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Leukemias driven by chromosomal translocation of the mixed-lineage leukemia gene
(MLL or KMT2A) are highly prevalent in pediatric oncology. The poor survival rate
and lack of an effective targeted therapy for patients with MLL-rearranged (MLL-r)
leukemias emphasize an urgent need for improved knowledge and novel therapeutic
approaches for these malignancies. The resulting chimeric products of MLL gene
rearrangements, i.e., MLL-fusion proteins (MLL-FPs), are capable of transforming
hematopoietic stem/progenitor cells (HSPCs) into leukemic blasts. The ability of MLL-
FPs to reprogram HSPCs toward leukemia requires the involvement of multiple
chromatin effectors, including the histone 3 lysine 79 methyltransferase DOT1L, the
chromatin epigenetic reader BRD4, and the super elongation complex. These epigenetic
regulators constitute a complicated network that dictates maintenance of the leukemia
program, and therefore represent an important cluster of therapeutic opportunities. In
this review, we will discuss the role of MLL and its fusion partners in normal HSPCs and
hematopoiesis, including the links between chromatin effectors, epigenetic landscapes,
and leukemia development, and summarize current approaches to therapeutic targeting
of MLL-r leukemias.
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INTRODUCTION

In the 1980s, leukemia cases were observed that showed complete phenotypic lineage switching,
i.e., patients initially diagnosed as acute lymphocytic leukemia (ALL) relapsed as acute myeloid
leukemia (AML) during chemotherapy (Stass et al., 1984; Mirro et al., 1985; Gagnon et al.,
1989). Accordingly, the term mixed-lineage leukemia was coined (Mirro et al., 1985; Slany, 2009).
Mixed-linage leukemia was reported to be associated with translocation on the long arm (q) of
chromosome 11 band q23 (11q23) (Hayashi et al., 1990). Recurring 11q23 translocations are also
found in both ALL (Inaba et al., 2013; Roberts and Mullighan, 2015) and AML (Döhner et al.,
2015; Papaemmanuil et al., 2016). Guided by these observations, researchers located and cloned
an important gene that resides on 11q23 and drives leukemogenesis when it is translocated and
fused with other gene partners (Ziemin-van der Poel et al., 1991; Djabali et al., 1992; Gu et al.,
1992; Tkachuk et al., 1992). In the initial discoveries, the gene was given different names: MLL
(myeloid/lymphoid, or mixed-lineage leukemia) (Ziemin-van der Poel et al., 1991),ALL-1 (Gu et al.,
1992), HRX (human trithorax, the human homolog of the Drosophilia trithorax, trx) (Tkachuk
et al., 1992), and trithorax-like gene (Djabali et al., 1992). Subsequently, it was also re-named as
KMT2A (lysine methyltransferase 2A), based on its lysine (Lys, K) methyltransferase enzymatic
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activity. For consistent description of the gene, we will use MLL
throughout this review article.

Accordingly, leukemias that involve chromosomal
rearrangement of MLL are called MLL-rearranged (MLL-r)
leukemias (Rowley, 1993; Arber et al., 2016; Krivtsov et al., 2017).
In adults, MLL-r leukemia accounts for approximately 5% of ALL
cases (Marchesi et al., 2011) and 5–10% of AML cases (Krivtsov
and Armstrong, 2007; Chowdhury and Brady, 2008; Chen and
Armstrong, 2015). MLL-r leukemias are more prevalent in infant
patients (<1 year of age), in which approximately 70% of infants
with ALL are diagnosed as having 11q23 rearrangements (Chen
et al., 1993; Heerema et al., 1999; Muntean and Hess, 2012). AML
is less common than ALL in infants, in which about 50–66% of
infants with AML have 11q23 translocations (Sorensen et al.,
1994; Martinez-Climent et al., 1995; Hilden et al., 1997; Satake
et al., 1999). Prognosis is poor for infants with MLL-r ALL,
who have worse outcomes than do older children (>12 months)
(Pieters et al., 2007). The five-year event-free survival rate of
non-MLL-r ALL can approach 60–96% in infants (<1 year of
age), but is significantly lower in MLL-r infant ALL patients—
only 34–39% depending on treatment protocols (Hilden et al.,
2006; Tomizawa et al., 2007). In addition, approximately 2–15%
of cancer patients receiving chemotherapeutic drugs that target
DNA-topoisomerase II develop treatment-related AML with
11q23 translocations (Super et al., 1993; Broeker et al., 1996;
Greaves, 1997; Felix, 1998). These situations emphasize the
unmet need for a deeper understanding of the underlying
biology and novel therapeutic approaches for MLL-r leukemia.

Surprisingly, comprehensive genomic studies revealed
that the genomes of patient-derived MLL-r leukemia cells
displayed remarkable stability with only a few genetic alterations
(Mullighan et al., 2007; Radtke et al., 2009). This suggests that
MLL-r leukemias are largely driven by epigenetic dysregulation
(Radtke et al., 2009; Bernt and Armstrong, 2011). Epigenetics is
the study of heritable and reversible control of gene expression
that is not dependent on the DNA sequence. In eukaryotic nuclei,
DNA molecules are wrapped around histone cores consisting
of eight histone proteins—H2A, H2B, H3, and H4 (two
copies of each protein are present in the core). Approximately
146 bp of DNA surrounds each octameric histone core to
form a nucleosome, the basic structural unit of chromatin.
The nucleosomal units are packed and condensed further to
form chromatin. The N-terminal peptide tails of H3 and H4
protrude from the histone core, and can be post-translationally
modified in various ways (e.g., acetylation, methylation,
phosphorylation, ubiquitination, sumoylation) inside eukaryotic
cells (Bannister and Kouzarides, 2011). These modifications
can be added by epigenetic writers, interpreted by epigenetic
readers, and removed by epigenetic erasers (Arrowsmith et al.,
2012; Musselman et al., 2012; Seto and Yoshida, 2014; Zhang
et al., 2015). Specific modifications or epigenetic histone marks
have differential effects on gene expression. For example,
acetylated histone marks (e.g., H3K9ac and H3K27ac) are usually
associated with gene activation (Krejčí et al., 2009; Creyghton
et al., 2010; Hawkins et al., 2011; Hezroni et al., 2011). In
contrast, methylated modifications are context-dependent: for
instance, methylation on H3K4 or H3K79 is associated with

gene activation (Schübeler et al., 2004), whereas methylation on
H3K9 or H3K27 is associated with gene silencing (Musselman
et al., 2012). In this review, we will introduce the mechanistic
roles of MLL in normal hematopoiesis and MLL-r leukemia,
describe current therapeutic targets in MLL-r leukemia, with an
emphasis on chromatin epigenetic regulators, and discuss the
potential of using combined epigenetic targeting strategies to
treat MLL-r leukemia.

MLL IN NORMAL HEMATOPOIESIS AND
MLL-R LEUKEMIAS

MLL Protein Structure and Function
Expression of the developmentally important homeobox (HOX)
cluster genes is mediated by MLL in normal hematopoietic
stem/progenitor cells (HSPCs) (Kawagoe et al., 1999). Genetic
knock-out of Mll in mice is embryonic lethal, with an altered
Hox gene pattern, defects in yolk sac hematopoiesis, reduced
proliferation and/or survival of hematopoietic progenitors, and
defective HSPC activity in the aorta–gonad–mesonephros region
(Yu et al., 1995; Hess et al., 1997; Yagi et al., 1998; Ernst
et al., 2004). Using conditional Mll knock-out (Mll−/−) mice,
McMahon et al. (2007) demonstrated that Mll was not important
for the production of mature adult hematopoietic lineages, but
it was required for stem cell self-renewal in fetal liver and
adult bone marrow. Furthermore, Mll plays an important role
in regulating transcription initiation by RNA polymerase II
via H3K4 methylation (Wang et al., 2009). Although Mll was
shown to influence less than 5% of promoters that carry the
H3K4me3 mark in mouse embryonic fibroblasts, these Mll-
regulated promoters include important developmental regulators
such as the Hox genes (Wang et al., 2009). In humans, the
MLL gene encodes a protein product of 3,969 amino acids
(Figure 1A). This product is post-translationally cleaved by
threonine aspartase 1 (taspase1) into two distinct modules (MLL-
N and MLL-C), then these two modules are assembled together
via the FY-rich N- and C-terminal domains (FYRN and FYRC)
(García-Alai et al., 2010; Figure 1A). A recent study showed
that uncleaved MLL displays higher stability than the assembled
dimer (MLL-N/MLL-C) (Zhao et al., 2018). Casein kinase II
(CKII) phosphorylates MLL at a location proximal to the taspase1
cleavage site, which facilitates taspase1-dependent processing of
MLL into MLL-N and MLL-C (Zhao et al., 2018). This finding
suggested that pharmacological targeting of MLL to enhance
its stability through inhibition of CKII may present a new
therapeutic opportunity in MLL-r leukemia, as uncleaved MLL
can displace leukemia-causing MLL-fusion proteins (MLL-FPs)
from chromatin (Zhao et al., 2018).

MLL-N consists of a Menin-binding motif and a lens
epithelium-derived growth factor (LEDGF)-binding domain
(Yokoyama and Cleary, 2008); three DNA-binding AT-hook
motifs (Zeleznik-Le et al., 1994); two nuclear-localization signals,
SNL1 and SNL2 (Yano et al., 1997; Ayton et al., 2004); a pre-CxxC
domain (Muntean et al., 2010); a non-methyl-CpG recognizing
the CxxC domain (Birke et al., 2002; Ayton et al., 2004; Allen
et al., 2006); a post-CxxC domain (Muntean et al., 2010);
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FIGURE 1 | MLL and MLL-FPs. (A) Schematic of domain architecture of wild-type MLL and MLL-FPs. The wild-type canonical form of human MLL protein (UniProt
ID: Q03164) has a total of 3,969 amino acids in length and contains several functional domains and important sites (drawn to scale): high-affinity Menin-binding motif
(MBM, residue 6–10) (Yokoyama et al., 2005), LEDGF-binding domain (LBD, residue 109–153) (Yokoyama and Cleary, 2008), AT-Hook1/2/3 (ATH1, residue
169–180; ATH2, residue 217–227; ATH3, residue 301–309; UniProt annotations of Q03164); nuclear-localization signal 1/2 (SNL1, residue 400–443; SNL2,
1008–1106) (Ayton et al., 2004), pre-CxxC region (residue 1149–1154) (Muntean et al., 2010), CxxC domain (residue 1147–1242) (Bach et al., 2008), post-CxxC
(residue 1298–1337) (Muntean et al., 2010), plant homology domain 1/2/3/4 (PHD1, residue 1431–1482; PHD2, residue 1479–1533, PHD3, residue 1566–1627;
PHD4, residue 1931–1978; UniProt annotations of Q03164), bromodomain (BRD, residue 1703–1748; UniProt annotations of Q03164), FY-rich N-terminal domain
(FYRN, residue 2018–2074; UniProt annotations of Q03164), FY-rich C-terminal domain (FYRC, residue 3666–3747; UniProt annotations of Q03164), taspase1
cleavage site 1/2 (TCS1, residue 2666–2670, D/GADD; TCS2, residue 2718–2722, D/GVDD; the exact cleavage sites are indicated by forward slashes) (Hsieh et al.,
2003), transactivator domain (TAD, residue 2829–2883) (Ernst et al., 2001), WDR5 interaction motif (Win; residue 3762–3773) (Patel et al., 2008), and Su(Var)3-9,
enhancer-of-zeste, trithorax domain (SET, residue 3829–2945; UniProt annotations of Q03164). The most frequently observed translocation breakpoints (indicated
by red arrows) are located in the region between CxxC and PHDs. The three most common MLL-FPs (MLL-AF4, MLL-AF9, and MLL-ENL) are illustrated (the
translocation breakpoints and the size of FPs are partially drawn to scale). (B) The most frequent MLL rearrangements identified in MLL-r leukemia patients. The
statistics shown in this figure was obtained from a study of 2,345 MLL-r leukemia patients dated from 2003 to 2016 (Meyer et al., 2018). (C) Components of
MLL-COMPASS. (D) MLL-FP (e.g., MLL-AF4, MLL-AF9, or MLL-ENL) in complex with DOT1L and SEC. Figure 1 was created with BioRender.com.

a bromodomain (BRD); four plant homology domains
(PHD fingers) (Fair et al., 2001; Ali et al., 2014); and the
homodimerization-facilitating domain FYRN (García-Alai et al.,
2010; Figure 1A). The sequences flanking the CxxC domain—the
pre-CxxC and post-CxxC domains—were demonstrated to be
important for direct interaction of MLL with the polymerase
associated factor complex (PAFc) (Muntean et al., 2010). PAFc
promotes MLL and MLL-FP recruitment to target loci to
activate transcription of target genes such as HOXA9 (Muntean
et al., 2010). Therefore, PAFc is a crucial cofactor for both
transcriptional regulation by MLL and leukemogenesis mediated
by MLL-FPs (Muntean et al., 2010). The BRD of MLL recognizes
acetylated lysine residues, whereas the third PHD finger of MLL
specifically interacts with H3K4me2/3 (Chang P.-Y. et al., 2010).
Binding of the third PHD finger of MLL to H3K4me3 is required
for MLL-dependent gene transcription (Chang P.-Y. et al., 2010).

MLL-C possesses two domains capable of modifying
chromatin: a transactivator domain (TAD), followed by
a SET [Su(Var)3-9, enhancer-of-zeste, trithorax] domain
(Figure 1A). The MLL SET domain confers methyltransferase
activity that catalyzes the transfer of a methyl group from
S-adenosylmethionine to H3K4 (Milne et al., 2002). MLL-C is
further assembled into a larger protein complex that contains
several cofactors: WD repeat protein 5 (WDR5), retinoblastoma-
binding protein 5 (RBBP5), Set1/Ash2 histone methyltransferase
complex subunit ASH2 (ASH2L), and protein dpy-30 homolog
(DPY30) (Rao and Dou, 2015). WDR5, RBBP5, ASH2L, and
DPY30 form a core entity with the MLL SET domain, and
enhance the H3K4 dimethylation activity of the MLL SET
domain by ∼600-fold (Dou et al., 2006; Patel et al., 2009).
Although complete deletion of the Mll gene in mice results
in embryonic lethality (Yu et al., 1995), mice that harbor a
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homozygous SET domain deletion (Mll1SET) survive into
adulthood and maintain relatively normal hematopoiesis
(Mishra et al., 2014). Because the profile of H3K4 methylation
at the Hoxa loci remains normal in HSPCs isolated from
Mll1SET mice, Mishra et al. (2014) speculated that MLL is not
the dominant H3K4 methyltransferase that controls Hox gene
expression. In addition to MLL, five more MLL family members
of H3K4 methyltransferases (MLL2, MLL3, MLL4, SETD1A,
and SETD1B) are found in mammals, and they associate with
other protein factors to form larger macromolecular complexes
called COMPASS (complex of proteins associated with Set1;
named for the single yeast homolog) (Rao and Dou, 2015;
Li et al., 2016; Slany, 2016; Meeks and Shilatifard, 2017). All
of the MLL proteins physically associate with four conserved
factors—WDR5, RBBP5, ASH2L, and DPY30 (Figure 1C),
which stimulates the H3K4 methyltransferase activity of MLL
proteins (Rao and Dou, 2015; Li et al., 2016). Among the six
MLL proteins, MLL and MLL2 share two unique factors—Menin
and LEDGF (Figure 1C), which mediate the recruitment of
MLL/MLL2 to their gene targets (Rao and Dou, 2015). Using
mouse embryonic fibroblasts as a cell model, Wang et al. (2009)
showed that Menin-interacting Mll and Mll2 are key regulators
of Hox genes, however, the loss of Mll3/Mll4 had little to no
effect on H3K4 methylation of Hox loci and the expression of
Hox genes. This suggests that individual MLL family member
may play different functional roles. The MLL TAD interacts with
the histone acetyltransferases CBP/p300, MOZ, and MOF, which
transfer acetyl groups to H3K27, H3K9, and H4K16, respectively
(Slany, 2016). These acetyltransferase activities are associated
with Hox gene activation by the normal MLL protein (Ernst
et al., 2001; Dou et al., 2005; Paggetti et al., 2010).

Common MLL-Fusion Proteins
Associated With MLL-r Leukemias
As described above, the presence of MLL rearrangements
at the 11q23 chromosomal location is associated with poor
clinical prognosis, and certain subgroups of MLL-r leukemia are
associated with worse therapeutic outcomes (Balgobind et al.,
2009; Szczepański et al., 2010). As a result of different 11q23
chromosomal translocation events, a total of 135 different MLL
rearrangements (of which 84 translocations generated in-frame
MLL-FPs) were identified in patients with acute leukemia (Meyer
et al., 2018). According to the report, the nine most frequent
fusion partners of MLL are AF4 (∼36%), AF9 (∼19%), ENL
(∼13%), AF10 (∼8%), PTD (∼5%), ELL (∼4%), AF6 (∼4%),
EPS15 (∼2%), and AF1Q (∼1%), which together represent more
than 92% of the MLL-FPs found in MLL-r leukemia patients
(Meyer et al., 2018). We will focus on MLL-AF4, MLL-AF9,
and MLL-ENL, the three most common MLL-FPs discovered in
MLL-r leukemia patients (Meyer et al., 2018; Figures 1A,B).

Animal models of human disease are important for studying
underlying disease mechanisms and testing therapeutic
agents/approaches. Following discovery of numerous MLL-
FPs in human patients, biomedical researchers attempted to
recapitulate the leukemogenic effects driven by various MLL-FPs
in mouse models (Milne, 2017). In various reports, the genetic

introduction of MLL-AF4 (Chen et al., 2006; Metzler et al.,
2006; Krivtsov et al., 2008; Tamai et al., 2011; Lin et al., 2016),
MLL-AF9 (Corral et al., 1996; Dobson et al., 1999; Drynan et al.,
2005; Barabé et al., 2007; Krivtsov et al., 2013; Buechele et al.,
2015), or MLL-ENL (Lavau et al., 1997; Forster et al., 2003;
Drynan et al., 2005; Barabé et al., 2007; Buechele et al., 2015),
were demonstrated to be leukemogenic in mice. Further studies
revealed the ability of these MLL-FPs to efficiently transform
hematopoietic cells at different developmental stages (e.g.,
hematopoietic stem cells, common myeloid progenitors, and
granulocyte and macrophage progenitors) into leukemic cells
possessing stem-cell-like properties, such as being capable of self-
renewal and leukemia initiation and maintenance (Cozzio et al.,
2003; Krivtsov et al., 2006, 2008; Krivtsov and Armstrong, 2007).

MLL-Rearrangement Links
Transcriptional and Epigenetic
Abnormalities in Leukemia
MLL-FPs have different chromatin-modifying activities than
normal MLL proteins. The C-terminal SET domain of wild-
type MLL that harbors H3K4 methyltransferase activity is lost
in MLL-FPs (Figure 1). Because multiple MLL fusion partners
such as AF4/AF9/ENL/ELL are also components of the super
elongation complex [SEC; composed of AF4 (or AFF4), AF9 (or
ENL), EAF, ELL, and P-TEFb (positive transcription elongation
factor b)] (Luo et al., 2012; Cucinotta and Arndt, 2016), chimeric
MLL-FPs recruit the SEC (a crucial regulator of transcriptional
elongation) (Figure 1D) and result in aberrant gene expression
(Collins and Hess, 2016). Furthermore, several components of
the SEC interact with the histone H3K79 methyltransferase
DOT1L (disruptor of telomeric silencing 1-like) (Park et al.,
2010; Biswas et al., 2011; Shen et al., 2013). Increased levels of
H3K79 methylation by DOT1L are found at MLL-FP targeted
genomic loci such as HOXA9 and MEIS1, which are associated
with leukemic transformation (Okada et al., 2005; Krivtsov et al.,
2008; Bernt et al., 2011; Li and Ernst, 2014; Chen et al., 2015;
Collins and Hess, 2016). Given that histone H3K79 methylation
is associated with active gene transcription (Schübeler et al.,
2004), this suggests that DOT1L activity and the altered H3K79
epigenetic signature observed at MLL-FP binding loci may also
contribute to the expression of the oncogenic program in MLL-
r leukemias (Bernt et al., 2011; Jo et al., 2011; Chen et al.,
2013; Deshpande et al., 2013). Thus, current evidence suggests
that MLL-FPs connect MLL to the SEC and the DOT1L-H3K79
methyltransferase complex (consisting of DOT1L, AF9, AF10,
and ENL) (Bernt et al., 2011), thereby contributing to the ectopic
expression of the leukemic program (Figure 1D).

THERAPEUTIC TARGETING OF THE
MLL-FUSION PROTEIN EPIGENETIC
NETWORK

In recent years, chemical inhibitors that target chromatin
epigenetic regulators have undergone active development for
treatment of various cancers (Filippakopoulos and Knapp,
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2014; Shi and Vakoc, 2014; Cai et al., 2015; Fujisawa and
Filippakopoulos, 2017; Ribich et al., 2017; Schiedel and
Conway, 2018). As discussed above, MLL-FPs associate with
cofactors and recruit epigenetic effectors, which eventually
lead to aberrant gene expression and leukemic transformation.
Therefore, pharmacological disruption of the key proteins in this
MLL-FP epigenetic network represents a therapeutic opportunity
for the treatments of MLL-r leukemias (Figure 2; bottom).
Furthermore, MYC is a well-known proto-oncogene that is
frequently over-expressed in cancer, including in ALL, AML,
and MLL-r leukemias (Schreiner et al., 2001; Langenau et al.,
2003; Luo et al., 2005; Delgado and León, 2010; Dang, 2012;
Li L. et al., 2014; Sanchez-Martin and Ferrando, 2017). Indeed,
the MYC gene is a direct transcriptional target of MLL-FPs
(Dawson et al., 2011; Li and Ernst, 2014). Despite its known
oncogenic role in MLL-r leukemias, direct inhibition of the MYC
transcription factor (TF) is challenging, because of its difficult-to-
drug three-dimensional structure. Thus, down-regulating MYC
gene expression by targeting more easily druggable chromatin-
binding domain structures on the regulatory proteins that affect
MYC expression is an active area of research (Figure 2; top). In
the following sections, we will discuss the latest approaches to
therapeutic targeting of the MLL-FP epigenetic network.

Targeting Menin–LEDGF–MLL
Interactions
Menin, encoded by the MEN1 gene, acts as a molecular adaptor
to tether both MLL and LEDGF and is required for the
oncogenic transformation of MLL-r leukemia mediated by MLL-
FPs (Yokoyama et al., 2005; Yokoyama and Cleary, 2008). Genetic
knockout of Men1 in mouse embryonic fibroblasts demonstrated
that Menin is essential for H3K4 trimethylation at Hox loci and
expression of nearly all Hox genes (Wang et al., 2009). Borkin
et al. (2015) developed two potent small-molecule inhibitors (MI-
463 and MI-503) that block the MLL-binding site on Menin,
resulting in down-regulation of MLL-fusion targets (including
Hoxa9 and Meis1 genes), differentiation of leukemic blasts,
and prolonged survival of mouse models of MLL-r leukemia.
A study reported that MLL1 does not require interaction with
Menin to sustain hematopoietic stem cell hematopoiesis (Li et al.,
2013). This provides a good rational for developing inhibitors
of the Menin–MLL interaction to treat MLL-r leukemia without
affecting normal cells. Indeed, Borkin et al. (2015) revealed
that Menin inhibition by MI-463 and MI-503 resulted in no
impairment of normal murine hematopoiesis after 10 days of
continuous Menin inhibition. Guided by the molecular scaffolds
of the two Menin inhibitors, the same group recently reported
the development of a more potent Menin inhibitor, MI-1481,
which showed low nanomolar inhibition (IC50 = 3.6 nM,
measured by fluorescence polarization assay using fluorescein-
labeled MLL4−43) against Menin–MLL interactions (Borkin et al.,
2018). Compound MI-1481 showed potent activity in cells and
in vivo models of MLL-r leukemias (Borkin et al., 2018).

Lens epithelium-derived growth factor is a transcriptional
coactivator that specifically recognizes H3K36me2/3 (histone
modifications that are associated with actively transcribed gene

loci) through its PWWP domain (Pradeepa et al., 2012; Eidahl
et al., 2013; Zhu et al., 2016). Through association with
LEDGF, MLL is brought to chromatin to regulate transcription
(Yokoyama and Cleary, 2008). MLL-ENL lacking the high-
affinity Menin-binding motif (i.e., it cannot interact with Menin
efficiently) failed to co-precipitate with endogenous LEDGF,
suggesting that LEDGF interacts conjointly with MLL-ENL and
Menin, but does not associate with either one of them separately
(Yokoyama and Cleary, 2008). Recent reports suggest that
LEDGF is dispensable for normal hematopoiesis but important
for leukemogenesis; therefore, LEDGF is being considered as a
potential drug target for MLL-r leukemias (Blokken et al., 2017;
Ashkar et al., 2018).

Although wild-type MLL and MLL-FPs share the same
MLL N-terminal and retain Menin/LEDGF-binding ability
(Figures 1C,D), two studies suggested that MLL and MLL-FPs
have different chromatin-tethering mechanisms (Wang et al.,
2011; Xu et al., 2016). Wang et al. (2011) reported that MLL-
FPs preferentially regulate only a small subset of wild-type MLL
target genes using patient-derived leukemic cells and inducible
MLL-ENL cellular system. Moreover, Xu et al. (2016) showed
by ChIP-seq experiments that MLL and MLL-AF9 localized at
different chromatin regions in a murine cell model of MLL-
AF9, and they further demonstrated that these differences were
due to the ability of MLL C-terminal domain to interact with
WDR5. The C-terminal domain of MLL is lost in MLL-FPs,
because of 11q23 translocations (Figure 1). These may explain
why targeting either Menin or LEDGF could be a therapeutic
approach in treating MLL-r leukemias, since MLL and MLL-FPs
have differential dependence on Menin or LEDGF for activating
gene expression.

Targeting the Enzymatic Core of DOT1L
Disruptor of telomeric silencing 1-like is a methyltransferase
that catalyzes H3K79 mono-, di-, and tri-methylation
(H3K79me1/2/3), which are associated with active gene
expression (Barski et al., 2007; Jo et al., 2011). DOT1L binds
to the nucleosomal disk surface and methylates H3K79 located
in the globular histone core (Min et al., 2003). Because the
aberrant methyltransferase activity of DOT1L is required for
the leukemogenesis of MLL-r leukemia, DOT1L inhibition
is a promising therapeutic intervention (Chang M.-J. et al.,
2010; Bernt et al., 2011; Daigle et al., 2011; Nguyen et al.,
2011). A number of small-molecule DOT1L inhibitors have been
developed in recent years (Anglin and Song, 2013). One inhibitor,
pinometostat (EPZ-5676), was identified as a highly potent and
selective inhibitor of the DOT1L active site (Daigle et al., 2013).
Pinometostat showed moderate to high clearance and low oral
bioavailability in a non-clinical pharmacokinetic and metabolic
study (Basavapathruni et al., 2014). A phase I clinical study
recently revealed that administration of pinometostat was
generally safe; however, its efficacy as a single-agent treatment
was modest (Stein et al., 2018). Further studies are needed to
investigate whether the combination of pinometostat with other
pharmacological inhibitors can potentiate its therapeutic activity
in patients with MLL-r leukemias.
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FIGURE 2 | Pharmacological intervention in the MLL-FP epigenetic network in MLL-r leukemia. For simplicity, the components of protein complexes interacting with
CBP/p300, BRD4, BRD9, or ENL are not illustrated. BRD4 and MLL-FPs (MLL-AF4 or MLL-AF9) together form a complex with SEC and PAFc (Dawson et al., 2011),
which directs MYC expression. This schematic was created using BioRender.com.

Targeting Lysine-Specific
Demethylase 1 (LSD1)
Lysine-specific demethylase 1 (LSD1 or KDM1A), the first
identified histone demethylase (Shi et al., 2004), is an epigenetic
eraser of H3K4me1/2 and H3K9me1/2 histone marks (Shi et al.,
2004; Forneris et al., 2005; Metzger et al., 2005; Amente et al.,
2013). LSD1 is overexpressed in various solid cancers (bladder,
breast, lung, and colorectal cancers) (Lim et al., 2010; Hayami
et al., 2011), and in AML as well as lymphoid malignancies
and myeloproliferative neoplasms (Lokken and Zeleznik-Le,
2012; Schenk et al., 2012; Niebel et al., 2014; Przespolewski
and Wang, 2016). Harris et al. (2012) showed that LSD1 is
required for sustaining the expression of the MLL-AF9 oncogenic
program and identified LSD1 as a therapeutic target for MLL-
AF9 leukemia. Genetic knock-down of Lsd1 by RNAi induced
apoptosis and terminal macrophage differentiation of murine
MLL-AF9 cells, and reduced AML leukemia stem cell potential
in mice transplanted with murine MLL-AF9 cells (Harris et al.,
2012). Moreover, Harris et al. (2012) found that pharmacological
inhibition of LSD1 by OG-86 (also known as Compound B)
(Maiques-Diaz and Somervaille, 2016) resulted in inhibition of
colony formation and promotion of leukemic cell differentiation
in murine MLL-AF9 cells and primary human MLL-AF6 and
MLL-AF9 leukemic blasts (Harris et al., 2012). In 2018, ORY-
1001 was identified as a highly potent and selective LSD1 covalent
inhibitor with good bioavailability after intra-peritoneal and oral
administration (Maes et al., 2018). ORY-1001 binds irreversibly
and rapidly to the cofactor flavin adenine dinucleotide (FAD)

when it is covalently bound to LSD1, but not to free FAD.
ORY-1001 showed nanomolar inhibition (IC50 = 18 nM) of
recombinant LSD1 and low nanomolar activity (EC50 < 1 nM
in a FACS-based differentiation assay) against cellular LSD1 in
THP1 cells (a human MLL-AF9 cell line) (Maes et al., 2018).
ORY-1001 induced blast differentiation in leukemic cell lines
(including MLL-r leukemic cell lines), primary AML samples,
and two AML patients participating in a clinical trial of ORY-
1001, and prolonged survival in murine models of acute leukemia
(Maes et al., 2018). ORY-1001 is currently under ongoing phase
I/IIa study in relapsed or refractory acute leukemia (EUDRACT
no. 2013-002447-29) (Maes et al., 2018). Cusan et al. (2018)
demonstrated that LSD1 inhibition using GSK-LSD1 (a LSD1
chemical inhibitor) induces an increase in chromatin accessibility
on a global level. They also showed that the antileukemic effect
exerted by GSK-LSD1 requires the TFs PU.1 and C/EBPα, as
the reduction or depletion of PU.1 or C/EBPα expression level,
respectively, rendered murine MLL-AF9 leukemia cells resistant
to GSK-LSD1 inhibition (Cusan et al., 2018).

Down-Regulation of MYC by BRD4
Inhibition
Bromodomains are specific epigenetic reader modules that
recognize ε-N-acetylation of lysine motifs, the key epigenetic
marks for maintaining open chromatin structure, which is
associated with transcriptional activation. In the human genome,
there are 46 known BRD-containing proteins. Some of these
proteins possess more than one BRD, so there are a total of
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61 different BRDs found in humans (Filippakopoulos et al.,
2012). Large-scale structural and binding studies demonstrated
that BRDs do not specifically read a particular acetylated lysine
(Kac) sequence, but instead recognize a combination of different
Kac motifs (Filippakopoulos et al., 2012). Although BRDs differ
in the primary amino acid sequence, they all possess similar
structural folds: a left-handed bundle of four α helices (designated
αZ, αA, αB, αC) linked by loop regions of various lengths (ZA
and BC loops) that contribute to specificity in Kac substrate
recognition (Filippakopoulos et al., 2012; Filippakopoulos and
Knapp, 2014; Fujisawa and Filippakopoulos, 2017). Large-scale
co-crystallization of various Kac peptides and BRDs showed that
Kac peptides bind in the central hydrophobic pocket and form
hydrogen bonding with an asparagine residue, present in most
BRDs (Filippakopoulos et al., 2012; Filippakopoulos and Knapp,
2014; Fujisawa and Filippakopoulos, 2017). Bromodomain-
containing protein 4 (BRD4), a member of the bromodomain
and extra-terminal domain (BET) family, is a chromatin
reader that recognizes Kac residues through two BRDs. It
plays key roles in the maintenance of epigenetic memory, cell
cycle control, and transcriptional regulation (Dey et al., 2000,
2009; Yang et al., 2005; Devaiah et al., 2012). In 2010, two
independent groups discovered the first BRD4 inhibitors, (+)-
JQ1 (Filippakopoulos et al., 2010) and I-BET (Nicodeme et al.,
2010). These two inhibitors also represent the first examples
of small molecules that target epigenetic readers; before the
discovery of (+)-JQ1 and I-BET, only epigenetic writers and
erasers had been targeted in the field of epigenetics. This
discovery opened up a new possibility of treating cancers by
targeting epigenetic reader modules.

In Zuber et al. (2011) used an RNA interference (RNAi)
genetic screen to identify BRD4 as a therapeutic target in
AMLs, including MLL-AF9-induced AML. They demonstrated
that the use of either short-hairpin RNAs (shRNAs) or (+)-
JQ1 to induce knock-down or inhibition of Brd4, respectively,
led to anti-leukemic effects in cells and in vivo. In a murine
MLL-AF9 AML cell model, shRNA or (+)-JQ1 treatments
induced cell differentiation and led to depletion of leukemia
stem cells and a global reduction in the expression of Myc
target genes. Moreover, Zuber’s group used ChIP-qPCR to
show that Brd4 occupancy approximately 2 kb upstream of the
Myc promoter was reduced after exposure to (+)-JQ1. These
data suggest that the effects of Brd4 inhibition are linked at
least in part to suppression of the Myc-dependent leukemia
sustainment program. Indeed, ectopic over-expression of Myc
cDNA rescued cell cycle arrest and terminal differentiation
induced by Brd4-targeting shRNAs and (+)-JQ1 treatment.
However, over-expression of Myc could not rescue cell death
induced by (+)-JQ1, suggesting a Myc-independent function of
Brd4 in regulating cell survival (Zuber et al., 2011). Consistent
with this, another research group employed a large-scale global
proteomic strategy to reveal that MLL-FPs that form part of
the PAFc and SEC are associated with the epigenetic reader
BRD4 (Dawson et al., 2011). Dawson et al. (2011) suggested
that BRD4 may function to recruit leukemogenic MLL-FPs (e.g.,
MLL-AF4 or MLL-AF9) to chromatin for activating expression
of oncogenic genes, and therefore they hypothesized that the

displacement of BRD4 using chemical inhibitors may have anti-
leukemic effect in MLL-r leukemias. The authors showed that
I-BET151 displaced BRD4 from Kac substrates on the chromatin
and resulted in down-regulation of the antiapoptotic gene BCL2,
cell cycle regulator CDK6, and MYC (Dawson et al., 2011).
Furthermore, I-BET151 showed anti-leukemic activity in cells
and in vivo, and possessed better pharmacokinetic properties in
mice than (+)-JQ1 (Dawson et al., 2011).

Mechanistically, the pronounced inhibition of MYC
expression by (+)-JQ1 is thought to result from dissociation of
BRD4 from MYC super-enhancers (Lovén et al., 2013). Super-
enhancers are large clusters of transcriptional enhancers packed
with TFs, cofactors, transcription apparatus, and chromatin
regulators such as BRD4 (Hnisz et al., 2013). Sustainment of
oncogenic MYC expression is associated with MYC super-
enhancers in multiple myeloma (MM1.S) and MLL-r leukemia
(MLL-AF9/NrasG12D) cells (Lovén et al., 2013; Shi et al., 2013; Shi
and Vakoc, 2014). BRD4 molecules densely bind to these active
super-enhancers and promote transcriptional elongation through
physical association with the Mediator coactivator complex and
P-TEFb (Lovén et al., 2013; Shi et al., 2013; Xu and Vakoc, 2017).
BRD4 recruits and activate P-TEFb, a multi-protein kinase
complex that functions to promote transcriptional elongation
(Slany, 2016; Xu and Vakoc, 2017). Chemical inhibition of
BRD4 by (+)-JQ1 preferentially displaced BRD4 molecules,
as well as Mediator and P-TEFb, from the super-enhancers,
thereby down-regulating MYC and MYC-target gene expression
(Lovén et al., 2013).

Down-Regulation of MYC by CBP/p300
Inhibition
Roe et al. (2015) provided evidence that lineage-specific TFs
recruit the lysine acetyltransferases CBP or p300 to acetylate the
TFs and histone lysine residues at lineage-specific promoters and
enhancers in mouse MLL-AF9/NrasG12D AML cells. BRD4 was
shown to bind to hyperacetylated histone residues and acetylated
TFs through its BRDs, then promote transcriptional activation
via its association with Mediator and P-TEFb. This chromatin-
based signaling cascade provides an additional mechanistic
explanation for the rapid down-regulation of gene expression
by (+)-JQ1, which functions to displace densely localized BRD4
molecules from transcriptionally activated cancer-promoting
genes including BCL2, CDK6, and MYC (Roe et al., 2015; Xu
and Vakoc, 2017). Given that CBP/p300 play important roles
in maintaining MLL-r leukemia, this suggests that chemical
inhibition of CBP or p300 may present a therapeutic strategy
for treating MLL-r AMLs (Roe et al., 2015). Small molecules
targeting the BRDs of CBP/p300 have been developed (Borah
et al., 2011; Hay et al., 2014; Rooney et al., 2014; Brand et al.,
2015; Picaud et al., 2015; Schiedel and Conway, 2018). For
example, I-CBP112, a potent and selective CBP/p300 inhibitor
with modest pharmacokinetic properties, was reported in 2015
(Picaud et al., 2015). I-CBP112 showed inhibitory effects on
cancer cell growth in both human and mouse MLL-AF9 AML cell
lines and prolonged the survival of mice injected with MLL-AF9
AML cells. Picaud et al. (2015) also reported that I-CBP112
sensitized MOLM-13 MLL-r leukemia cells to (+)-JQ1. The
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combined use of both epigenetic inhibitors could achieve greater
antileukemic effects than employing a single agent alone (Picaud
et al., 2015). In Lasko et al. (2017), a major breakthrough was
achieved in the development of a highly potent, selective, and
cell-permeable CBP/p300 inhibitor. Instead of targeting BRDs,
the new compound, A-485, binds and inhibits the catalytic core
of CBP/p300 and shows inhibitory effects in various cancer cell
lines, including MOLM-13 MLL-r leukemia cells. Importantly, A-
485 was also found to robustly reduce MYC expression and show
tumor-inhibitory effects in a prostate cancer mouse model.

Down-Regulation of MYC by BRD9
Inhibition
Bromodomain-containing protein 9 (BRD9) is a component of
the SWI-SNF chromatin remodeling complex, also known as the
BRG1-associated factor (BAF) chromatin remodeling complex
in mammals. BRD9 is important for sustaining MYC expression
via its BRD in diverse MLL-r leukemia cell lines, including
MV4-11, MOLM-13, ML-2, EoL-1, and NOMO-1 (Hohmann
et al., 2016). Hohmann et al. (2016) showed that application of
RNAi or the small molecule BI-7273 (Martin et al., 2016) to
achieve genetic knock-down or chemical inhibition of BRD9,
respectively, induced cell growth inhibition and differentiation of
MLL-r leukemia cell lines through down-regulation of MYC. The
same team also devised a domain-swapping strategy to assess the
on-target specificity of the chemical probe (BI-7273) on BRD9.
In this method, they swapped the BRD of BRD9 with the first
BRD of BRD4, to generate a new chimeric protein, BRD9-BET.
The full biological function of BRD9 was preserved in BRD9-BET
after the domain-swap; however, BI-7273 could no longer inhibit
BRD9-BET. This validated the on-target specificity of BI-7273 for
the BRD of BRD9.

Down-Regulation of MYC by ENL
Inhibition
ENL (eleven-nineteen-leukemia protein or MTTL1) is the third
most frequent MLL translocation partner identified in MLL-r
leukemia patients (Meyer et al., 2018; Figure 1B). ENL is also
a component of the SEC, which is observed in the MLL-FP
complexes (Zeisig et al., 2005; Yokoyama et al., 2010; Figure 1D).
The N-terminal of ENL possesses a YEATS domain. In additional
to BRDs recognizing Kac (Dhalluin et al., 1999; Filippakopoulos
et al., 2012), in 2014, YEATS domains were discovered to be
epigenetic readers of Kac (Li Y. et al., 2014). YEATS domains
were named after the five founding members of the YEATS-
containing protein family—Yaf9, ENL, AF9, Taf14, and Sas5
(Li Y. et al., 2014). Structurally, the YEATS domains of ENL
and AF9 adopt an eight-stranded β-sandwich fold (Li Y. et al.,
2014; Wan et al., 2017), which is different from the four-
α-helical fold of BRDs (Dhalluin et al., 1999; Filippakopoulos
et al., 2012). ENL was found to be important in maintaining
AMLs (including MLL-r leukemias) by two independent groups
in 2017 (Erb et al., 2017; Wan et al., 2017). Depletion of ENL
results in down-regulation of key leukemic drivers such as MYC,
cell growth inhibition, reduced expression of the leukemia stem
cell signature, and terminal differentiation of MLL-r leukemia

cell models (Erb et al., 2017; Wan et al., 2017). Cas9-mediated
depletion of ENL prolonged survival in leukemic mouse models,
which were xenotransplanted with either MV4-11 or MOLM-
13 cells transduced with single-guide RNA targeting the ENL
gene (Erb et al., 2017; Wan et al., 2017). The two groups
also demonstrated that the YEATS reader domain of ENL
plays an important role in oncogenic expression and leukemia
maintenance through YEATS-Kac interactions. This suggests
that pharmacological inhibition of the ENL YEATS domain is a
potential therapeutic target for AMLs such as MLL-r leukemias
(Erb et al., 2017; Wan et al., 2017). Subsequently, another two
research groups separately described small molecules capable of
inhibiting the YEATS domains of AF9/ENL (Christott et al.,
2018; Li et al., 2018). Christott et al. (2018) screened a library
of 24,000 compounds using a peptide displacement assay and
discovered a small molecule (XS018661) that binds to AF9
and ENL with equilibrium dissociation constant (Kd) values
of 523 ± 53 and 745 ± 45 nM, respectively, as determined
by isothermal calorimetry (ITC). Li et al. (2018), on the other
hand, used structure-guided development to produce selective
peptide-based AF9 and ENL inhibitors, termed XL-13a and
XL-13m, respectively. They also showed that XL-13m down-
regulated key leukemic driver genes including MYC, MYB (a
transcriptional activator), HOXA9, and MEIS1 in MOLM-13 cells
(Li et al., 2018).

COMBINED EPIGENETIC THERAPIES
FOR MLL-R LEUKEMIAS

Although the DOT1L methyltransferase inhibitor, pinometostat,
has cell-inhibitory effect in cells and in vivo models of MLL-
r leukemia (Daigle et al., 2013), recent results from a phase
I clinical trial indicated that the small molecule has only
modest efficacy in treating MLL-r leukemias (Stein et al., 2018).
This suggests that combining DOT1L inhibitors with other
pharmacological agents may be necessary to boost anti-leukemic
efficacy. A genome-wide RNAi screen showed that SIRT1,
an NAD+-dependent deacetylase, is required to establish a
chromatin-repressive state after inhibition of DOT1L (Chen et al.,
2015). Consistent with this, a potent activator of SIRT1, SRT1720
(Milne et al., 2007; Mitchell et al., 2014), was demonstrated to
synergize with EPZ004777, a DOT1L inhibitor, and enhance
anti-proliferative activity against MLL-r leukemia cells (Chen
et al., 2015). Another study by Gilan et al. (2016) showed
that although DOT1L and BRD4 occupy distinct molecular
complexes, they functionally cooperate with each other, and that
such cooperation is particularly important for highly transcribed
genes with proximity to super-enhancers. They found that
combined targeting of both DOT1L and BRD4 using SGC0946
(a small-molecule inhibitor of DOT1L) and I-BET, respectively,
resulted in growth inhibitory synergy against MLL-r cell lines,
primary human leukemia cells, and mouse leukemia models
(Gilan et al., 2016). In a more recent study, Dafflon et al. (2017)
employed an epigenome-focused shRNA library to identify
epigenetic regulators that sensitize MLL-r leukemia cells treated
with EPZ004777. They reported that combination of EPZ004777
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and MI-2-2 (an inhibitor of MLL–Menin interaction) enhanced
the down-regulation of important leukemia genes (i.e., MYC,
HOXA9, and MEIS1) and anti-proliferative effects against MLL-
r leukemia cells, compared to either single-agent treatment
(Dafflon et al., 2017). Maes et al. (2018) recently showed that
the LSD1 demethylase inhibitor ORY-1001 could synergize with
a retinoid derivative (ATRA), a nucleoside analog [cytosine
arabinoside (ARA-C)], a FLT3 inhibitor (quizartinib), DOT1L
inhibitors (EPZ-5676; SGC0946), DNMT1 inhibitors (decitabine;
azacitidine), an HDAC inhibitor (SAHA), and a BCL2 inhibitor
(ABT-737) to inhibit the proliferation of MV4-11 and MOLM-13
MLL-r leukemic cell lines.

In advance of identifying the first-in-class YEATS domain
inhibitors, scientists used genetic and chemical biology tools
to determine if ENL YEATS inhibition synergized with known
inhibitors of epigenetic regulators (Erb et al., 2017; Wan et al.,
2017). Wan et al. (2017) proved that Cas9-mediated depletion
of ENL sensitized MOLM-13 cells to (+)-JQ1 treatment. In
a proof-of-concept experiment, Li et al. (2018) used small-
molecule chemical probes to demonstrate that the ENL YEATS
domain inhibitor XL-13m synergized with either the DOT1L
inhibitor pinometostat or the BRD4 inhibitor (+)-JQ1 in
reducing the expression of MYC in MOLM-13 cells. Erb
et al. (2017) applied a novel approach to induce proteasome-
mediated acute degradation of ENL using degradation tag
(dTAG) technology (Winter et al., 2015; Nabet et al., 2018)
in leukemic cells. The dTAG system is a new technology
that uses an FKBP12F36V-fused target protein-of-interest and
a heterobifunctional ligand degrader—a dTAG molecule (e.g.,
dTAG-13)—that binds FKBP12F36V and cereblon (CRBN) E3
ligase (Winter et al., 2015; Nabet et al., 2018; Mayor-Ruiz and
Winter, 2019). This offers a generalized strategy to fuse any target
protein to an engineered variant of the immunophilin FKBP12,
then tag FKBP12F36V-fused target proteins for acute proteasome-
mediated degradation. The F36V mutation in FKBP12F36V

affords a “bump-hole” strategy that allows specific tagging of
the FKBP12F36V-fusion proteins, without affecting endogenous
FKBP12 proteins. The FKBP12F36V -target fusion gene can be
genetically introduced via transgene expression or CRISPR-
mediated locus-specific knock-in Nabet et al. (2018). The
dTAG-13 molecule induces dimerization of the FKBP12F36V-
fused target protein with CRBN E3 ligase, which leads to
polyubiquitination of the target protein and proteasomal
degradation. After degradation, the dTAG-13 molecules are
recycled (i.e., without being degraded) for subsequent rounds
of proteasome-mediated degradation of additional FKBP12F36V-
fused target proteins. Erb et al. (2017) demonstrated that
combining dTAG-mediated acute degradation of ENL with
pinometostat had additive inhibitory effects on the expression
of Myc and Hoxa9 in MLL-r cells (MV4-11, Cas9+, ENL-
FKBP12F36V–HA+, ENL−/−).

CONCLUDING REMARKS

Chimeric MLL-FPs form complexes with different epigenetic
regulators that are capable of rewiring the epigenetic networks

and driving the leukemic programs in MLL-r leukemias. For
example, MLL-FPs recruit DOT1L (an epigenetic writer), and
cause aberrant expression of HOXA9 and MEIS1, which leads
to leukemic transformation. Moreover, MLL-FPs are able to
form a molecular complex with BRD4 (an epigenetic reader),
PAFc and SEC to sustain the oncogenic expression of BCL2,
CDK6, and MYC in MLL-r leukemias (Dawson et al., 2011).
Pharmacological intervention with small molecules disrupting
the epigenetic networks rewired by the MLL-FPs (Figure 2),
holds promises in treating MLL-r leukemias. However, in some
circumstances, cancer monotherapies using single chemical
agents may have sub-optimal efficacy in eliminating cancer
cells and are likely limited by the emergence of resistant cell
populations (Fong et al., 2015; Rathert et al., 2015; Doroshow
et al., 2017). Recent studies have shown that combining epigenetic
drug treatments offers improved therapeutic responses over
monotherapies in treating various cancers including MLL-r
leukemias (Doroshow et al., 2017). It is of crucial importance
to understand the mechanistic actions of drugs, in order to
build a comprehensive rationale for using the drugs in a
combinatory setting. This is especially important in targeting
context-dependent epigenetic regulatory proteins. The advent of
massive parallel sequencing technologies and genetic screening
technologies such as RNAi and CRISPR-Cas9 has enabled
biomedical scientists to uncover cancer vulnerabilities and
discover new therapeutic targets for cancer treatments in a
high-throughput manner (Shalem et al., 2015; McDonald et al.,
2017; Meyers et al., 2017; Tsherniak et al., 2017). With the
emergence of dTAG technology, cancer researchers are equipped
with an acute proteasome-mediated protein knock-out method
for interrogating biological function and early validation of
therapeutic targets, before a valid binding ligand is identified
(Winter et al., 2015; Nabet et al., 2018; Mayor-Ruiz and
Winter, 2019; Schiedel et al., 2019). With such genetic and
chemical discovery tools in hand, we foresee that researchers
are empowered to discover and validate important therapeutic
targets to treat diseases driven by epigenetic abnormalities such
as MLL-r leukemias.
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