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Abstract
Purpose of Review We reviewed the literature that explored the use of central and peripheral neuromodulation techniques 
for chronic daily headache (CDH) treatment.
Recent Findings Although the more invasive deep brain stimulation (DBS) is effective in chronic cluster headache (CCH), 
it should be reserved for extremely difficult-to-treat patients. Percutaneous occipital nerve stimulation has shown similar 
efficacy to DBS and is less risky in both CCH and chronic migraine (CM). Non-invasive transcutaneous vagus nerve stimu-
lation is a promising add-on treatment for CCH but not for CM. Transcutaneous external trigeminal nerve stimulation may 
be effective in treating CM; however, it has not yet been tested for cluster headache. Transcranial magnetic and electric 
stimulations have promising preventive effects against CM and CCH.
Summary Although the precise mode of action of non-invasive neuromodulation techniques remains largely unknown and 
there is a paucity of controlled trials, they should be preferred to more invasive techniques for treating CDH.

Keywords Deep brain stimulation · Sphenopalatine ganglia · Occipital nerve · Vagus nerve · Trigeminal nerve · 
Transcranial magnetic stimulation · Direct current stimulation

Introduction

Despite numerous therapeutic advances in recent years, there 
are several unfulfilled needs in the acute and prophylactic care 
of primary headaches. Attack therapies are ineffective in one in 
four patients [1], have numerous side effects and contraindica-
tions, and can cause a transformation from episodic to chronic 
daily headache (CDH) [2]. On the other hand, preventive ther-
apies are ineffective in approximately 50% of patients, have 
frequent and intolerable side effects, and numerous contrain-
dications [3, 4], leading to poor patient compliance, with more 
than half of the patients stopping treatment after 2 months. In a 

recent study of more than 8500 patients suffering from chronic 
migraine, persistence in oral preventive treatment was 25% 
at 6 months and 14% at 12 months, with a similar trend even 
after the second or third prescription [3]. This unsatisfactory 
picture is further complicated in patients with CDHs, where 
prophylactic treatment is ineffective in 9 out of 10 patients, 
many of whom become drug-resistant [3]. Moreover, less than 
60% of patients are willing to take any of the drugs available, 
even if they could benefit from them [5]. Although the situ-
ation has improved, it has not yet been completely resolved 
with the advent of monoclonal antibodies against calcitonin 
gene–related peptide, the molecule, or its receptor, where the 
therapeutic response is in line with the ‘old’ prophylactic thera-
pies; however, the adverse events are much less, which means 
that there is better adherence to treatment [6].

For all these reasons, numerous non-pharmacological 
approaches that are invasive and risky, such as deep brain 
stimulation, stimulation of the great occipital nerve, and 
transcutaneous electrical stimulation, have been attempted 
during the last decades.

In this review, we will explore studies that have used non-
invasive and invasive neuromodulation techniques for the 
purpose of non-pharmacological treatment of CDHs, such as 
chronic migraine (CM) and chronic cluster headache (CCH).

This article is part of the Topical Collection on Chronic Daily 
Headache

 * Gianluca Coppola 
 gianluca.coppola@uniroma1.it

1 Department of Medico-Surgical Sciences 
and Biotechnologies, Sapienza University of Rome Polo 
Pontino, Latina, Italy

2 Headache and Pain Multimodal Treatment Centre (CMTCD), 
Department of Neurology, Neuromodulation Centre, CHR 
East Belgium, Verviers, Belgium

/ Published online: 7 February 2022

Current Pain and Headache Reports (2022) 26:267–278

http://orcid.org/0000-0002-8510-6925
http://crossmark.crossref.org/dialog/?doi=10.1007/s11916-022-01025-x&domain=pdf


1 3

Non‑invasive Neuromodulatory Techniques

Transcranial Magnetic Stimulation

The rationale for the use of TMS in migraine derives from 
human studies and studies on animal models, where a sin-
gle pulse of TMS is able to interrupt the cortical spread-
ing depression, the electrocortical phenomenon at the base 
of the migraine aura [7]. Human studies have shown how 
repetitive (r)TMS can bring back within normal limits the 
altered cortical responsiveness that is frequently detected 
in migraineurs during the pain-free period [8–10] (Fig. 1).

After three open studies reported the effectiveness of 
single-pulse (s)TMS in relieving pain, reducing the pain 
intensity of a single attack [11], sTMS was tested and 
found to be effective as prophylaxis therapy when used 
for several days in patients with episodic and CM, with or 
without medication overuse [12, 13]. In a unique multicen-
tre, single-arm, open-label study, Starling et al. reported 
the effectiveness of four sTMS pulses delivered twice daily 
over the occipital area in patients with episodic (90%) and 
chronic (10%) migraine who were allowed to continue 
their prophylaxis during the study. They reported a sig-
nificant reduction in the number of days with headache/
month (−2.75) compared to the baseline, a > 50% reduction 

in headache days in 46% of patients, a reduction in acute 
medication days and HIT-6 impact questionnaire, and dif-
ference from baseline in total headache days of any pain 
intensity (mild, moderate, or severe) [13].

Repetitive TMS has been tested as a preventive treat-
ment for both episodic and chronic migraine (Table 1). Sev-
eral open and sham-controlled studies [14–20], but not all 
[21–23], have shown that high-frequency rTMS delivered to 
the motor cortex or dorsolateral-prefrontal cortex are both 
able to reduce the frequency of migraine attacks or monthly 
headache days. In some of these studies, the scales of anxi-
ety, depression [20, 24], headache-related disability [15, 
16, 18, 19], and subjective perception of headache intensity 
[15–18, 24] also improved after treatment. The limitation 
of these studies is the inclusion of a heterogeneous group of 
patients affected by both episodic and chronic forms, often 
already on prophylaxis and symptomatic drug abuse. In a 
comparative study, chronic migraine patients treated with 
high-frequency rTMS obtained a clinical benefit comparable 
to that obtained with botulinum toxin injection in the first 2 
monthly follow-up visits, but not in the third month, so there 
was a lack of sustained efficacy [18]. We are aware of only 
one study using high-frequency rTMS to treat, in an open-
label fashion, a group of 19 cluster headache (CH) patients. 
It reported a beneficial effect of rTMS on the intensity of 

Fig. 1  Schematic representa-
tion of the sites of possible 
neuromodulatory intervention 
in chronic daily headaches. 
A Transcranial magnetic 
stimulation on the scalp, B 
direct current stimulation on 
the scalp, C transcutaneous 
stimulation of the supraorbital 
branch of the trigeminal nerve, 
D transcutaneous stimulation 
of the vagus nerve at the neck, 
E percutaneous stimulation of 
the great occipital nerve, and 
F deep brain stimulation of the 
posteroinferior hypothalamus 
or ventral tegmentum (Created 
with BioRender.com)
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pain, the number of daily attacks, and the percentage of 
responders up to 15 days after the intervention [25]. Unfor-
tunately, the authors did not specify whether the headache 
of these patients was episodic or chronic.

Despite the promising results, further controlled tri-
als, including a larger and more selected population of 
patients, are needed to confirm the real benefits of this 
non-pharmacological treatment. These studies will benefit 
from the technological advances provided by neuronaviga-
tion [20] and the development of more specific magnetic 
stimulation paradigms [26].

Transcranial Direct Current Stimulation

Unlike TMS, tDCS is better tolerated, more portable, less 
expensive, and easy to use. It has the same capabilities as TMS 
to modulate brain activity in the opposite way, depending on 
the polarity of the direct current. It also offers several additional 
advantages, such as the ability to influence larger cortical areas, 
being unfocused, the inability to induce action potentials, and 
the production of fewer physiological artefacts than TMS.

There is a lot of evidence supporting the use of tDCS in 
the treatment of migraine prophylaxis and CH. First, tDCS 
has the ability to normalise cortical hyper-responsiveness 
that is commonly detected in migraine during the intercritical 
period [27–29]. Second, tDCS can modulate the functional 
connectivity of cortico-striatal and thalamo-cortical circuits 
[30]; the former is involved in the chronicity of migraine and 
the propensity to overuse symptomatic medication [31], and 
the latter is involved in the recurrence of migraine attacks, as 
well as in the generation of the symptoms associated with it 
[32–34]. Moreover, tDCS can modify the strength of resting-
state functional connectivity in cortical networks [35] previ-
ously involved in migraine pathophysiology [36].

When applied over the visual area, repeated daily sessions 
of cathodal tDCS (with the anode over the vertex), which 
enhances cortical excitability, did change migraine-related 
clinical variables in two randomised sham-controlled trials, 
including a mixed group of episodic and CM patients [37, 38].

Four small studies using anodal tDCS over the primary 
motor cortex reported favourable outcomes in both episodic 
and chronic migraine patients [39–42]. In one study per-
formed in a mixed group composed of episodic and CM 
patients, Rahimi et al. [43] obtained a favourable outcome 
using repetitive cathodal stimulation over either the M1 or 
the S1 cortex. In a recent study, cathodal stimulation posi-
tioned both over V1 (with the anode over the supraorbital 
region) and over the dorsolateral prefrontal cortex (anode 
contralaterally) was effective as an add-on treatment dur-
ing the withdrawal program from medication overuse in 
a small group of patients with CM [44]. In contrast, in a 
large multicentre, double-blind, placebo-controlled trial 
with a 1-year open-label study, Grazzi et al. [45] did not 

rule out a beneficial clinical effect of anodal or cathodal 
tDCS over the right M1 in both CM and medication overuse 
headache patients. Because tDCS applied for 10 continuous 
days was able to increase the metabolism of the subgenual 
anterior cingulate cortex [46], an area previously involved 
in chronic drug-resistant CH (rCCH) response to treatment 
with implanted occipital nerve stimulation [47], Magis et al. 
investigated the therapeutic efficacy of tDCS in patients with 
rCCH [48••]. In this open-label proof-of-concept study, 
researchers tested the therapeutic response to anodal tDCS 
over the frontal area in rCCH, arguing that it would activate 
the functionally interconnected subgenual anterior cingulate 
cortex. They observed that excitatory tDCS delivered daily 
for 4 weeks induced a 37% drop in weekly attacks frequency 
and a 50% responder rate of 43%, which is a promising 
result, especially considering the difficulty associated with 
treating such patients [48••].

Overall (Table 2), these promising results using classic 
tDCS suggest that more refined non-invasive stimulation 
techniques, such as transcranial alternating current stimula-
tion, can be used to modify the abnormal oscillatory neu-
ronal activity that characterises both CM [34] and CCH [49].

Transcutaneous Peripheral Cranial and Extracranial 
Nerve Stimulation

The following two non-invasive transcutaneous peripheral 
stimulation devices have been tested for the treatment of 
chronic headaches: the external trigeminal neurostimulation 
(eTN, Cefaly ®) and the external vagus nerve stimulator 
(eVN, gammaCore ®).

External Trigeminal Neurostimulation

Experimental evidence suggests that the mechanism of 
action of eTN is both peripheral, through segmental “gate 
control” mechanisms, and central, through suprasegmen-
tal mechanisms. The eTN is able to reduce the area under 
the curve of the blink reflex and to reduce the amplitude of 
the cortical response to a caloric stimulus sent to the fore-
head but not to the wrist [50]. This suggests that eTN has 
a predominantly homotopic action, modulating nocicep-
tion through a segmental trigeminal-specific mechanism or 
modulation of the suprasegmental pathway. eTN also seems 
to induce central effects, such as an increase in reaction 
time, fatigue, and the critical threshold in the flicker fusion 
test [51]. Three months of eTN treatment normalised the 
hypometabolism observed on fluorodeoxyglucose-positron 
emission tomography [52] and the BOLD hyper signal on 
functional magnetic resonance imaging [53] of the anterior 
cingulate gyrus in patients with episodic migraine. In addi-
tion, thalamo-cortical somatosensory activity also increased 
transiently after a single session of eTN stimulation [54].
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The clinical efficacy of eTN was initially tested in a ran-
domised double-blind sham-controlled trial (PREMICE 
study) in which a group of patients with episodic migraine 
achieved a 50% response rate of 38.2% in the verum group 
versus 12.1% in the sham group. Patients reported no seri-
ous adverse events, and the compliance rate was 61% for 
the verum group and 54% for the sham group [55]. Later, 
eTN was tested in an open-label setting in 58 patients with 
CM, with and without symptomatic drug abuse and with 
and without continuous headache, who underwent 1–2 
daily 20-min sessions for 3 months, achieving an encour-
aging 50% responder rate of 18.97%. When the authors 
divided the patient group into those with non-continuous 
headaches and those with continuous headaches, the former 
had a response rate of 29.41% and the latter 4.17% [56]. 
In another study, Vikelis et al. treated a group of episodic 
or chronic migraineurs with unsuccessful topiramate treat-
ment. Twenty-seven patients in the initial 35 completed the 
3-month treatment with eTN, 23 were satisfied with the 
transcutaneous stimulator, and the mean number of head-
ache days decreased from 8.9 to 6.3/month, similar to the 
episodic and chronic forms [57•]. A more recent study also 
showed a non-significant difference in primary and second-
ary outcome comparisons between episodic (N = 60) and 
chronic (N = 23) migraine at 8 and 12 weeks of treatment 
with eTN [58].

External Vagus Nerve Stimulator

The interest in vagus nerve stimulation in the treatment of 
headaches stems from the evidence of efficacy in the treat-
ment of another accessory brain disorder, epilepsy, when 
refractory to common treatments. As with eTN, eVN has 
also aroused interest in headaches due to the miniaturisa-
tion process of the devices and the evidence that vagal affer-
ents can be activated transcutaneously [59, 60]. Supporting 
its use in the treatment of headaches is evidence that eVN 
can inhibit cortical spreading depression [61, 62], has anti-
inflammatory properties, can inhibit trigeminal nociception 
[63–65], enhance central descending modulation of pain [66], 
and modulate the activity of the hypothalamus, trigeminal 
spinal nucleus, pontine nuclei, parahippocampal gyrus, and 
visual cortex [59]; nonetheless, it inhibits the cranial trigemi-
nal autonomic reflex [67–69]. With the introduction of the 
GammaCore® device, a portable stimulator of the cervical 
branch of the vagus nerve, several studies have attempted to 
prevent both migraine and CH attacks. In the EVENT trial, 
Silberstein et al. [70] enrolled 30 patients with CM who were 
self-treated with eVN (120 s × 2 on the right side of the cervi-
cal vagus nerve, 5–10 min apart, 3 times a day for 2 months) 
and 29 patients using a sham device. After 2 months of treat-
ment, the verum device was well-tolerated and safe; however, 
it brought about no significant improvement over the sham 

device in terms of both primary and secondary outcomes. 
During the open-label phase, 16 patients who had received 
verum continued to self-administer stimulation for a further 
6 months and reported a reduction of 3.6 days with headache/
month at month 8 of treatment. Eleven patients who switched 
from sham to verum saw a reduction in 2.5 headache days/
month at month 6 of treatment. In another small trial, 26 
patients with migraine, 7 of them with chronic migraine, 
applied eVN bilaterally for 12 s twice daily or sham for 
2 months without any significant improvement, except for a 
reduction in the number of most severe attacks/month [71]. 
Other authors tested the effects of bilateral stimulation with 
eVN (120 s twice daily) for 12 weeks in a mixed group of 
episodic and CM patients who did not respond to at least four 
therapeutic classes of prophylaxis. Episodic and CM patients 
equally reported a 50% reduction in the pain intensity of 
headaches, −5.8 headache days/month and −2.8 migraine 
attacks/month [72]. In a real-world study, 23 patients with 
CM were self-treated for 90 s bilaterally, three times a day 
for three months. Unfortunately, only two patients reported 
a reduction of at least 30% in the number of headache days 
per month [73•].

Overall, we can deduce that stimulation with eVN, although 
possibly beneficial in a subgroup of CM patients in some meas-
ures, is well-tolerated and safe, has a low magnitude of effect, 
and is rarely significant in comparison with sham.

eVN has also been used in the treatment of CH, initially 
to treat acute attacks in patients with episodic CH and as a 
preventive treatment for CCH. A controlled study included 92 
patients with CCH, 48 of whom received verum and standard 
of care, and 49 received only the standard of care [74]. At 
the end of the 4-week randomisation period, those receiving 
verum had a significantly greater reduction in the number of 
attacks per week than the control group (with a treatment gain 
of 3.9 fewer attacks/week) and a higher 50% responder rate 
(40% vs. 8.3%). In addition, the verum group showed a 57% 
reduction in the frequency of acute drug use. These beneficial 
effects observed in the group that initially received verum 
were also maintained during the open-label extension phase, 
while only slight improvements were observed in those who 
initially received only standard of care. The patients did not 
report any serious adverse events related to treatment.

In a retrospective study, Marin et al. [75] analysed data 
from 29 CCH patients who received eVN funding from the 
UK National Health Service. After an observation period of 
3–6 months, they found that the frequency of attacks decreased 
from 26.6 to 9.5 attacks/week, and the same decrease was 
observed for the mean duration and severity of the attacks and 
the number of acute medications taken with no adverse events.

In a more recent meta-analysis that analysed a pooled 
population of 225 CH patients (112 episodic and 113 
chronic) of whom 108 had received eVN and 117 sham, the 
eVN was superior in providing improvement at 15 min of the 
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first treated attack compared to the sham only in the episodic 
group but not in the chronic group [76].

In summary, in CCH, eVN is a promising add-on preven-
tive treatment; however, its efficacy against acute attacks has 
not been proven.

Invasive Neuromodulatory Techniques

Deep Brain Stimulation

DBS was the first neuromodulatory technique to be pro-
posed for the treatment of drug-resistant CCH. Unlike 
other non-invasive techniques and stimulation of the 
great occipital nerve, this technique has not been applied 
for migraine treatment. The rationale for the use of this 
invasive technique lies in the neuroimaging evidence of 
the involvement of the posterior inferior hypothalamus in 
the initiation and maintenance of a CH attack [77]. It is 
still debated whether the therapeutic effect observed after 
months is due to the neuromodulatory effect of areas other 
than the hypothalamus, but closely connected with it, such 
as those belonging to the pain neuromatrix [78, 79], the 
descending cortical pain control system [80], and the mid-
brain tegmentum [81, 82].

According to recent comprehensive reviews [83, 84], 69 
patients with drug-resistant CCH, 3 with short-lasting unilat-
eral neuralgiform headache attacks with conjunctival injec-
tion and tearing (SUNCT), 1 with paroxysmal hemicrania, 
and 1 patient suffering from both CH and SUNCT have been 
treated with DBS of the posterior-inferior hypothalamus to 
date in the literature. Of the 73 chronic trigeminal autonomic 
cephalalgias (TACs), after a mean follow-up of 2.2 years, 
31.8% were pain-free and 34.2% had an improvement of 
at least 50%; therefore, the total treatment success rate was 
66% [83]. Only one double-blind randomised controlled 
trial investigating the efficacy of DBS in patients with CCH 
is available in the literature [85]. Unfortunately, probably 
due to the short observation period of one month in this 
study, the switched-on stimulator did not induce a significant 
reduction in attacks compared to the switched-off stimula-
tor. The therapeutic efficacy of DBS is long-term. In fact, 
in another case series, a group of 17 CCH patients was fol-
lowed up for up to 8.7 years, observing an improvement in 
70% of patients [86]. DBS takes weeks to show any effec-
tiveness, cannot treat an ongoing attack [87], does not appear 
to be effective in those who experience attacks on both sides 
of the head, and attacks may relapse on each interruption 
during the first years of stimulation [86]. Three patients with 
drug-resistant SUNCT [88–90] and one patient with parox-
ysmal hemicrania [91] also benefited from DBS treatment 
of the posterior-inferior hypothalamus after at least 1 year 
of stimulation.

According to a review of stimulation coordinates of DBS 
studies of the posterior hypothalamus observing the involve-
ment of the ventral tegmental area [81, 82], some authors 
implanted a DBS device in this region in patients suffer-
ing from CCH [92–94] and SUNCT [95, 96] and found a 
reduction in the frequency, severity, and duration of attacks 
after a median observation period of 18 months in CCH 
and 29 months in SUNCT. In parallel, quality of life, mood, 
anxiety, and novelty-seeking scales improved without chang-
ing the cognitive function [92–94].

DBS of both the posterior hypothalamus and the ventral 
tegmental area is effective in the long term for the treatment 
of CCH and other TACs, even though the only available 
sham-controlled study reported contrary findings. Because 
of its possible serious side effects, this intracranial invasive 
treatment should only be recommended in cases of failure 
of the extracranial invasive neurostimulation methods [97].

Sphenopalatine Ganglion Stimulator

The activation of the parasympathetic system during CH attacks 
and other TACs and their relief after various procedures acting 
on the sphenopalatine ganglion (SPG) is well known [98]. For 
these reasons, a randomised controlled trial tested the efficacy 
of a microstimulator surgically implanted in the posterior wall 
of the maxillary bone in the pterygopalatine fossa to stimulate 
the SPG (Pulsante®). It was initially engineered to treat acute 
CH attacks by transcutaneously activating the stimulator via a 
remote controller. In the pathway CH-I trial, 28 patients with 
CCH completed the experimental period, 68% of whom were 
responders and 25% of whom responded only to acute treat-
ment, 7% responded to both the acute attack and reducing the 
attack frequency, and 36% of patients responded only to reduc-
ing the attack frequency [99]. At the 1-year follow-up appoint-
ment, 45% of patients continued to respond to acute treatment 
of attacks (23% for very severe attacks), while 35% of the initial 
36% continued to respond with a reduction in attack frequency, 
suggesting that the daily use of the SPG stimulator may have 
a prophylactic effect on attacks [100]. In a larger cohort of 88 
patients with CCH in a 12-month open-label prospective study, 
55% of chronic patients were frequent responders, and 74% 
of chronic patients were able to stop, reduce, or remain off all 
preventives [101].

To summarise, although the SPG stimulator is only indi-
cated in the treatment of acute attacks, one or two daily 
15-min stimulations outside the usual attacks could be used 
as a preventive treatment.

Occipital Nerve Stimulator

ONS finds its rationale in the modulation of the trigemi-
nocervical complex [102]. It consists of continuous elec-
trical stimulation of the great occipital nerve through a 
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subcutaneous electrode, which induces paraesthesia in its 
innervation territory.

Several uncontrolled open-label trials have successfully 
implanted the ONS in patients with drug-resistant CCH [47, 
103–114]. The literature shows that a total of 262 patients 
with CCH were treated and followed up for an average of 
39.1 months. These 262 patients had a clinical improvement 
of at least 50%, with an overall response rate of 66% (Table 3).

ONS was found to be an effective treatment in other 
chronic headache disorders, such as chronic migraine [104, 
115], hemicrania continua [116, 117], paroxysmal hemicra-
nia [118], and SUNCT/short-lasting unilateral neuralgiform 
headache with autonomic symptoms (SUNA) [118–120].

In an open-label prospective cohort study, Miller et al. iden-
tified the presence of pain over the occipital area and severe 
mood disorders at the time of implantation as strongly associ-
ated with poor outcomes in ONS, while a prior response to 
great occipital nerve block was associated with positive clini-
cal outcomes. Nonetheless, their data showed that patients with 
SUNCT are better responders than patients with CM [121•].

In a unique international, multicentre, randomised, double-
blind, phase 3, electrical dose-controlled clinical trial, 131 
patients with drug-resistant CCH underwent 24 weeks of ONS 
at either 100% (N = 65, verum) or 30% (N = 66, sham) of the 
individually determined range between paraesthesia threshold 
and near discomfort [122••]. At the end of the randomisation 
phase, both groups achieved a 50% response rate in 44.6% of 
the cases. At the end of the following open phase (at week 
50), the group that received verum saw their response rate 
increase to 50%, while the sham group continued to have a 
rate of 44.6%. The authors concluded that although at first 
glance the similar results obtained with the two dosages of 

ONS might suggest a placebo effect, the sudden and marked 
improvement of symptoms after ONS following a highly sta-
ble initial observation period of 12 weeks in patients with a 
clear long history of highly drug-resistant CCH supports a 
strong therapeutic effect of ONS, even at low dosages.

Overall, despite possible adverse events (empty battery, 
local infection, lead migration, local pain, neck stiffness, 
or hardware dysfunction), ONS is safer than DBS and SPG 
stimulation, and the observed frequency improvement is of 
a similar order to that of DBS.

Conclusions

After the initial test of risky, invasive neuromodulation pro-
cedures, devices allowing non-invasive riskless neurostimu-
lation are becoming more popular, and patients are more 
willing to try one of these devices than common drug treat-
ments, including monoclonal antibodies against calcitonin 
gene-related peptide [123].

In short, DBS of the infero-posterior hypothalamus or 
ventral tegmental area is effective in CCH (but not with-
out risk); therefore, it should only be reserved for patients 
who are extremely disabled and extremely difficult to treat. 
Percutaneous ONS has shown similar efficacy to DBS but 
with less risk to the patient; it is more effective in SUNCT 
than other TACs and even CM at a lower intensity. SPG 
stimulation can abort CH attacks and can also be effective 
in reducing their frequency. Transcutaneous cervical eVN 
stimulation can abort episodic but not chronic CH attacks 
and reduce their frequency. Transcutaneous eTN stimulation 
is also able to abort migraine attacks and may be effective 
in treating CM but has not yet been tested in CCH. In favour 
of using one of these devices is the efficacy rate, often in 
the range of many drug treatments, and this applies much 
more to prophylactic therapies than to acute treatment of the 
attack. In addition, tolerance was generally excellent, with 
no major treatment-related adverse events. However, their 
mechanism of action is often elusive, and their cost may 
discourage their use.

TMS and tDCS may have a preventive effect in both 
migraine and CCH; however, longer trials are mandatory and 
require more standardised protocols. We hope that with the 
advent of new guidelines for clinical trials of neuromodu-
lation devices [124], a higher level of scientific rigor and 
more solid evidence of the efficacy of this type of non-drug 
approach will be achieved.

Nevertheless, in the next few years, we will certainly see 
other devices coming onto the market or being tested not 
only for episodic headaches but also for CDHs. Examples 
include transcutaneous extracephalic electrical stimulators 
[125], caloric vestibular stimulators [126], and percutaneous 
mastoid electrical stimulators [127].

Table 3  List of open-label trials implanting percutaneous great occip-
ital nerve stimulator in drug-resistant chronic cluster headache. The 
mean follow-up period of all patients was weighted by the patient 
number in individual studies. Taking all trials together, a 50% clinical 
improvement can be observed in 66% of patients

Authors Number of 
patients

Follow-up 
(months)

Patients 
with ≥ 50% 
improvement

Magis et al. [47, 103, 107] 15 36.8 11
Burns et al. [108, 109] 14 17.5 5
De Quintana et al. [110] 4 6 4
Mueller et al. [114] 10 12 9
Mueller et al. [104] 24 20 21
Fontaine et al. [111] 13 14.6 10
Strand et al. [112] 3 12 2
Leone et al. [113] 35 72 20
Miller et al. [106] 51 39.17 27
Leplus et al. [105] 93 43.8 64
TOTAL 262 39.1 173 (66%)
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In conclusion, a better understanding of the mecha-
nisms underlying the recurrence of headache attacks, both 
migraine and CHs, as well as an improved understanding of 
the mechanisms that favour the transformation of episodic 
headache into CDH will contribute to the development of 
new and more target-specific devices that could relieve pain 
and its accompanying symptoms.
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