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Abstract 

The ACMG / AMP guidelines include five categories of which variants of uncertain significance (VUSs) have received increasing attention. Recently, 
Fowler and Rehm claimed that all or most VUSs could be reclassified as pathogenic or benign within few years. To test this claim, we collected 
validated benign, pathogenic, VUS and conflicting variants from ClinVar and LOVD and in v estigated differences at gene, protein, str uct ure, 
and variant levels. The gene and protein features included inheritance patterns, actionability, functional categories for housekeeping, essential, 
complete knockout, lethality and haploinsufficient proteins, Gene Ontology annotations, and protein network properties. Str uct ural properties 
included the location at secondary str uct ural elements, intrinsically disordered regions, transmembrane regions, repeats, conservation, and 
accessibility. Gene features were distributions of nucleotides, their groupings, codons, and location to CpG islands. The distributions of amino 
acids and their groups were investigated. VUSs did not markedly differ from other v ariants. T he only major differences were the accessibility and 
conservation of pathogenic variants, and reduced ratio of repeat-locating variants in VUSs. Thus, all VUSs cannot be distinguished from other 
types of v ariants. T he y displa y one form of natural biological heterogeneity. Instead of concentrating on eradicating VUSs, the community would 
benefit from in v estigating and understanding factors that contribute to phenotypic heterogeneity. 
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ariation interpretation refers to the explanation of the im-
act and health relevance of genetic variations, either inher-
ted or somatic. Interpretation guidelines from the American
ollege of Genetics and Genomics and the American Cancer
ociety (ACMG / AMP) ( 1 ) provide a systematic scheme that
ummarizes eight types of information. Variants are described
ith a five-tier classification, based on the strength of the

nformation. The tiers are benign, likely benign, pathogenic,
ikely pathogenic, and of uncertain significance. This scheme
s widely used in clinical diagnosis in many countries, but
here may be local changes and refinements, such as those
rom the Association for Clinical Genomic Science in the
nited Kingdom ( 2 ), or schemes specific for certain diseases,
.g. for breast cancer ( https:// enigmaconsortium.org/ enigma- 
lassification-criteria/). 

Recently, Fowler and Rehm published a Perspective piece
ith the provocative title ‘Will variants of uncertain signif-

cance still exist in 2030?’ ( 3 ), where the authors claimed
hat most if not all variants of uncertain significance (VUSs)
an be grouped into the four other categories within a few
ears. The article was based on the ‘bold predictions’ made
y the National Human Gene Research Institute (NHGRI)
 4 ). Fowler and Rehm used a mechanistic and methods-based
pproach and angle. They discuss how standardized varia-
ion interpretation, novel and improved computational tools,
ultiplexed functional assays, and improved data sharing to-

ether will reduce the number of VUSs. All these factors will

ontribute to more reliable classification of variations. How- 
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ever, the authors missed biological bases for VUSs, includ-
ing the origin and relevance of biological heterogeneity. These
factors will always contribute to variation outcomes and
phenotypes. 

Here, we discuss why the eradication of VUSs is not possi-
ble, identify problems related to VUSs, and report an exten-
sive analysis of VUSs in comparison to pathogenic (P), be-
nign (B) and conflicting variants in terms of various gene,
protein, structure, and variant parameters. The results indi-
cated that VUSs are very similar to variants in other categories,
thus it will not be possible to reclassify all VUSs as benign or
pathogenic variants. Our analysis focused on amino acid sub-
stitutions and nucleotide variations leading to them; however,
we are confident that similar observations can be made with
other types of variants. 

Misconceptions and problems with VUSs and 

v ar iation ter minology 

Definition of VUS 

The ACMG / AMP definition of VUS is ‘if a variant does not
fulfill criteria using either of these sets (pathogenic or benign),
or the evidence for benign and pathogenic is conflicting, the
variant defaults to Uncertain Significance’ ( 1 ). 

There are thus two types of VUSs; those for which there
is not enough evidence to distinguish between benign and
pathogenic cases and those for which there is conflict-
ing evidence for opposite annotations. By collecting more
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information, it will be possible to resolve the classification
for many variants. When different individuals with the same
variant display different phenotypes the cases are conflicting.
This is normal and originates from several reasons and will
never disappear. The penetrance of variants and conditions
vary, and some factors may protect and / or diminish the ef-
fects of a variation. The dosage of the allele, modifier genes,
variation type, environmental effects, lifestyle and epigenetic
modifications are further factors that contribute to individual
heterogeneity ( 5 ). 

VUSs overlap with pathogenic and benign variants 

It is not uncommon to hear or read that VUSs form a cate-
gory between benign and pathogenic variants, see for exam-
ple ( 6–9 ). Numbering of tiers from 1 to 5 is common, on this
scale VUSs are presented in number 3. However, this practice
is wrong. The ACMG / AMP classification does not number
the tiers or state that VUSs are an intermediate class. 

As the definition of VUSs indicates, these variants do not
fulfill the criteria for being pathogenic or benign ( 1 ); but they
are not outside the pathogenic-benign dichotomy. Figure 1 A
shows the relationships among the five tiers. The benign and
pathogenic variants are at the two ends, and the classification
of VUSs in this range is unknown; therefore, they are of un-
certain significance. 

ACMG / AMP interpretation is for individuals, not for
variants 

A common source of problems is the use of interpretation
guidelines to describe variants in general. The guidelines are
intended for the interpretation of variants in individuals car-
rying them, based on many features. Clinical signs, symptoms
and parameters vary from individual to individual. Among the
eight data types in the interpretation scheme, segregation, de
novo , allelic and other data are for an individual, and func-
tional data may also be for an individual. 

Interpretations have often been extended beyond describing
variant of an individual. It can work for clearcut cases, i.e.
those that are pathogenic or benign in (almost) all individuals.
In VUSs, individual heterogeneity affects the phenotype and
general variation interpretation cannot be made. Therefore,
such efforts will involve large numbers of VUSs. 

An example of a successful variation-level interpretation
is the Variation Interpretation Committee (VIC) of the In-
ternational Society for Gastrointestinal Hereditary Tumours
(InSiGHT), which provides interpretations for variations in
four mismatch repair system genes / proteins (MLH1, MSH2,
MSH6, PSM2) and some other genes and proteins involved
in gastrointestinal hereditary tumors ( 10 ). Although the In-
SiGHT VIC members represent the major centers in the
world and have worked for more than 10 years, the four
genes included 28 109 variants (April 2024), 31.2% of which
were VUSs. In the case of unique variants, 35.4% out of
2619 variants were classified as VUS. Another example is
the Dutch variation classification by nine laboratories based
on standardized interpretation procedures ( 11 ). Even this
scheme classifies large numbers of VUSs, almost 80 000 at the
moment. 

Problematic wording 

Language about VUSs is, in our opinion, often problematic.
Many authors have described the burden of VUSs and some
other variant types, e.g. ( 12 ,13 ). Since the disease relevance of 
VUSs is not known, they cannot be used, e.g. for diagnosis.
It is evident that there is a certain burden for healthcare ( 14 ); 
however, the situation is similar to many other health related 

aspects. It is problematic to call this natural phenomenon a 
burden. 

Another example is conflicting classification. For example,
ClinVar calls variants for which the submitters do not agree on 

the classification as conflicting. Conflict means disagreement 
and can be considered negative. Differences in the phenotypes 
of individuals carrying the same variant can be widely differ- 
ent because of normal biological variation. It would be more 
neutral to call such cases, e.g. as having different classifica- 
tions or leading to different phenotypes. Other authors call 
these cases discordant variants ( 9 , 15 , 16 ), which again has a 
negative connotation. Despite our criticism, we use the term 

‘conflicting variant’ in this paper to be consistent with ClinVar,
the source of the variants. 

In addition to the issues mentioned above, there are other 
problematic practices in variant naming, including missense,
nonsense and frameshift variants; indels; truncations; gain of 
function; loss of function and synonymous variants ( 17 ,18 ). 

VUSs are due to normal biological heterogeneity 

Currently (April 2024), ClinVar contains 2 808 943 germline 
variation records. VUSs account for 1 251 444 variants,
207 683 are pathogenic variants, 113 104 likely pathogenic 
variants, 255 441 benign variants, and 917 396 likely be- 
nign variants. VUSs were clearly the largest group (44.6%).
The numbers for benign and pathogenic cases include vari- 
ants with all the review statuses. There were 121 847 conflict- 
ing classifications, 951 for P / LP versus LB / B, 18 999 for VUS 
versus P / LP, and 102 911 for VUS versus LB / B. The largest 
group of conflicting variants is for VUS versus LB / B. 

VUSs do not fulfill the criteria for pathogenic or benign clas- 
sification and display biological heterogeneity. The signs and 

symptoms of patients with the same disease vary in practically 
every condition (with embryonic lethality and other extreme 
cases being exceptions). 

Evolution constantly generates new natural variations.
VUSs are one component of individual genetic heterogeneity 
( 5 ), which is a form of pervasive biological variation known 

as poikilosis ( 19 ). Differences in the phenotypes of carriers of 
the same variants display a spectrum. These differences are 
associated with differential penetrance, presence or absence 
of modifier variants and molecules, gene and allele dosage,
differential gene expression, combined effects with other vari- 
ants and genes, and many other factors. Thus, VUSs are due 
to normal biological variation and therefore there will always 
be some VUSs. 

In summary, variants display heterogeneous phenotypes.
In some individuals, a certain variant is harmful and diag- 
nosed as pathogenic. Other individuals having the same vari- 
ation may have milder phenotype or be classified healthy.
When biological heterogeneity is forgotten enters the fallacy 
of pathogenic-benign dichotomy. To address the issue if all 
VUSs can be classified as pathogenic or benign, we performed 

detailed statistical analysis, which showed that variants in be- 
nign, pathogenic, VUS and conflicting classes had largely sim- 
ilar properties over a wide range of characteristics. Each pa- 
rameter showed a continuum on the variant classes. It is pos- 
sible to define cutoff to classify cases. But such cutoffs are not 
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Figure 1. Analysis of variant classes. ( A ) Five tiers and their relationships in the ACMG / AMP classification. VUSs are either (likely) pathogenic or (likely) 
benign, ho w e v er, the classification is not kno wn. ( B ) Distribution of the in v estigated genes that cont ained benign (B), pathogenic (P) and uncert ain (VUS) 
variants and their overlaps. The numbers are for genes, and percentages are given in brackets. ( C ) Enrichment analysis of protein functional and genetic 
properties to variant classes. ( D ) Enrichment analysis of unique and shared proteins according to the Venn diagram in B. The scale to the right indicates 
ORs from Fisher’s test. ( E ) Logarithmic distribution of network parameters degree, closeness, and betweenness for proteins in the variant classes. ( F ) 
Distribution of amino acid sequence lengths in the proteins in the variant classes. ( G ) Accessibilities of the original amino acids in variation positions. 
Defined from protein three-dimensional str uct ures obtained with AlphaFold. ( H ) Conservation score for the original amino acids. ( I ) Distribution of protein 
secondary str uct ural element classifications f or the original amino acid positions determined with S TRIDE. ( J ) Enrichment analy sis of IDRs, and 
transmembrane and repeat regions. The IDRs and TM regions were obtained from the DisProt and Human Transmembrane Proteome, respectively. 
R epeats w ere identified with T-REKS from protein sequences. P v alue significance: * P ≤ 0.05; ** P ≤ 0.0 1; *** P ≤ 0.00 1. In E to H, the pale blue box 
plot indicates the median (in the middle of the bar) and the interquantile range. 
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perfect and do not correctly classify all cases, since they show
heterogeneity. Therefore, there will always be VUSs. 

Data and methods 

Variant collection 

The data were collected from ClinVar ( 20 ) and LOVD
( 21 ). Five datasets were obtained from ClinVar: VUSs, two
types of conflicting cases (VUS versus P / LP and VUS ver-
sus LB / B), pathogenic and benign variants. First, we searched
for each of the categories on the ClinVar website by us-
ing ‘missense’ as a keyword. The results were then fil-
tered with ‘germline’ as Classification type, one of the four
Germline classifications (conflicting classifications, benign or
pathogenic), ‘missense’ as Molecular consequence, and ‘sin-
gle nucleotide’ as Variation type. For pathogenic and benign
variants, the Review status was set to two stars or higher.
The data were downloaded and further filtered to remove
duplicates and cases with insertions, deletions, or undefined
variations. Then, the variants were matched to MANE tran-
scripts ( 22 ). There were 146 336 VUSs, 12 016 VUS ver-
sus P / LP variants, and 52 103 VUS versus B / LB variants.
We found 21 563 benign variants and 11 343 pathogenic
variants. 

To increase the number of pathogenic variants, we searched
for additional cases from LO VD. W e used the LOVD
shared website, searched for all variants affecting transcripts,
and then selected ‘+ / +’ in Effect, Clinical classification as
‘pathogenic’, cDNA change without symbols ‘+’ or ‘-’ (which
indicate variation locations in introns), deletion ‘del’, dupli-
cation ‘dup’ or insertion ‘ins’, and Protein change without
‘?’ for unsure classification, ‘p.0’ and ‘p.(0)’ for missing pro-
tein, termination ‘*’, frameshift ‘fs’ or synonymous / silent ‘ = ’.
The data were further filtered by removing cases with ambigu-
ity codes either in nucleotide or protein descriptions. We ob-
tained 19 832 variants. The reference sequences for most of
the LOVD-based variants were not in MANE. Next, we used
VEP ( 23 ) to annotate the variants. Then, we merged the vari-
ants with the ClinV ar data. V ariants with missing cDNA, pro-
tein, or genomic details after the data enrichment steps were
excluded. Duplicates with the ClinVar-mined variants were
excluded. Variants with different classifications from different
sources were excluded. 

Overall, there were 146 186 VUSs, 11 656 VUS versus P / LP
variants, 51 751 VUS versus B / LB variants, 21 466 benign
variants and 14 338 pathogenic variants. The dataset is avail-
able in VariBench ( 24 ). 

Gene, protein and variant properties 

The variants in the five categories were analyzed for several
properties. Nucleotide distributions in the variant groups were
supplemented with combined two-base groups for purine and
pyrimidine nucleotides (A and G versus C and T), weak and
strong binding nucleotides (A and T versus C and G), and keto
and imino nucleotides (G and T versus A and C). In addition
to amino acid distributions, residues were classified into six
categories (G1 to G6): hydrophobic (C, F, I, L, M, V, W, Y),
negatively charged (D, E), positively charged (H, K, R), confor-
mational (G, P), polar (N, Q, S) and others (A, T), respectively
( 25 ). 

Genes and proteins were grouped into several cate-
gories. A total of 2833 housekeeping proteins were ob-
tained from https://housekeeping.unicamp.br . A total of 6559 

essential / indispensable proteins were from ( 26 ). 
Complete knockout genes were obtained by combining 

gene lists from published studies. We downloaded 781 genes 
from ( 27 ) and 1317 genes from ( 28 ) and removed duplicates.
For the genes in ( 29 ), the following steps were performed. We 
removed all rows with a sequence MAF > 2% after which 

we had 6275 genes. We included ‘Number of compound het- 
erozygous carriers’ in a variant pair where the MAF was < 2% 

for both variants and obtained 462 samples excluding 0 and 

NA cases. We included ‘Observed number of imputed ho- 
mozygotes’ (excluding zero and NA) and obtained 1299 sam- 
ples. Then, we combined the observed data items and removed 

duplicates. Finally, we obtained 1156 unique genes. In total,
there were 2633 unique genes in the three datasets. 

Lethality-related proteins were obtained from the Mouse 
Genome Database ( 30 ). The human orthologs of murine genes 
were considered as essential, when the murine gene was anno- 
tated with one of the following phenotypes: embryonic, pre- 
natal, or perinatal lethality. There were 1786 unique genes. 

Haploinsufficient proteins were obtained from the Clin- 
Gen Dosage Sensitivity Map ( https://www.ncbi.nlm.nih.gov/ 
projects/ dbvar/ clingen/ ). By using the online system, we turned 

Genes ‘on’ and Region ‘off’ and obtained 1 525 genes. We 
excluded cases with 0 (no evidence), 1 (little evidence) or 2 

(emerging evidence) in the HI or TS columns. After filtering 
there were 1 499 genes. 

Inheritance patterns were obtained from the Clinical Ge- 
nomic Database at https:// research.nhgri.nih.gov/ CGD/ ( 31 ).
We collected data on autosomal dominant (AD), autosomal 
recessive (AR), mixed AD / AR and X-linked (XL) inheritance.
These details were available for 1 078 genes. 

Protein structures predicted by AlphaFold2 ( 32 ) were ob- 
tained from the AlphaFold Protein Structure Database ( 33 ),
from AlphaFold 3 ( 34 ), or from CHESS 3 ( 35 ). Secondary 
structural elements were defined by STRIDE ( 36 ), and the 
solvent-accessible surface areas (S AS As) of the original amino 

acids were calculated using the FreeS AS A Python module ( 37 ) 
from the structure files. 

The data for human transmembrane proteins were down- 
loaded from the Human Transmembrane Proteome ( 38 ). We 
obtained 5 467 human transmembrane (TM) regions, which 

were mapped to 19 352 MANE reference sequences to identify 
positions within TMs. Intrinsically disordered protein regions 
(IDRs) were obtained from the DisProt website ( 39 ). Dupli- 
cates were removed and directly adjacent IDRs were merged.
Then the sequences were mapped to the MANE reference se- 
quences. A total of 1706 proteins contained IDRs. 

Repeated segments in protein sequences were identified 

with T-REKS ( 40 ) using default parameters. 
Protein-protein interaction (PPI) data were downloaded 

from the STRING database ( 41 ) by using 500 as the exper- 
imental score threshold. We utilized the igraph Python pack- 
age from https://igraph.org to determine the degree (number 
of interactions), closeness and betweenness of each protein. 

The presence of variations in CpG islands was down- 
loaded from a track in the UCSC genome browser at 
http:// hgdownload.cse.ucsc.edu/ goldenpath/ hg38/ database/ 
cpgIslandExt.txt.gz . 

The data for 81 actionable genes were obtained from 

ACMG Recommendations for Reporting of Secondary Find- 
ings in Clinical Exome and Genome Sequencing v. 3.2 ( 42 ) at 
https:// www.ncbi.nlm.nih.gov/ clinvar/ docs/ acmg/ . 

https://housekeeping.unicamp.br
https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/
https://research.nhgri.nih.gov/CGD/
https://igraph.org
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cpgIslandExt.txt.gz
https://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/
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variations to those in ClinVar. We converted all variants to 
Sequence conservation was determined with a position-
pecific scoring matrix (PSSM). We downloaded all sequences
or mammals, rodents and vertebrates from UniProt_T and
aved as a database. Each MANE sequence was compared
o the database by running Blast version 2.12.0+ ( 43 ). The
aximum number of target sequences was set to 20 000, and

he e-value was set to 0.001. If there were fewer than three
its, the protein was excluded. The sequence identity thresh-
ld was 30 for minimum and 80 for maximum, and the align-
ent length had to be greater than seq_length * 0.8. The
btained sequences were clustered with CD-HIT ( 44 ) with
arameters of -c 0.8 and -aL 0.8 for the sequence identity
hreshold and alignment coverage for the longest sequence,
espectively. Representatives were identified for each cluster
rom the CD-HIT outputs. If there were ≤4 sequences in a
luster, the sequence was removed. When a MANE protein
as identified as a cluster representative, another protein was

hosen from that cluster. makeblast operation was used to
ollect sequences from the databases. PSIBLAST ( 43 ) with
um_alignments = 50 000 and num_iterations = 3 was used
o calculate conservation scores for all the MANE protein se-
uences. We obtained PSSM files for 19 034 MANE IDs. 

tatistical analysis 

umerous statistical tests were made for several parameters
o test if the variants classified to different categories differed
rom each other. 

To evaluate the differences in structural and functional ele-
ents in different variant classes, we used Fisher’s test to mea-

ure the enrichment of variants in TM regions, IDRs, repeats,
nheritance patterns and gene functional properties, including
ousekeeping, essential, complete knockout, lethality, action-
bility, and haploinsufficient proteins. Enrichment / depletion
n the variant classes was calculated in comparison to the hu-
an proteome. For example, when analyzing localization of
USs to TMs, we counted how many VUS variants appeared

n TM regions and outside these regions. We obtained also
he total number of variants in TM regions and total number
f variants not in TM regions, i.e. the total length of MANE
roteins – the total number of protein variants in TM regions.
hen, a cross table was made for Fisher’s test. 
The expected proportion of TM regions and IDRs was cal-

ulated by dividing the total number of variants present in
ransmembrane regions and IDRs by the length of all MANE
equences (11 271 977). The expected proportion of mode of
nheritance and functional properties were calculated by di-
iding the number of proteins with these characteristics by
he total number of proteins (19 352). 

To measure substitution patterns of nucleotide and pro-
ein variants, we used connectivity matrix to illustrate the
requencies of changes. Each entry in the matrix represents
he frequency of variants observed from the correspond-
ng base / categories to the target base / categories. We utilized
isher’s exact test to determine whether any substitution types
ere significantly enriched or depleted in VUS, VUS versus
 / LP or VUS versus B / LB, in comparison to pathogenic and
enign variant categories. For example, when we assessed
hether a substitution type was more or less prevalent in
USs than in benign variants, we counted the number of VUSs
ith this substitution, the number of benign variants with this

ubstitution, the number of VUSs without this substitution,
nd the number of benign variants without this substitution.
A cross table was made to perform Fisher’s test. This was
repeated for every comparison. Fisher’s log odds ratio (OR)
values > 0 and < 0 indicate enrichment and depletion, respec-
tively, in comparison to the other datasets. Fisher’s log OR val-
ues were considered to be NA when there was 0 in the cross
table and the test could not be applied. 

ANOVA was used to compare accessibility and PPI features
between variant classes. 

Gene Ontology (GO) enrichment analysis was performed
using the clusterProfiler R package ( 45 ). Holm-Bonferroni
correction was applied to adjust for multiple comparisons in
enrichment analyses. For ANO VA, Tukey’ s test was applied
for multiple comparisons. All analyses were performed with
R4.3.2. 

Results 

We investigated at different levels whether VUSs could be dif-
ferentiated from variants in other categories. Our aim was to
test whether the claim that VUSs can be classified in other
categories was true. We investigated five variant classes: VUS,
VUS versus P / LP, VUS versus B / LB, benign and pathogenic.
Statistical tests were employed at gene, protein, structural and
variant levels. Overall, the VUS versus P / LP class comparison
to benign variants was similar to pathogenic variants, and the
VUS versus B / LB class was similar to that of benign variants.
The results indicate that VUSs do not largely differ from other
variant classes. Although many results are statistically signif-
icant, the differences are marginal and biologically likely in-
significant. The statistical significance is due to the large sam-
ple sizes. 

Gene and protein level analysis 

We identified the largest possible sets of verified variants from
two high quality databases, ClinVar ( 20 ) and LOVD ( 21 ), and
used them to investigate the properties of VUSs, pathogenic,
benign and conflicting variations. Despite large numbers of
original variations, filtering for reliable cases substantially re-
duced the sample size. After filtering, we identified 146 186
VUSs, 11 656 P / LP versus VUS variants, 51 751 VUS versus
B / LB cases, 21 466 benign variants and 14 338 pathogenic
variants. The numbers were large enough to facilitate reliable
statistical analyses. 

All types of variations were obtained from ClinVar. In the
case of VUSs, benign and pathogenic variants, Review status
was at least two stars (multiple submitters). For conflicting
cases, this criterion could not be applied due to the small sam-
ple size. Therefore, all conflicting variants were included in the
two categories. Pathogenic variants were supplemented with
data from LOVD. All variants were mapped to MANE tran-
scripts ( 22 ) to facilitate systematic studies. 

LOVD contains > 1 000 000 variants, 437 000 of which
cause amino acid substitutions. Since LOVD does not allow
programmatic linking of variations to information for indi-
viduals and diseases or downloading all contained data, we
were left with effect and clinical classification as parame-
ters for the quality of the data. The application of these fil-
ters substantially reduced the number of cases. Many variants
were identical to those obtained from ClinVar and were thus
eliminated. In the end, LOVD added only 2995 pathogenic
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be MANE-based. All problematic cases and duplicates were
removed. 

Our data included 5120 unique genes. There were 1586
genes with pathogenic variants, 3936 genes with benign vari-
ants and 4 019 genes with VUS variants (Figure 1 B). There
were genes in all the domains of the Venn diagram, and a
substantial number of genes (1285) contained variants in all
three categories. The number of genes was the smallest for
the pathogenic genes. A total of 26.5% genes were shared
among the three functional effect categories. The number of
group-specific genes was the smallest for pathogenic variants,
only 37 genes. These ratios are likely to change in the future
when more reliably annotated cases are identified. All genes
are not expected to contain (m)any disease-causing variations,
for example, nondisease nonhousekeeping genes are tolerant
to most variations ( 46 ). 

The types of genes were further investigated by group-
ing them into categories. Statistical significance for
enrichment / depletion was obtained for nine categories,
including haploinsufficiency , lethality , complete knockout, es-
sential, and housekeeping genes and proteins. In addition, we
had four categories for inheritance: X-linked (XL), autosomal
dominant (AD), autosomal recessive (AR) and a combined
class for the last two groups (AD / AR)). 

In haploinsufficiency, expression of both gene copies is
needed. If one allele contains a disease-related variation, the
expression of the other allele is not sufficient for the required
biological activity. Lethality-related genes were defined based
on experiments in mice. Human genes homologous to lethal-
ity genes in the rodent model were identified. In the case of
complete knockout genes, both alleles can contain harmful
variants in some healthy individuals. Housekeeping genes are
expressed in most cells and in most situations, they code for
essential cellular functions. Inheritance patterns indicate how
the phenotype of a gene is transmitted to offspring. 

The investigated groups represent widely different gene and
protein properties and could be considered to have different
distributions to variant categories, e.g. if VUSs were different
from other variant types. However, the results were very simi-
lar across the groups (Figure 1 C and Supplementary Table S1 ).
The gene groups were enriched in all the categories, apart from
complete knockout and housekeeping genes which were de-
pleted in the variant classes. The findings were highly statis-
tically significant in almost all the analyses. We observed the
same pattern throughout the study; the differences were usu-
ally very small and may not have biological relevance. The
significant differences were due to the large sample sizes, and
therefore, even minor differences were statistically significant.
We mainly discuss differences (if any), and the significance
of the observations is shown in the figures and Supplemen-
tary Tables. Housekeeping genes did not significantly differ,
except for those in the benign and V versus B / LB classes. In
all other cases, all variant classes showed enrichment of all the
properties. 

The depletion of housekeeping proteins is understandable
because they are essential for many cellular functions. How-
ever, somewhat surprisingly, variations in these proteins were
depleted only in the benign and V versus B / LB categories. 

As an additional functional group, we investigated action-
able genes for which secondary findings should be reported.
There were only 81 genes, almost all of which were present in
all the variant classes and were highly enriched. The reason for
overrepresentation in every class is likely because these genes 
have been widely studied. 

Figure 1 D shows the same analysis for the unique and com- 
bined categories according to the Venn diagram in Figure 1 B.
Each section of the Venn diagram was investigated separately.
Note that the numbers of unique pathogenic variants contain- 
ing genes and genes shared by pathogenic and benign variants 
were very small, 37 and 27, respectively. Thus, the statistical 
data for these categories may be less reliable. 

The enrichments and depletions were statistically more pro- 
nounced in Figure 1 C and Supplementary Table S1 than in 

Figure 1 D and Supplementary Table S2 ; however, the results 
were mainly in line. In this analysis, enrichment / depletion was 
similar for most of the functional categories. Only complete 
knockout and housekeeping genes were involved in both en- 
richment and depletion, and haploinsufficiency was different 
for benign-only genes than for other genes. Unique VUSs con- 
taining genes and categories combined with other types of 
variants contained the largest numbers of significant observa- 
tions. VUSs differed from unique benign and pathogenic genes 
in a few functional categories; however, these results were not 
reliable due to the very small number of proteins. Otherwise,
VUSs were very similar to categories that contain VUSs and 

other variant classes. 
To further investigate the types of proteins and genes, we 

performed GO term ( 47 ) enrichment analysis. GO anno- 
tations were separately investigated for biological process,
molecular function, and cellular component. All the vari- 
ant classes showed large numbers of enriched terms (see 
Supplementary Tables S3 –S5 ). The most statistically impor- 
tant GO terms were shared by genes that contained benign,
pathogenic or VUS variants. Among the terms with the highest 
biological process enrichment were sensory perception, devel- 
opment, morphogenesis, and muscle-related concepts, among 
others. At the molecular function level, there were terms, e.g.
for extracellular matrix, binding to various compounds, and 

several enzymatic activities, transporter and channel activities.
Enriched cellular components included various membranous 
structures, the mitochondrial matrix, the sarcolemma and the 
transporter complex. 

Next, we examined the protein-protein interactions in 

the variant classes. The interactions for each protein were 
obtained from the STRING database ( 41 ). We included 

only high-quality experimentally validated interactions. Three 
measures for the interaction networks were calculated. The 
degree indicates the number of interactions a protein has.
Highly connected proteins have high degree. Closeness cen- 
trality and betweenness are two measures of the centrality of 
a node in a network. 

The results were practically identical for all the variant 
classes (Figure 1 E and Supplementary Table S6 ), indicating 
that the proteins containing the different types of variants 
had very similar overall network characteristics. The pairwise 
Tukey’s post hoc test demonstrated statistically significant dif- 
ferences in the degrees of the variant classes. However, the dis- 
tributions were very similar. The results for closeness and be- 
tweenness metrics did not exhibit significant differences across 
the gene categories ( Supplementary Table S7 ). Since only ap- 
proximately one-fourth of the proteins were shared by benign,
pathogenic and VUS variant groups (Figure 1 B), the results 
cannot be explained based only on these proteins; the shared 

properties were observed in the entire dataset. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
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Figure 1 F and Supplementary Table S8 show the analysis
f another central protein characteristic, polypeptide chain
ength. The mean length of the MANE transcript-based pro-
ein chains was 583 and the median length was 431, the range
as from 12 to 35 991. The pairwise Tukey’s test showed
niversally significant differences, except between VUS and
enign variant-containing proteins ( Supplementary Table S9 ).
ince this difference was so small, it likely has no biological
ignificance. 

tructure level analysis 

hen proteins fold to their characteristic three dimensional
tructures, some amino acids are located to the protein core
here they cannot interact with other molecules, while other

esidues are on the surface and accessible. The degree of vari-
nt position accessibility was determined from the 3D struc-
ures with the program FreeS AS A ( 37 ), which uses a spherical
robe to map the protein surface using the algorithm of Lee
nd Richards ( 48 ). 

Figure 1 G and Supplementary Table S10 show the results
f the amino acid accessibility analysis. Tukey’s pairwise test
evealed significant differences for VUSs, pathogenic, and be-
ign variants ( Supplementary Table S11 ). All the classes con-
ained variants of all states of solvent exposure but had dif-
erent distributions. One explanation for the large portions
f fully or almost fully accessible residues is their location
ithin IDRs and / or low confidence regions. AlphaFold pre-
icts these regions as elongated strands without any connec-
ions that would reduce accessibility. Thus, such residues dis-
lay very high accessibility. 
We analyzed the conservation of the variant positions based

n position specific scoring matrices generated for each pro-
ein, via Blast searches (Altschul et al. 1997) against animal
equences. Sequence conservation is typically the most impor-
ant feature used in computational variation interpretation,
ee e.g. (König et al. 2016; Niroula et al. 2015), and many
redictors are based solely on this information. The results in
igure 1 H and Supplementary Table S12 indicated that the
ositions were quite conserved and that there were no major
ifferences except for the pathogenic and VUS versus P / LP
roups, which were close to each other but were clearly dif-
erent from the others because of their somewhat higher con-
ervation. The pairwise Tukey’s test showed universally signif-
cant differences among VUSs, pathogenic and benign variants
 Supplementary Table S13 ). 

Figure 1 I and Supplementary Table S14 show the distri-
utions of the variation positions in seven categories of sec-
ndary structural elements determined with STRIDE ( 36 )
ased on backbone torsion angles. The structural elements
ere α-helices, β-sheets, π-helices, 3 10 helices, isolated β-
ridges in two categories and turns / coils. The eighth group in-
luded low confidence regions, which may be intrinsically dis-
rdered, for example. The structures were obtained from the
lphaFold Protein Structure Database ( 33 ) and contained ex-
erimentally determined structures, when available; otherwise
lphaFold2 or AlphaFold 3 predictions were made ( 32 ,34 ). 
The positions of the variants within the secondary struc-

ural elements displayed some differences (Figure 1 I). Variants
ithin α-helices were the most pronounced in the pathogenic

nd VUS versus P / LP groups, while low confidence structures
ere the most common for the benign and VUS versus B / LB

roups, and the least common for the pathogenic and VUS
versus P / LP groups. The benign variants contained the largest
proportion of low condifence positions along with the VUS
versus B / LB class. 

Low confidence regions do not have reliable predictions,
e.g. due to being located within IDRs. IDRs are structurally
and functionally special regions that are known to contain
pathogenic variants. IDRs can adopt various structures and
bind to several partners. They are involved in many impor-
tant functions ( 49 ). 

Verified IDRs were obtained from DisProt ( 39 ). IDRs were
significantly depleted in all categories, except for pathogenic
and VUS versus P / LP variants, which were somewhat en-
riched (Figure 1 J). A similar analysis was performed for trans-
membrane regions based on data from Human Transmem-
brane Proteome ( 38 ). All the variant classes were highly bi-
ased toward variants in membrane proteins (Figure 1 J and
Supplementary Table S15 ). A substantial number of proteins
are attached to membranes and function especially as recep-
tors or transporters. 

Some proteins are vulnerable for sequence repeat variants,
especially single amino acid repeats. We identified the loca-
tions of all types of repeats at variant positions. Analysis of all
the human proteins with the T-REKS program revealed 25 736
repeats in 6344 proteins. Figure 1 H and Supplementary Table 
S15 indicate that variants were depleted in repeats in the vari-
ant classes, except for benign and pathogenic variants. 

Variation level analysis 

We investigated the distributions of variations in the six vari-
ant classes at nucleotides, nucleotide groups, codons, encoded
amino acids, and amino acid classes. Comparisons of the dis-
tributions in Figure 2 A and Supplementary Table S16 showed
statistically significant differences, but the distributions were
largely similar. VUS versus P / LP cases were the closest to
pathogenic variants and VUS versus B / LB to benign variant
group, as expected. V versus P / LP was more different in com-
parison to benign than pathogenic variants, similarly, V ver-
sus B / LB was more different from pathogenic than benign
variants. In the VUS versus pathogenic comparison, variations
from A and C were enriched, and those from G and T were
depleted. When comparing VUSs to benign, only two types of
variants were depleted, and the others were either enriched or
not statistically significant. 

A similar analysis was performed for groupings of nu-
cleotides into three sets of two-base categories. DNA nu-
cleotides are either purines (A, G) or pyrimidines (C, T).
Purines are two-carbon nitrogen ring bases, while pyrimidines
have one-carbon nucleotides. Weak nucleotides (A, T) form
two hydrogen bonds when base pairing, while strong nu-
cleotides (C, G) form three hydrogen bonds. The third clas-
sification refers to keto (G, T) and imino nucleotide (A, C)
according to the major tautomeric forms. 

Figure 2 B and Supplementary Table S17 show comparisons
of two-base groups in the variant classes. Again, many of
the comparisons showed statistically significant results, how-
ever the log OR values showed a larger range than in Fig-
ure 2 A. Most of the differences were relatively small. In sum-
mary, amino / keto and strong / weak base analyses revealed
significant differences in all the fields in both the VUS ver-
sus pathogenic and VUS versus benign comparisons. Despite
statistically significant observations, base or two-base com-
positions would not work as features separating the different

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
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Figure 2. ( A ) Nucleotide le v el comparison of variant positions. Pairwise comparison of nucleotide substitutions in the five variant classes. ( B ) Pairwise 
comparisons for two-base groups in the variant classes. P value significance: * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001. Gray indicates cases where there 
were not enough variants for statistical analysis or substitution by the same type of base. 
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ariant classes, as they would be too simplistic since there are
nly 4 of 16 categories. 
Similar analyses were performed for amino acids. Figure 3 A

nd Supplementary Table S18 show comparisons for amino
cids and Figure 3 B and Supplementary Table S19 show com-
arisons for amino acid groups. The six amino acid groups
ombine physicochemically related residues. Many of the sub-
titutions differed significantly. The biological effect of these
ifferences is likely very small or negligible. Amino acid us-
ge in VUSs and benign variants were close to each other, and
athogenic variants had more different distributions. Interest-
ngly, almost all amino acid substitutions that were enriched in
US compared to benign variants were also significant in com-
arison to pathogenic variants. The sign of the log OR might,
owever, be different. The conflicting classes were closer to
athogenic or benign variants, similar to previous analyses. 
Some amino acids were enriched in variations. Arginine was

he most frequent amino acid among pathogenic variants de-
pite its overall low frequency. Arginine variants were also
nriched in VUS versus benign and VUS versus P / LP com-
arisons to benign and in VUS versus B / LB comparisons to
athogenic. Arginine is encoded by a total of six codons, four
f which contain CpG dinucleotide, which is the most variable
inucleotide. This observation was also apparent from Figure
 for codons. Despite the enrichment or depletion of certain
mino acids in the six comparisons, amino acid substitution
ypes cannot reliably distinguish between variant categories.
ote that only 150 of the 380 amino acid substitutions are
ossible by single nucleotide alterations; therefore, many cells
n Figure 3 are gray. 

The results of the analysis of amino acids in the six groups
re shown in Figure 3 B. The outcome was a simplification of
hat in Figure 3 A. Group G4 did not show significant differ-
nces compared to itself. This is because the two structural
mino acids G and P in G4 cannot be replaced by each other
ith only one substitution at gene level. Since our analysis was

or single nucleotide variants, such rare multiple variants were
ot included. Comparison of VUS to pathogenic, VUS versus
 / LP, and VUS versus B / LB revealed the greatest numbers of
ignificant alterations. In comparison to pathogenic variants
rom G1 and G4 were depleted, whereas benign depletions
ere common in variants changing to G5 or G6 amino acids.
ther variants in these comparisons were mainly enriched or
ot significantly different. 
Are the differences in nucleotide and amino acid usage bi-

logically relevant? It is not straightforward to answer. There
ere some statistically significant differences, but each substi-

ution type appeared in every dataset. It has been known for a
ong time that certain amino acids frequently exhibit disease-
elated variations, for example, changes from arginine. No
ariants of any amino acid type are always disease related, the
ffect is largely context dependent regarding both sequence
nd structure. 

Next, we investigated the distribution of codons. The data
n Figure 3 for the amino acid distribution analysis already
ndicated that certain amino acids were enriched or depleted
n certain variation classes. As we concentrated on amino acid
ubstitutions, there were no data for the stop codons, which
re indicated in gray. 

At the codon level, VUSs were close to benign cases. VUS
s pathogenic, VUS vs B / LB comparison to pathogenic, and
US vs P / LP versus benign cases had the greatest numbers of

ignificant differences. The two first mentioned comparisons
were almost identical and different from the third analysis.
Interestingly, all the codons for those amino acids that are
coded by several codons behaved similarly within compar-
isons. The enrichment of codon depletion followed the dis-
tibution of the corresponding amino acids, see Figure 4 and
Supplementary Table S20 . 

CpG islands are important regulatory elements that are of-
ten located in front of genes, although they can also appear
in coding regions. CpG dinucleotides within these C + G rich
regions are often linked to gene expression ( 50 ). Methylations
in islands are often associated with gene silencing, including
genomic imprinting, which causes monoallelic gene expres-
sion. Analysis of coding variant locations within CpG islands
indicated only minor differences between the variant classes.
The percentages of original amino acids within CpG islands
ranged from 9.2% to 10.8% ( Supplementary Table S21 ), and
there were no major differences between the groups. 

Discussion 

The idea that all VUSs could be reclassified either as benign or
pathogenic is simplistic and presents a mechanistic and tech-
nological viewpoint that ignores natural biological hetero-
geneity. Extensive analysis of substitutions at genes / proteins,
protein structures, nucleotides, and amino acid sequences in
which the variants appear indicated that there were no ma-
jor differences between the classes. The only considerable
differences were in the accessibility and conservation of the
original amino acid, distribution of the original positions to
some secondary structural elements, and differences in codon
and amino acid substitution frequencies. These differences
were mainly for pathogenic variants in comparison to other
classes, not for VUSs. Variations were less common in re-
peats in VUSs and conflicting categories than in benign or
pathogenic variants. Some differences appeared in the distri-
bution to secondary structural elements. As all variant classes
displayed distributions throughout the full range, these char-
acteristics are not sufficient to distinguish VUSs from other
variants. They could possibly be used as features, e.g. in vari-
ant pathogenicity / tolerance predictors. Evolutionary conser-
vation is utilized practically for all pathogenicity predictors,
some of which are based solely on it. Pathogenic and VUS
versus P / LP classes had somewhat different distributions for
conservation in comparison to the other classes. Accessibility
and structural characteristics are less common predictive fea-
tures, as most of the predictors are sequence-based. 

Our analysis concentrated on single nucleotide variants
leading to amino acid substitutions. This is by far the largest
group of known variations. It is highly likely that the other
types of variants behave similarly. 

None of the investigated features clearly distinguished
VUSs from other types of variants or the other categories from
others. When this fact is combined with pervasive heterogene-
ity, it is evident that all VUSs can never be distinguished from
variants with other phenotypes. The generation of additional
information will reduce the number of VUSs to some extent
in the future. Those variants that display wide phenotypic dif-
ferences so that some individuals with a variant have a disease
and others do not (or have other forms of disease) will always
be present. Thus, there will always be VUSs. 

Functional studies have been presented as a solution for
classifying VUSs. This is a way forward; however, there
are issues to consider. Multiplexed assays of variant effects

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae154#supplementary-data
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Figure 3. ( A ) Pairwise comparison of amino acid substitutions. ( B ) Pairwise comparison of amino acid groups in the six variant classes. P value 
significance: * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001. Gray indicates alterations that are not possible by single nucleotide substitution at the nucleotide 
le v el or when there were not enough cases for statistical analysis. 
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Figur e 4. P airwise comparison of codon usage. P value significance: * P ≤ 0.05; ** P ≤ 0.0 1; *** P ≤ 0.00 1. Gra y indicates stop codons that w ere not 
in v estigated in this study. 
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MAVEs) have recently been implemented for a few proteins
o investigate various properties ( 51 ). The results of many of
hese studies are available in MaveDB ( 52 ). In these studies,
ll or almost all substitutions and possibly other variants were
nvestigated within individual proteins at the functional level.
he functional parameters measured depend on the protein.
AVE studies are limited to proteins for which there is an

ssay that allows large-scale study. The measured parameter
ay not always be the most relevant for the biological func-

ion; instead, the method is chosen based on availability. 
MAVE datasets contain many different types of experi-
ents that measure different properties. One may wonder
hether effects on fitness, growth rate, enrichment, abundance

cores, functional complementation studies, binding free en-
rgy changes, etc., are comparable and provide suitable prox-
es for damaging / functional effects. Do these scores measure
unctional, biological effect and if so, then how is that related
o the actual variation? Many of the measured scores are sec-
ndary and do not describe the primary effect of the variants.
or example, protein stability-reducing variants affect abun-
ance, which indirectly affects activity. 
The functional effect does not equal to the biological effect.
One would likely call a reduction in activity of 90% impor-
tant and disease related. However, this may not be the case.
In several enzymopathies, normal activity must be reduced by
> 90% to achieve a disease phenotype ( 53 ). It is thus essential
to understand the mechanism of each gene / protein / disease
and to make protein-based adjustments to functional parame-
ters. How is it possible to lose almost all activity without hav-
ing a biological or medical effect? Due to saturation kinetics,
even a substantial reduction in enzyme activity does not have a
major effect on the flux of the pathway ( 53 ). Many biological
systems are robust against variations. 

We estimate, based on our extensive experience with vari-
ation interpretation, e.g. in benchmarking ( 54–56 ) and the
development of predictors ( 57–60 ), that the ratio of VUSs
will likely remain between 20 and 30% depending on the
gene / protein in the future. VUSs must be accepted and con-
sidered as natural variation, not as a burden or something to
eliminate. Those working on the variation interpretation must
admit that and keep it in mind. In the end, variation data, as
any clinical evidence, should be used only when clearly war-
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ranted. Functional and other studies are needed to reclassify
VUSs; however, efforts should consider individual phenotypic
heterogeneity. It is essential to understand the reasons for and
bases of the different forms of heterogeneity, which should be
prioritized in future studies. 
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