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Objectives: Despite the widespread use of manganese (Mn) in industrial settings and

its association with adverse neurological outcomes, a validated and reliable biomarker

for Mn exposure is still elusive. Here, we utilize targeted metabolomics to investigate

metabolic differences between Mn-exposed and -unexposed workers, which could

inform a putative biomarker for Mn and lead to increased understanding of Mn toxicity.

Methods: End of shift spot urine samples collected from Mn exposed (n = 17)

and unexposed (n = 15) workers underwent a targeted assay of 362 metabolites

using LC-MS/MS; 224 were quantified and retained for analysis. Differences in

metabolite abundances between exposed and unexposed workers were tested with

a Benjamini-Hochberg adjusted Wilcoxon Rank-Sum test. We explored perturbed

pathways related to exposure using a pathway analysis.

Results: Seven metabolites were significantly differentially abundant between exposed

and unexposed workers (FDR ≤ 0.1), including n-isobutyrylglycine, cholic acid, anserine,

beta-alanine, methionine, n-isovalerylglycine, and threonine. Three pathways were

significantly perturbed in exposed workers and had an impact score >0.5: beta-alanine

metabolism, histidine metabolism, and glycine, serine, and threonine metabolism.

Conclusion: This is one of few studies utilizing targeted metabolomics to

explore differences between Mn-exposed and -unexposed workers. Metabolite

and pathway analysis showed amino acid metabolism was perturbed in these

Mn-exposed workers. Amino acids have also been shown to be perturbed in other

occupational cohorts exposed to Mn. Additional research is needed to characterize the

biological importance of amino acids in the Mn exposure-disease continuum, and to

determine how to appropriately utilize and interpret metabolomics data collected from

occupational cohorts.
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INTRODUCTION

Manganese (Mn) is a known neurotoxicant associated with
a range of motor (1–3) and cognitive (4–6) health outcomes.
Elevated exposure to Mn occurs most frequently in metal-
working occupational settings, such as among solderers,
welders, brazers, and foundry workers. While environmental
Mn exposures are typically lower than in occupational
settings, elevated environmental exposures can occur in
proximity to Mn-utilizing industrial facilities or busy roadways,
putting more people at risk for health outcomes related
to Mn (7–9).

The gold-standard for measuring airborne Mn exposure
remains filter-based personal air sampling, though a variety of
exposure biomarkers have been explored in both occupational
and environmental cohorts (10–14). However, notable
limitations to using common biologic matrices, such as
urine, blood, and plasma, to assess Mn exposure have been
discussed in the literature (15). Magnetic resonance imaging
(MRI) and positron emission tomography (PET) have been
found to be promising assessment methods across a range of
exposures; however, contraindications to these procedures and
the cost and specialized equipment required can reduce their
utility for routine use (16–18).

Given the limitations of common Mn exposure assessment
methods, there is a public health interest in investigating readily
accessible biomarkers related to Mn exposure, such as urinary
metabolites that distinguish between exposed and unexposed
persons. These small molecule metabolites could serve as
putative biomarkers of Mn exposure and help elucidate the
biological processes that Mn may perturb either simultaneously
with or prior to exerting neurotoxicity. Metabolomics is the
study of these small molecules (<1,500 Daltons) that are
important in metabolic processes. Previously, we have utilized
global metabolomics profiling to investigate metabolites that
differ between exposed and unexposed workers in the Puget
Sound region, whose data are also used in this manuscript
(19). In our previous work, we found nine metabolites to
be significantly differentially abundant between exposed and
unexposed workers [false discovery rate (FDR) <0.1], and
most of these metabolites also exhibited an exposure-response
relationship when stratifying workers by no exposure, low
exposure, and high exposure. However, when investigating these
nine metabolites in a different occupationally exposed cohort
of welders, these nine metabolites were no more predictive of
exposure status than by chance alone (20). As this previous
work utilized global metabolomics methods, the identity of the
nine metabolites were not known, making it challenging to infer
biologic relevance as to why they may not have replicated in
another occupational cohort. To improve on this limitation,
targeted metabolomics, where the identity of the metabolite is
known, was utilized in the Puget Sound cohort to investigate not
only metabolite differences between groups defined by exposure,
but also potential pathway perturbations related to Mn exposure
in these workers, which could inform how Mn exerts toxicity in
exposed individuals.

METHODS

Study Population and Samples Collected
Foundry workers at a Mn-steel foundry and crane operators or
truck drivers at a scrapmetal recycling yard were organized into a
meeting by their site health and safety officer. Here, workers were
given an overview of the study by the study team, given a chance
to ask questions, and interested participants were enrolled in our
study after giving written, informed consent. All study protocols
were approved by the University of Washington Institutional
Review Board (IRB number 47550). A total of 20 Mn-exposed
foundry workers and 17 Mn-unexposed crane operators and
truck drivers were recruited into our study. Both workplaces
are located in the Puget Sound region of Washington state. The
characteristics of the cohort and details on the study design have
been previously described by Baker et al. (19). In October 2014, a
full-shift personal air sample was collected from these workers
to ensure there was not exposure misclassification between
the exposed and unexposed groups. Airborne Mn exposure
was assessed using Institute of Medicine (IOM) inhalable dust
samplers, which were analyzed for the inhalable Mn fraction
according to the UK Health and Safety Executive’s Methods
for the Determination of Hazardous Substances 14/4 (21). The
mean 8-h time weighted average (TWA) Mn exposure in the
foundry workers was 365 µg/m3 [standard deviation (SD): 300,
range: 98.5, 1,243] whereas the mean Mn exposure for the
crane operators/truck drivers was 9.2 µg/m3 (SD: 36.5, range:
0.02, 150.8), confirming the expected Mn exposure difference
between the exposed and unexposed workers. The mean 8-
h TWA Mn exposure in the foundry workers exceeded the
American Conference of Governmental Industrial Hygienist’s
(ACGIH) threshold limit value (TLV) of 100 µg/ m3, while the
mean exposure for the crane operators/truck drivers was well
below this limit.

An end-of shift spot urine sample was collected from 17 Mn-
exposed foundry workers and 15 unexposed crane operators
or truck drivers in January 2015. Clean catch urine samples
were collected in 125mL wide mouth low-density polypropylene
bottles (Nalgene). Urine samples were aliquoted on site into
2mL Safe-Lock Eppendorf tubes, and immediately stored on
dry ice for transport to University of Washington (UW) in
Seattle, where they were stored at−80◦C awaiting metabolomics
analysis. Participants completed a short exposure questionnaire
when their urine was collected in January 2015. The goal of this
questionnaire was to confirm that current job duties were similar
to job duties in October 2014 when personal airborne exposure
had been assessed.

Targeted Metabolomics Analysis
A targeted assay of 362 aqueous metabolites was undertaken via
liquid chromatography-tandemmass spectrometry (LC-MS/MS)
on the urine samples. Sample preparation and analysis was
completed by the Northwest Metabolomics Research Center
at UW. Frozen urine samples were thawed on wet ice and
vortexed. Next, 100 µL of urine were mixed with methanol in
a 2:1 ratio to precipitate any residual protein, and a solution
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containing 32 isotope-labeled internal standards was added to
the urine-methanol mixture to monitor sample preparation
and quantitate metabolites. After drying the samples using a
Vacufuge (Eppendorf), samples were reconstituted in mobile
phase B solvent (see below) and diluted by 5:1 prior to LC-
MS/MS analysis.

These Puget Sound samples were randomized with
urine samples from a separate study undergoing the same
metabolomics analysis in a three batch run. A pooled quality
control (QC) sample was constituted using small aliquots from
the study samples, and it was run once for every ten study
samples for a total of 12 pooled QC samples. In addition, a
pooled instrument control sample (serum) was also run once
every 10 study samples, along with blank samples. Samples were
injected into the chromatography system (CDC autosampler and
Shimadzu Nexera LC-20 pumps) consisting of a dual injection
valve setup allowing injections onto two different LC columns
with each column dedicated to an ESI polarity. For positive
mode ionization, 5 µL were injected on to the column, and 10
µL on to the column for negative mode. Both columns were
Waters XBridge BEH amide columns (2.1 × 150mm) from
the same production lot. The autosampler was maintained at
4◦C and the column oven was set to 40◦C. Mobile phase A was
10mM ammonium acetate in 95% water, 3% acetonitrile, 2%
methanol, and 0.2% acetic acid, and Mobile phase B was 10mM
ammonium acetate in 93% acetonitrile, 5% water, 2% methanol,
and 0.2% acetic acid. The 0.3 mL/min solvent gradient was as
follows: 0–1.5min 95% mobile phase B, 1.5–6min 95% to >70%
B, 6–10min 70% B, 10–12min 70–45% B, 12–14min 45% B,
14–15min 45% to >95% B, 15–18min 95% B. After completion
of the 18min gradient, injection on the other column was
initiated and the inactive column was allowed to equilibrate at
the starting gradient conditions. A set of QC injections for both
instrument and sample QC were run at the beginning and end
of the sample batch, as well as every 10 study samples. Blank
samples were run periodically as well to monitor carryover.

TheMS data were integrated using SCIEXMultiQuant 3.0.2 or
Sciex-OS v1.5 software. Peaks were selected based on peak shape,
a signal-to-noise ratio of>10, and retention times consistent with
previously run standards and sample sets. Themedianmetabolite
coefficient of variation (CV) in the pooled QC samples over
the course of the run was 7.9%; the median metabolite CV for
the pooled laboratory standard QC samples over the course of
the run was 7.8%.

Statistical Analysis
Metabolites which were not present above the limit of detection
in at least 50% of the samples were removed, resulting in
a total of 224 metabolites (62%) included in our sample
set. Missing values were replaced with 1 × 10−6 prior to
normalization and log10-transformation. In order to account for
systematic errors resulting from instrument drift and differences
in urine dilution and hydration between the participants,
samples were normalized in Metaboanalyst 4.0 by the set of
pooled QC samples (22), a step undertaken for each individual
metabolite measured. This normalization step is important
for reducing systematic variation and allowing true biological

variation between the samples to be revealed (23). For this type
of normalization, pooled probabilistic quotient normalization
(PQN) is used, which looks at the distribution of metabolites
across the pooled QC samples and adjusts the participant
samples based on the QC samples, therefore relying on reference
samples instead of the study samples themselves (23). This
method also adjusts for differences in dilution by determining
a probabilistic dilution factor for each sample, based on the
differences between each sample and the pooled QC samples.
After applying this normalization to the pooled QC samples,
the median metabolite CV over the course of the run decreased
to 4.1%.

Prior to statistical analyses, data were log10-transformed. As
data were assumed to be non-parametric, relative abundances
of all 224 metabolites were compared between the exposed and
unexposed workers using a Wilcoxon rank sum test. P-values
were adjusted using the Benjamini-Hochberg method to control
false discovery rates. In order to find a larger potential set of
metabolites that could distinguish between exposure groups, a
false discovery rate (FDR) ≤ 0.1 was considered significant.

For the metabolites found to be significantly differentially
abundant between the exposed and unexposed groups, the
exposure-response relationship was explored by using box-plots
to visualize relative abundances in Mn exposed and unexposed
groups. Data analysis was completed in R (version 3.6.1) and R
Studio (version 1.2).

To identify pathways that may have been perturbed between
individuals exposed and unexposed to Mn, a pathways analysis
of the 224 metabolites was carried out using MetaboAnalyst
4.0 (22). This MetaboAnalyst module combines an enrichment
analysis, which calculates whether groupings of metabolites in
the samemetabolic pathway differ significantly between exposure
groups, and a pathway topology analysis, which assigns an impact
score to each pathway. A higher impact score is indicative
of not only more significant perturbations in the pathway,
but also biologically meaningful changes in the measured
metabolites (24).

To undertake the pathways analysis, the 224 metabolites
identified from the targeted assay were matched to their Human
Metabolome Database identifier for upload to MetaboAnalyst
4.0, where their relative abundances by exposure group were
compared to the KEGG (Kyoto Encyclopedia of Genes and
Genomes) metabolites pathway library for Homo sapiens. The
Global Test option in MetaboAnalyst 4.0 was used to evaluate
relative abundance differences among groups of metabolites in
the same metabolic pathway, with these differences being used
to calculate Benjamini-Hochberg FDRs between the exposed and
unexposed groups. The betweenness centrality option (shortest
path between nodes) was used to calculate metabolite importance
(25, 26). With this method, the location of the metabolite in the
pathway is considered, so when perturbed metabolites are central
to the pathway and operate near each other or in succession to
each other, it is assumed the pathway could be more impacted.
If perturbed metabolites are only marginal to the pathway
or relatively isolated compared to other perturbed metabolites
in the pathway, then that pathway receives a lower impact
score (27).
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RESULTS

Table 1 shows participant demographics for the Mn-exposed
and -unexposed workers included in this study. While both
exposed and unexposed workers were predominantly White,
there were more Hispanic workers in the Mn-exposed group.
The Mn-exposed group was also slightly younger than the Mn-
unexposed group. Nearly half of theMn-unexposed workers were
working on a night shift, whereas the Mn-exposed workers were
predominantly first shift workers. No Mn-unexposed workers
wore a respirator, but 10 of theMn-exposed workers self-reported
wearing an N95 or dust mask at least some of the time on
the day their urine sample was collected. The lack of a formal
respiratory protection program at the foundry and the observed
poor respiratory hygiene allowed us to infer any mask use would
have a limited effect on the received Mn dose.

Of the 224 metabolites identified from the targeted assay,
seven were found to be significantly differentially abundant
between groups defined by Mn exposure at an FDR ≤ 0.1: n-
isobutyrylglycine, cholic acid, anserine, beta-alanine, methionine,
n-isovalerylglycine, and threonine. These seven metabolites are
outlined in Table 2, and boxplots showing their abundances in
the exposure groups are shown in Figure 1. Table 2 also provides
information on their source, chemical class, and biological role in
human metabolism. Results from Wilcoxon rank sum test for all
224 metabolites (including their adjusted P-values) are included
in the Supplementary Material.

A pathways analysis of 80 Homo sapiens metabolic pathways
was undertaken with the normalized data to determine if
different metabolic pathways were perturbed between the

TABLE 1 | Participant demographics.

Mn-exposed workers Mn-unexposed workers

(n = 17) (n = 15)

Mean ± SD (range) Mean ± SD (range)

Age (at time of sample) 43.1 ± 12.0 (25, 66) 49.3 ± 10.1 (26, 60)

n (%) n (%)

Ethnicity

Hispanic 9 (53) 4 (27)

Non-Hispanic 8 (47) 11 (73)

Race

White 13 (76) 13 (87)

Non-White 4 (24) 2 (13)

Respirator

Yes 10 (59) 0 (0)

No 7 (41) 15 (100)

Smoker

Current 2 (13) 3 (18)

Previous 7 (47) 9 (53)

Never 6 (40) 5 (29)

Shift

First 15 (88) 8 (53)

Second 2 (12) 7 (47) T
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FIGURE 1 | Boxplots of relative abundances of seven metabolites found to significantly differentially abundant between Mn-exposed and -unexposed workers. For

each exposure group, the middle line that divides the box into two parts represents the median value while the top and bottom lines of the box represent the 75th and

25th percentiles, respectively. The box represents the interquartile range (IQR) of scores for the group. The whiskers are extended to all values that are no >1.5 × IQR

from the edge of the box.

Mn-unexposed and -exposed groups. Twenty-three pathways
were identified that included at least four of the 224
metabolites, which is considered the minimum number for
meaningful pathway analysis (36, 37). Of these 23 pathways,
seven had a FDR < 0.1, indicating a significant perturbation
in the pathway between exposed and unexposed workers:
beta-alanine metabolism, propanoate metabolism, pyrimidine
metabolism, pantothenate and CoA biosynthesis, primary bile
acid biosynthesis, histidine metabolism, and glycine, serine, and
threoninemetabolism. Of these significantly perturbed pathways,
three had an impact score >0.5, indicating the perturbed
metabolites in that pathway were at least moderately central to
the pathway and operate near or in succession to each other:

beta-alanine metabolism, histidine metabolism, and glycine,
serine, and threonine metabolism. Table 3 outlines the pathways
that were found to be significantly perturbed between exposed
and unexposed workers, including the impact scores for each of
these pathways.

DISCUSSION

Here, differences in 224 metabolites measured using a targeted
metabolomics LC-MS/MS platform were explored between Mn-
exposed and -unexposed workers. Seven metabolites were found
to be significantly differentially abundant between exposure
groups. When investigating which pathways were perturbed in
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TABLE 3 | Pathway enrichment analysis.

Pathway Compounds in pathway* Compounds in data* FDR** Impact

Beta-alanine metabolism 21 7 0.003 0.56

Propanoate metabolism 23 5 0.01 0.04

Pyrimidine metabolism 39 8 0.01 0.19

Pantothenate and CoA biosynthesis 19 6 0.01 0.06

Primary bile acid biosynthesis 46 6 0.01 0.04

Histidine metabolism 16 7 0.05 0.64

Glycine, serine, and threonine metabolism 33 16 0.08 0.66

*Compounds in pathway refers to the total number of compounds operating in that pathway, including compounds that were not investigated in our dataset; Compounds in data refers

to the number of compounds in the pathway that were in our data set of 224 metabolites.

** Benjamini-Hochberg adjusted p-value characterizing the differences in the pathways between Mn unexposed (n = 15) and Mn exposed (n = 17) participants.

FDR, false discovery rate.

exposed workers as compared to unexposed workers, pathways
related to amino acid metabolism (beta-alanine metabolism,
histidine metabolism, and glycine, serine, and threonine
metabolism) were significantly perturbed in the Mn-exposed
group and had the highest impact scores.

While differences in metabolite abundance between Mn-
exposed and -unexposed workers have not previously been
investigated using a targeted metabolomics platform, others have
examined differences in metabolomics profiles between workers
exposed and unexposed to welding fume, which typically includes
high levels of Mn. In a study of 52 boilermakers, Shen et al. (38)
utilized an untargeted metabolomics approach to look at changes
in plasma collected pre- and post-welding shift. These untargeted
data were generated using a mass spectrometry platform. The
authors found that the metabolic changes over the work shift
were related to changes in lipid pathways and amino acid
utilization, both of which are associated with inflammation.
Wang et al. (34) compared the urine metabolomics profile of
10 welders and 6 office workers using untargeted data generated
from a nuclear magnetic resonance (NMR) platform. After
identifying the NMR bins found to be significantly different
between groups, the authors found higher levels of several amino
acids, creatinine, and acetone among welders, and lower levels of
creatine. The authors hypothesized many compounds found to
be higher in welders are important in modulating inflammatory
and oxidative tissue injury processes. Notably, to control for some
potential confounding, Wang et al. only included participants
who did not smoke cigarettes or drink alcohol and took urine
samples after overnight fasting, whereas similar steps were not
taken in the study presented here.

Despite representing three different cohorts exposed to Mn-
containing fumes and metabolomics data generated from three
different analysis platforms, Shen et al., Wang et al., and the work
presented here all found amino acid perturbations in groups
exposed to Mn-containing fumes. Further research is needed
to understand the potential importance of amino acids in the
Mn exposure-disease continuum, and whether elevated levels of
particular amino acids are consistently related to exposure toMn.

For exposure studies utilizing metabolomics, it can be
challenging to determine if the differences between groups
are truly due to the measured exposure, or if unmeasured
co-exposures in the workplace may be driving the observed

differences. Foundry work could have a number of co-exposures
that differ from those encountered by crane operators/truck
drivers at a metal recycling center. These include substantial
exposure to silica and carbon monoxide, in addition to polycyclic
aromatic hydrocarbons (PAHSs), phenol, formaldehyde,
isocyanates, and amines among foundry workers. Foundry
workers could also have exposures to other metals such as
chromium, nickel, and iron. In this study, co-exposures were
not assessed due to operational constraints. Metabolites are also
subject to a variety of internal and external cues, and bodily
concentrations dynamically change throughout the day due
to circadian rhythms, activities the person is performing, food
the person is eating, and other constantly occurring internal
biological processes. For example, two of these seven metabolites
of interest to this study are essential amino acids, which likely
differ between the groups due to differences in diet as that is their
predominant source.

Here, urine samples were collected from each subject at
the end of their work shift, but this would represent different
clock times for workers on a first shift and second shift, which
could influence metabolite levels. However, when stratifying the
seven metabolites presented in Table 2 by shift for unexposed
workers, no differences in distributions were seen, though power
to detect differences was limited. While it is impossible to
control all sources of within- and between-person variability in
an occupational setting, care should be taken to ensure samples
are taken at the same time of day. Appropriately-timed repeat
samples can also be informative for understanding the variability
in changes to metabolites related to exposure.

Similarly, co-variates were not collected on biological and
behavioral characteristics that can influence metabolomics,
including body mass index (BMI), pre-existing conditions,
dietary habits, or use of pharmaceutical agents. Unfortunately,
the lack of repeat measures, lack of information on co-exposures,
and lack of co-variates collectedmust be acknowledged as amajor
limitation in this study and something that should be accounted
for in future occupational metabolomics studies.

Additionally, we did not undertake any validation of study
findings to see if the metabolites found to be significantly
differentially abundant in these exposed workers remained
so in other Mn-exposed workers, or in a testing set of
samples from this cohort. This would be an important
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step to increase the external validity of this study, and to
further confirm the biological relevance of the findings. Future
occupational metabolomics studies should strive to enroll
sufficient participants to split their data into separate training
and testing sets, or utilized data from an external dataset for
testing and validation purposes. The sample size of this study,
which was originally conceived of as a pilot study, was a major
contributor to the lack of power to detect differences between the
224 compounds investigated here.

The potential value of targeted metabolomics for occupational
exposure studies must also be noted. Targeted metabolomics
allows the occupational health researcher to investigate a range
of known metabolites that may relate to different exposures
the worker has experienced, both at work and in other
environments. This makes metabolomics an important tool
for characterizing the exposome, which refers to the totality
of exposures that someone has encountered throughout their
lifetime (39). Occupational settings are a particularly valuable
place to developmetabolomics methods for exposure assessment,
given the higher exposures typically experienced in workplace
environments and the prevalence of otherwise uncommon
exposures in workplace environments. With work schedules
following consistent patterns, it can also help with ensuring
consistency in sample collection.

In conclusion, this work continued to explore the utility
of metabolomics for distinguishing between groups defined by
occupational exposures. Findings from this study were consistent
with other studies of workers exposed to Mn-containing fumes,
showing perturbations of amino acids and amino acid pathways.
While further study is warranted to explore the potential role of
amino acids in Mn toxicity, we hope that the work presented
here encourages others to integrate targeted metabolomics into
their human exposure studies, in order to continue to expand
the use of this promising technique as a means of hypothesis
generation and biomarker discovery in occupational health
and exposome studies. We also hope that the limitations we
outlined here will ensure that subsequent occupational health
researchers can collect more rigorous co-variates with their
biosamples to better inform results from planned or subsequent
metabolomics analyses.
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