we discuss the inferential procedures and how to obtain the
classical and Bayesian estimators for the model’s parameters.
We also compare the proposed model to other existing
distributions closed under the PH framework, and one
interesting feature of this model is that it can incorporate
different hazard rate shapes. Hence, the formulation of the
parametric PH model and its lifetime function, the infer-
ential procedures using both classical and Bayesian ap-
proaches, and the development of the computational
algorithms to fit the proposed PH model and its competing
models using RJAGS in R software are the novelty of this
study.

%e article is structured as follows: the PH model for-
mulation, assumptions, and its probabilistic functions are
discussed in Section 2. Section 3 revises the most common
probability distributions closed under the PHmodel. Section
4 presents the proposed baseline hazard function which is a
generalized log-logistic (GLL) distribution. %e GLL dis-
tribution under the PH model is presented in Section 5.
Section 6 discusses the inferential procedures of the pro-
posed model. In Section 7, we present an McMC simulation
study to assess the performance of the proposed model.
Section 8 presents the application of the proposed model to
two right-censored cancer data sets with monotone and
nonmontone hazard rates. In addition, the convergence
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diagnostics of the McMC techniques were discussed. %e
Bayesian model selection criterion is presented in Section 9.
Finally, in the final portion, the article’s concluding notes are
offered, and some future works are mentioned.

2. PH Model Formulation and Assumptions

In many real-life applications, survival times are affected by
explanatory variables. %e explanatory variable vector is
related to response variable through a regression model. An
important aspect of survival modelling is the inclusion of
explanatory variables. %e hazard-based regression models
can be formulated in a number of ways. One of the most
frequently used method is the proportional hazard (PH)
model formulation.

PH models play an essential role in analyzing time-to-
event data and are broadly used in survival and reliability
analysis as well as in joint modelling of survival and lon-
gitudinal data [7]. It is the most popular parametric model in
medical studies and clinical trials because of the existence of
a semiparametric PH hazard model which is robust against
the distributional assumption of the survival time. %e
parametric PH model is given with the similar form to the
Cox PH model. It is the parametric form of the Cox PH
models [6].

2.1. PH Model Formulation. %e parametric proportional
hazard (PH) models are formulated using a defined baseline
hazard and a link function ψ(x ′β) for the covariates which is
defined as follows:

ψ x ′β( 􏼁> 0, ∀x≠ 0,

ψ x ′β( 􏼁is amonotone function that has a one

-to-one correspondence,

ψ(0) � 1.

(1)

%e most commonly found option for the link function
ψ(x ′β) is the exponential exp(x’β) (or log-linear) function.
In this work, we define the PH model with the assumption
that ψ(x ′β) � exp(x ′β).

2.2. PH Assumptions. %e PH model assumption is that the
effect of covariates is to increase or decrease the hazard rate
function by a proportionate amount which does not depend
on t. %e assumption of the PH model can be defined as
follows:

h(t; x) � h0(t)ψ x ′β( 􏼁 � h0(t)exp x ′β( 􏼁 � h0(t)e
x′β

, (2)

where h0(t) is called the baseline hazard.
Simplifying, we get,

h(t|x) � h0(t)exp β1x1 + β2x2 + . . . + βpxp􏼐 􏼑. (3)

%e main difference between the Cox PH model and the
parametric PH model is that the baseline hazard function is
assumed to follow a specific distribution when it is fitted to
the data. Using equation (2), we can see that the hazard ratio

(HR) comparing any two specifications of the covariates, for
example, (x and x∗) is

HR x, x ∗ , h0, β( 􏼁 �
h(t|x, β)

h t|x∗, β( 􏼁
�

h0(t|x)exp βx ′( 􏼁

h0(t|x)exp βx ∗
’

􏼒 􏼓

� exp x ′ − x ∗
’

􏼒 􏼓
T

β􏼢 􏼣.

(4)

%e above equation shows us that the baseline hazards
cancel each other from this ratio, so the hazard rate for one
individual is proportional to the hazard rate for any other
individual. On the other hand, the proportionality constant
is independent of time which makes the main assumption of
this model [6]. As a result, the model is known as the
proportional hazard (PH) model in the literature.

Unlike most parametric regression models including
accelerated failure time (AFT) models, PH models does not
include an intercept [19]. More properly, the vector X in the
PH model is not assumed to have x ≡ 1. An intercept would
get confounded with the baseline hazard function h0.

2.3. Lifetime Functions Describing the PH Model. %e five
frequent representatives of a lifetime distribution function
that are used to characterize the PH model are addressed in
this section.

2.3.1. Hazard Rate Function of the PH Model. In the PH
analysis, one of the most important lifetime functions is the
concept of the hazard rate function (hrf ). %e hazard rate
function h(t|x), abbreviated by hrf, also called the instan-
taneous failure rate or as force of mortality of a PH model is
of the form:

h(t; x) � h0(t)ψ x ′β( 􏼁 � h0(t)exp x ′β( 􏼁 � h0(t)e
x′β

. (5)

2.3.2. Cumulative Hazard Function of the PH Model.
%e hazard or survival functions, rather than the cumulative
distribution or probability density function, are typically
used in the PH analysis of survival data. %e hazard rate
function is used to interpret the most common survival
regression models; however, the cumulative hazard function
(chf), also known as the integrated hazard rate function, can
be easily written down. Hence, the chf of a PH model takes
the following form:

H(t|x) � 􏽚

t

0

h(s; x)ds � e
x′β

􏽚

t

0

h0(s) ds � e
x′β

H0(t). (6)

2.3.3. Survival Function of the PH Model. %e survivor
function (sf ) for a PH model can be derived using the
following relationship between survival function and the
hazard rate function. Hazard function is given by
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h(t|x) �
f(t|x)

S(t|x)
. (7)

Cumulative hazard function:

H(t|x) � 􏽚

t

0

h(u)du � 􏽚

t

0

f(u)

S(u)
du � 􏽚

t

0

− dS(u)

S(u)
du

� − log S(t){ },

f(t|x) � h(t|x)S(t|x) � h(t|x)exp − H(t|x){ }.

(8)

Using the above expressions, we can easily find

S(t|x) � exp − H(t|x){ },

S(t|x) � exp − H(t|x){ } � exp − 􏽚
t

0
ψ(x)h0(t) dt􏼨 􏼩,

� exp − ψ(x) 􏽚
t

0
h0(t) dt􏼨 􏼩,

� exp − 􏽚
t

0
h0(t) dt􏼨 􏼩􏼢 􏼣

ψ(x)

,

� S0(t)􏼂 􏼃
ψ(x)

.

(9)

2.3.4. Cumulative Distribution Function of the PH Model.
%e cdf of the PH model, also known as the lifetime dis-
tribution function, is given by

F(t) � 1 − S(t) � 1 − exp − H(t){ },

F(t) � 1 − S0(t)􏼂 􏼃
ψ(x)

.
(10)

2.3.5. Probability Density Function of the PHModel. %e pdf
or the failure density function of the PH model is defined as

f(t) � f0(t)ψ(x) S0(t)􏼂 􏼃
ψ(x)− 1

. (11)

%e five representatives used here were chosen for their
special meaning for lifetime data, their intuitive appeal, their
utility in survival data analysis, and, last but not the least,
their popularity in probability theory and statistics.

%e PH model can be formulated without assuming a
probability distribution for survival times, and this leads to
the well-known Cox PH model [20]. On the other hand,
assuming a probability distribution for survival times leads
to the fully parametric PH model. %e most common
parametric survival models used are as follows: exponential,
Weibull, Gompertz, log-logistic, log-normal, gamma, and
the generalized gamma distributions. Only the exponential,
Weibull, and Gompertz distributions are used for the PH
model. %e log-logistic and the log-normal distributions are
not closed under the PH framework. Weibull distribution is
the only one that is closed under both parametric AFT and
PH models.

3. Distributions Closed under PH Framework

In this section, we present most common parametric dis-
tributions that are closed under the PH framework and are
used to analyze survival data. %ese distributions have been
studied and used in various contexts in the literature.

3.1. Exponential PH Model. Exponential distribution is a
continuous probability distribution with only one unknown
parameter k. It is the simplest distribution for lifetime
distribution models. %e distribution is not flexible enough
to describe commonly encountered hazard rate shapes for
survival data. %e pdf, cdf, sf, hrf, and chf of the exponential
random variable are, respectively, as follows.

Let X ∼ exponential(k),

f(t) � k exp − kt{ },

F(t) � 1 − exp − kt{ },

S(t) � exp − kt{ },

h(t) � k,

H(t) � − logS(t) � − log(exp − kt{ } � kt,

(12)

where k> 0 is the scale parameter and t≥ 0. A short value of
k shows low risk and long survival, where a large value shows
high risk and short survival. For the PH model, the expo-
nential baseline hazard is

h(t) � k. (13)

So, according to the formulation of the PH framework,
the hazard rate for an individual with covariate vector x and
link function ψ(x) is

h(t) � h0(t)ψ(x) � k.ψ(x) . (14)

Applying the log-linear function ψ(x ′β) � exp(x ′β) ,we
can simplify into

hEPH(t) � k. exp x’β􏼐 􏼑 � k. exp β1x1 + β2x2 + . . . + βpxp􏼐 􏼑. (15)

In this equation, the hrf has the exponential distribution
with scale parameter k. exp(x ′β) which indicates that the
PH assumption is satisfied with the exponential distribution.
It is worth mentioning that the exponential distribution is
often found to be inadequate to describe survival data. %is
makes the applicability of this distribution fairly limited.

%e other lifetime distributions of the exponential PH
model are as follows.

%e survival function of the exponential PH model is

SEPH(t) � [exp − kt{ }]
exp x ′β( ) . (16)

%e pdf of the exponential PH model is

fEPH(t) � k exp − kt{ }exp x ′β( 􏼁[exp − kt{ }]
exp x ′β( )− 1

. (17)

%e cdf of the exponential PH model is

FEPH(t) � 1 − [exp − kt{ }]
exp x’β( ). (18)

%e chf of the exponential PH model is
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HEPH(t) � kt exp x ′β( 􏼁. (19)

3.2. Gompertz PH Model. Gompertz distribution is named
after Benjamin Gompertz, a British mathematician and
actuary, who developed it in 1825. It is a continuous
probability distribution used for modelling adult life spans
and other application under different disciplines such as
actuarial science, demography, survival, and reliability
analysis. %is distribution is flexible and can be skewed both
in right and in left. %e pdf, cdf, sf, hrf, and chf of the
exponential random variable are, respectively, as follows.

Let X ∼ Gompertz(k, α),

f(t) � αk.e
tk exp − α e

tk
− 1􏼐􏽮 􏽯, t ∈ [0,∞),

F(t) � 1 − exp − α e
tk

− 1􏼐􏽮 􏽯,

S(t) � exp − α e
tk

− 1􏼐􏽮 􏽯,

h(t) � � αketk
,

H(t) � − logS(t) � − log exp − α e
tk

− 1􏼐􏽮 􏽯􏽨 􏽩 � α e
tk

− 1􏼐 􏼑,

(20)

wherek> 0is therateparameter,α> 0 is the shape parameter,
and t≥ 0. When k≥ 0, the survival time then has an expo-
nential distribution; therefore, Gompertz distribution is a
generalization of exponential distribution. For the PHmodel,
the Gompertz baseline hazard rate function is given by

h(t) � αketk
. (21)

So, according to the formulation of the PH framework,
the hazard rate for an individual with covariate vector x and
link function ψ(x) is

h(t) � h0(t)ψ(x) � αk.e
tk

.ψ(x). (22)

Applying the log-linear function ψ(x ′β) � exp(x ′β) ,we
can simplify into

hGoPH(t) � αk.e
tk

. exp x ′β( 􏼁 � αk.e
tk

. exp β1x1 + β2x2 + . . . + βpxp􏼐 􏼑.

(23)

In the above equation, it is straightforward that the PH
property is satisfied. However, the Gompertz PH model is
rarely used in the real-life applications.

%e other lifetime distributions of the Gompertz PH
model are as follows: the survival function of the Gompertz
PH model is

SGoPH(t) � exp − α e
tk

− 1􏼐􏽮 􏽯􏽨 􏽩
exp x ′β( ) . (24)

%e pdf of the Gompertz PH model is

fGoPH(t) � αk.e
tk exp − α e

tk
− 1􏼐􏽮 􏽯exp x ′β( 􏼁 exp − α e

tk
− 1􏼐􏽮 􏽯􏽨 􏽩

exp x ′β( )− 1
.

(25)

%e cdf of the Gompertz PH model is

FGoPH(t) � 1 − exp − α e
tk

− 1􏼐􏽮 􏽯􏽨 􏽩
exp x ′β( ) . (26)

%e chf of the Gompertz PH model is

HGoPH(t) � exp x ′β( 􏼁 α e
tk

− 1􏼐 􏼑. (27)

3.3. Weibull PH Model. Weibull distribution is a general-
ization of the exponential distribution. It is a versatile
distribution that can take on the characteristics of other
types of continuous distributions. It has an additional pa-
rameter compared to the exponential. %e additional pa-
rameter describes the shape of the hazard functions, based
on the value of the shape parameter [21].%e pdf, cdf, sf, hrf,
and chf of the Weibull random variable are, respectively, as
follows.

Let X ∼ Weibull(k, α),

f(t) � αk(kt)
α− 1 exp − (kt)

α
􏼈 􏼉,

F(t) � 1 − exp − (kt)
α

􏼈 􏼉,

S(t) � exp − (kt)
α

􏼈 􏼉,

h(t) � αk(kt)
α− 1

,

H(t) � − logS(t) � − log exp − (kt)
α

􏼈 􏼉( � (kt)
α
,

(28)

where α> 0 is the shape parameter and k> 0 is the rate
parameter. %e hazard rate function increases when α> 1,

decreases for α< 1, and constant for α � 1. When α � 1, the
Weibull distribution reduces to exponential. It is worth
mentioning that the Weibull distribution does not accom-
modate nonmonotone (i.e., unimodal or bathtub) hazard
rates.

For the PH model the Weibull baseline hazard is

h(t) � αk(kt)
α− 1

. (29)

So, according to the formulation of the PH framework,
the hazard rate for an individual with covariate vector x and
link function ψ(x) is

h(t) � h0(t)ψ(x) � αk(kt)
α− 1ψ(x) . (30)

Applying the log-linear function ψ(x’β) � exp(x’β) , we
can simplify into

hWPH(t) � αk(kt)
α− 1 exp x ′β( 􏼁

� αk(kt)
α− 1 exp β1x1 + β2x2 + . . . + βpxp􏼐 􏼑.

(31)

In this equation, the model has the Weibull distribution
with rate parameter k. exp(x’β) and shape parameter α
which indicates that the PH assumption is satisfied with the
Weibull distribution with constant α.

%e other lifetime distributions of the PHWeibull model
are as follows: the survival function of theWeibull PHmodel
is

SWPH(t) � exp − (kt)
α

􏼈 􏼉􏼂 􏼃
exp x ′β( ) . (32)

%e pdf of the Weibull PH model is

fWPH(t) � αk(kt)
α− 1 exp − (kt)

α
􏼈 􏼉exp x ′β( 􏼁 exp − (kt)

α
􏼈 􏼉􏼂 􏼃

exp x’β( )− 1
.

(33)
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%e cdf of the Weibull PH model is

FWPH(t) � 1 − exp − (kt)
α

􏼈 􏼉􏼂 􏼃
exp x ′β( ) . (34)

%e chf of the Weibull PH model is

HWPH(t) � exp x ′β( 􏼁(kt)
α
. (35)

4. Parametric Baseline Hazard

%e parametric baseline hazard function is essential because
it determines which hazard shapes can be captured by the
proportional hazard (PH) model. Most classical distribu-
tions that are closed under the PH framework, such as the
exponential, Weibull, and Gompertz distributions, are in-
capable of accommodating unimodal hazard shapes. As a
result, it is worth looking into some modifications to the
classical distributions that can account for both monotone
and nonmonotone hazard rates.

In this paper, we consider the Bayesian inference for the
parametric PH models with generalized log-logistic (GLL)
baseline. %e GLL is a flexible survival distribution proposed
by [11]. %is distribution has a characteristic similar to those
of the log-logistic distribution. Also, the advantage of the
GLL distribution is that it approaches toWeibull in the limit.
%ese properties allowed the GLL to handle both monotone
and nonmonotone hazard functions, and also it makes to be
a baseline distribution that is closed under both AFTand PH
model [22] like the Weibull distribution. %e distribution is
adaptable, and the two shape parameters enable a wide range
of hazard shapes. It also includes a variety of important
distributions such as the exponential, Weibull, Burr XII, and
log-logistic distributions. In addition, when compared to
competitors, it is relatively tractable. We refer to, for more
information on the distribution and its properties, [17].

For a positive-valued random variable T, the hrf of the
GLL distribution with three unknown parameters
k> 0, α> 0, η> 0 is given by

h(t; θ) �
αk(kt)

α− 1

1 +(ηt)
α

􏼂 􏼃
�

αk
α
t
α− 1

1 +(ηt)
α

􏼂 􏼃
, t≥ 0, k, α, η> 0 .

(36)

%e chf of the GLL distribution is given by

H(t; θ) �
k
α

ηα
log 1 +(ηt)

α
􏼂 􏼃, t≥ 0, k, α, η> 0. (37)

%e distribution function of the GLL model is of the
form:

F(t; θ) � 1 − 1 +(ηt)
α

􏼂 􏼃
− kα/ηα

, t≥ 0, k, α, η> 0. (38)

%e survival function (sf) of the GLL model is given by

S(t; θ) � 1 +(ηt)
α

􏼂 􏼃
− kα/ηα

, t≥ 0, k, α, η> 0 , (39)

where k> 0, α> 0, and η> 0 are parameters and
θ � (k, α, η)’.

%e quantile function of the GLL model is given by

Xq� F
− 1

(q; k, α, η) �
[1/1 − q − 1]

ηα/kα
− 1􏽮 􏽯

1/α

η
, 0≤ q< 1.

(40)

%e reverse cumulative hazard rate function is expressed
as follows:

H
− 1
0 (u; θ) �

e
ηαk− αu

− 1􏼐 􏼑
1/α

η
. (41)

Figure 1 illustrates shapes that the failure rate function
can accept such as constant, increasing, decreasing, V-shape,
and unimodal among others.

5. The Proposed PH Model

For the PH model, the generalized log-logistic baseline
hazard is

h(t) �
αk(kt)

α− 1

1 +(ηt)
α

􏼂 􏼃
. (42)

So, according to (2), the hazard rate for an individual
with covariate vector x and link function ψ(x) is

h(t) � h0(t)ψ(x) �
αk(kt)

α− 1

1 +(ηt)
α

􏼂 􏼃
ψ(x) . (43)

Applying the log-linear function ψ(x ′β) � exp(x ′β), we
can simplify into

hGLLPH(t) �
αk(kt)

α− 1

1 +(ηt)
α

􏼂 􏼃
exp x ′β( 􏼁 �

αk
α
t
α− 1

1 +(ηt)
α

􏼂 􏼃
exp x ′β( 􏼁

�
α k. exp x ′β( 􏼁

1/α
􏼐 􏼑

α
t
α− 1

1 +(ηt)
α

􏼂 􏼃
�

αk
∗ α

t
α− 1

1 +(ηt)
α

􏼂 􏼃
.

(44)

In this equation, the hrf can be recognized as a gener-
alized log-logistic distribution as well, but contrary to (36),
the rate parameter is k∗ � k. exp (x ′β)1/α and shape pa-
rameters are α and ηwhich indicates that the PH assumption
is satisfied with the GLL distribution and the proposed
model is closed under the PH framework.

%e other lifetime distribution functions for the GLL PH
model are as follows: the survivor function of the GLL PH
model is

SGLLPH(t) � 1 +(ηt)
α

􏼂 􏼃
− kα/ηα

􏼔 􏼕
exp x ′β( ) . (45)

%e pdf of the GLL PH model is

fGLLPH(t) �
βc(ct)

β− 1

1 +(ηt)
β

􏽨 􏽩
cβ/ηβ+1

exp x ′β( 􏼁 1 +(ηt)
α

􏼂 􏼃
kα/ηα

􏼔 􏼕
exp x ′β( ) − 1

.

(46)

%e cdf of the GLL PH model is

FGLLPH(t) � 1 − 1 +(ηt)
α

􏼂 􏼃
− kα/ηα

􏼔 􏼕
exp x ′β( ). (47)
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%e chf of the GLL PH model is

HGLLPH(t) � exp x ′β( 􏼁
k
α

ηα
log 1 +(ηt)

α
􏼂 􏼃. (48)

6. Model Inference

We discuss the classical approach (using maximum likeli-
hood (MLE)) and Bayesian approach (assuming non-
informative priors) estimation techniques for the proposed
parametric PH model parameters in this section.

6.1. MLE for Right Censored Survival Data. We examine the
challenge of estimating the proposed model’s distributional
parameters and regression coefficients for right-censored
survival data in this section. Because of its appealing
qualities, such as consistency, asymptotic efficiency, as-
ymptotic unbiasedness, and asymptotic normality, MLE is
one of the most common strategies for estimating the pa-
rameters of hazard-based regression models. Let there be n

individuals with lifetimes represented by T1, T2, . . . , Tn.

Assuming that the data are subject to right censoring, we
observe ti � min(Ti, Ci), where Ci > 0 corresponds to a
potential censoring time for individual i. Allow δi � I(Ti, Ci)
that equals 1 if Ti ≤Ci and 0 otherwise.

Suppose that a right-censored random sample with data
D � (ti, δi, xi), i � 1, 2, . . . , n, is available, where ti is the
censoring time or a survival time according to whether δi �

0 or 1, respectively, andxi � x1, x2, . . . , xn is ann × 1column
vector of external covariates for the ith individual, ϑ is the
vector of parameters associatedwith the baseline distribution,
and β is the vector of regression coefficients. When the
parametric PH model is considered, the censored likelihood
function can be expressed as

L(ϑ, β|D) � 􏽙

n

i�1
f ti|ϑ, β, x( 􏼁􏼂 􏼃

δi s ti|ϑ, β, x( 􏼁􏼂 􏼃
1− δi ,

� 􏽙

n

i�1
h ti|ϑ, β, x( 􏼁.S ti|ϑ, β, x( 􏼁􏼂 􏼃

δi s ti|ϑ, β, x( 􏼁􏼂 􏼃
1− δi ,

� 􏽙
n

i�1
h ti|ϑ, β, x( 􏼁􏼂 􏼃

δi s ti|ϑt, nβq, hx( 􏼁􏼂 􏼃

� 􏽙
n

i�1
h ti|ϑ, β, x( 􏼁􏼂 􏼃

δiexp − 􏽚
t

0
h(u)du􏼢 􏼣

� 􏽙

n

i�1
h ti|ϑ( 􏼁exp x ′β( 􏼁􏼂 􏼃

δiexp − H ti|ϑ( 􏼁exp x ′β( 􏼁􏼂 􏼃􏼂 􏼃.

(49)

An iterative optimization procedure (e.g., New-
ton–Raphson algorithm) can be used to obtain the maxi-
mum likelihood estimation 􏽢ϑ ofϑ. Hypothesis testing and
interval estimations of model parameters are possible due to
the MLEs’ approaching normality [7]. %e natural logarithm
of the likelihood function, so-called log-likelihood function
can be written as follows:

ℓ(ϑ, β|D) � 􏽘
n

i�1
δilog h0 ti|ϑ( 􏼁 + xi′β􏼂 􏼃 − 􏽘

n

i�1
H0 ti|ϑ( 􏼁exp xi′β( 􏼁,

(50)

where β is a vector of the regression coefficients and ϑ′ �
(k, α, η) is the vector of the baseline distributional
parameters.

In our case, if we assume that a � 􏽐
n
i�1 δi,pi � exp(xi′β)

and qi � (ηti)
α. Use (36) for h0(.) and note that H0(t; θ) �

􏽒
t

0 h(u)du is the baseline cumulative hazard rate function as
given by (37).%e full log-likelihood function of the GLL PH
model can be expressed as follows:

2.5
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Figure 1: Visual representation for the different hazard rate shapes of the GLL distribution with different values of the parameters.
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ℓ(ϑ|t) � alogα + aαlogk +(α − 1) 􏽘
n

i�1
δilogti

− 􏽘
n

i�1
δilog 1 + qi( 􏼁 + alogpi −

k

η
􏼠 􏼡

α

􏽘

n

i�1
pilog 1 + qi( 􏼁.

(51)

To obtain the MLE’s of θ ′ � (k, α, η) and β ′, we can
maximize (51) directly with respect to (k, α, η) and β ′ or we
can solve the nonlinear equations below or the 1st derivative
of the log-likelihood function. %e 1st derivatives of the log-
likelihood function are

zℓ(τ|t)

zα
�

a

α
+ alogpi + 􏽘

n

i�1
δilogti −

1
α

􏽘

n

i�1
δiqi

log qi

1 + qi( 􏼁
􏼢 􏼣,

−
k

η
􏼠 􏼡

α 1
α

􏼒 􏼓 􏽘

n

i�1
piqi

log qi

1 + qi( 􏼁
􏼢 􏼣 −

k

η
􏼠 􏼡

α

log
k

η
􏼠 􏼡 􏽘

n

i�1
pilog 1 + qi( 􏼁,

zℓ(τ|t)

zη
� −

α
η

􏼠 􏼡 􏽘

n

i�1
δi

qi

1 + qi

􏼢 􏼣 −
α
η

􏼠 􏼡
k

η
􏼠 􏼡

α

􏽘

n

i�1
pi

qi

1 + qi

􏼢 􏼣 −
α
η

􏼠 􏼡
k

η
􏼠 􏼡

α

􏽘

n

i�1
pilog 1 −

qi

1 + qi

􏼢 􏼣􏼠 􏼡,

zℓ(τ|t)

zk
�

aα
k

−
α
k

􏼒 􏼓
k

η
􏼠 􏼡

α

􏽘

n

i�1
pilog 1 + qi( 􏼁,

zℓ(τ|t)

zβj

� 􏽘
n

i�1
δiZij −

k

η
􏼠 􏼡

α

􏽘

n

i�1
pilog 1 + qi( 􏼁Zij for j � 1, 2, . . . , p.

(52)

To maximize log-likelihood functions, many software
packages are available including proven optimization
algorithms.

6.2. Bayesian Inference. In this section, Bayesian inference
was used to estimate distributional parameters and regres-
sion coefficients using objective (or noninformative) priors
to obtain proper posterior distributions.

6.2.1. Priors for the Model Parameters. %e specification of a
prior distribution is a crucial aspect of any Bayesian in-
ference. In parametric survival regression models, this is
especially true. As a result, the prior scenario is built in this
study using a noninformative independent prior for the
parameters. %e marginal prior distribution for every re-
gression coefficient βm, m � 1, . . . , 5, is prompted as a
normal distribution centred at zero and with a small pre-
cision, N(0, 0.001); on the other hand, a gamma distribu-
tion, gamma(10, 10), is chosen as the marginal prior
distribution for the parameters of the GLL PH model due to
the versatility of gamma distribution that include the
noninformative priors (uniform) on the shape parameters.
Many research publications in the literature, such as Danish
and Aslam [23, 24], considered the assumption of the
gamma priors for the baseline hazard parameters of PH
models. Alvares et al. [1] took the assumption of indepen-
dent gamma priors for the baseline hazard parameters of
eight different parametric survival models. Muse et al. [22]

used the assumption of independent gamma priors for the
baseline hazard parameters of the of the generalized log-
logistic AFT model, and other researchers take these priors
into account.

For the baseline parameters of the GLL-PH model, we
assume independent gamma priors.

p(α) ∼ G a1, b1( 􏼁 �
b

a1
1
Γ a1( 􏼁

αa1− 1
e

− b1α; a1, b1, α> 0 ,

p(η) ∼ G a2, b2( 􏼁 �
b

a2
2
Γ a2( 􏼁

ηa2− 1
e

− b2η; a2, b2, η> 0 ,

p(k) ∼ G a3, b3( 􏼁 �
b

a3
3
Γ a3( 􏼁

k
a3− 1

e
− b3k

; a3, b3, k> 0.

(53)

Prior to that, we had the regression coefficients (as-
suming a normal distribution).

p β ′( 􏼁 ∼ N a4, b4( 􏼁. (54)

%e density function of the combined prior distribution
of all unknown parameters and the regression coefficients
are given as

p α, k, η, β ′( 􏼁 � p(α)p(η)p(k)p β ′( 􏼁. (55)

6.2.2. Ce Likelihood Function. Unfortunately, the likeli-
hood function of this generalized model is not implemented
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in BUGS and JAGS syntax. To generate the likelihood
function, we use the “zero’s trick” method that become
popular in survival analysis and relies on Poisson modelling
of expanded or reconstructed data [1]. %e zero’s trick
approach works on the assumption that perhaps the con-
tribution of a Poisson (λ) observable of zero is exp(− λ); if we
set λ � − log(f(ti|ϑ, β, x)) with observable data as a vector of
0′s, we receive the right contributions of the proposedmodel
[18].

6.2.3. Ce Posterior Distribution. %e joint posterior density
function is equal to the multiplication of the prior distri-
bution p(α, k, η, β ′) and the likelihood function the joint

posterior density function of the parameters α, k, η, an d β’
of GLL PH model given the data can be expressed using
Bayes’ theorem as

p α, k, η, β ′|x( 􏼁∝p α, k, η, β ′( 􏼁L α, k, η, β ′( 􏼁,

p α, k, η, β ′|x( 􏼁∝ p(α)p(η)p(k)p β ′( 􏼁 L α, k, η, β ′( 􏼁,

(56)

where the first four terms on the equation represent the prior
specification for the unknown parameters and are assumed
to be independent and L(α, k, η, β’) is the likelihood
function expressed as follows:

L α, k, η, β ′( 􏼁 � 􏽙
n

i�1

αk(kx)α− 1

1 +(ηt)α􏼂 􏼃
exp x ′β( 􏼁􏼢 􏼣

δi

exp x ′β( 􏼁
k
α

λα
log 1 +(λx)

α
􏼂 􏼃􏼢 􏼣,

p α, k, η, β ′|x( 􏼁∝ 􏽙

p

j�0
π βj􏼐 􏼑

⎫⎪⎬

⎪⎭
αa1+n− 1ηa2+n− 1

k
a3+n− 1

e
− b1α+b2η+b3k( )L α, k, η, β ′( 􏼁.

⎧⎪⎨

⎪⎩

(57)

%e marginal distributions of the model parameters and
the normalising joint posterior density function are difficult
to calculate analytically, requiring high-dimensional inte-
gration and no close form inferences. To obtain estimates, we
use McMC simulation methods, which involve sampling
from the posterior distribution through using the Metro-
polis–Hastings Algorithm.

7. Simulation Study

In this section, we undertake an extensive simulation in-
vestigation to demonstrate the proposed parametric pro-
portional hazard model’s good Bayesian features. %e
parameter values are chosen to construct situations that
mimic cancer population studies using a cancer that is severe
(with a lower five-year survival rate), such as lung cancer
[9, 25]. We demonstrate parameter estimation, the effect of
censoring proportions, and sample sizes on inference in
more detail.

7.1. Generating Survival Data from the PH Model. To sim-
ulate survival data for the GLL PH model, we use the in-
version technique [40, 41] to generate survival data. %is
strategy is based on the link between a survival random
variable’s cumulative hazard rate function and a standard
uniform random variable. When the cumulative hazard rate
function has a closed form expression, it may be immediately
applied, inverted, and readily implemented with R [26]. %e
censoring rates were estimated using administrative cen-
sorship at (1) Tc� 5 years, which resulted in around 20%
censoring in all sets, and (2) Tc� 3 years, which resulted in
about 30% censoring in all sets.

For the purposes of this simulation, we assume that
survival times are distributed using the generalized log-

logistic distribution (α, η, k). Using the reverse chf given in
equation (41), lifetime data can be simulated as follows:

T � H
− 1
0

e
(η/k)α − log(1− U)/eβxi[ ] − 1􏼒 􏼓

1/α

η

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (58)

where a, η, and k> 0.

7.2. Simulation Design. %e simulation analysis was carried
out by conducting a series of simulations with different
sample sizes (n� 100, and 300) sets and censoring pro-
portions (Tc� 20 and 30 percentages), all based on the PH
model in equation (1). %e GLL PH model’s true parameter
vector is set as follows: (1) set I: distributional parameter
values (α � 1.5, k � 0.75, and η � 1.25) and covariates β �

(0.75, − 0.75, 0.5), (2) set II: distributional parameter values
(α � 1.5, k � 0.95, and η � 1.5) and covariates
β � (0.75, − 0.75, 0.5).

%e values of the covariates were simulated as follows: (1)
combination of uniform distributions with 0.25 probability
on (30, 65), 0.35 probability on (65, 75), and 0.40 probability
on (75, 85) years old was used to simulate the continuous
covariate “age,” and (2) the binary covariates “treatment”
and “gender” were both simulated using a 0.5 binomial
distribution.We recommend that the reader can refer [9] for
further details.

7.3. Posterior Analysis of the Simulated Data. We fitted the
proposed PH model with GLL baseline hazard to assess its
Bayesian properties in the simulation sets. With all cen-
soring rates and different sample sizes, each simulation set
was used to estimate the proposed PHmodel. JAGS software
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[27] was used to approximate posterior distributions using
three parallel chains with 40,000 iterations each plus another
3,000 for the burn-in period. To minimize autocorrelation in
the sequences, the chains were thinned further by storing
every 10th draw.

7.4. Measures of Performance. %e actual mean, standard
deviation (SD), Naive standard error, bias, percentage of
bias, coverage probability (CP), potential scale reduction
factor (􏽢R), and the effective number of separate simulation
draws were used to test the posterior distribution stability for
the suggested PH model.

7.4.1. Evaluating the Performance of the Estimators. We
calculate the bias of the estimators using:

Bias (􏽢θ) �
1
N

􏽘

N

i�1
(􏽢θ − θ). (59)

An underestimation is indicated by a negative bias,
whereas an overestimation is shown by a positive bias.

7.4.2. Accuracy of the Estimators. %e mean square error
(MSE) is a good indicator of overall accuracy and is cal-
culated as follows:

MSE (􏽢θ) �
1
N

􏽘

N

i�1
(􏽢θ − θ)

2
. (60)

%is metric determines how accurate the estimates are as
follows. %e lower the MSE, the more accurate the esti-
mations of impacts.

%e Naive standard error, which is calculated by dividing
the posterior standard deviation by the square root of the
sample size, is another accuracy metric. As a result, the
smaller the standard error, the larger the sample size. %e
Näıve SE incorporates simulation error rather than posterior
uncertainty.

Naive SE �
posterior SD

�
n

√ . (61)

7.4.3. Coverage. %e 95 percent coverage probability (CP) is
the percentage of N simulated data sets in which the true
estimates were included in the 95 percent confidence in-
terval. %e more precise the estimations are, the closer the
outcome is to a 95 percent coverage probability. %e fol-
lowing is how CP is expressed:

CP � 􏽢θ∓1.96 × SE(􏽢θ). (62)

7.4.4. Convergence Diagnostics. Quantitatively, Gelman
et al. [28] recommended that the acceptable limit of mul-
tivariate potential scale reduction factor (MPSRF) and
potential scale reduction factor (PSRF) be near 1 􏽢R< 1.1, and
the effective number of sample size simulation draws be
greater than or equal to 100 for checking the convergence of
McMC simulations. It is clear from the summary charac-
teristics (Tables 1–4) that the PSRF is less than 1.1, that
number of sample size simulation draws is larger than 100,
and that Naive SE is smaller than the standard deviations
(SD) for all of the distributional parameters and regression
coefficients, as expected, indicating that the McMC algo-
rithm has converged to the posterior distribution. Trace
plots, autocorrelation plots, and Gelman plot diagnostics are
the most common ways to judge the convergence of a
McMC simulation graphically [28]. %e McMC simulation
has been achieved as evidenced by the trace plot, density
plot, autocorrelation plot, and Gelman diagnostic plots for
each distributional parameter and regression coefficients.
%at is, the McMC simulation for the GLL PH model ex-
plores the target posterior distribution appropriately.

7.5. Simulation Results. Tables 1–4 shows the simulation
results for the posterior mean, bias, Naive standard error

Table 1: Simulation results from a GLL PH framework with distributional parameters (α � 1.5, k � 0.75, and η � 1.25), covariates
β � (0.75, − 0.75, 0.5), and n � 100.

Posterior properties
True value (􏽢θ) Posterior mean (􏽢θ) Bias Naı̈ve SE MSE CP 􏽢R No. of eff

C� 20%
α � 1.50 1.506 0.006 0.001 0.032 0.032 1.000 3782
β1 � 0.75 0.837 0.087 0.002 0.057 0.935 1.001 3740
β2 � − 0.75 − 0.695 0.055 0.001 0.011 0.945 1.000 3720
β3 � 0.50 0.480 0.020 0.002 0.049 0.920 1.002 3700
η � 1.25 1.431 0.181 0.002 0.107 0.890 1.000 4039
k � 0.75 0.720 0.030 0.001 0.013 0.935 1.001 4039

C� 30%
α � 1.50 1.463 − 0.037 0.001 0.029 0.935 1.000 3802
β1 � 0.75 0.872 0.122 0.002 0.072 0.880 1.000 3823
β2 � − 0.75 − 0.727 0.023 0.001 0.008 0.945 1.001 3761
β3 � 0.50 0.501 0.001 0.002 0.060 0.997 1.000 3700
η � 1.25 1.575 0.325 0.002 0.193 0.851 1.002 3865
k � 0.75 0.567 − 0.183 0.001 0.045 0.911 1.000 4084
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Table 2: Simulation results from a GLL PH framework with distributional parameters (α � 1.5, k � 0.75, and η � 1.25), covariates
β � (0.75, − 0.75, 0.5), and n � 300.

Posterior properties
True (􏽢θ) Value Posterior mean (􏽢θ) Bias Näıve SE MSE CP 􏽢R No. of eff

C� 20%
α � 1.50 1.449 − 0.001 0.001 0.017 0.991 1.000 4017
β1 � 0.75 0.712 − 0.038 0.001 0.019 0.946 1.000 3700
β2 � − 0.75 − 0.723 0.027 0.000 0.003 0.956 1.000 3761
β3 � 0.50 0.483 − 0.017 0.001 0.016 0.962 1.000 3782
η � 1.25 1.309 0.059 0.002 0.070 0.923 1.001 4609
k � 0.75 0.731 − 0.019 0.001 0.012 0.941 1.001 4609

C� 30%
α � 1.50 1.527 0.027 0.001 0.021 0.945 1.000 4174
β1 � 0.75 0.726 − 0.024 0.001 0.023 0.954 1.000 3660
β2 � − 0.75 − 0.752 0.002 0.000 0.004 0.975 1.001 3802
β3 � 0.50 0.445 − 0.055 0.001 0.023 0.937 1.001 3802
η � 1.25 1.437 0.187 0.002 0.123 0.911 1.002 4434
k � 0.75 0.847 0.097 0.001 0.023 0.907 1.003 4792

Table 3: Simulation results from a GLL PH framework with distributional parameters (α � 1.75, k � 0.95, and η � 1.5), covariates
β � (0.5, − 0.85, 0.5), and n � 100.

Posterior properties
True (􏽢θ) Value Posterior mean (􏽢θ) Bias Näıve SE MSE CP 􏽢R No. of eff

C� 20%
α � 1.75 1.718 − 0.032 0.002 0.038 0.942 1.000 3865
β1 � 0.50 0.523 0.023 0.002 0.051 0.955 1.000 3823
β2 � − 0.85 − 0.817 − 0.033 0.001 0.010 0.946 1.000 3720
β3 � 0.50 0.489 − 0.011 0.002 0.050 0.981 1.000 3740
η � 1.50 1.441 − 0.059 0.002 0.068 0.931 1.000 4084
k � 0.95 0.828 − 0.122 0.001 0.147 0.925 1.001 4084

C� 30%
α � 1.75 1.717 − 0.033 0.002 0.044 0.939 1.000 3802
β1 � 0.50 0.577 0.077 0.002 0.063 0.943 1.000 3823
β2 � − 0.85 − 0.833 − 0.017 0.001 0.009 0.971 1.000 3761
β3 � 0.50 0.474 − 0.026 0.002 0.058 0.952 1.000 3700
η � 1.50 1.625 0.125 0.002 0.143 0.919 1.002 3865
k � 0.95 0.778 − 0.172 0.001 0.213 0.908 1.001 4084

Table 4: Simulation results from a GLL PH framework with distributional parameters (α � 1.75, k � 0.95, and η � 1.5), covariates
β � (0.5, − 0.85, 0.5), and n � 300.

Posterior properties
True (􏽢θ) value Posterior mean (􏽢θ) Bias Naı̈ve SE MSE CP 􏽢R No. of eff

C� 20%
α � 1.75 1.756 0.006 0.001 0.023 0.978 1.000 3951
β1 � 0.50 0.503 0.003 0.001 0.040 0.991 1.000 3761
β2 � − 0.85 − 0.827 − 0.023 0.000 0.003 0.963 1.000 3761
β3 � 0.50 0.505 0.005 0.000 0.045 0.987 1.000 3740
η � 1.50 1.519 0.019 0.002 0.107 0.942 1.000 4458
k � 0.95 0.973 0.023 0.001 0.013 0.941 1.001 4458

C� 30%
α � 1.75 1.811 0.061 0.001 0.091 0.935 1.000 4011
β1 � 0.50 0.612 0.112 0.001 0.129 0.880 1.000 3978
β2 � − 0.85 − 0.815 − 0.035 0.000 0.004 0.945 1.000 4011
β3 � 0.50 0.521 0.021 0.001 0.063 0.997 1.000 3789
η � 1.50 1.531 0.031 0.002 0.171 0.851 1.001 4458
k � 0.95 0.990 0.040 0.002 0.145 0.911 1.002 4565
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(SE), mean square error (MSE), coverage probability (CP),
Gelman–Rubin diagnostic (􏽢R), and the number of sample
size simulation draws (no. of Eff) of the proposed PHmodel,
and Figures 2–5 shows the visual summary for the con-
vergence diagnostics.

Based on these findings, we may deduce that, as the
sample size grows, the biases and MSE of the estimators
decrease; also, the censoring proportion impacts the bias and
MSE of the estimators, with larger censoring rates increasing
the bias and MSE. %e Gelman–Rubin diagnostic, on the
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Figure 2: Gelman diagnostics from a GLL PH framework with distributional parameters (α � 1.5, k � 0.75, and η � 1.25), covariates
β � (0.75, − 0.75, 0.5), and n � 300 and censoring proportion for 20 percentage.
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β � (0.75, − 0.75, 0.5), and n � 300 and censoring proportion for 20 percentage.
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other hand, as well as the number of efficiency sample size
draws show that convergence has been attained. However,
the estimators’ coverage probability was close to 95%.

8. Practical Illustrations

In this section, two real-life survival data sets dealing with
right-censored cancer data sets were considered to dem-
onstrate the flexibility and applicability of the proposed GLL
PH in modelling different survival data sets with different
hazard rate shapes.

8.1. Data Set I: Lung Cancer Survival Data

8.1.1. Data Description. In this section, we reanalyse the data
set reported in [29] which is available in the R package
survival. %e Veterans Administration Lung Cancer Study
Group followed up on n� 137 patients in this data set. For
this clinical investigation, the censorship rate is around 6.5
percent (9 observations out of 137 were censored). %e
response and exploratory factors in this clinical trial are the
time until death (in days), the number of months from
diagnosis to study enrolment (diagt), age (in years), a history
of previous lung cancer therapy (prior), and the trt�

(treatment� conventional chemotherapy).

8.1.2. Hazard Rate Shape. %e hazard rate function appears
to be unimodal or decreasing in Figure 6 based on the TTT
plot (careful inspection reveals a slight indication of
unimodality). %e data could be evaluated with a model like
the log-logistic distribution, which can accommodate de-
creasing or unimodal hazard rate forms. However, because
the classical LL distribution is not closed under the PH
framework, we employ the GLL distribution, which is closed
and can encompass various hazard rate shapes.%e box plot,
histogram, and TTT plots are shown in Figure 6.

8.1.3. Proportionality Assumption. %ere are twowidely used
methods for assessing the PH assumption: (1) graphical di-
agnostics based on (a) time-dependent variables [7] and (b)
standardized Schoenfeld residuals [30] and (2) statistical tests.
%estandardizedSchoenfeldresidualsareusedinthissectionto
evaluate thePHassumptionof theCoxmodel foreachcovariate
included in the model. Based on Figure 7 and the significance
threshold of 5%, there is no evidence to reject the proportional
hazards assumption.As a result, we anticipate that theGLLPH
model will provide a good fit when compared to the other
existing parametric PH model employed in this study.

8.1.4. Posterior Analysis. In this paper, we assume the
noninformative independent framework with a normal prior
N(0, 0.001) for β′s (regression coefficients) and an inde-
pendent gamma prior for the distributional parameters
α ∼ G(a1, b1), η ∼ G(a2, b2), and k ∼ G(a3, b3) with hyper-
parameter values (a1 � b1 � a2 � b2 � a3 � b3 � 10).

(1) Numerical Summary. We looked at various quantities of
interest and theirnumerical valuesusing theMcMCsampleof
posterior properties for the generalized log-logistic propor-
tional hazardmodel using the lung cancer data in this section.

%e posterior summaries for the generalized log-logistic
PHmodelparametersusingVeterans lungcancerdata sets are
illustrated in Table 5. %e probability that the corresponding
parameter is +ve is given in the last rowof Table 5. A posterior
probability of0.5 indicates that apositiveparametervalue is as
likely as anegativeone.Oncewe’ve saved theposterior sample
for each model parameter, we can compute the posterior
probability, for example, for β1, using mean (β1 > 0).

(2) Visual Summary. We looked at density strip plots, trace
plots, Gelman–Rubin diagnostic plots, Ergodic mean plots,
and autocorrelation diagnostic plots in this section to get a
visual description of the posterior properties. %ese plots
and graphs provide a nearly comprehensive representation
of the parameters’ posterior uncertainty for the application
of the lung cancer data sets.

(3)DensityPlots.Density canbecompared to the fundamental
shapes associated with typical analytic distributions, and
density plots can reveal behaviour in the tails, skewness,
existenceofmultimodal behaviour, anddataoutliers. Figure8
illustrates thedensity plots for theGLLPHmodel parameters.

(4) Time-Series Plots. One of themost common diagnostics of
an McMC simulation is a time series plot (or trace plot) [28].
Figure 9 shows that the McMC sampling process converges
to the joint posterior distribution with no periodicity. As a
result, we can say that the chains have converged.

(5) Brooks–Gelman–Rubin (BGR) Convergence Diagnostic.
Gelman and Rubin [31] propose a convergence diagnostic
technique to check the McMC algorithms simulation and is
based on within chain variance and between chain variance.
Gelman et al. [28] suggested that the limit of acceptance of
potential scale reduction factor (PSRF) to be less than 1.1.
Figure 10 shows us that both PSRF andMPSRF are less than 1.1.

(6) Running Mean Plots. %e running mean (also referred to
Ergodic mean) is a well-known convergence diagnostic for
McMC algorithms.%e Ergodic mean is defined as the mean
of all simulated sample values of up to a specific iteration
[32]. Ergodic mean is used to observe the convergence
pattern of the McMC chains. Figure 11 shows us the Ergodic
mean plots for the regression coefficients and the baseline
hazard parameters. It is quite clear from the running mean
time-series plots that the chains converge after N iterations
to their mean values. However, these plots display only at the
mean of the baseline hazard parameters and the regression
coefficients and therefore are inadequate.

(7) Autocorrelation Plots. Although the autocorrelation plot
is not strictly a convergence diagnostic tool, it does aid in
indirectly assessing the convergence of the McMC simula-
tion process [33]. Figure 12 shows the autocorrelation plots
for all parameters and regression coefficients.
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Table 5: Numerical summaries of posterior characteristics based on McMC sample of the GLL PH model for the lung cancer data set.

Characteristics
Pars

Alpha β1 (diagt) β2 (age) β3 (prior) β4 (trt) Eta Kappa

Mean 1.317 0.002 − 0.024 − 0.015 − 0.151 0.042 0.103
SD 0.173 0.010 0.008 0.021 0.178 0.015 0.049
Naı̈ve SE 0.001 0.0001 0.0001 0.0002 0.001 0.0001 0.0004
Time series SE 0.003 0.0001 0.0001 0.0001 0.002 0.0002 0.001
Minimum 0.813 − 0.046 − 0.054 − 0.109 − 0.890 0.007 0.019
2.5th percentile 1.023 − 0.020 − 0.040 − 0.057 − 0.500 0.019 0.040
Q1 1.194 − 0.005 − 0.029 − 0.029 − 0.271 0.031 0.068
Medium (Q2) 1.302 0.003 − 0.024 − 0.015 − 0.150 0.040 0.092
Q3 1.422 0.010 − 0.018 − 0.0003 − 0.029 0.051 0.125
97.5th percentile 1.697 0.021 − 0.007 0.027 0.193 0.078 0.231
Maximum 2.324 0.032 0.006 0.082 0.511 0.143 0.658
Mode 1.250 0.003 − 0.028 − 0.015 − 0.150 0.035 0.075
Variance 0.030 0.0001 0.0001 0.001 0.032 0.0002 0.002
Skewness 0.550 − 0.361 0.082 − 0.058 − 0.027 0.957 1.656
Kurtosis 0.558 0.152 0.011 0.001 − 0.009 1.510 4.992
95% credible interval (1.023, 1.697) − 0.020, 0.021) (− 0.040, − 0.007) (− 0.057, 0.027) (− 0.500, 0.193) (0.019, 0.078) (0.040, 0.231)
P (.>0|data) 1.000 0.598 0.003 0.244 0.199 1.000 1.000

1.0

0.8

0.6

T 
(i/

h)

0.4

0.2

0.0
0.0 0.2 0.4

i/n
0.6 0.8 1.0

1000

800

lung cancer data lung cancer data

600

400

200

0

80

60

Fr
eq

ue
nc

y

40

20

0

0 200 400 600
sim

800 1000

Figure 6: TTT plot, box plot, and the histogram for the survival times of the lung cancer data sets.
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8.1.5. Convergence of McMC Algorithm for the Veterans Lung
Cancer Data Set. Computational developments in the
previous few decades have recently emerged as a very useful
instrument for employing McMC approaches [34] and

fitting Bayesian survival regression models in time-to-event
analysis. %e complicated posterior distribution is sampled
using the McMC algorithm. As a result, when an algorithm
converges to the target posterior distribution, the Markov
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Figure 9: %e time series plots for the baseline hazard parameters and the regression coefficients for the Veterans lung cancer data.
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chain is stationary, and adding more samples will not change
the shape and position of the posterior distribution’s density
in a meaningful way and hence will not change the esti-
mations or other relevant outcomes.

(1) Common Statistical Tests for Convergence Diagnostics.
%e convergence of the McMC algorithm was checked
quantitatively using conventional statistical tests for con-
vergence diagnostics: (1) Brooks–Gelman–Rubin diagnos-
tics [28]; (2) Raftery and Lewi diagnostics [35]; (3)
Heidelberger and Welch’s diagnostic tests [36]; and (4)
Geweke diagnostics [37]. For more information about these
tests, we can refer to [34]. Table 6 indicates the Geweke,
Raftery–Lewis, and Heidelberger–Welch diagnostics for the
GLL PH model parameters.

(2) Graphical Techniques for Convergence Diagnostics.
Convergence diagnostics of an McMC algorithm can be
examined graphically, including: (1) time series plot; (2)

autocorrelation plot; (3) running mean plot; and (4) Gel-
man–Rubin plots. See Figures 9–12.

8.2. Data Set II: Larynx Cancer Data Sets

8.2.1. Data Description. Lifetimes for 90 patients with lar-
ynx-cancer, according to the stage of cancer tumour (stages
I–IV) are given in Table 7. %e study time or time to death
are recorded in months (where, ∗ shows us the censored
time). Alvares et al. [1];Wang et al. [8]; and Christensen et al.
[19] discussed the data from different aspects under different
hazard-based regression models, and the data were first
reported by [38]. %e survival times (in months) of patients
is illustrated in Table 7.

%e other covariates of the data are as follows: (1) age (in
years) at diagnosis and (2) the year of diagnosis. One goal of
this study was to see if the age, year of diagnosis, and stage of
cancer were associated with the death of patients with la-
ryngeal cancer.
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Figure 12: Autocorrelation plots for all the baseline distributional parameters and regression coefficients for the Veterans lung cancer data
set.
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8.2.2. Hazard Rate Shape. Based on the TTTplot, the hazard
rate function is an increasing hazard in Figure 13. %e data
could be analyzed using a model such as the Weibull dis-
tribution, which can handle monotone hazard rate forms.
We adopt the GLL distribution, which would be represented
by the PH framework and can accommodate a variety of
hazard rate shapes to see its applicability of the monotone
(increasing) hazard rates. Figure 13 shows the box plot,
histogram, and TTT plots.

8.2.3. Proportionality Assumption. We investigated if the
proportional hazards model could be used with this data set.
%e underlying assumption of the Cox model for each
explanatory variable utilized in the model is depicted in

Figure 14. With a significance level of 5%, there is no ev-
idence to reject the PH assumption. As a result, we an-
ticipate that the parametric PH model will provide a strong
fit.

8.2.4. Posterior Analysis. In this paper, we assume the
noninformative independent framework with N(0, 0.001)

for β′s (regression coefficients) and an independent gamma
prior for the distributional parameters α ∼ G(a1, b1),

η ∼ G(a2, b2), and k ∼ G(a3, b3) with hyperparameter
values (a1 � b1 � a2 � b2 � a3 � b3 � 10).

(1) Numerical Summary. We looked at various quantities of
importance as well as their numerical values using the

Table 6: Summaries for Raftery–Lewis’s diagnostic, Geweke diagnostic, and Heidelberger–Welch diagnostics test of the GLL PH model
parameters for the Veterans lung cancer data set.

Parameter Geweke diagnostic Diagnostics for the Raftery Lewis Diagnostics for the Heidelberger–Welch
Pr> |z| Dependency factor (I) Stationarity test p value Halfwidth test

Alpha − 0.383 2.430 Passed 0.648 Passed
β1 (diagt) 0.820 1.030 Passed 0.337 Passed
β2 (age) − 0.272 3.640 Passed 0.613 Passed
β3 (prior) − 0.680 0.988 Passed 0.885 Passed
β4 (trt) 0.608 2.120 Passed 0.112 Passed
Eta − 1.436 1.160 Passed 0.178 Passed
Kappa − 0.142 3.500 Passed 0.506 Passed

Table 7: Survival times (in months) of patients with larynx cancer according to stages of tumour (1–4).

Stages Survival time (∗ � indicating censoring)

Stage I (33 patients) 0.6, 1.3, 2.4, 2.5∗, 3.2, 3.3∗, 3.5, 3.5, 4.0, 4.0, 4.3, 4.5∗, 4.5∗, 5.3, 5.5∗, 5.9∗, 5.9∗, 6.0, 6.1∗, 6.2∗,
6.4, 6.5, 6.5∗, 6.7∗, 7.0∗, 7.4, 7.4∗, 8.1∗, 8.1∗, 9.6∗, 10.7∗

Stage II (17 patients) 0.2, 1.8, 2.0, 2.2∗, 2.6∗, 3.3∗, 3.6, 4.0∗, 4.3, 4.3∗, 5.0∗, 6.2, 7.0, 7.5∗, 7.6∗, 9.3∗

Stage III (patients) 0.3, 0.3, 0.5, 0.7, 0.8, 1.0, 1.3, 1.6, 1.8, 1.9, 1.9, 3.2, 3.5, 3.7∗, 4.5∗, 4.8∗, 4.8∗, 5.0, 5.0∗, 5.1∗, 6.3, 6.4, 6.5
∗, 7.8, 8.0∗, 9.3∗, 10.1∗

Stage IV (13 patients) 0.1, 0.3, 0.4, 0.8, 0.8, 1.0, 1.5, 2.0, 2.3, 2.9∗, 3.6, 3.8, 4.3∗
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Figure 13: TTT plot, box plot, and the histogram for the survival times of the larynx cancer data set.
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McMC sample of posterior properties for the generalized
log-logistic proportional hazard model considering the
larynx data in this section.

%e posterior summaries for the GLL-PH model pa-
rameters using larynx cancer data are illustrated in Table 8.
%e probability that the corresponding parameter is +ve is
given in the last row of Table 8.

(2) Visual Summary. We looked at density strip plots
(Figure 15), trace plots (Figure 16), Ergodic mean plots
(Figure 17), autocorrelation plots (Figure 18), and

Gelman–Rubin diagnostic plots (Figure 19), in this section,
to get a visual description of the posterior properties. %ese
plots and graphs provide a nearly comprehensive repre-
sentation of the parameters’ posterior uncertainty.

8.2.5. Convergence Diagnostic Tests for the Larynx Cancer
Data Using GLL PH Model

(1) Statistical Tests. Table 9 indicates the Geweke, Rafter-
y–Lewis, and Heidelberger–Welch diagnostics for the GLL
PH model parameters.
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Figure 14: %e standardized Schoenfeld residuals from the data |—larynx cancer data set, taking the test p value for each covariate into
account.

Table 8: Numerical summaries of posterior characteristics based on McMC sample for GLL PH model for the larynx cancer data.

Characteristics
Pars

Alpha β1 (stage 2) β2 (stage 3) β3 (stage 4) β4 (age) β5 (diagyr) Eta Kappa

Mean 1.539 − 0.182 0.376 1.222 0.187 − 0.111 0.869 0.336
SD 0.215 0.454 0.337 0.411 0.144 0.149 0.247 0.077
Naı̈ve SE 0.002 0.004 0.003 0.004 0.001 0.001 0.002 0.001
Time series SE 0.002 0.004 0.003 0.004 0.001 0.001 0.003 0.001
Minimum 0.847 − 1.975 − 0.902 − 0.531 − 0.373 − 0.730 0.197 0.112
2.5th percentile 1.157 − 1.108 − 0.289 0.396 − 0.091 − 0.403 0.457 0.207
Q1 1.389 − 0.480 0.152 0.952 0.089 − 0.212 0.691 0.282
Medium (Q2) 1.524 − 0.170 0.377 1.230 0.187 − 0.112 0.846 0.328
Q3 1.668 0.128 0.605 1.498 0.284 − 0.012 1.020 0.382
97.5th percentile 2.005 0.667 1.030 2.010 0.476 0.181 1.412 0.507
Maximum 2.701 1.648 1.770 2.848 0.817 0.509 2.131 0.763
Mode 1.550 − 0.100 0.300 1.300 0.150 − 0.150 0.850 0.325
Variance 0.046 0.207 0.113 0.169 0.021 0.022 0.061 0.006
Skewness 0.447 − 0.173 − 0.041 − 0.086 0.081 0.023 0.595 0.604
Kurtosis 0.511 0.068 0.010 0.070 0.102 0.027 0.514 0.656

95% credible interval (1.157,
2.005)

(− 1.108,
0.667)

(− 0.289,
1.030)

(0.396,
2.010)

(− 0.091,
0.476)

(− 0.730,
0.181)

(0.197,
1.412)

(0.112,
0.507)

P (>0|data) 1.000 0.352 0.870 0.998 0.906 0.227 1.000 1.000
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(2) Graphical Techniques. Convergence diagnostics of an
McMC algorithm for the larynx cancer data set are presented
in Figures 16–19.

8.2.6. Hazard Ratio (HR). One of the most intriguing as-
pects of PH models is that the regression coefficients can be
interpreted using the hazard ratio, which is preferred by
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Figure 15: Density plots for the baseline hazard parameters and the regression coefficients for the larynx cancer data.
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many clinicians.
A key feature for PH models is the hazard ratio (HR),

also known as the relative risk, between two individuals with
covariate vectors x1 and x2. %e HR is defined as

HR x1, x2, h0, β( 􏼁 �
h t|x1 , h0, β( 􏼁

h t|x2, h0, β( 􏼁
� exp x1 − x2( 􏼁

Tβ􏽨 􏽩, (63)
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Figure 16: %e time series plots for baseline hazard parameters and the regression coefficients for the larynx cancer.
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which does not depend on time t. the hazard function in the
numerator is equal to this constant HR times the hazard in
the denominator, i.e.,

h t|x1 , h0, β( 􏼁 � HR x h t|x2, h0, β( 􏼁. (64)

Hence, the name “proportional hazards model” [19]. For
example, the posterior distributions of the HR between two
individuals of the same age and diagyr (year of diagnosis) but
in different stages can be easily summarized.

Table 10 depicts the posterior characteristics of the
hazard ratio between two men of the same age and diagnosis
year (diagyr) but in different stages.

9. Bayesian Model Selection

In this study, we will use the deviance information criterion
(DIC) to distinguish between the proposed models. DIC is a
popular Bayesian model selection criterion. %is criterion is
available in most McMC packages [39]. %e DIC is com-
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Table 9: Summaries for the Raftery–Lewis’s, Geweke, and Heidelberger–Welch diagnostics test for the GLL PH model parameters for the
right-censored larynx cancer data.

Parameter Geweke diagnostic Diagnostics for Raftery–Lewis Diagnostics for the Heidelberger–Welch
Pr> |z| Dependency factor (I) p value Stationarity test Half width test

Alpha 1.083 1.020 0.787 Passed Passed
β1 (stage 2) − 1.105 0.982 0.730 Passed Passed
β2 (stage 3) − 0.333 1.060 0.497 Passed Passed
β3 (stage 4) 0.969 1.030 0.053 Passed Passed
β4 (age) − 0.800 1.020 0.680 Passed Passed
β5 (diagyr) − 1.177 0.998 0.425 Passed Passed
Eta 0.133 1.090 0.252 Passed Passed
Kappa 0.317 1.150 0.189 Passed Passed

Table 10: Posterior characteristics of the hazard ratio between two men of the same age and diagnosis year but in different tumour stages.

Posterior characteristics Stages 3 and 4 Stages 2 and 4 Stages 2 and 3
Mean 0.467 0.280 0.638
Standard deviation (SD) 0.203 0.149 0.298
Naı̈ve SE 0.001 0.001 0.002
Time series SE 0.002 0.001 0.002
2.5% 0.197 0.088 0.218
Lower quartile (Q1) 0.326 0.175 0.423
Medium (Q2) 0.425 0.250 0.585
Upper quartile (Q3) 0.564 0.349 0.791
97.5% 0.967 0.648 1.366

Table 11: Posterior properties summaries and the information criterion values for the considered GLL PHmodel and its competing models
for the lung cancer data.

Summaries Posterior characteristics
Parametric competitive models Parameter(s) Posterior mean Posterior SD Pr (>|0|data) HPD interval (95%)
GLL-PH model (DIC� 1505.165)

Alpha 1.317 0.173 1.000 (1.001, 1.661)
β1 (diagt) 0.002 0.010 0.598 (− 0.019, 0.021)
β2 (age) − 0.024 0.008 0.003 (− 0.039, − 0.007)
β3 (prior) − 0.015 0.021 0.244 (− 0.057, 0.026)
β4 (trt) − 0.151 0.178 0.199 (− 0.505, 0.186)
Eta 0.042 0.015 1.000 (0.016, 0.073)

Kappa 0.103 0.049 1.000 (0.029, 0.200)
Weibull-PH model (DIC� 1521.310)

Alpha 0.744 0.048 1.000 (0.654, 0.842)
β1 (diagt) 0.005 0.010 0.648 (− 0.018, 0.024)
β2 (age) − 0.025 0.007 0.001 (− 0.039, − 0.010)
β3 (prior) − 1.027 0.021 0.102 (− 0.068, 0.015)
β4 (trt) − 0.252 0.180 0.080 (− 0.593, 0.108)
Kappa 0.206 0.090 1.000 (0.060, 0.388)

Gompertz-PH model (DIC� 1556.407)
Alpha 1.134 0.311 1.000 (0.567, 1.746)

β1 (diagt) 0.021 0.009 0.984 (0.003, 0.039)
β2 (age) 0.027 0.006 1.000 (0.014, 0.039)
β3 (prior) − 0.056 0.023 0.006 (− 0.099, − 0.012)
β4 (trt) − 0.136 0.182 0.228 (− 0.494, − 0.211)
Kappa 0.001 0.0002 1.000 (0.001, 0.002)
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puted as follows:

DIC � D + pD � 􏽢D + 2pD, (65)

where D denotes the deviance’s posterior mean and is a
goodness of fit test for parametric survival models and pD

calculates as the difference between pD � D − 􏽢D, and it is
denoted the effective number of proposed model
parameters.

9.1. Data Set I. Table 11 displays some posterior character-
istics for the three PH models (generalized log-logistic,
Gompertz, and Weibull). Even though the estimates of the
regression coefficient are significant compared, the flexibility
providedby theGLLdistribution’s additional shapeparameter
contributes to its ultimate superiority over the Gompertz and
Weibull models and the DIC shows us its goodness-of-fit and
versatilitycomparing to thecompetingparametricPHmodels.

9.2. Data Set II. Table 12 displays some posterior charac-
teristics for the three PH models (generalized log-logistic,
Gompertz, and Weibull). Even though the estimates of the
regression coefficient are significant compared, the flexibility
provided by the GLL distribution’s additional shape pa-
rameter contributes to its ultimate superiority over the
Gompertz andWeibull models and the DIC demonstrates us

its goodness-of-fit and versatility comparing to the com-
peting parametric PH models.

10. Conclusion and Future Work

In this paper, we explored how to derive Bayesian estimates
of the baseline hazard parameters and the regression coef-
ficients of the parametric proportional hazard model with
generalized log-logistic baseline hazard using right-censored
survival data utilizing McMC approaches. %e McMC
techniques offer an alternative technique for estimating the
parameters of the proposed model that is more flexible than
frequentist techniques such as maximum likelihood esti-
mation. Bayesian inference was performed with a variety of
priors, and the convergence pattern was investigated using
various diagnostic procedures.

To test the performance of the proposed parametric PH
model, a comprehensive McMC simulation study was
conducted. According to the simulation results, the PH
model produces better results, with fewer absolute biases and
MSEs for most regression coefficients and baseline distri-
butional parameters. %e behavior of the PH model in a
generic PH regression situation comprising numerous
covariates was also examined using synthetic right-censored
data sets. Our findings indicate that the PH model performs
well when handling with multiple factors. %e paper’s final
analysis focused on a real-world application involving two
well-known right-censored survival data sets for lung cancer

Table 12: Posterior properties summaries and the information criterion values for the considered GLL PHmodel and its competing models
for the larynx cancer data.

Summaries Posterior characteristics
Parametric competitive models Parameter(s) Posterior mean Posterior SD Pr (>|0|data) HPD interval (95%)
GLL-PH model (DIC� 294.412)

Alpha 1.539 0.215 1.000 (1.157, 2.005)
β1 (stage 2) − 0.182 0.454 0.352 (− 1.108, 0.667)
β2 (stage 3) 0.376 0.337 0.870 (− 0.289, 1.030)
β3 (stage 4) 1.222 0.411 0.998 (0.396, 2.010)
β4 (age) 0.187 0.144 0.906 (− 0.091, 0.476)

β5 (diagyr) − 0.111 0.149 0.227 − 0.730, 0.181)
Eta 0.869 0.247 1.000 (0.197, 1.412)

Kappa 0.336 0.077 1.000 (0.112, 0.507)
Weibull-PH model (DIC� 296.776)

Alpha 0.908 0.105 1.000 (0.713, 1.118)
β1 (stage 2) − 0.380 0.446 0.198 (− 1.275, 0.468)
β2 (stage 3) 0.174 0.318 0.711 (− 0.483, 0.781)
β3 (stage 4) 1.095 0.393 0.997 (0.329, 1.857)
β4 (age) 0.176 0.141 0.899 (− 0.092, 0.461)

β5 (diagyr) − 0.012 0.146 0.468 (− 0.294, 0.274)
Kappa 0.154 0.041 1.000 (0.081, 0.236)

Gompertz-PH model (WAIC� 297.560)
Alpha 0.134 0.031 1.000 (0.076, 0.196)

β1 (stage 2) − 0.138 0.455 0.392 (− 1.040, 0.737)
β2 (stage 3) 0.393 0.328 0.886 (− 0.252, 1.041)
β3 (stage 4) 1.544 0.397 1.000 (0.776, 2.308)
β4 (age) 0.206 0.149 0.919 (− 0.084, − 0.501)

β5 (diagyr) 0.075 0.155 0.685 (− 0.230, 0.374)
Kappa 0.552 0.186 1.000 (0.227, 0.919)
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and laryngeal cancer patients. In conclusion, the findings of
the proposed parametric PH model show that it performs
better and is superior to the other competing PH model, as
well as indicating significant distributional parameters and
regression coefficients.

Furthermore, for both simulation and real-data analysis,
the regression coefficients were assumed to have a normal
prior, and the baseline distribution parameters were as-
sumed to have an independent gamma prior to compute the
quantities of importance derived from the proposed model’s
posterior distribution. It has been attempted to create a
visual summary and other essential graphs to aid in the
interpretation of results and decision making. Finally, we
hope that this paper will be an extension of the work of Khan
and Khosa [11] and will encourage researchers who employ
parametric hazard-based regression models to conduct their
analyses using the Bayesian approach from the BUGs codes
with the help of the R software’s RJAGS package.

In terms of future work, we intend to produce an R package
to fit the most prevalent parametric hazard-based regression
models, including the PH model. %e method given in this
study can also be applied to multiple event scenarios, such as
the competing risk model, and to survival data with a cure
fraction rate. It can also be applied to joint model frameworks.
Other types of censored and truncated observations, such as left
censoring, interval censoring, and double censoring, could be
used in future research. %is is outside the scope of this study
and will be addressed in future ones.
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