Disorders of the Nervous System

Behavioral Phenotyping of an Improved Mouse Model of Phelan–McDermid Syndrome with a Complete Deletion of the *Shank3* Gene

Elodie Drapeau,^{1,2} Mohammed Riad,^{1,2} Yuji Kajiwara,^{1,2} and Joseph D. Buxbaum^{1,2,3,4,5,6}

DOI:http://dx.doi.org/10.1523/ENEURO.0046-18.2018

¹Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, ²Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, ³Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, ⁴Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, ⁵Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, and ⁶Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, and ⁶Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029

Abstract

Phelan-McDermid syndrome (PMS) is a rare genetic disorder in which one copy of the SHANK3 gene is missing or mutated, leading to a global developmental delay, intellectual disability (ID), and autism. Multiple intragenic promoters and alternatively spliced exons are responsible for the formation of numerous isoforms. Many genetically-modified mouse models of PMS have been generated but most disrupt only some of the isoforms. In contrast, the vast majority of known SHANK3 mutations found in patients involve deletions that disrupt all isoforms. Here, we report the production and thorough behavioral characterization of a new mouse model in which all Shank3 isoforms are disrupted. Domains and tasks examined in adults included measures of general health, neurological reflexes, motor abilities, sensory reactivity, social behavior, repetitive behaviors, cognition and behavioral inflexibility, and anxiety. Our mice are more severely affected than previously published models. While the deficits were typically more pronounced in homozygotes, an intermediate phenotype was observed for heterozygotes in many paradigms. As in other Shank3 mouse models, stereotypies, including increased grooming, were observed. Additionally, sensory alterations were detected in both neonatal and adult mice, and motor behavior was strongly altered, especially in the open field and rotarod locomotor tests. While social behaviors measured with the three-chambered social approach and male-female interaction tests were not strongly impacted, Shank3-deficient mice displayed a strong escape behavior and avoidance of inanimate objects in novel object recognition, repetitive novel object contact, marble burying, and nest building tasks, indicating increased novelty-induced anxiety. Similarly, increased freezing was observed during fear conditioning training and amygdala-dependent cued retrieval. Finally, deficits were observed in both initial training and reversal in the

Significance Statement

Phelan–McDermid syndrome (PMS), caused by happloinsufficiency of *Shank3*, is a severe and complex neurodevelopmental disorder. This study investigates the behavioral consequences of a disruption of all *Shank3* isoforms in neonatal and adult mice using a detailed battery of tests tailored to investigate core symptoms and usual comorbidities of PMS. We found that our new model is more severely affected than previously published mouse models with only partial deletions of *Shank3* and more closely recapitulates symptoms of PMS, thus providing improvements for both construct and face validity. Our results highlight the significance of using a mouse model with a complete deletion of *Shank3* for studying mechanisms underlying autism spectrum disorder (ASD) and PMS, carrying preclinical studies and testing test novel therapeutic approaches.

Barnes maze and in contextual fear testing, which are memory tasks involving hippocampal-prefrontal circuits. In contrast, working memory in the Y-maze spontaneous alternation test was not altered. This new mouse model of PMS, engineered to most closely represent human mutations, recapitulates core symptoms of PMS providing improvements for both construct and face validity, compared to previous models.

Key words: 22q13; autism spectrum disorder; behavior; mouse model; Phelan-McDermid syndrome; Shank3

Introduction

Phelan–McDermid syndrome (PMS) is a rare and complex neurodevelopmental disorder that manifests with global developmental delay, mild dysmorphic features, motor deficits, variable degrees of intellectual disability (ID), and absent or delayed speech. Additionally, autism spectrum disorder (ASD), epilepsy, attention deficits, and recurrent medical comorbidities are common in patients with PMS (Phelan and McDermid, 2012; Betancur and Buxbaum, 2013; Soorya et al., 2013; Sarasua et al., 2014a). Recent studies show that PMS is emerging as one of the most frequent and penetrant monogenic causes of autism and ID (Sykes et al., 2009; Betancur and Buxbaum, 2013; Soorya et al., 2013; Leblond et al., 2014).

Despite overlapping etiologies between patients, there is a tremendous heterogeneity in the expression and severity of the phenotype (Cusmano-Ozog et al., 2007; Dhar et al., 2010; Phelan and Betancur, 2011; Soorya et al., 2013). This is no doubt in part due to the complex nature of in the genetic etiology of PMS (De Rubeis et al., 2018). While a large body of data indicates that haploinsufficiency of SHANK3 is the key contributor for the neurobehavioral manifestations of PMS, it can be caused by a variety of genetic rearrangements including unbalanced translocations, ring chromosome 22, terminal deletions (ranging from deletions of just SHANK3 to large deletions of up to 9 Mb), and interstitial deletions or point mutation within the SHANK3 gene (Durand et al., 2007; Moessner et al., 2007; Sykes et al., 2009; Bonaglia et al., 2011; Phelan and McDermid, 2012; Soorya et al., 2013; Leblond et al., 2014; De Rubeis et al., 2018).

Genotype-phenotype analyses have shown positive correlations between the size of the deletion and the number and/or severity of some phenotypes (Luciani et al., 2003; Dhar et al., 2010; Bonaglia et al., 2011; Soorya et al., 2013; Sarasua et al., 2014b). However,

Received January 24, 2018; accepted May 28, 2018; First published June 05, 2018.

Acknowledgements: We thank Jacqueline Crawley for her help all along this study and her helpful comments on this manuscript and to Jill Silverman for reviewing our results. We also thank Dr. Nikolaos Daskalakis for all our helpful discussions and his help with data analysis.

Correspondence should be addressed to Joseph D. Buxbaum, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029. E-mail: ioseph.buxbaum@mssm.edu.

DOI:http://dx.doi.org/10.1523/ENEURO.0046-18.2018

Copyright © 2018 Drapeau et al.

findings on specific clinical variables have not been consistent across studies. Importantly, it has become clear that indels or point mutations that impact SHANK3 alone can lead to all of the neurobehavioral phenotypes of PMS (De Rubeis et al., 2018). The SHANK3 gene has multiple promoters and is alternatively spliced and the number of Shank3 isoforms can be extensive (Maunakea et al., 2010; Benthani et al., 2015). Some de novo microdeletions or mutations of SHANK3 can therefore affect some but not other SHANK3 isoforms. The genetic heterogeneity of PMS underscores the importance of studying a wide range of mutations and deletions. SHANK3 (ProSAP2) is a major scaffolding protein that forms a key structural part of the postsynaptic density of excitatory glutamatergic synapses. SHANK3 contains multiple proteinprotein interaction domains that each mediates specific protein-protein interactions at synapses. Moreover, the expression and alternative splicing of Shank3 isoforms or even their subcellular distribution has been shown to be cell-type specific, activity dependent as well as regionally and developmentally regulated (Wang et al., 2014) raising the possibility that differing SHANK3 isoforms may play distinct roles in synaptic developmental and function and hence may make distinct contributions to the pathobiology of PMS.

More than a dozen isoform-specific Shank3 mouse models have been independently generated (Table 1). As expected, these models shared some similarities but also showed significant differences in molecular, synaptic, and behavioral phenotypes. Depending on the targeted exons, alterations have been reported in motor functions, social interactions, ultrasonic vocalizations, repetitive grooming, cognitive functions, and anxiety. However, very high variability has been observed regarding the presence or the intensity of such impairments across several types of Shank3-deficient models or even across different cohorts of the same model. These models are based on exonic deletions that have not been reported in human and do not reflect the vast majority of known PMS cases, which are caused by deletions affecting all SHANK3 isoforms. There was therefore an urgent need to develop an animal model with broader construct validity for PMS to fully understand the consequences of a complete deletion of SHANK3 across the range of behavioral phenotypes, which we achieved through a deletion of exons 4-22.

Interestingly, as our work was progressing, a completely independent mouse model, similarly targeting exons 4-22, was reported (Wang et al., 2016b). These mice highlight cortico-striatal circuit abnormalities and demonstrate a behavioral phenotype that resemble features of PMS. We therefore decided to conduct a comprehensive and behavioral evaluation of our mouse model evaluating many more phenotypes relevant to PMS and ASD. Criti-

The authors declare no competing financial interests.

Author contributions: J.D.B. and E.D. designed research; E.D., M.R., and Y.K. performed research; E.D. analyzed data; E.D. wrote the paper.

This work was supported by the Beatrice and Samuel A. Seaver Foundation and by National Institutes of Health Grants R01MH093725 and R01MH101584.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

	Strategy	Targeted Doma exons	ins	Express	sed isofor	ms						5	Original publication	Other publications	Synonyms	Provider	Reposito	y Catalog
				a ta	n(e10- 2s) b	b(∉ 12,	10- a/b 3) 12s	(e11-) c	σ	٩	٩. -	÷						
1 Deletion	Ubiquitous CMV-Cre/ loxP-mediated excision	Exons 4-9 Ankyr	.5	I		1	I	+	+	+	+	+	Bozdagi et al. (2010)	Yang et al. (2012); Bozdagi et al. (2013); Drapeau et al. (2014)	Shank3∆ ex4-9; B6(Cg)- Shank3tm1.2Bux/J	Joseph D. Buxbaum	XAL	#017890
2 Deletion	Homologous recombination (replacement of exon 4-9 by NEO cassette)	Exons 4-9 Ankyr	.5	I	I	1	I	+	+	+	+	+	Wang et al. (2011)	Bariselli et al. (2017)	Shank3e4-9; B6.129S7- Shank3tm1Yhj/J	Yong-Hui Jiang	XAL	#017442
3 Deletion	Ubiquitous MV-Cre/ loxP-mediated excision	Exons 4-9 Ankyr	ç	I I	1	I.	I	+	+	+	+	+	Jaramillo et al. (2016)			Craig M. Powell	NA	AN
4 Deletion	Homologous recombination (replacement of exon 4-7 bv NEO cassette)	Exons 4-7 Last t ani rep	hree kyrin eats	I	1	1	I	+	+	+	+	+	Peça et al. (2011)		Shank3A	Guoping Feng	AN	AN
5 Deletion	Ubiquitous MV-Cre/ loxP-mediated excision	Exon 9 Last a	inkyrin veat	I	I ,	T	I	+	+	+	+	+	Lee et al. (2015)		Shank3 (Δ9)	Eunjoon Kim	NA	NA
6 Deletion	Homologous recombination (introduction of stop codon in exon 11)	Exon 11 SH3		+	1	+	+	I	+	+	+	+	Schmeisser et al. (201	2) Vicidomini et al. (2017); Reim et al. (2017)	Shank3αβ, Shank3∆11	Tobias M. Boeckers	NA	AN
7 stop codon	Insertion of Neo-Stop	Exon 13 PDZ		I	1	I	+	+	I	+	+	, +	Jaramillo et al. (2017)		Shank3E13	Craig M. Powell	NA	NA
8 Deletion	Homologous recombination (replacement of exon 13-16 bv NFC rassetta)	Exons PDZ 13-16		I	1	I	+	I	I	+	+	+	Peça et al. (2011)	Luo et al. (2017); Copping et al. (2017)	Shank3B; B6.129- Shank3tm2Gfng/J	Guoping Feng	XAL	#017688
9 inducible Deletion	Homologous recombination (inversion of exons 13-16 and flanking with FLEx cassette) + crossing with consector even with consector even	Exons PDZ 13-16		- (+)-	- (+)-)- (+)	+	I)- (+)	+	+	+	Mei et al. (2016)		Shank3fx/fx and Shank3fx/ fx:CAGGS-CreER; STOCK Shank3tm5.1Gfng/J; B6.129(Cg)-Shank3tm5. 1Gfng/J	Guoping Feng	XAL	#028800
10 Deletion	ubiquitous CMV-Cre/loxP mediated excision	Exon 21 PRO		I I	+	+	+	I	I	I	+	-	Bangash et al. (2011) retracted)	Cope et al. (2016)	Shank3∆C (Shank3∆ ex21); B6.129S6(Cg)-Shank3tm1. 1PfwJ; B6.Cg-Shank3tm1.1Pfw/J STOCK Shank3tm1.1Pfw/J	Paul Worley	XAL	#018398
11 Deletion	Ubiquitous CMV-Cre/ loxP-mediated excision	Exon 21 PRO		I	+	+	+	I	I	I	+	-	Kouser et al. (2013)	Kloth et al. (2015); Duffney et al. (2015); Bidinosti et al. (2016); Li et al. (2017)	Shank3AC/AC	Craig M. Powell	AN	NA
12 inducible point insertion	Insertion of a floxed mutated exon 21 followed by a transcriptional stop Neo-stop) cassette + crossing with B6.Cg-Tg CGG-creft21 954mc/J for tranoxien nexua	Exon 21 PRO		I	+	+	+	I	I	I	+	1	Speed et al. (2015)		Shank3G/G and Reversible-Shank3GCre+	Craig M. Powell	NA	Ч И И
13 point insertion	Hormologous recombination (G insertion at position 3680 causing a frameshift and premature stop codon)	Exon 21 PRO		- (+)-	+ (+)-	+	+	I	·)- (+)	+)- (+	+	(+)-	Zhou et al. (2016)		Shank3∗G3680 knock-in; STOCK Shank3tm3.1Gfng/J	Guoping Feng	XAL	#028778
14 point mutation	Homologous recombination (R1117X nonsense mutation)	Exon 21 PRO		I	+	+	+	I	I	I	+	1	^z hou et al. (2016)		Shank3*R1117X knock-in; STOCK Shank3tm4.1Gfng/J	Guoping Feng	JAX	#028779
15 Deletion	Ubiquitous CMV-Cre/ loxP-mediated excision	Exons ANK, 4-22 PC SA	SH3, iz, pro, M	1	1	I.	I	I	I	I	L	-	Wang et al. (2016)	Han et al. (2016)	Shank3∆e4–22	Yong-Hui Jiang	NA	AN
16 over- expression	EGFP-Shank3 BAC transgenic mice	Full gene		+ + +	+	+ +	+++	+	++	++++	+++++	+++++	Han et al. (2013)		Tg(Shank3-EGFP)1Hzo; B6.FVB-Tg(Shank3- EGFP)1Hzo/J	Huda Y Zoghbi	AAL	#024033

cally, our findings complement and supplement the observations made by the Jiang group with many results clearly confirmed across two independent laboratories, as well as unique analyses in each study.

Materials and Methods

Generation of inbred strains of $Shank^{\Delta 4-22}$ -deficient animals

All animal procedures were approved by the Institutional Animal Care and Use Committee of the Icahn School of Medicine at Mount Sinai. A Shank3^{Δ4-22} mouse line with a complete disruption of the Shank3 gene was generated at Ozgene by retargeting Bruce4 C57BL/6 embryonic stem cells from a previously published mouse. A third loxP site was inserted immediately downstream of exon 22 in addition of the 2 pre-existing loxP sites flanking exons 4 and 9 (Fig. 1A). To generate the mice used in the present study, the floxed allele was excised by breeding with a CMV-Cre transgenic line (Tg(CMV-cre)1Cgn, The Jackson Laboratory, #006054) resulting in a deletion of exons 4-22 and therefore a constitutive disruption of all the Shank3 murine isoforms. Both the floxed and deleted mouse strains are available at The Jackson Laboratory Repository (Shank $3^{\Delta 4-22}$ floxed strain: JAX Stock No. 032158; Shank3^{Δ4-22} deleted strain: JAX Stock No. 032169; http://jaxmice.jax.org/query).

The colony was maintained on a pure C57BL/6Tac background (Taconic). Heterozygous mice were mated to generate litters consisting of three genotypes, wild-type (WT), heterozygote (Het), and knock-out (KO). Mice were weaned at 21 d of age, and at least one littermate from each genotype were group housed in standard plastic cages of three to five littermates per cage. Standard rodent chow and tap water were available ad libitum. The colony room was maintained on a 12/12 h light/dark cycle with lights on at 6 A.M. at a constant temperature of 21–22°C and 55% humidity. All animal procedures were performed in accordance with the Icahn School of Medicine at Mount Sinai animal care committee's regulations.

Genotyping

The confirmation of the deletions of all Shank3 isoforms was performed by RT-PCR. All the animals included in this study were genotyped using tail samples collected at the time of weaning. Additionally, the genotype of all the adult animals was confirmed using a supplementary biopsy at the end of the behavioral testing. Mouse tail snips were collected by dissecting 0.2 cm of tail between postnatal days 15 and 21. Tails were digested, genomic DNA isolated and purified using the QIAGEN DNAeasy kit (QIA-GEN) according to the manufacturer's instructions. After the extraction, 2.0 μ l of DNA in buffer containing ~250-400 μ g of DNA was amplified by PCR using standard PCR methods and a combination of three primers designed inside and outside the deleted region to identify both the wild-type and $\Delta e4-22$ alleles (Fig. 1; Extended Data Fig. 1-1; P1-KO: TGAGACCAGAGTTGTTAGGATTTG, P2-WT: AGATGGCTCAGCCAGGTAAG, P3-Common AGATG-GCTCAGCCAGGTAAG). The P1-P3 primer pair produced a 490-bp band identifying the Δ e4-22 allele, while the P2-P3 primer pair amplified a 390-bp band from the wild-type allele. Denaturing, annealing, and extension steps were performed using 94°C for 3 min, 35 cycles of 94°C for 30 s, 62°C for 45 s, 45°C for 30 s, and for 1 cycle 72°C for 4 min. The PCR products were run on a 1.5% agarose gel and stained with ethidium bromide.

Immunoblotting

Postsynaptic density (PSD) fractions were prepared as follows. Hemibrains of wild-type, heterozygous, and homozygous Shank $3^{\Delta 4-22}$ mice were homogenized in 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES)-A containing 4 mM HEPES, pH 7.4, 0.32 M sucrose, and Protease Inhibitor Cocktail and PhoSTOP Phosphatase Inhibitor Cocktail (both from Roche). Nuclear fractions were precipitated by centrifuging twice at 700 \times g for 15 min, and the resulting supernatants were further centrifuged at 21,000 \times g for 15 min. The precipitates were resuspended in HEPES-B containing 4 mM HEPES, pH 7.4, Protease Inhibitor Cocktail, and PhoSTOP Phosphatase Inhibitor Cocktail, homogenized, and rotated at 4°C for 1 h. The lysates were centrifuged at 32,000 \times g for 20 min and washed twice with HEPES-C containing 50 mM HEPES, pH 7.4, 0.5% Triton X-100, Protease Inhibitor Cocktail, and PhoSTOP Phosphatase Inhibitor Cocktail. Finally, PSD fractions were resuspended in HEPES-C containing 1.8% sodium dodecyl sulfate (SDS) and 2.5 M urea. Fifty micrograms of PSD fraction was loaded to 4-12% SDS-PAGE (PAGE gel, Invitrogen), transferred to polyvinylidene fluoride membrane and immunoblotted with either the N367/62 anti-Shank3 antibody directed against an epitope in the SH3 domain (UC Davis/NIH NeuroMab Facility) or the H160 anti-Shank3 antibody directed against amino acids 1431-1590 mapping near the C terminus of isoform 2 of Shank 3 (sc-30193, Santa Cruz Biotechnology). For *β*III-tubulin, the membrane was stripped and immunoblotted with an anti-BIII-tubulin antibody (Abcam).

RT-PCR isoform analysis

Total RNA from hemibrains of wild-type and homozygous Shank3⁴⁻²² mice was isolated using the TRIzol method (Invitrogen, ThermoFisher Scientific). Reverse transcription was performed with SuperScript III first-strand synthesis system (Invitrogen, ThermoFisher Scientific). DNA was amplified by PCR using standard PCR methods and the following primers ass described previously (Wang et al., 2014). Shank3a forward: ACGAAGTGCCTGCGTCTGGAC, Shank3a reverse: CTCTT-GCCAACCATTCTCATCAGTG; Shank3b forward: GTAGC-CACCTCTTGCTCACAT, Shank3b reverse: TTGCCAAC-CATTCTCATCAGT; Shank3c forward: CTTCTT CACTGGCAATCCTTG, Shank3c reverse: CAGTGTAGTG-GCGGAAGAGAC; Shank3d forward: AGGGTCACGACT-GTTTCTTAGC, Shank3d reverse: TGTGGGTGTAAACTCCT-CAATG; Shank3e forward: GTACCTGGGTCTGGGTGCTTTA, Shank3e reverse: AACTGCCAGGATCTCATCCA.

Behavioral overview

Multiple cohorts were used for behavioral testing. The first cohort consisted of 54 newborn mice (14 WT, 30 Het and 10 KO) from 10 independent litters. The second

Figure 1. Generation and validation of a knock-out mice with a complete deletion of Shank3. A, Schematic design for generation of a Shank3^{Δ4-22} complete knock-out mouse using a Cre-loxP strategy. Bruce4 C57BL/6 embryonic stem cells from a previously generated mouse with two LoxP site located upstream exon 4 and downstream exon 9 (top, red triangles) were retargeted to insert an additional LoxP site 155 pb downstream of exon 22 (green triangle). Floxed mice were crossed with CMV-Cre mice to generate ubiquitous deletion of exons 4-22 (bottom). ANK, ankyrin repeats; SH3, Src homology 3 domain; PDZ, PSD/Dlg1/zo-1 domain; Pro, proline-rich domain; SAM, sterile α-motif domain. The positions of the PCR primers (P1, P2, P3) for genotyping are indicated. B, Expression of Shank3 in PSD fractions. PSD fractions from wild-type, heterozygous, and homozygous mice were subjected to immunoblotting with either the N367/62 anti-Shank3 antibody directed against an epitope in the SH3 domain or the H160 C-terminal antibody. Immunoblots show that all Shank3 protein bands are absent in KO brains. The migration of molecular weight markers is shown on the left (in kilodaltons) and an immunoblot for β III-tubulin as a loading control is shown below. Original full scans of immunoblots are displayed in Extended Data Figure 1-1. C, RT-PCR analysis for specific Shank3 transcripts in Shank3^{Δ4-22} mice. Brain-derived mRNAs from wild-type and homozygous mice were subjected to RT-PCR targeting different isoforms. All transcripts were absent in Shank $3^{\Delta 4-22}$ homozygous mice. **D**, Distribution of genotype. A deficit in the number of Shank3^{$\Delta 4-22$} knockout mice was observed at the time of weaning. **E**, Survival curve of Shank3^{$\Delta 4-22$} wild-type, heterozygous and homozygous mice between 2 and 22 months. WT, wild-type mice; Het, heterozygous mice; KO, homozygous knockout mice. *: p < 0.05, **: p < 0.1.

cohort consisted of 57 newborn mice (16 WT, 32 Het, and nine KO) from nine independent litters. Cohorts 3 (30 adult male mice, 11 WT, 10 Het, and nine KO) and 4 (27 adult male mice, 11 WT, 10 Het, and nine KO) were tested

between 3 and 10 months of age according to the schedule described in Table 2. In each adult cohort, all mice were born within two weeks of each other, and generally only one triplet came from any given individual litter of

Table 2. Cohorts used and order of behavioral testing

Cohort 1 (10 litters) - developmental milestones								
All animals Males	WT 14 7	Het 30 16	KO 10 5	Age at testing P0–P21 P0–P21				
Females	7	14	5	P0-P21				
Cohort 2 (10 litters) - ultrasonic vocalizations								
	WT	Het	KO	Age at testing				
All animals	16	32	9	P6				
Males	4	15	6	P6				
Females	12	17	3	P6				
Cohorts 3 and 4 - adult behavior								
	Cohoi	rt 3			Coho	ort 4		
	WT	Het	KO	Age at testing	WT	Het	KO	Age at testing
Handling, cage observation, neurological and motor reflexes	11	10	9	P86-P90	8	9	10	P103–P107
15-month weight	8	8	6	P460	5	7	4	P455
20-month weight	7	7	2	P610	4	5	3	P600
Open field	11	10	9	P93-P94	8	9	10	P106–P108
Zero-maze	11	10	9	P95-P96	8	9	10	P109–P110
Y-maze	11	10	9	P99–P101	8	9	10	P114–P122
Beam walking	11	10	9	P102–P103	8	9	10	P124–P125
Grip strength	11	10	9	P104	8	9	10	P125
Gait analysis	11	10	9	P105	8	9	10	P126
Rotarod	11	10	9	P107–P108	8	9	10	P127
Three-chambered social interaction task	11	10	9	P113–P114	8	9	10	P130–P131
Nest building	11	10	9	P120	8	9	10	P137
Novel object	11	10	9	P123–P125	8	9	10	P139–P140
Fear conditioning	11	10	9	P126–P128	8	9	10	P141–P143
Startle response *	11	10	9	P137–P139	3*	4*	4*	P155–P157
Pre-pulse inhibition	11	10	9	P137–P139	8	9	10	P155–P157
Tail flick	11	10	9	P144–P145	8	9	10	P158–P159
Olfactory habituation/dishabituation	11	10	9	P149–P157	8	9	10	P162–P165
Buried food	11	10	9	P163–P164	8	9	10	P178
Social transmission of food preference	11	10	9	P206–P215	8	9	10	P185–P192
Marble burying	11	10	8	P227-P228	8	9	10	P197
Four-object repetitivenovelobject contact task	11	10	8	P232	7	9	9	P215
Male-female social interaction	11	10	8	P240-P241	7	9	9	P217-P219
Barnes maze	11	10	7	P247–P274	7	9	8	P222-P250

For adult animals, the age indicated corresponds to the average age of the cohort. For each cohort all mice were born within two weeks of each other. *: missing animals due to technical problems during startle recording.

mice. Behavioral experiments were conducted between 9 A.M. and 5 P.M. during the light phase of the 12/12 h light/dark cycle in dedicated testing sound-attenuated rooms. Mice were brought to the front room of the testing area at least half an hour before the start of experiments. All three genotypes were tested on the same day in randomized order by two investigators who were blind to the genotypes. Behavioral tests were conducted in the order and at the ages indicated in Table 2 and included developmental milestones, cage observation, neurologic and motor reflexes, open field, elevated zero-maze, Y-maze, beam walking, grip strength, gait analysis, rotarod, three-chambered social interaction task, nest building, novel object recognition, fear conditioning, pre-pulse inhibition, tail flick, olfactory habituation/dishabituation, buried food, social transmission of food preference, marble burying, four-object repetitive novel object contact task, male-female social interaction, and Barnes maze. Behavioral results are not described in the order they were tested in an effort to ease presentation and interpretation of the data.

Newborn development

The physical, sensory and motor developmental milestones of neonates were assessed between postnatal days 1 and 21 using a battery of tests adapted from the Fox scale (Fox, 1965; Heyser, 2004). As we had previously observed, a higher rate of postnatal mortality on the first litter, only dams that already had one litter were used for this experiment. To control for litter and avoid nutritional effects the litter size was homogenized and limited to six pups per dam by reducing larger litters and adding excess pups to smaller litters on the morning of postnatal day 1

where and when possible. At this time, pups were identified by paw tattoo using a nontoxic animal tattoo ink (Animal Identification & Marking Systems Inc) inserted subcutaneously through a 30-gauge hypodermic needle tip into the center of the paw. Individual pups were removed from the litter and placed on cotton pads in a heated cage under a heating lamp throughout the testing. Each subject was tested at approximately the same time of day. For all the timed tests, a 30-s cutoff was used and nonresponding animal received a score of 30 s. Most responses were considered positive only after they had been observed for two consecutive days.

The physical development was measured by following the weight (postnatal day 1 to 21), eye opening (postnatal days 9 to 20), tooth eruption (postnatal days 7 to 18), the ear development (postnatal day 1 to 9), and the fur development (postnatal days 1 to 14) using the following scales. Eye opening, per eye: 0 = eye fully closed, 1 = eye partially opened, 2 = eye full opened, tooth eruption, scored separately for bottom and top incisors: 0 = incisors not visible, 1 = incisors visible but not erupted, 2 = incisors fully erupted. Ear development, per ear: 0 = ear bud not detached from the pinna, 1 = ear flap detached from the pinna, ear fully developed on the back of the ear). Fur development: 1 = bright red, 2 = nude, pink, 3 = nude, gray, 4 = gray, fuzzy on back and shoulder, 5 = black hair on back, gray fuzzy belly, 6 = body fully covered.

Sensory development was assessed using cliff aversion (postnatal days 2 to 14), auditory startle (postnatal days 6 to 18), rooting reflex (postnatal days 2 to 10), ear twitch (postnatal days 7 to 15), and forelimb grasp (postnatal days 4 to 14) using the following measures. For cliff aversion, the subject was placed on the edge of a Plexiglas platform with a 30-cm cliff with its nose and forefeet over the edge. The latency to move away from the edge was recorded. Auditory startle was measured in response to an 80-dB click 30 cm above the mouse and was considered present when the pup moved immediately after the presentation of the auditory stimulus. For the rooting reflex, the side of the pup's face were bilaterally stimulated with two cotton swabs. The reflex was considered present when the pup crawled forwards pushing the head during the stimulation. For the ear twitch, the ear of the pup was stimulated with the tip of a cotton swab that was previously pulled to form a filament. Both ears were successively stimulated and the test was considered positive when the pup turned its head or jumped in response to the stimulation. The forelimb reflex was tested by gently stimulated the front paws with the loop of a small bended metallic wire. Each front paw was scored separately as follow: 0 = no response to stimulation, 1 = paw folding in response to the stimulation, 2 = paw grasping the wire in response to the stimulation, 3 = grasp strong enough tohold for at least 1 s when the wire was lifted up.

Motor development was studied using surface righting (postnatal days 2 to 13), negative geotaxis (postnatal days 2 to 14), air righting (postnatal days 8 to 20), open field crossing (postnatal days 8 to 20), and rod suspension (P11–P20) using the following criteria. The surface righting was measured by the time for pups placed on their

back to fully turn with all four paws on the ground. For negative geotaxis, pups were placed head down on a mesh covered plan that was slanted at a 45° angle, and the latency to either roll down, stay, or turn and move up the slope was recorded. For the air righting, the pup was dropped upside down at a height of 30 cm over a padded surface. Subjects received a score of 2 if they successfully righted themselves during the fall, 1 if they landed on the side and 0 if they did no turn. The open field crossing was measured by the time to exit a 13 cm in diameter circle when place on the center of the circle. For the rod suspension, the pups were gently grabbed by the trunk, brought up close to a 3-mm wooden rod 30 cm above a padded surface and released once they grabbed the rod with their front paws. The latency to stay suspended was recorded.

Physical factors, gross appearance, and spontaneous activity

Adult animals were handled daily for one week before starting behavioral testing and general health, weight (grams), length (centimeters), physical factors, gross appearance, and spontaneous activity were recording during handling using the following scales.

Physical factor and gross appearance

Coat appearance: 0 = ungroomed, 1 = partially groomed, 2 = semi-groomed, 3 = groomed. Skin color (pinna and footpads): 0 = pink, 1 = purple, 2 = other. Whisker barbering: 0 = normal, 1 = abnormally shortened. Patches of missing fur on face or body: 0 = none, 1 = some, 2 = extensive. Wounding: 0 = none, 1 = signs of previous wounding, 2 = slight wounds present, 3 =moderate wounds present, 4 = extensive wounds present. Body tone when both sides of the mouse are compressed between thumb and index finger: 0 = flaccid, no return of cavity to normal, 1 = slight resistance, 2 =extreme resistance. Palpebral closure: 0 = eyes wide open, 1 = eyes half open, 2 = eyes closed. Spontaneous piloerection: 0 = none, 1 - coat standing on end.

Spontaneous general activity in a 1000-ml jar and after transfer in a regular home cage for 5 min each. Body position: 0 =completely flat, 1 =lying on side, 2 =lying prone, 3 = sitting or standing, 4 = rearing on hind legs, 5 = repeated vertical leaping. Spontaneous activity: 0 = none, resting, 1 = casual scratch, groom, slow movement, 2 = vigorous scratch, groom, moderate movement, 3 = vigorous, rapid/dart movement, 4 = extremely vigorous, rapid/dart movement. Respiration rate: 0 = gasping, irregular, 1 = slow, shallow, 2 = normal, 3 = hyperventilation. Tremor: 0 =none, 1 =mild, 2 =marked. Urination: 0 =none, 1 =little, 3 =moderate amount, 4 =extensive. Defecation: number of fecal boli. Transfer arousal: 0 = coma, 1 = prolonged freeze, then slight movement, 2 =brief freeze, then active movement, 3 = no freeze, stretch attends, 4 = no freeze, immediate movement (manic). Gait: 0 = normal, 1 = fluid but abnormal, 2 = slow andhalting, 3 = limited movement only, 4 = incapacity. Pelvic elevation: 0 = markedly flattened, 1 = barely touches, 2 =normal (3 mm elevation), 3 = elevated (more than 3 mm elevation). Tail elevation: 0 = dragging, 1 = horizontally

extended, $2 = \langle 30^{\circ} \text{ elevation}, 3 = 30-60^{\circ} \text{ elevation}, 4 = 60-90^{\circ} \text{ elevation}.$

Motor testing

Gait analysis

Motor coordination and gait patterns was observed as the subject was allowed to run the length of an elevated runway (dimensions: 152 cm long \times 10 cm wide) lined with white paper (Carter et al., 2001). After three training runs, the subject's paws were coated in nontoxic paint (different colors for hind and front paws) to record paw prints on two consecutive runs. The record displaying the clearest prints and most consistent gait for analysis of 50 cm was chosen to measure sway (mean distance between left and right paws), stride (mean distance between same side front and hind paws) and diagonal stance (mean distance between diagonally opposed front and hind paws).

Open field

Mice were tested in an open field $(45 \times 45 \text{ cm})$ virtually divided into central and peripheral regions. Animal activity was recorded by video tracking (Noldus Ethovision). Each mouse was allowed to explore the apparatus for 60 min. The distance traveled, the number of rears and revolutions, the number of grooming bouts and cumulative grooming time, the number of head shaking or twitches, the number of entries in the center, and the time spent in the central and peripheral regions were recorded. Measures were recorded in 10-min intervals.

Rotarod

Motor coordination, endurance and learning was assessed in the Rotarod test (Omnitech Electronics Inc). Mice were placed on an elevated accelerating rod (3 cm in diameter) for three trials per day on two consecutive days. Each trial lasted for a maximum of 5 min, during which the Rotarod underwent a linear acceleration from 4 to 40 rpm. A 20-min interval was used between trials to avoid fatigue. Animals were scored for their latency to fall.

Beam walking

Subtle deficits in fine motor coordination and balance that might not be detected by other motor tests were assessed by the beam walking assay in which the mouse had to walk across an elevated horizontal wood beam (100 cm long, 1 m above bedding) to a safe dark box (Carter et al., 2001). Subjects were placed near one end in bright light, while the far end with the dark box was placed in darkness, providing motivation to cross. Performance was quantified by measuring the latency to start crossing, the time to reach the dark box or the time to fall, the total distance traveled and the number of paw slips or incomplete falls (mice able to climb back on the rod). Animals were successively trained on three different beams: 1 inch, 1/2 inch and 1/4 inch diameter and scored on four consecutive trials per beam with 1 min of rest between trials on the same beam and 20-30 min between each beam. Mice that did not reach the box after 2 min were gently placed inside the box and allowed to stay inside for 1 min.

Righting reflex

The subject was grasped by the nape of the neck and base of the tail, inverted so back faced down, and re-

leased 30 cm above subject's home cage floor. Righting ability was scored as follow: 0 = no impairment, 1 = lands on side, 2 = lands on back, 3 = fails to right even when placed on back on the floor.

Hindlimb placing

Subject was lowered by the base of the tail until it grasped a horizontal wire grid with both forepaws. The grid was rotated to vertical and the tail was released. Mice were evaluated over three trials, 3 min apart for their latency to fall or latency to pull body on the grid and the ability to place hind paws was scored as follow: 0 = grabs but falls, 1 = grabs but hangs, 3 = grabs and pulls body onto grid. Maximum cutoff was 60 s.

Hanging

The subject, held from the base of the tail, was allowed to grasp a wooden rod with both forepaws, rotated to horizontal and release. Test was repeated three times with a 3-min interval between trials and a 60-s maximum cutoff. Both the latency to fall and overall performance scored as follow were recorded: 0 = does not grasp, 1 =grasps but falls immediately, 2 = grasps but then falls off, 3 = grasps and stays on for 60 s.

Negative geotaxis

The subject was placed on a wire mesh grid and the grid was lift vertically, with subject facing down. Test was repeated three times with a 3-min interval between trials and a 60-s maximum cutoff. Both the latency to fall and overall performance scored as follow were recorded: 0 = falls off, 1 = does not move, 2 = moves but does not turn, 3 = turns but does not climb, 4 = turns and climbs up.

Inverted screen

The subject was placed on a grid screen. The grid was waved lightly in the air, then inverted 60 cm over a cage with soft bedding material. Mice were tested only one time with a 60-s maximum cutoff, and the latency to fall was recorded.

Grip strength

Forelimb muscle strength and function was evaluated with a strength meter (Ametek). This test relies on the instinctive tendency of mice to grasp an object with their forelimbs. The animal was pulled backward gently by the tail, while grasping a pull bar connected to a tension meter and the force at the moment when the mouse lost its grip was recorded as the peak tension. Test was repeated three times with a 3-min interval between trials. Each trial consisted in five attempts in quick successions for which the best value was recorded therefore increasing the chances that the measure will accurately reflect maximum strength. The mean of three trials and the largest value from all trials were used as parameters.

Sensory testing

Sensory reflexes

Sensory abilities were evaluated through the reflex response to several sensory modalities using the following scales. Pinna reflex in response to a gentle touch of the auditory meatus with a cotton-tipped applicator repeated three times with a 10- to 15-s interval: 0 = none, 1 =

active retraction, moderately brisk flick, 2 = hyperactive, repetitive flick. Corneal reflex in response to a gentle puff of air repeated three times with a 10- to 15-s interval: 0 = no eye blink, 1 = active eye blink, 2 = multiple eye blink. Toe pinch normal retraction reflexes in all four limbs when lightly pinching each paw successively by applying a gentle lateral compression with fine forceps while the mouse is lifted by its tail so the hind limbs are clear of the table. Score is cumulative of four limbs: 0 = no retraction, 1 = active retraction, 2 = repetitive retractions. Preyer reflex in response to a 90-dB click 30 cm above mouse repeated three times with a 10- to 15-s interval: 0 = None, 1 = Preyer reflex (head twitch), 2 = jump <1 cm, 3 = jump >1 cm.

Tail flick test

The automated tail flick test (Omnitech Electronics Inc) was used to assess nociceptive threshold. Awake mice were placed in a contention tube to limit movement with their tail resting on the groove of a heating panel. When the mice were calm, a narrow heat producing beam was directed at a small discrete spot \sim 15 mm from the tip of the tail. When the subject's tail was removed from the beam, an automatic timer recorded the latency. The test was repeated five times with a 3-min interval between each trial. The latency of the mice to flick their tail was recorded and the two trials with the shorter latencies were discarded since the tail is not always fully in the beam and this is often an outlier.

Acoustic startle response and pre-pulse inhibition of startle

Subjects were placed in isolation boxes outfitted with accelerometers to measure magnitude of subject movement (Med Associates). After 5 min of acclimation mice were first tested for acoustic startle response. Mice were presented with six discrete blocks of six trials over 8 min, for a total of thirty-six trials. The trials consisted in six responses to no stimulus (baseline movement), six responses to 40-ms sound bursts of 74 dB. six responses to 40-ms sound bursts of 78 dB, six responses to 82-ms sound bursts of 100 dB, five responses to 40-ms sound bursts of 86 dB, and six responses to 40-ms sound bursts of 92 dB. The six trials type were presented in pseudorandom order such that each trial type was presented once within a block of six trials. Mice were then tested for pre-pulse inhibition of startle. They were presented with seven discrete blocks of trials of six trials over 10.5 min for a total of 42 trials. The trials consisted in six response to no stimulus (baseline movement), six startle response to a 40-ms, 110-dB sound burst, six prepulse inhibition trials where the 110-dB tone was preceded by a 20-ms 74-dB tone 100 ms earlier, six prepulse inhibition trials where the 110-dB tone was preceded by a 20-ms 78-dB tone 100 ms earlier, six prepulse inhibition trials where the 110-dB tone was preceded by a 20-ms 82-dB tone 100 ms earlier, six prepulse inhibition trials where the 110-dB tone was preceded by a 20-ms 86-dB tone 100 ms earlier and six prepulse inhibition trials where the 110-dB tone was preceded by a 20-ms 92-dB tone 100 ms earlier. The seven trial types were presented in pseudorandom order such that each trial type was presented once within a block of seven trials. Startle amplitude was measured every 1 ms over a 65-ms period, beginning at the onset of the startle stimulus. The intertrial interval was 10–20 s. The maximum startle amplitude over this sampling period was taken as the dependent variable. A background noise level of 70 dB was maintained over the duration of the test session.

Visual acuity

Visual acuity was tested using the visual placing test that takes advantage of the forepaw-reaching reflex: the mouse was held by its tail \sim 20 cm above the surface and progressively lowered. As it approaches the surface, the mouse should expand its forepaws to reach the floor. The test was repeated three times with a 30-s interval and the forepaw reaching reflex was quantified as the percentage of forepaw-reaching episodes that did not involve the vibrissae and/or nose touching the surface before the forepaws.

Buried food test

The buried food test (Yang and Crawley, 2009) measures how quickly an overnight-fasted animal can find a small piece of familiar palatable food, that is hidden underneath a layer of bedding using olfactory clues. Fruit Loops (Kellog's) were used as familiar food. For three consecutive days before the test, three to four pieces were offered to the subjects to make sure it was highly palatable for all the subjects. At 18-24 h before the test, all chow pellets were removed from the subjects' home cages. The water bottle was not removed. On the testing day, the subject was placed in a clean cage (28 cm long imes 18 cm wide imes 12 cm high) containing 3 cm deep of clean bedding and the subject was allowed to acclimate to the cage for 10 min. While the subject was temporary placed in an empty clean cage, four to five pieces of Fruit Loops were buried \sim 1 cm beneath the surface of the bedding, in a random corner of the cage and the bedding surface was smoothed out. The subject was placed back in the testing cage and given 15 min to retrieve and eat the hidden food. Latency to find the food was recorded. If a subject did not find the food, 15 min was recorded as its latency score and the food was unburied and presented to the mouse by the experimenter to make sure that it was palatable for the mouse. At the end of testing, subjects were hold in a temporary cage until all animals from the same home cage were tested.

Olfactory habituation and dishabituation

This test consisted of sequential presentations of different nonsocial and social odors in the following order: water, lemon extract (McCormick; 1:100 dilution), banana extract (McCormick; 1:100 dilution), unfamiliar males and unfamiliar females (Yang and Crawley, 2009). Lemon and banana solutions were freshly prepared everyday using distilled water. Social odors were obtained from cages of unfamiliar C56BL/6 mice of the same and opposite sex as the subject which have not been changed for at least 3 d and were maintained outside of the experimental testing room. Social odor stimuli were prepared by wiping a cotton swab in a zigzag motion across the cage. The

subject was placed in a clean bedding-covered testing cage covered with the cage grid. A clean dry applicator (10-cm cotton swab) was inserted through the cage grid water bottle hole and the animal was allowed to acclimate for 30 min to reduce novelty-induced exploratory activity during the olfaction test. Each odor (or water) was presented in three consecutive trials for a duration of 2 min. The intertrial interval was 1 min, which is about the amount of time needed to change the odor stimulus. At the end of testing, subjects were hold in a temporary cage until all animals from the same home cage were tested. The test was videotaped and subsequently scored. Sniffing and direct interaction time (touching, biting, climbing the applicator) were quantified separately.

Social tests

Three-chambered social approach test

Sociability and preference for social novelty and social recognition were tested in a three-chambered apparatus (Nadler et al., 2004). The subject mouse was first placed in the central, neutral chamber and allowed to explore for 10 min with all doors closed. Next, doors were opened and the mouse was allowed to freely explore the three empty chambers for an additional 10 min. Lack of side preference was confirmed during this habituation. The subject was then temporary placed in a holding cage while two empty wire cages which allow for olfactory, visual, auditory, and tactile contacts but not for sexual contact or fighting containing either an inanimate object (black cone) or a male mouse were placed in each of the testing chambers and the subject was returned to the apparatus for a 10-min testing phase. Adult mice from the same strain that was previously habituated to the wire cup and did not exhibit aggressive behaviors but had no previous contact with the subject were used for unfamiliar mice. Unfamiliar mice were not used more than twice a day with at least 2 h before two tests. At the end of testing, subjects were hold in a temporary cage until all animals from the same home cage have been tested. The side position of the interacting animal and the object was randomly determined. All the sessions were videotracked (Noldus Ethovision) and the amount of time spent in each chamber, close to the holding cages or in direct interaction with the holding cage was automatically calculated.

Male-female social interaction

Male-female social interactions were evaluated in in a regular clean cage during a 10-min test session as previously described (Scattoni et al., 2011). Each subject male was paired with an unfamiliar estrus C57BL/6J female under low light (10 lux) conditions. A total of 20 females were used for this test allowing to avoid to reuse the same female more than twice on the same day. The sessions were videotaped and ultrasonic vocalizations were recorded using an ultrasonic microphone with a 250-kHz sampling rate (Noldus Ultravox XT) positioned 10 cm above the cage. The entire set-up was installed in a sound-attenuating room. Videos from the male subjects were subsequently manually scored to quantify (number of events and total time of male to female nose-to-nose sniffing, nose-to-anogenital sniffing, and sniffing of other

body regions. Ultrasonic vocalizations were played back and spectrograms were displayed using the Ultravox XT software and ultrasonic vocalizations were manually quantified.

Social transmission of food preference

The social transmission of food preference is a test of olfaction memory that involves a social component through the use of a demonstrator mouse (Wrenn et al., 2003). The demonstrator mouse is a conspecific mouse of same sex and similar age that was labeled by bleaching before testing. To minimize neophobia during the experiments, both subjects and demonstrator mice were habituated to eat powdered rodent chow (AIN-93M, Dyets, Inc.) from 4-oz (113.40-g) glass food jar assemblies (Dyets, Inc.). This habituation was performed for 48 h in the mice home cage while the regular pellet chow was removed from the cages. After the habituation, both subject mice and demonstrator mice were food deprived for 18–24 h before testing with free access to water. The test was divided into three phases.

Demonstrator exposition During the first phase the demonstrator was presented with a jar of powder food mixed with either 1% cinnamon or 2% cocoa. The flavor was randomly assigned to the demonstrators so half of them received the cocoa flavored food while the other half received the cinnamon flavored food. Each demonstrator was used only once a day. The demonstrators were allowed to eat the flavored food for 1 h. The jars were weighed before and after presentation to the demonstrators. The criterion for inclusion in the experiment was consumption of 0.2 g or more.

Interaction phase After eating the flavored food, a demonstrator was placed in an interaction cage with the observer subject mouse and mice were allowed to freely interact for 30 min.

Choice phase Immediately after the interaction phase, the observer mouse was placed in a clean cage and presented with one jar containing the flavor of food eaten by the demonstrator (cued) and another jar containing the other flavor and given 1 h to freely explore the jar and eat. The demonstrator flavor and the position of the jar (front or back of the cage) was randomly assigned.

All phases were videotaped and food jars were weighed before and after the sessions to determine the amount of food eaten. At the end of testing, demonstrators and observers were hold in temporary cages until all animals from the same home cage had been tested. Video recordings from the interaction phase were used to score the number and total time of sniffing bouts from the observer to the nose or head of the demonstrator. Video recordings from the choice phase were used to score the total time spent in interaction with each food jar (mouse observed in the top of the jar with nose in jar hole).

Avoidance, escape behavior, and hyper-reactivity

Object avoidance and escape behavior was observed in several tests initially designed to assess other behaviors, including the novel object recognition, the marble burying, and the nest building.

Novel object recognition

The novel object test for object recognition and memory takes place in an opacified open field arena (45×45 cm). The test involves a set of two unique novel objects, each about the size of a mouse, constructed from two different materials and nonuniform in shape. The test consisted of one 10-min habituation session, a 5-min familiarization session and a 5-min recognition test, each videotracked (Noldus Ethovision). During the habituation, animals were allowed to freely explore an empty open field. At the end of the session, they were removed from the open field and place in a temporary clean holding cage for about 2 min. Two identical objects were placed on the median line at \sim 10 cm from each wall and the animal was returned to the open field and allowed to explore the objects for 5 min before being returned to its home cage. After 1 h, one familiar object and one novel object were placed in the open field to the location where the identical objects were placed during the familiarization session and the mouse was allowed to explore them for a 5-min recognition test. The side of the novel object position was randomly assigned so half of the animals were exposed to a novel object placed on the right of the open field and half of the animals were exposed to a novel object placed on the left of the open field.

Between each session, the open field and the objects were carefully cleaned with 70% ethanol and let dry. Familiarization and recognition sessions were scored for total time spent investigating each object, the number of object interactions and the latency o the first object interaction. Time spend in each side during habituation and familiarization and time spent sniffing two identical objects during the familiarization phase were used to examine an innate side bias. Total time spent sniffing both objects was used as a measure of general exploration.

Marble burying test

The marble-burying assay is a tool for assessing either anxiety-like and/or repetitive-like behaviors in mice (Thomas et al., 2009). Subjects were tested in a regular clean cage (28 cm long \times 18 cm wide \times 12 cm high) with 3 cm of fresh bedding. The subject was first placed in the empty cage for a 5-min habituation. It was then temporary placed in an empty clean cage while 20 dark blue glass marbles (15 mm in diameter) were positioned over the bedding equidistant in a 4 \times 5 arrangement to cover the whole cage surface. The subject was then returned in the test cage and allowed to explore and bury the marbles during a 15-min session that was videotaped. At the end of the session the subject was removed and the number of marbles buried (>50% marble covered by bedding material) was recorded.

Nest building

For small rodents, nests are important for heat conservation as well as for reproduction and shelter (Deacon, 2006). Mice were initially single housed in cages containing no environmental enrichment items such as bedding, cardboard houses or tunnels. To test their ability to build nests animals were temporarily single housed. One hour before the dark phase, any building material present in the home cage was removed and replaced by two cotton nestlets (Ancare, NES3600 nestlets). The test was repeated twice and scored on the next morning of the second repeat using the following multicriteria scale adapted from (Deacon, 2006; maximum score = 11): nestlet shredding: 0 = not at all, 1 = partially, 2 = fully shredded; nestlet dispersion: 0 = nestlet dispersed all over the cage, 1 = mostly used to build nest, 2 = fully used to build a nest; nest density: 0: not dense, 1 =medium density, 2 = high density; nest shape: 0: no nest, 1 = ball shape, 2 = nest shape but no bottom, 3 = full nest; presence of walls: 0 = no walls, 1 = partial walls, 2 = nest fully surrounded by walls; maximum score = 11.

Escape behavior

Escape behavior evaluated in three different tests all taking place in regular home cages (28 cm long \times 18 cm wide \times 12 cm high) by counting the number of unsuccessful (mouse climbing on cage walls) or successful (mice jumping out of the cage) attempts. The three tests, selected for their increasing anxiogenic properties, were the habituation phase of the buried food test (first test in the home cage set-up, no object at the surface of the bedding), the repetitive novel object contact task (four objects visible at the surface of the bedding) and the marble burying test (20 objects visible at the surface of the bedding). Each test was scored for 10 min.

Hyper-reactivity

Hyper-reactivity was recorded by looking at touch escape response, positional passivity, trunk curl and catalepsy during the handling of the mice using the following scales. Touch escape to cotton-tipped applicator stroke from above starting light and slowly getting firmer recorded over five trials: 0 = no response, 1 = mild (escape response to firm stroke), 2 = moderate (rapid response to light stroke), 3 = vigorous (escape response to approach). Positional passivity or struggle response to sequential handling: 0 = struggles when restrained by tail, 1 =struggles when restrained by neck (finger grip, not scruffed), 2 = struggles when held supine (on back), 3 =struggles when restrained by hind legs, 4 = does notstruggle. Trunk curl: 0 = absent, 1 = present. Catalepsy when subject front paws are positioned on a rod elevated 3 cm from floor, the amount of time the animal stayed immobile and kept its paws on rod was recorded, with a maximum cutoff of 120 s over three trials separated by 30 s. Hyper-reactivity was also observed in other tests such as the beam walking tests or the negative geotaxis test.

Stereotypies, repetitive behavior, perseveration

Repetitive novel object contact task

This novel object investigation task looks for specific unfamiliar objects preference as well as patterned sequences of sequential investigations of those items (Pearson et al., 2011; Steinbach et al., 2016). Subjects were tested in a regular clean cage (28 cm long \times 18 cm wide \times 12 cm high) with 1 cm of fresh bedding. The subject was first placed in the empty cage for a 20-min habituation. It was then temporary placed in an empty clean cage while four unfamiliar objects (a Lego piece, 3 cm in length; a jack, 4 cm in length; a dice, 1.5 cm in length; and a

bowling pin, 3.5 cm in length) were place in the cage's corners at \sim 3 cm from the edges. The subject was then able to investigate the environment and objects during a 10-min session that was videotaped. The videos were manually scored for the occurrence of investigation of each of the four toys. Investigation was defined as clear facial or vibrissae contact with objects or burying of the objects. The number of contacts and the cumulative contact time was evaluated for each object. to determine if there was a genotype effect on the tendency to display preferences for particular toys, the frequencies of contact with each object were ranked in decreasing order from maximum to minimum preference for each subject and the frequencies were averaged by group and compared. To assess the pattern of object investigation, each specific toy was given an arbitrary number (1-4) and all possible three-digit and four-digit combinations without repeat numbers were identified. For both three- and fourobject sequences the total number of choice, the number of unique sequences, and the number of choices of the three most repeated sequence was calculated for each subject as described in (Steinbach et al., 2016). To take in account the overall mouse activity, the percentage of top, top two, and top three preferred choices over the total number of choices were also calculated.

Barnes maze

The Barnes maze is a test of spatial memory comparable to a dry version of the Morris water maze (Barnes, 1979). In this assay, mice use spatial memory and navigation skills to orient themselves thanks to extra-maze cues placed in the test room, with the goal of locating one of 20 identical holes evenly spaced around the edge of a brightly-lit 100 cm in diameter circular arena (Maze Engineers). While most of the holes (nontarget) have nothing beneath them and lead nowhere, the target escape hole leads to shelter in a desirably darkened and enclosed goal box below the table. Two days before the beginning of the training, habituation was performed by allowing each subject to freely explore the arena (without escape box) under modest light for 5 min. At the end of the second habituation, subjects were pre-trained to learn of the presence of the escape hole by placing them for 1 min in a clear box in the middle of the arena under bright light conditions. After 1 min, the box was lifted up and the subject was gently guided near the escape hole selected randomly on the table, allowing it to enter the hole and remain inside for 1 min. For the initial training, animals were trained for 4 d to locate the escape box (in a position different from the pre-training). All trials began with the subject in a clear box in the center of the table. The trial started when the box was lifted up. If the subject located and entered the escape box within 3 min, it was left in the box for 1 min. If the subject failed to find the escape box within 3 min, it was gently guided to near the escape hole, and allowed to stay in the box for 1 min. Animals received four trials per day with an intertrial interval of 20 min for 4 d. After each trial, the maze and the escape box were cleaned using cleaning wipes to remove odors and fresh bedding was placed in the escape box. On the fifth day, animals were tested for 3 min without the escape box for a probe test.

Time spent in the different quadrants was recorded. For the reversal training, the escape hole was moved to the opposite position on the maze and animals received four additional days of training followed by a reversal probe test on the fifth day. All trials were recorded by overhead camera (Noldus Ethovision) and scored for distance and latency to find escape box.

Cognition

Y-maze test

Y-maze alternation is a test of working memory based on the natural tendency of mice to explore new territory whenever possible. Mice were placed in the center of a Y-maze (three 5-cm-wide and 50-cm-long arms, each set 130° from each other) and given 15 min to freely explore the three arms of the maze. The number of arm entries and the number of triads were recorded to calculate the percentage of alternation. An entry occurs when all four limbs are within the arm. A successful score is defined by three successive choices that includes one instance of each arm by the total number of opportunities for alternation. A type 1 error is determined by three consecutive choices where the first and third choices are identical. A type 2 error is defined by three consecutive choices where the second and third choices are identical. Perseverance is defined as three or more repetitive entries in the same arm.

Contextual and cued fear conditioning

To isolate the effects of cued and contextual fear conditioning, a 3-d assay was employed. During the training session, the mice were placed in an ethanol cleaned contextual box with a bar floor, black and white striped walls in which all movements can be recorded (Med Associate fear conditioning boxes coupled with Noldus Ethovision for control an analysis) and given 5 min to habituate. Movements were then recorded for 540 s. At 120, 260, and 400 s after the beginning of the recording, the mice were exposed to a 20-s tone (80 dB, 2 kHz) and coterminating shock (1 s, 0.7 mA). Twenty-four hours after the training phase, the animals were tested for contextual memory in the identical enclosure and movements were recorded for 240 s to assess the ability of the animal to remember the context in which the shocks had occurred the previous day. Forty-eight hours after the training phase, the animals were tested for cued memory in a different context (isopropanol cleaned, white wall insert over a mesh grid floor). They were recorded for 330 s and were presented with the identical tone from the training session at 120 s, and 260 s after the beginning of the recording session to assess the ability of each animal to remember the tone and pair it with the shock from training session. The three sessions were recorded using a camera located on the side of the boxes. Freezing, defined as lack of movement except for respiration, was scored using Noldus Ethovision software during each phase.

Anxiety

Elevated zero-maze

Fear and anxiety were tested in an elevated zero-maze. The apparatus consisted of a circular black Plexiglas runway, 5 cm wide, 60 cm in diameter, and raised 60 cm

off the ground (Maze Engineers). The runway was divided equally into four alternating quadrants of open arcs, enclosed only by a 1 cm inch lip, and closed arcs, with 25-cm walls. All subjects received one 5-min trial on two consecutive days starting in the center of a closed arm and were recorded by video tracking (Noldus Ethovision). Measures of cumulative open and closed arc times, latency to enter an open arc for the first time (for trials with a closed arc start), total open arm entries, latency to completely cross an open arc for the first time (for trials with a closed arc start) between two closed arcs, closed arc dipping (body in closed arc, head in open arc), open arc dipping (body in open arc, head outside of the maze) were calculated using the mean of the two trials.

Open field

The vertical activity in the open field was scored by counting the numbers of wall rears (while touching a side of the open field) and free-standing rears. The thigmotaxis was measured by quantifying the amount of time or distance traveled on the side of the open field compared to the center of the open field.

Statistical analyses

Shank3^{$\Delta 4-22$} wild-type, heterozygous, and knock-out littermates were compared for each parameter. Statistical analyses were performed with SPSS 23.0 software using different types of ANOVA with or without repeated time measures with genotype as independent variable followed by Tukey pair-wise comparisons and correction for multiple comparisons if needed or equivalent nonparametric tests when required. Newborn developmental milestones were analyzed by two-way ANCOVA using genotype and gender as between-subject factors and litter number as co-variate to take in account possible gender and litter effects. As we did not observe a gender effect, males and females were grouped together in figures and tables. to account for possible cohort effects, cohorts 3 and 4 were analyzed either together using two-way ANOVA with genotype and cohort as betweensubject factors or separately using ANOVA or Kruskal-Wallis tests. Figures represent results for both cohorts analyzed together. Each cohort data and all statistical results including cohort effects are reported in tables and corresponding extended data tables. In tests comparing activity in two or more locations (open field thigmotaxis, social preference test, social transmission of food preference, novel object recognition, zero-maze) genotype \times zone interactions were assessed using repeated measures. When sphericity was found violated, the Greenhouse-Geisser values were reported. The distribution of the genotypes was compared to Mendelian expectation using Pearson's χ^2 test, the survival curves were analyzed using survival Kaplan-Meyer χ^2 . The comparison to chance level was evaluated using either one-sample t test or Wilcoxon test. Normality was assessed using data visualization and Shapiro-Wilk test. All values are expressed as mean \pm SEM.

Generation of a *Shank* $3^{\Delta 4-22}$ mouse with a complete deletion of the *Shank*3 gene

A mouse line with a complete disruption of the *Shank3* gene was generated by retargeting ES cells previously used to disrupt exons 4 through 9 (Bozdagi et al., 2010). To do this, an additional loxP site was inserted directly after exon 22 while leaving intact the two existing loxP sites flanking exons 4 and 9 (Fig. 1*A*). To generate the *Shank3*^{$\Delta 4$ -22} mouse line used in the present study, the floxed allele was then excised by breeding with a CMV-Cre transgenic line resulting in a deletion of exons 4-22 and therefore a constitutive disruption of all the *Shank3* murine isoforms.

Immunoblot analyses using antibodies which crossreact either with an epitope in the SH3 domain (antibody N367/62; Fig. 1B, left panel) or with the COOH terminal (antibody H1160, Fig. 1B, right panel) showed no expression of Shank3 protein in post synaptic density fractions from Shank $3^{\Delta 4-22}$ homozygous mice and reduced expression consistent with haploinsuficiency in the heterozygotes. As in humans, in mice, the Shank3 gene has 22 exons, spans ~58 kb of genomic DNA, and undergoes complex transcriptional regulation controlled by a combination of five intragenic promoters and extensive alternative splicing resulting in in a complex pattern of mRNA and protein isoforms (Wang et al., 2011, 2014; Kouser et al., 2013; Waga et al., 2014; Speed et al., 2015). The loss of all known major Shank3 mRNA isoforms was confirmed by RT-PCR (Fig. 1C).

The Shank $3^{\Delta 4-22}$ mouse line was maintained on a C57BL/6 background by heterozygote \times heterozygote mating, allowing for the production of all genotypes (wildtype, heterozygous, and homozygous) as littermates. Shank $3^{\Delta 4-22}$ heterozygous and homozygous animals were viable, however abnormal Mendelian ratios were observed at the time of weaning, with a significant deficit for Shank3^{Δ4-22} knock-out mice (Fig. 1D; Table 3). Adult survival curves between 1 and 22 months did not show a significant genotype difference with the current sample size, but there was evidence for higher numbers of deaths in Shank3^{$\Delta 4-22$} homozygous mice between 18 and 22 months (Fig. 1E; Table 3). Although the human clinical SHANK3 mutation is hemizygous, for completeness, we have conducted our studies in Shank3-null mutant mice (homozygous knock-out, KO), along with their heterozygous (Het) and wild-type (WT) littermates. The KO mice are instrumental to understand the function of Shank3, while the Het mice have significantly greater construct validity for PMS, a haploinsufficiency syndrome. To ensure the robustness of behavioral abnormalities in the adult mice, two cohorts representing all three genotypes were compared. All the cohorts used in the present study are described in Table 2.

Developmental milestones in Shank3^{Δ 4-22} neonates

Ten litters were used to study developmental milestones. The average litter size was 7.2 pups (ranging from five to nine), with 54 surviving passed postnatal day 2 (28 males and 26 females). As very limited gender effects

		Ge	enotype distri	bution at we	eaning			
	WT	Het	KO	%WT	%Het	%KO	χ^2 (df2)	Asymp p value
All animals, observed N	365	686	278	27.46	51.62	20.92	12.78	0.0017
All animals, expected N	332.25	664.5	332.25	25.00	50.00	25.00		
All animals, residual N	32.75	21.5	-54.25	2.46	1.62	-4.08		
Males, observed N	185	357	147	26.85	51.81	21.34	5.10	0.0781
Males, expected N	172.25	344.5	172.25	25.00	50.00	25.00		
Males, residual N	12.75	12.5	-25.25	1.85	1.81	-3.66		
Females, observed N	180	329	131	28.13	51.41	20.47	8.01	0.0182
Females, expected N	160	320	160	25.00	50.00	25.00		
Females, residual N	20	9	-29	3.13	1.41	-4.53		

were observed (for detailed analysis, see Table 4), males and females were analyzed together using both genotype and gender as fixed factors and the litter number as a covariate.

Developmental delays were observed in the Shank3^{Δ 4-22} homozygote neonates in several of the parameters studied (Fig. 2; Extended Data Fig. 2-1; Table 4). While the birth weight was not significantly different, the growth rate of Shank3^{$\Delta 4-22$} homozygote pups was slower and by P14, the weight of Shank3∆4-22 homozygous mice was significantly lower than the weight of their wild-type littermates (Fig. 2A). Additionally, an unusual postnatal mortality was observed when breeding heterozygous animals together, with 6.9% of the pups dying between birth and P1. Eighty-six dead pups were genotyped, showing that the percentage of Shank3^{$\Delta 4-22$} homozygote knock-out mice dying at or shortly after birth was higher than expected if the death was equally affecting all the genotypes (WT: n = 20, Het = 33, KO: n = 33, χ^2 df2 = 8.66, p = 0.0137), this could explain, at least partially, the deficit observed at weaning. No differences were observed in any of the other physical developmental milestones, including eye opening, ear opening, tooth eruption or fur development (Extended Data Fig. 2-1A-D; Table 4).

A significant delay was observed for Shank3^{Δ4-22} homozygotes in the response to auditory startle (Fig. 2B) and in the mid-air righting task (Fig. 2C) although all the mice were able to properly respond at the end of the observation period. In the wire suspension (Fig. 2D) and grasping reflex (Fig. 2E) tasks, however, not only was the acquisition of the response delayed, but Shank3^{$\Delta 4-22$} homozygous animals remained significantly impaired until the time of weaning. In the negative geotaxis test, an initial delay was observed at P5 were most wild-type animals were able to turn while homozygous and heterozygous Shank3^{$\Delta 4-22$} animals were still falling or staying in the starting position (Fig. 2F). Moreover, after P9 when most of the animals were able to master the task, higher reactivity (characterized by a shorter latency to turn) was observed for the Shank $3^{\Delta 4-22}$ homozygous mice. The acquisition of the rooting reflex was similar for the three groups; however, a premature disappearance of the reflex was observed in both the Shank $3^{\Delta 4-22}$ heterozygous and homozygous pups (Extended Data Fig. 2-1E; Table 4).

Other sensory-motor and neurologic milestones such as cliff aversion, ear twitch, surface righting, negative geotaxis, and open field crossing (Extended Data Fig. 2-1*F–I*; Table 4) were not significantly affected by the disruption of the *Shank3* gene.

Ultrasonic vocalizations were recorded at postnatal day 6 on an independent cohort of mice and a genotype difference was detected in the number and quality of ultrasonic vocalizations emitted by the pups (Table 4). Shank $3^{\Delta 4-22}$ heterozygous and homozygous mice emitted fewer ultrasonic vocalizations than wild-type littermates (Extended Data Fig. 2-1K; Table 4). The total calling time was also affected with Shank3^{$\Delta 4-22$}-deficient mice both spending less time calling and having shorter calls than wild-type littermates. Additionally, the peak amplitude was shorter in Shank $3^{\Delta 4-22}$ -deficient mice. However, none of these parameters were significantly different, probably due to a high interindividual variability within each group with some animals emitting no vocalizations during the 3-min recording. The percentage of noncallers was higher, although not significantly, in Shank3^{Δ4-22}-deficient animals. Genotype did not affect the latency to the first call or the peak frequency of calls and no difference was observed in the time course of the emission of ultrasonic vocalizations.

Adult general health in Shank3^{Δ4-22}-deficient mice

Adult Shank3^{$\Delta 4-22$} mice were evaluated for general health at three months of age (Table 5). The three genotypes did not differ on physical measure of weight and length. Additional weight measures at the age of 15 and 20 months showed a trend in reduced weight of Shank $3^{\Delta 4-22}$ homozygous mice compared to their littermates. Genotypes scored similarly and in the normal range for other physical characteristics including coat appearance (grooming, piloerection, patches of missing fur on face or body), skin pigmentation, whisker appearance, wounding, and palpebral closure. Observation in a beaker or after transfer to a housing cage revealed no abnormalities in term of spontaneous general activity, stereotypies (rears, jumps, circling, wild running), transfer arousal, gait, pelvic, and tail elevation.

Motor functions in Shank3^{Δ4-22}-deficient mice

Motor functions were examined using several different paradigms (Table 6). Footprint gait analysis showed normal stance and sway but increased stride in *Shank3*^{$\Delta 4-22$} homozygous mice compared to wild-type and heterozy-

Table 4. Detailed results and statistical analyses related to developmental milestones

Weight Repeated measures, spherici	ty violated	F	p value	Power	WT vs	WT vs	Het vs									
Day effect		466.906	0.000	1.000	Het -	ко —	ко —									
$Dav \times genotype effect$		2.275	0.045	0.754	_	_	_									
Day X gender effect		0.363	0.765	0 117	_	_	_									
$Day \times genetype \times gender ef$	fect	0.569	0.742	0.21/	_	_	_									
Construct offect	1601	0.000	0.742	0.214	0 1 4 4	0.010	0 1 4 7									
Genotype effect		3.046	0.048	0.560	0.144	0.018	0.147									
Gender effect		0.933	0.339	0.157	-	-	-									
Genotype × gender		0.686	0.509	0.158	-	-	-									
											Gende	r effect		Gende effect	r imes genot	type
Multifactiorial ANCOVA		WT	Het	КО	F	p value	Power	WT vs	WT vs	Het vs	F	p value	Power	F	p value	Power
Weight - P1	Nonnormal	1.47 ± 0.02	1.38 ± 0.02	1.36 ± 0.03	2.244	0.118	0.433	-	-	-	1.067	0.307	0.173	0.016	0.984	0.052
Weight - P2	Nonnormal	1.51 ± 0.03	1.42 ± 0.03	1.4 ± 0.04	2.010	0.146	0.393	_	_	_	0.510	0.479	0.108	0.193	0.825	0.078
Weight - P3	Nonnormal	1.62 ± 0.05	1.59 ± 0.04	1.55 ± 0.07	0.451	0.640	0.119	_	_	_	0.030	0.863	0.053	1.047	0.360	0.221
Weight - P4	Nonnormal	1 95 + 0 09	1.87 + 0.06	1.87 ± 0.01	0.610	0.548	0 145	_	_	_	0.822	0.369	0 144	0.378	0.688	0 107
Weight DE	Nonnormal	0.00 ± 0.00	0.07 ± 0.07	1.07 ± 0.12	0.010	0.040	0.005				0.022	0.000	0.149	1 001	0.000	0.017
Weight - FS	Nonnormal	2.34 ± 0.1	2.27 ± 0.07	2.27 ± 0.12	0.303	0.739	0.095	_	_	_	0.000	0.575	0.142	0.050	0.300	0.217
Weight - P6	Nonnormal	2.77 ± 0.14	2.71 ± 0.08	2.7 ± 0.15	0.320	0.728	0.098	-	-	-	0.436	0.512	0.099	0.356	0.703	0.104
Weight - P7	Nonnormal	3.29 ± 0.12	3.25 ± 0.09	3.13 ± 0.15	0.682	0.511	0.158	-	-	-	0.835	0.366	0.145	0.934	0.401	0.201
Weight - P8	Nonnormal	3.8 ± 0.14	3.73 ± 0.1	3.65 ± 0.15	0.493	0.614	0.126	-	-	-	0.723	0.400	0.132	1.023	0.368	0.217
Weight - P9	Nonnormal	4.26 ± 0.14	4.23 ± 0.1	4 ± 0.17	1.146	0.327	0.239	-	-	-	3.146	0.083	0.411	0.883	0.421	0.192
Weight - P10	Nonnormal	4.86 ± 0.11	4.72 ± 0.1	4.58 ± 0.16	1.013	0.371	0.215	-	-	-	0.299	0.587	0.083	0.051	0.951	0.057
Weight - P11	Nonnormal	5.42 ± 0.11	5.21 ± 0.1	5.03 ± 0.18	1.837	0.171	0.363	_	_	-	0.781	0.382	0.139	0.023	0.978	0.053
Weight - P12	Nonnormal	5.85 ± 0.11	5.7 ± 0.11	5.39 ± 0.13	2,148	0.129	0.417	_	_	_	0.092	0.764	0.060	0.362	0.698	0.105
Weight - P13	Nonnormal	6.00 ± 0.11	6.01 ± 0.11	5.00 ± 0.10 5.72 ± 0.2	1 787	0.179	0.354	_	_	_	0.853	0.361	0 147	0.657	0.524	0 153
Weight D14	Nonnormal	6.62 ± 0.12	6.01 ± 0.11	5.72 ± 0.2	4 901	0.170	0.004	0.074	0.004	0.016	0.000	0.001	0.115	0.007	0.024	0.147
Weight - P14	Nonnormal	0.02 ± 0.12	6.42 ± 0.11	5.83 ± 0.17	4.891	0.012	0.777	0.274	0.004	0.016	0.577	0.451	0.115	0.018	0.544	0.147
Weight - P15	Nonnormai	7.01 ± 0.14	6.73 ± 0.12	6.38 ± 0.22	2.504	0.093	0.476	0.175	0.031	0.198	0.595	0.445	0.117	0.238	0.789	0.085
Weight - P16	Nonnormal	7.31 ± 0.14	6.96 ± 0.13	6.69 ± 0.19	2.668	0.081	0.502	0.094	0.030	0.318	0.157	0.694	0.067	0.072	0.931	0.060
Weight - P17	Nonnormal	7.55 ± 0.14	7.2 ± 0.13	6.83 ± 0.22	2.973	0.061	0.549	0.118	0.020	0.192	0.889	0.351	0.152	0.170	0.845	0.075
Weight - P18	Nonnormal	7.76 ± 0.14	7.43 ± 0.14	6.98 ± 0.2	3.160	0.050	0.577	0.152	0.016	0.127	0.790	0.379	0.140	0.187	0.830	0.077
Weight - P19	Nonnormal	7.98 ± 0.13	7.58 ± 0.16	7.1 ± 0.18	3.534	0.038	0.628	0.115	0.011	0.121	1.170	0.285	0.185	0.861	0.430	0.189
Weight - P20	Nonnormal	8.31 ± 0.19	7.69 ± 0.19	7.18 ± 0.2	4.268	0.020	0.716	0.051	0.006	0.146	0.729	0.398	0.133	1.415	0.254	0.287
Weight - P21	Nonnormal	8.67 ± 0.21	8.05 ± 0.27	7.38 ± 0.28	3.366	0.044	0.605	0.127	0.013	0.127	0.263	0.611	0.079	0.839	0.439	0.185
····g··· _ ·																
Eve opening																
Benasted massures, enharisi	tr accurace	F	n voluo	Douvor	WT vo	WT vo	Hat va									
Repeated measures, spherici	ty assumed	F	p value	Power	VVI VS	VVT VS	Het vs									
B		100.000		4 000	пег	κυ	ĸu									
Day effect		192.080	0.000	1.000	-	-	-									
Day $ imes$ genotype effect		1.565	0.190	0.469	-	-	-									
Day imes gender effect		0.716	0.494	0.169	-	-	-									
$Day \times genotype \times gender ef$	fect	0.653	0.629	0.544												
Genotype effect		1.403	0.257	0.285	_	-	-									
Gender effect		1.852	0.181	0.265	_	_	_									
Genotype X gender		0.957	0.302	0.205												
denotype × gender		0.557	0.002	0.200							Gondo	r offoot		Gondo	r × aonot	hino
											acriac	i oncor		effect	y gonor	ype
Multifactiorial ANCOVA		WT	Het	ко	F	p value	Power	WT vs	WT vs	Het vs	F	p value	Power	F	p value	Power
						1		Het	KO	KO					1	
Eve opening score - P9	_	0 ± 0	0 ± 0	0 ± 0	_	_	_	_	_	_	_	_	_	_	_	_
Eve opening score P10	_	0 ± 0	0 ± 0	0 ± 0	_	_	_	_	_	_	_	_	_	_	_	_
Eve opening score - 1 10		0 ± 0	0 ± 0	0 ± 0												
Eye opening score - FTT					-	-	-	-	-	-	-	-	-	-	-	-
Eye opening score - P12	Nonnormai	0.3 ± 0.2	0.28 ± 0.13	0.1 ± 0.1	0.534	0.590	0.132	-	-	-	1.917	0.173	0.273	0.496	0.613	0.126
Eye opening score - P13	Nonnormal	1.23 ± 0.34	1.35 ± 0.25	0.6 ± 0.3	1.445	0.247	0.292	-	-	-	0.707	0.405	0.130	0.032	0.969	0.055
Eye opening score - P14	Nonnormal	2.38 ± 0.18	2.75 ± 0.16	2.1 ± 0.09	4.723	0.014	0.761	0.134	0.167	0.005	2.464	0.124	0.336	2.248	0.118	0.433
Eye opening score - P15	Nonnormal	3 ± 0.25	3.1 ± 0.17	2.7 ± 0.26	0.646	0.529	0.151	-	-	-	0.043	0.837	0.055	1.262	0.293	0.260
Eve opening score - P16	Nonnormal	4 ± 0	3.85 ± 0.06	3.9 ± 0.1	0.734	0.486	0.166	_	_	_	3.076	0.087	0.403	1.249	0.297	0.257
Eve opening score - P17	Nonnormal	4 + 0	385 ± 0.06	4 + 0	1 665	0 201	0.332	_	_	_	1 155	0 288	0 183	1 971	0 152	0.386
Evo oponing score P19	Nonnormal	1 = 0	2 80 ± 0.05	1 ± 0	0.057	0.202	0.205	_	_	_	0.600	0.411	0.100	1 0/1	0.262	0.000
Lye opening score - P18	Nonnormal	4 - 0	3.09 ± 0.05	4 - 0	0.957	0.052	0.205				0.090	0.411	0.120	0.400	0.302	0.220
Eye opening score - P19	Nonnormai	4 ± 0	3.96 ± 0.03	4 ± 0	0.428	0.054	0.115	-	-	-	0.320	0.575	0.086	0.420	0.000	0.115
Eye opening score - P20	_	4 ± 0	4 ± 0	4 ± 0	-	-	-	-	-	-	-	-	-	-	-	-
Average day of full opening	Nonnormal	15.53 ± 0.18	15.57 ± 0.33	15.9 ± 0.17	0.469	0.629	0.122	-	-	-	1.472	0.232	0.220	0.749	0.479	0.169
Ear opening																
Repeated measures, spherici	ty violated	F	p value	Power	WT vs	WT vs	Het vs									
					Het	KO	KO									
Day effect		316.707	0.000	1.000	-	-	-									
Day \times genotype effect		0.807	0.594	0.361	_	_	_									
Day × gender effect		2 150	0 079	0.617	_	_	_									
	foot	1.056	0.206	0.472	_	_	_									
Capatures offert	1001	0.112	0.000	0.472	-	-	-									
Genotype enect		0.113	0.893	0.000	-	-	-									
Gender effect		0.438	0.512	0.099	-	-	-									
Genotype $ imes$ gender		0.676	0.514	0.156	-	-	-									
					(Conti	nued)										

Ear opening																
											Gende	er effect		Gende	r imes geno	type
		WE	11-4	KO	~		Damas	M/T	WT		~		Damas	effect		Devices
Multifactional ANCOVA		VVI	Het	ĸŪ	F	<i>p</i> value	Power	VVI VS Het	KO	Het vs KO	F	p value	Power	F	p value	Power
Ear opening score - P1	Nonnormal	0.23 ± 0.23	0.13 ± 0.09	0 ± 0	0.753	0.477	0.170	_	_	_	2.371	0.131	0.325	0.669	0.517	0.155
Ear opening score - P2	Nonnormal	2.15 ± 0.15	2.06 ± 0.04	2 ± 0	0.675	0.514	0.156	_	_	_	2.261	0.140	0.313	0.468	0.629	0.122
Ear opening score - P3	Nonnormal	2.38 ± 0.21	2.31 ± 0.13	2.3 ± 0.21	0.123	0.885	0.068	-	_	-	1.054	0.310	0.171	0.994	0.378	0.212
Ear opening score - P4	Nonnormal	3.15 ± 0.27	3.27 ± 0.13	3.6 ± 0.22	0.966	0.389	0.207	-	-	-	2.693	0.108	0.362	1.501	0.234	0.303
Ear opening score - P5	Nonnormal	4.15 ± 0.1	4.2 ± 0.11	4.1 ± 0.1	0.167	0.847	0.074	-	_	-	0.106	0.746	0.062	0.382	0.685	0.108
Ear opening score - P6	Nonnormal	5.76 ± 0.16	5.93 ± 0.06	6 ± 0	1.052	0.358	0.222	-	-	-	0.780	0.382	0.139	0.733	0.486	0.166
Ear opening score - P7	-	6 ± 0	6 ± 0	6 ± 0	0.439	0.647	0.117	-	-	-	0.270	0.606	0.080	0.617	0.544	0.146
Ear opening score - P8	-	6 ± 0	6 ± 0	6 ± 0	_	_	_	_	_	_	-	_	_	_	-	-
Ear opening score - P9	- Nonnormal	0 ± 0 6 15 ± 0 1	5 ± 0	6 ± 0	_ 0.622	-	-	_	_	_	- 0.070	-	0.059	-	- 0.761	-
Average day of full opening	Nonnormai	0.15 ± 0.1	5.93 ± 0.00	0 ± 0	0.022	0.541	0.147				0.070	0.795	0.056	0.274	0.701	0.091
Tooth eruption																
Bottom incisor - repeated measures	з,	F	p value	Power	WT vs	WT vs	Het vs									
sphericity violated					Het	KO	KO									
Day effect		120.634	0.000	1.000	-	-	-									
Day imes genotype effect		1.452	0.177	0.648	-	-	-									
Day imes gender effect		1.873	0.116	0.564	-	-	-									
$Day \times genotype \times gender effect$		1.671	0.107	0.723	-	-	-									
Genotype effect		1.855	0.169	0.366	-	-	-									
Gender effect		0.094	0.761	0.060	_	-	-									
Genotype × gender		0.637	0.533	0.150	_	-	-				0			Canala		
											Gende	er ettect		Gende	r × geno	туре
Multifactionial ANCOVA		WT	Het	KO	F	n value	Power	WT vs	WT vs	Het vs	F	n value	Power	F	n value	Power
			Het	NO	,	p value	1 0 100	Het	KO	KO	'	p value	1 01101	,	pvalue	1 00001
Bottom incisor score - P7	_	0 ± 0	0 ± 0	0 ± 0	_	_	_	_	_	_	_	_	_	_	_	_
Bottom incisor score - P8	Nonnormal	0.38 ± 0.14	0.06 ± 0.04	0.1 ± 0.1	3.701	0.033	0.650	0.010	0.072	0.746	0.685	0.412	0.128	1.274	0.290	0.262
Bottom incisor score - P9	Nonnormal	0.92 ± 0.07	0.75 ± 0.08	1 ± 0.14	1.247	0.297	0.257	_	_	_	1.198	0.280	0.188	1.949	0.155	0.382
Bottom incisor score - P10	Nonnormal	1.15 ± 0.1	1.03 ± 0.06	1.1 ± 0.1	0.661	0.521	0.164	_	_	_	2.184	0.147	0.304	1.371	0.265	0.279
Bottom incisor score - P11	Nonnormal	1.84 ± 0.1	1.65 ± 0.08	1.5 ± 0.16	1.438	0.248	0.291	_	_	_	0.212	0.647	0.074	0.873	0.425	0.191
Bottom incisor score - P12	Nonnormal	1.92 ± 0.07	1.93 ± 0.04	1.8 ± 0.13	0.795	0.458	0.177	-	-	-	4.249	0.045	0.523	1.594	0.215	0.319
Bottom incisor score - P13	-	2 ± 0	2 ± 0	2 ± 0	-	-	-	-	-	-	-	-	-	-	-	-
Bottom incisor, day of full eruption	Nonnormal	11.07 ± 0.21	11.37 ± 0.15	11.5 ± 0.37	0.720	0.492	0.164	-	-	-	0.018	0.895	0.052	0.141	0.869	0.070
		_		_												
Top incisor - repeated measures,		F	p value	Power	WT vs	WTvs	Het vs									
sphericity violated		41.000	0.000	1 000	Het	KO	KO									
Day effect		41.000	0.597	0.255	-	-	_									
Day × genotype effect		41.000	0.367	0.335	-	-	_									
Day × gender effect		41.000	0.150	0.497	-	-	_									
Genotype effect		0.31/	0.303	0.370	_	_	_									
Gender effect		0.845	0.363	0.147	_	_	_									
Genotype × gender		1.028	0.366	0.218	_	_	_									
achelype // genaci		11020	0.000	01210							Gende	er effect		Gende	r × aeno	otvpe
														effect	0	
Multifactiorial ANCOVA		WT	Het	KO	F	p value	Power	WT vs	WT vs	Het vs	F	p value	Power	F	p value	Power
								Het	KO	KO						
Top incisor score - P10	-	0 ± 0	0 ± 0	0 ± 0	-	-	-	-	-	-	-	-	-	-	-	-
Top incisor score - P11	Nonnormal	0.23 ± 0.12	0.1 ± 0.05	0 ± 0	1.757	0.184	0.348	-	-	-	0.021	0.886	0.052	0.903	0.413	0.196
Top incisor score - P12	Nonnormal	0.76 ± 0.12	0.79 ± 0.07	0.8 ± 0.13	0.010	0.990	0.051	-	-	-	1.285	0.263	0.198	1.558	0.222	0.313
Top incisor score - P13	Nonnormal	1.3 ± 0.17	1.24 ± 0.13	1 ± 0.21	0.590	0.559	0.142	-	-	-	0.009	0.925	0.051	0.804	0.454	0.179
Top Incisor score - P14	Nonnormal	1.76 ± 0.12	1.79 ± 0.07	1.8 ± 0.13	0.010	0.990	0.051	_	-	-	1.285	0.263	0.198	1.558	0.222	0.313
Top incisor score - P15	Nonnormai	1.92 ± 0.07	1.89 ± 0.05	1.8 ± 0.13	0.487	0.618	0.125	_	_	_	4.489	0.040	0.545	0.861	0.430	0.189
Top incisor day of full eruption	- Nonnormal	2 ± 0 13.02 ± 0.26	2 ± 0 14.41 ± 0.17	2 ± 0 1/1 2 + 0.32	1 1 1 0	0 330	-	_	_	_	0.816	0 371	0 1/3	1 006	0 374	0.21/
Top incisor, day of full eruption	Nonnormai	13.92 ± 0.20	14.41 ± 0.17	14.2 ± 0.52	1.110	0.335	0.233	_	_	_	0.010	0.371	0.143	1.000	0.374	0.214
Fur development																
Repeated measures, sphericity viola	ated	F	p value	Power	WT vs	WT vs	Het vs									
					Het	KO	KO									
Day effect		347.979	0.000	1.000	-	-	_									
Day imes genotype effect		0.885	0.546	0.458	-	-	-									
Day imes gender effect		1.948	0.089	0.646	-	-	-									
Day imes genotype imes gender effect		3.234	0.001	0.986	-	-	-									
Genotype effect		1.683	0.198	0.335	-	-	-									
Gender effect		0.635	0.430	0.122	-	-	-									
$Genotype \times gender$		8.265	0.001	0.950	-	-	-									
											Gende	er effect		Gende	r imes geno	type
Multifactionial ANCOVA		WT	Hot	KO	F		Power	WT ve	W/T v/c	Hetwo	F		Power	F	n volue	Power
		VV I	I IBL	NU	r	p value	rower	vvi vs Het	KO	KO	Г	p value	rower	Г	p value	rower
Fur score - P1	Nonnormal	1 ± 0	0.92 ± 0.07	1 ± 0	0.439	0.647	0.117	-	_	-	0.270	0.606	0.080	0.617	0.544	0.146
Fur score - P2	Nonnormal	1.76 ± 0.12	1.79 ± 0.07	2 ± 0	1.484	0.238	0.300	_	_	_	0.000	0.995	0.050	6.724	0.003	0.897
Fur score - P3	Nonnormal	2.53 ± 0.18	2.37 ± 0.1	2.5 ± 0.16	0.898	0.415	0.195	-	-	_	1.736	0.194	0.252	7.221	0.002	0.918
Fur score - P4	Nonnormal	3.23 ± 0.2	3.13 ± 0.11	3.4 ± 0.16	1.605	0.212	0.321	-	-	-	5.973	0.019	0.667	9.904	0.000	0.978
				(0	Continue	ed)										

Fur development																
											Gende	er effect		Gende	r × geno	type
Multifactiorial ANCOVA		WT	Het	КО	F	p value	Power	WT vs Het	WT vs KO	Het vs	F	<i>p</i> value	Power	F	<i>p</i> value	Power
Fur score - P5	Nonnormal	3.92 ± 0.13	3.86 ± 0.06	4 ± 0	1.034	0.364	0.219	_	_	_	0.013	0.909	0.051	4.885	0.012	0.777
Fur score - P6	Nonnormal	3.92 ± 0.13	3.89 ± 0.05	4 ± 0	0.657	0.523	0.153	_	_	_	0.090	0.766	0.060	4.026	0.025	0.689
Fur score - P7	Nonnormal	4.15 ± 0.19	4.27 ± 0.1	4.5 ± 0.16	1.002	0.375	0.213	_	_	_	0.353	0.556	0.089	1.378	0.263	0.281
Fur score - P8	Nonnormal	4.69 ± 0.17	4.62 ± 0.09	5 ± 0	2.746	0.075	0.514	_	_	_	1.116	0.297	0.178	4.075	0.024	0.694
Fur score - P9	Nonnormal	5 + 0	4.93 ± 0.04	5 + 0	0.927	0.403	0.200	_	_	_	0.604	0.441	0 1 1 8	1 203	0.310	0 249
Fur score - P10	Nonnormal	523 ± 012	524 ± 0.08	53 + 015	0.125	0.882	0.068	_	_	_	0.007	0.936	0.051	2 343	0 108	0.450
Fur score - P11	Nonnormal	5.53 ± 0.14	5.72 ± 0.08	5.8 ± 0.13	0.906	0.411	0.196	_	_	_	0.997	0.324	0 164	3 754	0.031	0.656
Fur score - P12	Nonnormal	6 ± 0	5.96 ± 0.03	6 ± 0	0.401	0.672	0.111	_	_	_	0.274	0.603	0.081	0.479	0.622	0.123
Fur score - P13	_	6 ± 0	6 + 0	6 ± 0	_	_	0	_	_	_	_	_	_	_	_	_
Fur score - P14	_	6 ± 0	6 ± 0	6 ± 0	_	_	•	_	_	_	_	_	_	_	_	_
Day of full fur	Nonnormal	113 ± 02	10.75 ± 0.37	109 ± 023	0.460	0.634	0 120	_	_	_	0 1 1 0	0 741	0.062	1 960	0 153	0.384
Day of fail fail	Nonnonna	11.0 _ 0.2	10.10 - 0.01	10.0 _ 0.20	0.400	0.004	0.120				0.110	0.141	0.002	1.000	0.100	0.004
Auditory startle																
Repeated measures sphericity violat	ed	F	n value	Power	WT vs	WT vs	Het vs									
hepeated measures, sphenoty violat		1	p value	1 OWEI	Het	KO	KO									
Day effect		56 506	0.000		_	_	_									
Day \times genotype effect		3 280	0.002		_	_	_									
Day X gender effect		0.283	0.873		_	_	_									
$Day \times gender effect$		1 321	0.2/1		_	_	_									
Genotype effect		12 867	0.241		0.070	0.000	0.000									
Condex offeet		0.059	0.000		0.070	0.000	0.000									
		0.056	0.011		-	_	-									
Genotype × gender		0.336	0.701		-	_	-				Conde	r offoot		Canda	- V	t. 100
											Gende	enect		offoot	r × geno	type
Multifactionial ANCOVA		WT	Hot	KO	F		Power	W/T ve	WT ve	Hot ve	F		Power	F		Power
Multilactional ANCOVA		VV I	i let	NO	'	p value	FOWE	Het	KO	KO	,	p value	Fower	1	p value	Fower
Percentage of responders - P10	_	0 + 0	0 + 0	0 + 0	_	_	_	-	_	_	_	_	_	_	_	_
Percentage of responders P11	Nonnormal	15.29 ± 10.41	1270 ± 651	0 ± 0	1 209	0.291	0.269	_	_	_	0.001	0.071	0.050	2 054	0.057	0.561
Percentage of responders - P11	Nonnormal	F2 94 ± 14 20	13.79 ± 0.51 12.70 ± 6.51	0 ± 0 0 ± 0	0 700	0.201	0.200	0.001	0.000	0 179	0.001	0.371	0.000	1 504	0.037	0.301
Percentage of responders - F12	Nonnormal	55.64 - 14.59	13.79 ± 0.31		0.700	0.001	0.959	0.001	0.000	0.170	0.400	0.400	0.105	1.364	0.217	0.316
Percentage of responders - P13	Nonnormal	53.84 ± 14.39	55.17 ± 9.39	10 ± 10	3.045	0.058	0.560	0.969	0.043	0.023	0.238	0.628	0.077	1.082	0.348	0.228
Percentage of responders - P14	Nonnormal	100 ± 0	86.2 ± 6.51	60 ± 16.32	3.161	0.052	0.577	0.265	0.016	0.072	0.000	0.990	0.050	0.009	0.991	0.051
Percentage of responders - P15	Nonnormai	100 ± 0	100 ± 0	70 ± 15.27	8.228	0.001	0.949	0.970	0.001	0.000	1.019	0.318	0.167	0.865	0.428	0.189
Percentage of responders - P16	-	100 ± 0	100 ± 0	100 ± 0	-	-	-	-	_	-	-	-	-	_	-	-
Percentage of responders -	Nonnormal	51.92 ± 1.67	47.41 ± 1.31	36.66 ± 2.83	7.944	0.001	0.995	0.286	0.000	0.002	0.466	0.498	0.056	0.144	0.866	0.104
average																
First day of two consecutive	Nonnormai	14.07 ± 0.26	14.41 ± 0.16	15.6 ± 0.33	12.867	0.000	0.941	0.070	0.000	0.000	0.058	0.811	0.102	0.358	0.701	0.071
Successes																
Oliff eveneties																
Cliff aversion		-		Dannar	M/T	M/T										
Repeated measures, sphericity violat	ea	F	p value	Power	VVIVS ⊟ot	KO KO	Het vs									
Dov offect		2.057	0.000	0.005	Tiet	NO	NO									
Day effect		3.957	0.000	0.995	-	-	-									
Day × genotype effect		0.796	0.702	0.580	-	_	-									
Day × gender effect		0.613	0.782	0.299	-	-	-									
$Day \times genotype \times gender effect$		1.266	0.209	0.835	-	-	-									
Genotype effect		1.355	0.269	0.276	-	-	-									
Gender effect		0.218	0.643	0.074	-	-	-									
Genotype $ imes$ gender		0.116	0.891	0.067	-	-	-									
											Gende	er effect		Gende	$r \times geno$	type
					-		_				-		-	effect		-
Multifactional ANCOVA		VV I	Het	KO	F	p value	Power	WI VS	WIVS	Het vs	F	p value	Power	F	p value	Power
Time to turn (accords) D2	Nonnormal	02.61 ± 0.77	04 44 ± 1 96	01 77 + 2 56	0 745	0.401	0 169	пег	κυ	ĸŬ	0 490	0.401	0 104	0.966	0 400	0 1 9 0
Time to turn (seconds) - P2	Nonnormal	23.01 ± 2.77	24.44 ± 1.80	21.77 ± 3.50	0.745	0.481	0.168	-	_	-	0.482	0.491	0.104	0.866	0.428	0.189
Time to turn (seconds) - P3	Nonnormal	15.76 ± 3.37	14.17 ± 2.06	14.7 ± 4.34	0.099	0.906	0.064	-	-	-	0.056	0.814	0.056	1.513	0.232	0.304
Time to turn (seconds) - P4	Nonnormal	8.61 ± 3	4.93 ± 1.35	7.6 ± 3.73	0.963	0.390	0.206	-	_	-	0.340	0.563	0.088	1.916	0.160	0.376
Time to turn (seconds) - P5	Nonnormal	6.84 ± 2.86	7.03 ± 1.69	8.4 ± 3.61	0.156	0.856	0.073	-	_	-	0.898	0.349	0.153	2.242	0.119	0.432
Time to turn (seconds) - P6	Nonnormal	11.15 ± 3.42	8.75 ± 2.07	9.6 ± 3.55	0.126	0.882	0.068	-	-	-	0.040	0.843	0.054	2.223	0.121	0.429
Time to turn (seconds) - P7	Nonnormal	14.38 ± 3.83	9.75 ± 2.21	10 ± 4.36	1.057	0.356	0.223	-	-	-	1.259	0.268	0.195	0.368	0.694	0.105
Time to turn (seconds) - P8	Nonnormal	12.61 ± 3.97	4.82 ± 1.34	6.55 ± 3.08	2.580	0.087	0.488		0.144	0.788	0.618	0.436	0.120	0.315	0.731	0.097
Time to turn (seconds) - P9	Nonnormal	10.69 ± 3.19	9.72 ± 2.18	3.8 ± 0.92	1.129	0.333	0.236	-	_	-	0.011	0.917	0.051	0.285	0.753	0.092
Time to turn (seconds) - P10	Nonnormal	13.46 ± 3.45	7.03 ± 1.62	5.6 ± 2.77	2.447	0.098	0.466	0.048	0.076	0.770	1.109	0.298	0.177	0.316	0.731	0.097
Time to turn (seconds) - P11	Nonnormal	9.3 ± 2.66	11.51 ± 2.38	9 ± 3.55	0.634	0.535	0.149	-	-	-	0.263	0.611	0.079	1.486	0.238	0.300
Time to turn (seconds) - P12	Nonnormal	8.61 ± 1.52	8.93 ± 1.67	5.3 ± 1.21	0.467	0.630	0.121	-	_	-	0.001	0.975	0.050	0.651	0.527	0.152
Time to turn (seconds) - P13	Nonnormal	5.46 ± 1.7	6.48 ± 1.42	5.3 ± 2.78	0.125	0.883	0.068	_	_	_	2.134	0.151	0.298	0.791	0.460	0.176
Time to turn (seconds) - P14	Nonnormal	5.76 ± 2.16	4.1 ± 0.67	4.3 ± 1.67	0.605	0.551	0.144	_	_	_	1.345	0.253	0.205	0.941	0.398	0.202
Number of falls	Nonnormal	1.07 ± 0.53	0.44 ± 0.11	0.6 ± 0.26	1.568	0.220	0.314	_	_	_	3.688	0.061	0.467	1.125	0.334	0.235
First day of two consecutive	Nonnormal	4.84 ± 0.29	4.75 ± 0.22	5.2 ± 0.55	0.546	0.583	0.134	_	_	_	2,726	0.106	0.365	2.174	0.126	0.421
successes (10-s cutoff)											0					
First day of two consecutive	Nonnormal	4.38 ± 0.33	4.06 ± 0.14	4.5 ± 0.45	1.370	0.265	0.279	_	_	_	0.037	0.849	0.054	1.044	0.361	0.221
successes (30-s cutoff)																
Time to turn (seconds) - mean	Nonnormal	11.25 ± 1.25	9.36 ± 0.65	8.5 ± 0.85	1.315	0.279	0.269	_	_	_	0.259	0.613	0.079	0.119	0.888	0.067
•																
				(C	ontinued	i)										

Ear twitch reflex Repeated measures, sphericity violat	ed	F	p value	Power	WT vs	WT vs	Het vs									
					Het	КО	ко									
Day effect		5 107	0.000	0 994	_	_	_									
Day enect		5.157	0.000	0.004												
Day $ imes$ genotype effect		0.866	0.581	0.502	-	-	-									
Day imes gender effect		0.830	0.547	0.325	-	-	-									
$Day \times genotype \times gender effect$		1.115	0.348	0.637	-	_	_									
Genotype effect		2 1/17	0 129	0.416	_	_	_									
Genotype ellect		2.147	0.129	0.410												
Gender effect		0.152	0.698	0.067	-	-	-									
Genotype $ imes$ gender		0.834	0.441	0.184	-	-	-									
											Gende	er effect		Gende	$r \times aence$	otvpe
														effect	5	11.
Multifactionial ANCOVA		\M/T	Het	KO	F		Dowor	W/T v/a	W/T v/a	Hat va	F		Dowor	5		Douvor
Multilactional ANCOVA		VVI	Het	KU	F	p value	Power	WI VS	WIVS	Het vs	F	p value	Power	F	p value	Power
								Het	KO	KO						
Percentage of responders - P7	Nonnormal	46.15 ± 14.39	17.24 ± 7.13	50 ± 16.66	2.610	0.085	0.493	0.076	0.870	0.073	0.347	0.559	0.089	0.888	0.419	0.193
Porcontago of responders P8	Nonnormal	20.76 + 12.22	690 ± 479	20 ± 15.27	2 2/0	0 109	0 440	_	_	_	0.090	0.766	0.060	0.924	0.441	0 1 9 /
Fercentage of responders - Po	Nonnormai	30.70 - 13.32	0.09 ± 4.70	30 - 15.27	2.340	0.100	0.449	-	_	-	0.069	0.700	0.000	0.034	0.441	0.104
Percentage of responders - P9	Nonnormal	46.15 ± 14.39	17.24 ± 7.13	10 ± 10	2.860	0.068	0.532	0.046	0.037	0.551	0.244	0.624	0.077	0.368	0.694	0.105
Percentage of responders - P10	Nonnormal	38.46 ± 14.04	24.13 ± 8.08	30 ± 15.27	0.394	0.677	0.110	-	-	-	3.054	0.088	0.401	1.829	0.173	0.361
Percentage of responders - P11	Nonnormal	53 84 + 14 39	62.06 + 9.16	70 + 15 27	0 461	0.633	0 121	_	_	_	0 143	0 707	0.066	2 804	0 071	0 524
Protocilitage of responderer 111	Normonia		02.00 - 0.10	F0 ± 10.27	0.401	0.000	0.121				0.140	0.101	0.000	0.070	0.071	0.024
Percentage of responders - P12	Nonnormai	46.15 ± 14.39	41.37 ± 9.3	50 ± 16.66	0.214	0.808	0.081	-	-	-	0.527	0.472	0.109	0.270	0.765	0.090
Percentage of responders - P13	Nonnormal	46.15 ± 14.39	48.27 ± 9.44	60 ± 16.32	0.064	0.938	0.059	-	-	-	1.507	0.226	0.225	0.890	0.418	0.194
Percentage of responders - P14	Nonnormal	61.53 ± 14.04	72.41 ± 8.44	80 ± 13.33	0.379	0.687	0.107	_	_	_	0.022	0.882	0.052	0.468	0.629	0.122
Dereentage of responders B15	Nennermel	100 + 0	06 55 + 2.44	00 + 10	0.407	0.610	0.106				0 5 6 0	0 465	0 114	0.150	0.100	0.417
Fercentage of responders - F15	Nonnormai	100 ± 0	90.00 ± 3.44	90 - 10	0.497	0.012	0.120	_	_	-	0.569	0.455	0.114	2.150	0.129	0.417
Percentage of responders - Average	Nonnormal	52.13 ± 5.39	42.91 ± 2.62	52.22 ± 3.33	2.147	0.129	0.416	-	-	-	0.152	0.698	0.067	0.834	0.441	0.184
First day of two consecutive successes	Nonnormal	9.23 ± 0.63	10.13 ± 0.36	8.8 ± 0.61	1.851	0.169	0.365	_	_	_	0.137	0.713	0.065	1.106	0.340	0.232
,																
Rooting reflex																
Repeated measures, sphericity violated		F	p value	Power	WT vs	WT vs	Het vs									
					Het	KO	KO									
Davi affa at		0.010	0.000	0.000	1101	110	110									
Day effect		8.013	0.000	0.999	-	-	_									
Day $ imes$ genotype effect		1.657	0.107	0.735	-	-	-									
$Dav \times gender effect$		0 847	0.503	0 276	_	_	_									
Dev X genetize X genetic effect		1 0 47	0.010	0.005												
Day × genotype × gender enect		1.347	0.219	0.625	-	-	-									
Genotype effect		1.689	0.196	0.336	-	-	-									
Gender effect		4.277	0.045	0.525	_	_	_									
Ganatura × gandar		0.283	0 755	0.002	_	_	_									
Genotype × gender		0.203	0.755	0.092	_	-	_									
											Gende	er effect		Gende	r imes gence	otype
														effect		
Multifactionial ANCOVA		WT	Het	KO	F	n value	Power	WT vs	WT vs	Het vs	F	n value	Power	F	n value	Power
			1101	110	'	p vuido	1 0 10 01	Lot U	KO KO	KO KO	'	p value	1 0 1001	'	p vuide	1 00001
								Het	NO	NO						
Percentage of responders - P2	Nonnormal	23.07 ± 12.16	6.89 ± 4.78	20 ± 13.33	1.259	0.294	0.259	-	-	-	2.018	0.163	0.285	2.605	0.085	0.492
Percentage of responders - P3	Nonnormal	38.46 ± 14.04	34.48 ± 8.98	20 ± 13.33	0.643	0.531	0.151	_	-	-	1.878	0.177	0.268	0.771	0.469	0.173
Percentage of responders - P/	Nonnormal	46 15 + 14 39	58.62 + 9.3	50 + 16 66	0 202	0 7/8	0.003	_	_	_	0 701	0 /07	0 130	2 220	0 121	0 / 20
Fercentage of responders - F4	Nonnonnai	40.15 - 14.35	JU.02 - 9.3	30 - 10.00	0.292	0.740	0.095				0.701	0.407	0.150	2.220	0.121	0.429
Percentage of responders - P5	Nonnormal	61.53 ± 14.04	82.75 ± 7.13	60 ± 16.32	1.489	0.237	0.301	-	-	-	3.072	0.087	0.403	0.308	0.736	0.096
Percentage of responders - P6	Nonnormal	92.3 ± 7.69	68.96 ± 8.74	70 ± 15.27	1.499	0.234	0.302	_	_	-	3.120	0.084	0.408	0.395	0.676	0.110
Percentage of responders - P7	Nonnormal	8/61 + 10/1	68 96 + 8 74	90 + 10	1 161	0 323	0 2/2	_	_	_	0 050	0 333	0 160	1 505	0.21/	0 320
	Nonnonnai	04.01 - 10.41	00.30 - 0.74	30 - 10	1.101	0.020	0.242				0.000	0.000	0.100	1.555	0.214	0.020
Percentage of responders - P8	Nonnormal	84.61 ± 10.41	58.62 ± 9.3	40 ± 16.32	2.196	0.123	0.425	-	-	-	0.618	0.436	0.120	0.193	0.826	0.078
Percentage of responders - P9	Nonnormal	76.92 ± 12.16	31.03 ± 8.74	40 ± 16.32	4.400	0.018	0.730	0.005	0.055	0.687	2.183	0.147	0.304	0.616	0.545	0.146
Percentage of responders - P10	Nonnormal	38 46 + 14 04	1379 ± 651	20 + 13.33	1 743	0 187	0.346	_	_	_	0.010	0 919	0.051	1 945	0 155	0.381
Protochago of respondence in the	N	00		10 1 10	0.040	0.144	0.0.10				0.010	0.440	0.001	0.050	0.447	0.001
Percentage of responders - P11	Nonnormai	0 ± 0	0 ± 0	10 ± 10	2.310	0.111	0.444	-	-	-	2.619	0.113	0.353	2.258	0.117	0.435
Percentage of responders - P12	-	0 ± 0	0 ± 0	0 ± 0	-	-	-	-	-	-	-	-	-	-	-	-
Day of first observation	Nonnormal	4.15 ± 0.45	4.31 ± 0.28	5 ± 0.66	0.843	0.437	0.185	_	_	_	1.546	0.220	0.229	0.757	0.475	0.170
Day of last share sting	Nemenal	0.01 + 0.50	0.50 + 0.0		1 500	0.014	0.000				1 400	0.000	0.015	1 000	0.011	0.040
Day of last observation	Nonnormai	9.61 ± 0.56	8.58 ± 0.3	9.1 ± 0.48	1.599	0.214	0.320	-	-	_	1.428	0.239	0.215	1.200	0.311	0.249
Grasping reflex																
Repeated measures sphericity assumed	4	F	n value	Power	WT vs	WT vs	Het vs									
			praido		Lat .	KO KO	KO KO									
					i let	NO	NO									
Day effect		28.265	0.000	1.000	-	-	-									
Day \times genotype effect		1.038	0.415	0.591	_	_	_									
Day X gender effect		0.534	0.850	0 208	_	_	_									
		1.050	0.000	0.200												
Day × genotype × gender effect		1.356	0.150	0.725	-	-	-									
Genotype effect		3.923	0.027	0.677	0.304	0.116	0.008									
Gender effect		0.052	0.821	0.056	_	_	_									
		0.002	0.021	0.000												
Genotype × gender		0.320	0.728	0.098	-	-	-									
											Gende	er effect		Gende	r imes gence	otype
														effect		
Multifactionial ANCOVA		WT	Het	КO	F	n value	Power	WT vs	WT vs	Het vs	F	n value	Power	F	n value	Power
		**1	Het	NO	1	p value	1 0 100	11-4	KO KO	KO	'	p value	1 0 100	'	p value	1 00001
								Het	ĸυ	ΝU						
Grasping score - P5	Nonnormal	1.3 ± 0.23	1.34 ± 0.16	1.6 ± 0.16	0.197	0.822	0.079	-	-	-	0.877	0.354	0.150	2.268	0.115	0.437
Grasping score - P6	Nonnormal	2.46 ± 0.36	2.93 ± 0.21	2.8 ± 0.38	0.580	0.564	0.140	_	_	_	0.184	0.670	0.070	0.595	0.556	0.143
	Norse	0.00 - 0.00	0.04 - 0.17	0.0 - 0.00	0.000	0.110	0.400				0.050	0.050	0.440	1 070	0.000	0.000
Grasping score - P/	ivorinormal	∠.9∠ ± 0.28	3.34 ± 0.17	∠.9 ± 0.23	2.260	0.116	0.436	-	-	-	U.858	0.359	u.148	1.670	0.200	0.333
Grasping score - P8	Nonnormal	3.38 ± 0.28	3.41 ± 0.15	3.2 ± 0.24	0.316	0.731	0.097	-	-	-	1.283	0.264	0.198	1.183	0.316	0.246
Grasping score - P9	Nonnormal	3.76 ± 0.3	3.79 ± 0.09	3.8 ± 0.41	0.035	0.966	0.055	_	_	_	0.336	0.565	0.088	1.031	0.365	0.218
Crossing coord D10	Norse	4 00 - 0.04	A GE : 0.10	2.0 - 0.77	0 100	0.404	0.400				0.005	0.050	0.054	1 700	0.400	0.050
Grasping score - P10	ivorinormal	4.38 ± 0.24	4.00 ± 0.19	3.9 ± 0.37	2.102	0.134	0.409	-	-	-	0.035	0.852	0.054	1.782	0.180	0.353
Grasping score - P11	Nonnormal	5.3 ± 0.23	5.41 ± 0.15	4.9 ± 0.31	1.591	0.215	0.319	-	-	-	0.016	0.899	0.052	1.314	0.279	0.269
Grasping score - P12	Nonnormal	5.3 ± 0.23	5.37 ± 0.15	5 ± 0.29	0.477	0.624	0.123	_	_	_	0.028	0.868	0.053	0.393	0.678	0.109
Creaning agains D10	Nonnerit	E 60 ± 0.17	E 06 ± 0.00	E 0 ± 0.04	0 700	0.000	0.600	0.200	0.000	0.000	1 000	0.055	0.004	0.007	0.750	0.000
Grasping score - P13	Normal	5.09 ± 0.17	5.80 ± 0.09	0.2 ± 0.24	3.189	0.030	0.000	0.399	0.092	0.009	1.328	U.255	0.204	0.287	0.752	0.093
Grasping score - P14	Nonnormal	5.69 ± 0.13	5.68 ± 0.12	4.6 ± 0.26	10.311	0.000	0.982	0.945	0.000	0.000	0.034	0.855	0.054	0.334	0.718	0.100
Grasping score - Average	Nonnormal	4.02 ± 0.13	4.18 ± 0.07	3.79 ± 0.13	3.923	0.027	0.677	0.304	0.116	0.008	0.052	0.821	0.056	0.320	0.728	0.098
First day of two conceptive	Nonnerm-	0.29 ± 0.42	9 75 + 0.00	10.0 + 0.27	10.060	0.000	0.070	0.000	0.005	0.000	0 1 2 1	0.710	0.065	1 210	0.070	0.070
r inst uay of two consecutive	Normonnal	0.00 ± 0.43	0.10 - 0.29	10.3 ± 0.37	10.008	0.000	0.919	0.233	0.005	0.000	0.131	0.719	0.000	1.310	0.210	0.270
successes (score 4)																
				(Con	tinued)											

Surface righting																
Repeated measures, sphericity viola	ated	F	p value	Power	WT vs	WT vs	Het vs									
			<i>p</i>		Het	KO	KO									
Day effect		21 337	0.000	1 000	_	_	_									
Day effect		21.007	0.000	0.500												
Day × genotype effect		0.988	0.460	0.563	-	-	_									
Day × gender effect		0.921	0.478	0.356	-	-	-									
$Day \times genotype \times gender effect$		0.688	0.758	0.390	-	-	-									
Genotype effect		1.593	0.215	0.319	-	-	-									
Gender effect		0.857	0.360	0.148	_	_	_									
Genotype \times gender		0.865	0.428	0.189	_	_	_									
											Gende	er effect		Gende	r × aeno	type
											Gioriai			effect	i / goilo	, jpo
Multifactionial ANCOVA		WT	Het	кO	F	n value	Power	WT vs	WT vs	Het vs	F	n value	Power	F	n value	Power
			not	NO	'	p value	1 0 1001	Hot	KU 10	KO KO	'	p value	1 0 1 0 1	,	p vulue	1 00001
Time to turn (casendo) D2	Nennermel	10.15 + 0.07	10.02 + 2.00	24.2 + 2.64	0 022	0.401	0.001	net	NO	NO	0 202	0 5 4 0	0.002	1 161	0 202	0.040
Time to turn (seconds) - F2	Nonnonnai	10.13 ± 2.97	19.93 - 2.09	24.2 - 2.04	0.933	0.401	0.201	_	_	-	0.362	0.540	0.093	1.101	0.323	0.242
Time to turn (seconds) - P3	Nonnormal	20.76 ± 3.19	18.13 ± 1.98	19.7 ± 3.05	0.398	0.674	0.110	-	-	-	0.020	0.887	0.052	1.146	0.327	0.239
Time to turn (seconds) - P4	Nonnormal	23.61 ± 2.26	18.03 ± 2.12	22.8 ± 3.71	1.506	0.233	0.304	-	-	-	0.078	0.781	0.059	1.392	0.259	0.283
Time to turn (seconds) - P5	Nonnormal	18.61 ± 3.27	16.82 ± 2.19	25.5 ± 2.29	2.431	0.100	0.464	-	-	-	0.284	0.597	0.082	0.129	0.879	0.069
Time to turn (seconds) - P6	Nonnormal	18.69 ± 3.26	14.2 ± 2.28	18.8 ± 3.14	1.242	0.299	0.256	-	-	-	0.163	0.688	0.068	0.079	0.925	0.061
Time to turn (seconds) - P7	Nonnormal	10.38 ± 3.18	8.37 ± 1.72	9 ± 3.16	0.155	0.857	0.072	_	_	_	4.992	0.031	0.589	0.741	0.482	0.168
Time to turn (seconds) - P8	Nonnormal	5 + 1.91	534 + 127	45 ± 143	0.073	0.930	0.060	_	_	_	3 064	0.087	0 402	0.023	0.978	0.053
Time to turn (seconds) - P9	Nonnormal	3 ± 0.62	4.24 ± 1.09	33 ± 0.83	0.307	0.675	0.110	_	_	_	0.371	0.546	0.002	0.020	0.664	0.113
Time to turn (seconds) - 1 3	Nerrererel	10.02	9.24 1.03	1.5 1 0.00	0.001	0.075	0.110				0.071	0.040	0.052	0.410	0.004	0.110
Time to turn (seconds) - PTU	Nonnormal	1.3 ± 0.13	2.06 ± 0.43	1.5 ± 0.16	0.901	0.414	0.196	-	_	-	0.002	0.966	0.050	0.059	0.943	0.058
Time to turn (seconds) - P11	Nonnormal	1 ± 0	1.27 ± 0.15	1.3 ± 0.15	1.320	0.277	0.270	-	-	-	0.034	0.854	0.054	0.314	0.732	0.097
Time to turn (seconds) - P12	Nonnormal	1 ± 0	1.03 ± 0.03	1 ± 0	0.398	0.674	0.110	-	-	-	0.331	0.568	0.087	0.196	0.823	0.079
Time to turn (seconds) - P13	-	1 ± 0	1 ± 0	1 ± 0	-	-	-	-	-	-	—	-	-	-	-	-
Time to turn (seconds) - Mean	Normal	10.21 ± 1.03	9.2 ± 0.59	11.05 ± 0.79	1.593	0.215	0.319	_	_	-	0.857	0.360	0.148	0.865	0.428	0.189
Time to turn (days) - first day of two	Nonnormal	9.61 ± 0.26	9.44 ± 0.34	9.7 ± 0.36	0.139	0.871	0.070	_	_	_	3.774	0.058	0.476	1.174	0.319	0.244
consecutive successes																
Nogativo gostavia																
Negative geotaxis																
Repeated measures, sphericity viola	ated	F	p value	Power	WT vs	WT vs	Het vs									
					Het	KO	KO									
Day effect		12.128	0.000	1.000	-	-	-									
$Day \times genotype$ effect		1.526	0.086	0.895	_	-	_									
$Dav \times gender effect$		1.036	0.409	0.488	_	_	_									
Day X genotype X gender effect		1.386	0 144	0.855	_	_	_									
		0.110	0.144	0.000												
Genotype enect		2.110	0.133	0.410	_	-	-									
Gender effect		0.493	0.486	0.106	-	-	-									
Genotype $ imes$ gender		0.090	0.914	0.063	-	-	-									
											Conde	or offoot		0		
											Genue	eneci		Gende	r × geno	type
											Genue	enect		effect	r × geno	type
Multifactiorial ANCOVA		WT	Het	ко	F	p value	Power	WT vs	WT vs	Het vs	F	<i>p</i> value	Power	effect F	r × geno p value	type Power
Multifactiorial ANCOVA		WT	Het	ко	F	p value	Power	WT vs Het	WT vs KO	Het vs KO	F	p value	Power	effect F	r × geno p value	type Power
Multifactiorial ANCOVA Time to turn (seconds) - P2	Nonnormal	WT -9.66 ± 5.21	Het	ко -11.6 ± 4.73	F 1.821	<i>p</i> value 0.174	Power 0.360	WT vs Het -	WT vs KO -	Het vs KO –	F 3.882	<i>p</i> value 0.055	Power 0.487	effect F	p value	Power 0.227
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3	Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99	Het -18.82 ± 2.48 -15.58 ± 2.88	KO -11.6 ± 4.73 -11.8 ± 5.61	F 1.821 0.847	<i>p</i> value 0.174 0.436	Power 0.360 0.186	WT vs Het –	WT vs KO –	Het vs KO –	F 3.882 0.443	<i>p</i> value 0.055 0.509	Power 0.487 0.100	effect <i>F</i> 1.077 0.364	<i>p</i> value 0.350 0.697	Power 0.227 0.105
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4	Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23	Het -18.82 ± 2.48 -15.58 ± 2.88 -10.82 + 1.86	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51	F 1.821 0.847 1.537	<i>p</i> value 0.174 0.436 0.226	Power 0.360 0.186	WT vs Het - -	WT vs KO - -	Het vs KO 	Gende F 3.882 0.443 0.656	<i>p</i> value 0.055 0.509	Power 0.487 0.100	effect <i>F</i> 1.077 0.364	<i>p</i> value 0.350 0.697	Power 0.227 0.105
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4	Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23	Het -18.82 ± 2.48 -15.58 ± 2.88 -10.82 ± 1.86	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51	F 1.821 0.847 1.537	<i>p</i> value 0.174 0.436 0.226	Power 0.360 0.186 0.309	WT vs Het - -	WT vs KO - -	Het vs KO 	Gende F 3.882 0.443 0.656	<i>p</i> value 0.055 0.509 0.422	Power 0.487 0.100 0.124	effect <i>F</i> 1.077 0.364 4.540	<pre>p value 0.350 0.697 0.016 0.471</pre>	Power 0.227 0.105 0.744
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5	Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67	Het -18.82 ± 2.48 -15.58 ± 2.88 -10.82 ± 1.86 -4.2 ± 3.15	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3	F 1.821 0.847 1.537 4.418	<i>p</i> value 0.174 0.436 0.226 0.018	Power 0.360 0.186 0.309 0.732	WT vs Het - - 0.006	WT vs KO - 0.033	Het vs KO 0.936	F 3.882 0.443 0.656 0.399	<i>p</i> value 0.055 0.509 0.422 0.531	Power 0.487 0.100 0.124 0.095	effect <i>F</i> 1.077 0.364 4.540 0.766	<pre>p value 0.350 0.697 0.016 0.471</pre>	Power 0.227 0.105 0.744 0.172
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67 6.84 ± 4.38	Het -18.82 ± 2.48 -15.58 ± 2.88 -10.82 ± 1.86 -4.2 ± 3.15 3.2 ± 2.97	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87	F 1.821 0.847 1.537 4.418 0.517	<i>p</i> value 0.174 0.436 0.226 0.018 0.600	Power 0.360 0.186 0.309 0.732 0.130	WT vs Het - - 0.006	WT vs KO - - 0.033 -	Het vs KO 0.936 	F 3.882 0.443 0.656 0.399 0.010	<i>p</i> value 0.055 0.509 0.422 0.531 0.920	Power 0.487 0.100 0.124 0.095 0.051	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905	<pre>p value 0.350 0.697 0.016 0.471 0.412</pre>	Power 0.227 0.105 0.744 0.172 0.196
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2	Het -18.82 ± 2.48 -15.58 ± 2.88 -10.82 ± 1.86 -4.2 ± 3.15 3.2 ± 2.97 6.31 ± 3.13	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82	F 1.821 0.847 1.537 4.418 0.517 0.281	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756	Power 0.360 0.186 0.309 0.732 0.130 0.092	WT vs Het - - 0.006 - -	WT vs KO - - 0.033 - -	Het vs KO 0.936 	<i>F</i> 3.882 0.443 0.656 0.399 0.010 0.699	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408	Power 0.487 0.100 0.124 0.095 0.051 0.129	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013	<pre>p value 0.350 0.697 0.016 0.471 0.412 0.987</pre>	Power 0.227 0.105 0.744 0.172 0.196 0.052
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P8	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.2	Het -18.82 ± 2.48 -15.58 ± 2.88 -10.82 ± 1.86 -4.2 ± 3.15 3.2 ± 2.97 6.31 ± 3.13 11.44 ± 2.71	KO -11.6 \pm 4.73 -11.8 \pm 5.61 -15.2 \pm 3.51 -2.2 \pm 5.3 8.5 \pm 3.87 12.4 \pm 5.82 6.8 \pm 6.1	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.720	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100	WT vs Het 0.006 	WT vs KO 0.033 	Het vs KO 0.936 	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862	<pre>p value 0.350 0.697 0.016 0.471 0.412 0.987 0.429</pre>	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P8 Time to turn (seconds) - P9	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.42 12.76 \pm 3.75	Het -18.82 ± 2.48 -15.58 ± 2.88 -10.82 ± 1.86 -4.2 ± 3.15 3.2 ± 2.97 6.31 ± 3.13 11.44 ± 2.71 12.17 ± 2.44	KO -11.6 \pm 4.73 -11.8 \pm 5.61 -15.2 \pm 3.51 -2.2 \pm 5.3 8.5 \pm 3.87 12.4 \pm 5.82 6.8 \pm 6.1 23.1 \pm 1.6	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.720 0.030	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660	WT vs Het - - 0.006 - - - 0.828	WT vs KO - - 0.033 - - - - 0.035	Het vs KO 0.936 - 0.010	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P10	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.720 0.030 0.078	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660 0.508	WT vs Het - - 0.006 - - - 0.828 0.959	WT vs KO - 0.033 - - - 0.035 0.055	Het vs KO 0.936 0.010 0.032	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235	p value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053 0.310	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497	<pre>r × geno p value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612</pre>	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44	Het -18.82 ± 2.48 -15.58 ± 2.88 -10.82 ± 1.86 -4.2 ± 3.15 3.2 ± 2.97 6.31 ± 3.13 11.44 ± 2.71 12.17 ± 2.44 10.03 ± 2.29 13.62 ± 2.17	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.720 0.030 0.078 0.564	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660 0.508 0.140	WT vs Het - - 0.006 - - - 0.828 0.959	WT vs KO 0.033 0.035 0.055	Het vs KO 0.010 0.032	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444	p value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053 0.310 0.334	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258	r × geno p value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612 0.020	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.715
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P11 Time to turn (seconds) - P11	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67 6.84 ± 4.38 6.3 ± 4.2 8.3 ± 4.42 12.76 ± 3.75 9.84 ± 2.94 10.92 ± 3.44	Het -18.82 ± 2.48 -15.58 ± 2.88 -10.82 ± 1.86 -4.2 ± 3.15 3.2 ± 2.97 6.31 ± 3.13 11.44 ± 2.71 12.17 ± 2.44 10.03 ± 2.29 13.62 ± 2.17 15.64 ± 1.74	KO -11.6 \pm 4.73 -11.8 \pm 5.61 -15.2 \pm 3.51 -2.2 \pm 5.3 8.5 \pm 3.87 12.4 \pm 5.82 6.8 \pm 6.1 23.1 \pm 1.6 19 \pm 3.22 15 \pm 3.88 22 2 \pm 1.22	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.720 0.030 0.078 0.078 0.564	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660 0.508 0.140	WT vs Het - - 0.006 - - 0.828 0.959 - 0.270	WT vs KO 0.033 0.035 0.014	Het vs KO – 0.936 – 0.010 0.032 – 0.072	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.235	p value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.808 0.726 0.808 0.142 0.142	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053 0.310 0.334 0.072	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.227	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612 0.020	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.715
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P8 Time to turn (seconds) - P10 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67 6.84 ± 4.38 6.3 ± 4.42 12.76 ± 3.75 9.84 ± 2.94 10.92 ± 3.44 11.92 ± 2.92	Het -18.82 ± 2.48 -15.58 ± 2.88 -10.82 ± 1.86 -4.2 ± 3.15 3.2 ± 2.97 6.31 ± 3.13 11.44 ± 2.71 12.17 ± 2.44 10.03 ± 2.29 13.62 ± 2.17 15.96 ± 1.74	KO -11.6 ± 4.73 -11.8 ± 5.61 -5.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 22.4 ± 1.32 12.4 ± 3.22 13.2 ± 3.22 15 ± 3.88 22.2 ± 1.33 23.4 ± 3.22 14.4 ± 0.22 $14.4 \pm 0.$	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.269	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.720 0.030 0.078 0.564 0.047	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660 0.508 0.140 0.592	WT vs Het - 0.006 - 0.828 0.959 - 0.379	WT vs KO - - 0.033 - 0.035 0.055 - 0.014 2.217	Het vs KO - - 0.936 - - - 0.010 0.032 - 0.073 0.073	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.205	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653	Power 0.487 0.100 0.025 0.051 0.129 0.064 0.053 0.310 0.334 0.073 0.201	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.238 2.337 4.258	<i>p</i> value <i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612 0.2020 0.109	Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.715 0.448
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P13	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67 6.84 ± 4.38 6.3 ± 4.42 12.76 ± 3.75 9.84 ± 2.94 10.92 ± 3.44 11.92 ± 2.92 15.23 ± 3.04	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.269 3.112	<i>p</i> value 0.174 0.436 0.226 0.018 0.0756 0.720 0.030 0.078 0.078 0.0564 0.047 0.054	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660 0.508 0.140 0.592 0.570	WT vs Het - - 0.006 - - 0.828 0.959 - 0.379 0.219	WT vs KO – – 0.033 – – 0.035 0.055 – 0.014 0.017	Het vs KO – 0.936 – – 0.010 0.032 – 0.073 0.091	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.205 1.431	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.880 0.142 0.125 0.653 0.238	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053 0.310 0.334 0.073 0.216	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.112	<i>p</i> value <i>p</i> value 0.350 0.697 0.016 0.412 0.987 0.429 0.307 0.612 0.020 0.109 0.338	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.715 0.448 0.233
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P13	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.269 3.112 0.135	<i>p</i> value 0.174 0.436 0.226 0.018 0.756 0.756 0.720 0.030 0.564 0.047 0.054 0.874	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660 0.508 0.140 0.592 0.570 0.070	WT vs Het - 0.006 - - 0.828 0.959 - 0.379 0.219 -	WT vs KO – – 0.033 – – 0.035 0.055 – 0.014 0.017 –	Het vs KO 0.936 0.010 0.032 0.073 0.091 	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.205 1.431 2.267	p value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053 0.310 0.334 0.073 0.216 0.313	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.112 1.471	<i>p</i> value <i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.887 0.307 0.612 0.020 0.109 0.338 0.241	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.715 0.448 0.233 0.297
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P8 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67 6.84 ± 4.38 6.3 ± 4.42 12.76 ± 3.75 9.84 ± 2.94 10.92 ± 3.44 11.92 ± 2.92 15.23 ± 3.04 22.69 ± 1.43 6.99 ± 1.25	Het $\begin{array}{c} -18.82 \pm 2.48 \\ -15.58 \pm 2.88 \\ -10.82 \pm 1.86 \\ -4.2 \pm 3.15 \\ 3.2 \pm 2.97 \\ 6.31 \pm 3.13 \\ 11.44 \pm 2.71 \\ 12.17 \pm 2.44 \\ 10.03 \pm 2.29 \\ 13.62 \pm 2.17 \\ 15.96 \pm 1.74 \\ 18.58 \pm 1.5 \\ 21.82 \pm 1.17 \\ 4.9 \pm 1.06 \end{array}$	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.269 3.212 0.135 2.110	<i>p</i> value 0.174 0.436 0.26 0.018 0.600 0.756 0.720 0.030 0.078 0.564 0.047 0.054 0.874 0.133	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660 0.508 0.140 0.592 0.570 0.570 0.070 0.410	WT vs Het - - 0.006 - 0.828 0.959 - 0.379 0.219 - -	WT vs KO 0.033 0.035 0.0155 0.014 0.017 	Het vs KO – 0.936 – - 0.010 0.032 – 0.073 0.091 –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.205 1.431 2.267 0.493	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053 0.310 0.334 0.073 0.216 0.313 0.216	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.112 1.471 0.090	r × geno p value 0.350 0.697 0.016 0.471 0.471 0.472 0.987 0.429 0.307 0.612 0.020 0.109 0.338 0.241 0.914	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.715 0.448 0.233 0.297 0.063
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P6 Time to turn (seconds) - P6 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nornnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.269 3.112 0.135 2.110 1.527	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.720 0.030 0.078 0.564 0.047 0.054 0.874 0.133 0.228 	Power 0.360 0.186 0.309 0.732 0.100 0.092 0.100 0.660 0.508 0.140 0.592 0.570 0.070 0.410 0.307	WT vs Het - 0.006 - - 0.828 0.959 - 0.379 0.219 - - -	WT vs KO - - 0.033 - - 0.035 0.055 - 0.014 0.017 - - -	Het vs KO – 0.936 – 0.010 0.032 – 0.073 0.091 – –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.203 1.431 2.267 0.493 0.192	p value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.142 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053 0.310 0.330 0.216 0.313 0.216 0.313 0.106	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612 0.612 0.020 0.109 0.338 0.241 0.914 0.737	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.715 0.448 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67 6.84 ± 4.38 6.3 ± 4.2 12.76 ± 3.75 9.84 ± 2.94 10.92 ± 3.44 11.92 ± 2.92 15.23 ± 3.04 22.69 ± 1.43 6.99 ± 1.25 9 ± 0.83	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45	F 1.821 0.847 1.537 4.418 0.517 0.281 3.787 2.707 0.580 3.269 3.112 0.135 2.110 1.527	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.720 0.030 0.078 0.564 0.047 0.054 0.874 0.133 0.228 	Power 0.360 0.186 0.309 0.732 0.100 0.660 0.508 0.140 0.592 0.570 0.070 0.410 0.307	WT vs Het - - 0.0006 - - - 0.828 0.959 - 0.379 0.219 - - -	WT vs KO 0.033 0.055 0.014 0.017 	Het vs KO – 0.936 – 0.010 0.032 – 0.073 0.091 – –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.205 1.431 2.267 0.493 0.192	p value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.055 0.051 0.129 0.064 0.053 0.310 0.334 0.073 0.216 0.313 0.106 0.071	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.3016 0.612 0.020 0.109 0.338 0.241 0.914 0.737	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.251 0.126 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 15.23 \pm 3.04 15.24 \pm 3.05 15.25 \pm 3.04 15.25 \pm 3	Het $\begin{array}{c} -18.82 \pm 2.48 \\ -15.58 \pm 2.88 \\ -10.82 \pm 1.86 \\ -4.2 \pm 3.15 \\ 3.2 \pm 2.97 \\ 6.31 \pm 3.13 \\ 11.44 \pm 2.71 \\ 12.17 \pm 2.44 \\ 10.03 \pm 2.29 \\ 13.62 \pm 2.17 \\ 15.96 \pm 1.74 \\ 18.58 \pm 1.5 \\ 21.82 \pm 1.17 \\ 4.9 \pm 1.06 \\ 10.31 \pm 0.48 \end{array}$	KO -11.6 ± 4.73 -11.8 ± 5.61 -5.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45	F 1.821 0.847 1.537 0.281 0.331 3.787 2.707 0.580 3.269 3.112 0.135 2.110 1.527	 <i>ρ</i> value 0.174 0.436 0.226 0.018 0.600 0.720 0.030 0.078 0.564 0.054 0.057 0.874 0.133 0.228 	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660 0.508 0.140 0.592 0.570 0.570 0.070 0.410 0.307	WT vs Het - 0.006 - - 0.828 0.959 - 0.379 0.219 - - - - -	WT vs KO - - 0.033 - - 0.035 0.035 - 0.014 0.017 - - - -	Het vs KO – 0.936 – 0.010 0.032 – 0.073 0.091 – –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.205 1.431 2.267 0.493 0.192	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.488 0.726 0.880 0.142 0.125 0.653 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053 0.310 0.334 0.073 0.216 0.313 0.216 0.313 0.216	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612 0.020 0.109 0.338 0.241 0.737	Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.715 0.448 0.233 0.297 0.063 0.297
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67 6.84 ± 4.38 6.3 ± 4.2 12.76 ± 3.75 9.84 ± 2.94 10.92 ± 3.44 11.92 ± 2.92 15.23 ± 3.04 22.69 ± 1.43 6.99 ± 1.25 9 ± 0.83	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.269 3.112 0.135 2.110 1.527	<i>p</i> value 0.174 0.436 0.226 0.018 0.756 0.720 0.030 0.078 0.564 0.874 0.054 0.874 0.133 0.228	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660 0.508 0.140 0.592 0.570 0.070 0.410 0.307	WT vs Het - - 0.0006 - - 0.828 0.959 - 0.379 0.219 - - -	WT vs KO - 0.033 - 0.035 0.055 - 0.014 0.017 - - -	Het vs KO – - 0.936 – - 0.010 0.032 – 0.073 0.091 – – - - - - - - - - - - - - - - - - -	F 3.882 0.443 0.656 0.399 0.100 0.699 0.124 0.023 2.235 2.444 0.205 1.431 1.2267 0.493 0.192	p value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.095 0.051 0.129 0.064 0.053 0.310 0.334 0.073 0.216 0.313 0.106 0.071	effect <i>F</i> 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.487 0.429 0.307 0.612 0.020 0.109 0.338 0.241 0.914 0.737	type Power 0.227 0.105 0.744 0.196 0.052 0.189 0.251 0.126 0.715 0.448 0.233 0.297 0.063 0.297
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P9 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity viola	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 1.22 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i>	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 p value	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power	F 1.821 0.847 1.537 4.418 0.517 0.281 0.381 3.787 2.707 0.580 3.269 3.112 0.135 2.110 1.527 WT vs	<i>p</i> value 0.174 0.436 0.226 0.018 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.726 0.720 0.726 0.720 0.726 0.720 0.726 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.756 0.756 0.756 0.720 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.054 0.054 0.528 0.528 0.728 0.554 0.528 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.660 0.508 0.140 0.592 0.570 0.410 0.307 Het vs	WT vs Het - 0.006 - - 0.828 0.959 - 0.379 0.219 - - -	WT vs KO - - 0.033 - 0.035 0.055 - 0.014 0.017 - - -	Het vs KO – – 0.936 – – 0.010 0.032 – 0.073 0.091 – – –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.205 1.431 2.267 0.493 0.192	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053 0.310 0.334 0.73 0.216 0.313 0.106 0.071	effect F 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.9307 0.612 0.020 0.109 0.338 0.241 0.914	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.715 0.448 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P6 Time to turn (seconds) - P6 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity viola	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 F	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 15.96 \pm 1.74 15.82 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value	KO -11.6 ± 4.73 -11.8 ± 5.61 -5.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 12.4 ± 5.82 12.4 ± 5.82 12.5 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.269 3.112 0.135 2.110 1.527 WT vs Het	 <i>ρ</i> value 0.174 0.436 0.226 0.018 0.600 0.720 0.030 0.078 0.564 0.054 0.874 0.133 0.228 WT vs KO 	Power 0.360 0.186 0.309 0.732 0.130 0.600 0.508 0.140 0.592 0.570 0.070 0.410 0.307 Het vs KO	WT vs Het - - 0.006 - - 0.828 0.959 - 0.379 0.219 - -	WT vs KO – – 0.033 – 0.035 0.055 – 0.014 0.017 – –	Het vs KO – – 0.936 – – 0.010 0.032 – 0.073 0.091 – –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.205 1.431 2.267 0.493 0.192	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.095 0.061 0.129 0.064 0.053 0.310 0.334 0.216 0.313 0.216 0.313	effect F 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.937 0.429 0.307 0.612 0.020 0.1338 0.241 0.737	type Power 0.227 0.105 0.744 0.172 0.196 0.251 0.126 0.715 0.448 0.237 0.237 0.063 0.297
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity viola	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.269 3.112 0.135 2.110 1.527 WT vs Het -	<i>p</i> value 0.174 0.436 0.226 0.018 0.756 0.720 0.030 0.078 0.564 0.874 0.054 0.874 0.133 0.228 WT vs KO	Power 0.360 0.186 0.309 0.732 0.100 0.660 0.508 0.508 0.508 0.508 0.508 0.509 0.570 0.070 0.070 0.307 Het vs KO	WT vs Het - - 0.006 - - 0.828 0.959 - 0.379 0.219 - - -	WT vs KO - - 0.033 - - 0.035 0.055 - 0.014 0.017 - -	Het vs KO – - 0.936 – - 0.010 0.032 – 0.073 0.091 – – -	F 3.882 0.443 0.656 0.399 0.010 0.659 0.023 2.235 2.444 0.205 1.431 2.267 0.493 0.192	p value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.125 0.653 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.095 0.051 0.310 0.334 0.053 0.310 0.313 0.216 0.313 0.216	effect F 1.077 0.364 4.540 0.766 0.905 0.013 0.862 2.337 1.112 1.215 0.497 1.215 0.497 1.215 0.497 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.487 0.487 0.429 0.307 0.612 0.020 0.109 0.338 0.241 0.737	type Power 0.227 0.105 0.744 0.172 0.196 0.251 0.126 0.715 0.448 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P9 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity viola Day effect Day × genotype effect	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.28 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 21.92 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.001	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986	F 1.821 0.847 1.537 4.418 0.517 0.281 3.787 2.707 0.580 0.331 3.787 2.707 0.580 0.135 2.110 1.527 WT vs Het - -	<i>p</i> value 0.174 0.436 0.226 0.018 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.726 0.720 0.726 0.720 0.726 0.720 0.726 0.720 0.726 0.720 0.726 0.720 0.726 0.720 0.726 0.720 0.726 0.720 0.726 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.078 0.054 0.054 0.728 0.728 0.728 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.757 0.756 0.757 0.756 0.757 0.756 0.757 0.756 0.757 0.756 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.757 0.7	Power 0.360 0.186 0.309 0.732 0.100 0.600 0.500 0.500 0.570 0.570 0.570 0.410 0.307 Het vs KO -	WT vs Het - - 0.006 - 0.3079 0.379 0.219 - - -	WT vs KO – - 0.033 – 0.035 0.055 – 0.014 0.017 – –	Het vs KO – - 0.936 – - 0.010 0.032 – 0.073 0.091 – – -	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 0.205 2.444 0.205 2.444 0.205 2.443 0.192	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.053 0.310 0.334 0.073 0.216 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.905 1.215 0.497 4.258 2.337 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.9307 0.612 0.029 0.308 0.241 0.914 0.737	type Power 0.227 0.105 0.744 0.172 0.052 0.052 0.251 0.126 0.715 0.248 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P6 Time to turn (seconds) - P6 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity viola Day effect Day × genotype effect Day × gender effect	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 15.96 \pm 1.74 15.82 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 ρ value 0.000 0.001 0.037	KO -11.6 ± 4.73 -11.8 ± 5.61 -5.2 ± 3.81 12.4 ± 5.82 12.4 ± 5.82 12.4 ± 5.82 12.4 ± 5.82 12.4 ± 5.82 12.4 ± 3.82 12.4 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.269 3.112 0.135 2.110 1.527 WT vs Het – –	<i>ρ</i> value 0.174 0.436 0.226 0.018 0.720 0.075 0.0750 0.078 0.078 0.054 0.054 0.874 0.133 0.228 WT vs KO - -	Power 0.360 0.186 0.309 0.732 0.100 0.600 0.508 0.570 0.570 0.410 0.307 Het vs KO – –	WT vs Het - - 0.006 - - 0.828 0.959 - 0.219 - - - -	WT vs KO - - 0.033 - 0.035 0.055 - 0.014 0.017 - -	Het vs KO – – 0.936 – – 0.010 0.032 – 0.073 0.091 – –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.203 2.235 2.444 0.205 2.444 0.205 2.444 0.205 2.444 0.205 2.444 0.205 2.443 0.192	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.238 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.095 0.051 0.129 0.064 0.053 0.310 0.334 0.216 0.313 0.216 0.313	effect F 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.1421 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612 0.2020 0.109 0.338 0.241 0.737	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.251 0.126 0.715 0.448 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day effect Day × genotype effect Day × genotype effect Day × genotype effect	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67 6.84 ± 4.38 6.3 ± 4.2 12.76 ± 3.75 9.84 ± 2.94 10.92 ± 3.44 10.92 ± 3.44 11.92 ± 2.92 15.23 ± 3.04 22.69 ± 1.43 6.99 ± 1.25 9 ± 0.83 <i>F</i> 21.651 3.211 2.423 1.309	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.001 0.037 0.227	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664	F 1.821 0.847 1.537 4.418 0.517 0.281 0.281 0.331 3.787 2.707 0.580 3.269 3.112 0.135 2.110 1.527 WT vs WT vs Het - - - -	<i>p</i> value 0.174 0.436 0.226 0.018 0.756 0.720 0.030 0.078 0.564 0.874 0.054 0.874 0.133 0.228 WT vs KO 	Power 0.360 0.186 0.309 0.732 0.100 0.600 0.502 0.570 0.410 0.307 Het vs Kor - -	WT vs Het - - 0.006 - - - 0.828 0.959 - 0.379 0.219 - -	WT vs KO – – 0.033 – – 0.035 – 0.055 – 0.014 0.017 – –	Het vs KO – - 0.936 – - 0.010 0.032 – 0.073 0.091 – –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.244 0.205 1.431 2.267 0.493 0.192	p value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.125 0.653 0.238 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.333 0.216 0.334 0.073 0.216 0.371	Gende effect F 1.077 0.364 4.540 0.062 0.013 0.013 0.062 1.215 0.497 4.258 2.337 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.487 0.429 0.307 0.612 0.020 0.109 0.338 0.241 0.914 0.737	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.052 0.052 0.052 0.251 0.126 0.715 0.216 0.448 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity viola Day effect Day × genotype effect Day × genotype × gender effect Canotype affect	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.28 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 11.92 \pm 2.92 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3 166	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.001 0.037 0.227 0.052	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577	F 1.821 0.847 1.537 4.418 0.517 0.281 3.787 2.707 0.580 0.331 3.787 2.707 0.580 0.135 2.110 1.527 WT vs Het - - - - - - - - - - - - -	<i>p</i> value 0.174 0.436 0.226 0.018 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.720 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.720 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.078 0.054 0.0728 0.078 0.054 0.0728 0.0728 0.0728 0.0754 0.726 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728 0.0729 0.0729 0.0729 0.0729 0.0729 0.0729 0.0729 0.0729 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720 0.0720	Power 0.360 0.186 0.309 0.732 0.100 0.600 0.500 0.500 0.570 0.570 0.570 0.570 0.410 0.307 Het vs KO - - - -	WT vs Het - - 0.006 - 0.006 - 0.006 - 0.006 - 0.0259 - 0.0379 0.219 - - - -	WT vs KO – - 0.033 – 0.035 0.055 – 0.014 0.017 – –	Het vs KO - - 0.936 - - 0.010 0.032 - 0.073 0.091 - - -	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.235 2.444 1.023 2.245 1.431 2.267 0.493 0.192	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.053 0.310 0.334 0.106 0.073 0.216 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.905 1.215 0.497 4.258 2.337 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.987 0.612 0.029 0.303 0.241 0.914 0.737	type Power 0.227 0.105 0.744 0.172 0.052 0.052 0.251 0.126 0.715 0.248 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P13 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0 4.64	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.037 0.227 0.052 0.400	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 15 ± 3.87 12.4 ± 5.82 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102	F 1.821 0.847 1.537 4.418 0.517 0.281 3.787 2.707 0.580 3.269 2.100 1.527 WT vs Het - - - - - - - - - - - - -	<i>ρ</i> value 0.174 0.436 0.226 0.018 0.720 0.076 0.078 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.228 WT vs KO - - - - - - - - - - -	Power 0.360 0.186 0.309 0.732 0.100 0.502 0.508 0.508 0.570 0.570 0.570 0.570 0.410 0.307 Het vs KO – –	WT vs Het - - 0.006 - - 0.828 0.959 - 0.219 - - - -	WT vs KO - - 0.033 - 0.035 0.055 - 0.014 0.017 - -	Het vs KO – – 0.936 – – 0.010 0.032 – 0.073 0.091 – –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.023 2.245 2.444 0.205 2.444 0.203 2.245 0.493 0.192	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.095 0.129 0.053 0.310 0.334 0.073 0.216 0.313 0.106 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.905 0.013 0.862 1.215 0.497 4.258 2.337 1.412 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.412 0.887 0.429 0.307 0.612 0.2020 0.109 0.338 0.241 0.377	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.251 0.126 0.715 0.448 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day × genotype effect Day × genotype effect Day × genotype effect Gendyre effect Gendyre effect	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67 6.84 ± 4.38 6.3 ± 4.2 12.76 ± 3.75 9.84 ± 2.94 10.92 ± 3.44 10.92 ± 3.44 11.92 ± 2.92 15.23 ± 3.04 22.69 ± 1.43 6.99 ± 1.25 9 ± 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 13.62 \pm 2.17 13.62 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.001 0.037 0.052 0.499 0.002	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.002	F 1.821 0.847 1.537 4.418 0.517 0.281 0.281 0.331 3.787 2.707 3.269 3.112 0.135 2.110 1.527 WH vs - - - 0.680 - - - 0.683 -	<i>p</i> value 0.174 0.436 0.226 0.018 0.756 0.720 0.030 0.078 0.564 0.874 0.054 0.874 0.133 0.228 WT vs KO 0.070 	Power 0.360 0.186 0.309 0.732 0.100 0.600 0.502 0.570 0.410 0.307 Het vs KO - - - - - 0.016 -	WT vs Het - - 0.006 - - - 0.828 0.959 - 0.379 0.219 - -	WT vs KO – – 0.033 – 0.035 – 0.014 0.017 – – –	Het vs KO – - 0.936 – - 0.010 0.032 – 0.073 0.091 – –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.244 0.223 2.2444 0.223 1.431 2.267 0.493 0.192	p value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.125 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.053 0.310 0.334 0.216 0.313 0.106 0.071	Gende effect F 1.077 0.364 4.540 0.062 0.013 0.013 0.013 0.013 0.013 1.215 0.497 4.258 2.337 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.487 0.487 0.429 0.307 0.612 0.020 0.109 0.338 0.241 0.737	type Power 0.227 0.105 0.744 0.172 0.196 0.251 0.126 0.715 0.248 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day effect Day × genotype effect Day × genotype × gender effect Gender effect Genotype × gender	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 21.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.001 0.037 0.227 0.052 0.499 0.238	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.122 0.135 2.110 1.527 WT vs Het - - - - - - - - - - - - -	<i>p</i> value 0.174 0.436 0.226 0.018 0.720 0.078 0.720 0.030 0.078 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.228 WT vs KO - 0.070 	Power 0.360 0.186 0.309 0.732 0.092 0.100 0.600 0.502 0.570 0.070 0.410 0.307 Het vs KO - - - - 0.016 - - - - 0.016	WT vs Het - - 0.006 - 0.828 0.959 - 0.379 0.219 - -	WT vs KO – – 0.033 – 0.035 – 0.055 – 0.014 0.017 – –	Het vs KO - - 0.936 - - 0.010 0.032 - 0.073 0.091 - -	F 3.882 0.443 0.656 0.399 0.010 0.699 0.020 2.245 1.431 2.267 0.493 0.192	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.053 0.310 0.073 0.216 0.313 0.106 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.905 1.215 0.497 4.258 0.497 1.112 1.471 0.090 0.307	<i>p</i> value 0.350 0.697 0.016 0.471 0.429 0.307 0.612 0.249 0.307 0.612 0.241 0.914 0.737	type Power 0.227 0.105 0.744 0.172 0.052 0.251 0.189 0.251 0.216 0.213 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P9 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482	Het -18.82 \pm 2.48 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.001 0.037 0.227 0.052 0.499 0.238	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 15 ± 3.87 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299	F 1.821 0.847 1.537 4.418 0.517 0.281 3.787 2.707 0.580 3.269 2.100 1.527 WT vs Het – – – 0.693 –	<i>p</i> value 0.174 0.436 0.226 0.018 0.720 0.756 0.720 0.030 0.078 0.054 0.054 0.054 0.054 0.054 0.054 0.133 0.228 WT vs KO - - - - - - - - - - - -	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.508 0.140 0.592 0.570 0.070 0.410 0.307 Het vs KO 0.016	WT vs Het - - 0.006 - - 0.828 0.959 - 0.379 0.219 - - -	WT vs KO - 0.033 - - 0.035 - 0.015 - 0.014 - - - - -	Het vs KO – - 0.936 – - 0.010 0.032 – 0.073 0.091 – -	F 3.882 0.443 0.656 0.399 0.010 0.699 0.012 4 0.023 2.244 0.205 2.444 0.205 2.444 0.205 2.443 0.192	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.053 0.310 0.334 0.073 0.216 0.313 0.106 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.905 1.013 0.497 4.258 2.337 1.412 1.471 0.990 0.307	r × geno p value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612 0.220 0.308 0.241 0.338 0.241 0.338 0.241 0.737 r × geno	type Power 0.227 0.105 0.105 0.105 0.105 0.126 0.714 0.052 0.251 0.126 0.715 0.448 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day senotype effect Day senotype effect Day senotype effect Genotype effect Genotype effect Genotype × gender	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 p value 0.000 0.001 0.037 0.227 0.052 0.499 0.238	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299	F 1.821 0.847 1.537 4.418 0.537 0.281 0.331 3.787 2.707 3.269 3.112 0.135 2.110 1.527 WT vs Het - - 0.693 - -	<i>p</i> value 0.174 0.436 0.226 0.018 0.756 0.030 0.078 0.564 0.874 0.054 0.874 0.133 0.228 WT vs KO 0.070 	Power 0.360 0.186 0.309 0.732 0.130 0.600 0.502 0.570 0.410 0.307 Het vs KO - - - - - - - - - - -	WT vs Het - - 0.006 - - 0.379 0.219 - - -	WT vs KO – – 0.033 – 0.035 – 0.014 0.017 – – –	Het vs KO – - 0.936 – - 0.010 0.032 – 0.073 0.091 – –	F 3.882 0.443 0.656 0.399 0.010 0.699 0.124 0.023 2.245 2.444 0.223 1.431 2.267 0.493 0.192	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.125 0.653 0.125 0.653 0.128 0.128 0.125 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.330 0.330 0.331 0.216 0.333 0.216 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.905 1.215 0.497 1.215 0.497 1.215 0.497 1.215 0.497 1.215 0.497 0.307 Sende effect	r × geno p value 0.350 0.697 0.016 0.471 0.472 0.987 0.429 0.307 0.612 0.020 0.109 0.338 0.241 0.914 0.737 r × geno	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.251 0.126 0.715 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P4 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P8 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482 WT	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.001 0.037 0.227 0.499 0.238 Het	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299 KO	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.122 0.135 2.110 1.527 WT vs Het - - - - - - - - - - - - -	<i>p</i> value 0.174 0.436 0.226 0.018 0.720 0.030 0.776 0.030 0.078 0.047 0.054 0.874 0.054 0.874 0.054 0.874 0.33 0.228 WT vs KO - - 0.070 - - -	Power 0.360 0.186 0.309 0.732 0.100 0.602 0.502 0.570 0.570 0.570 0.570 0.592 0.570 0.410 0.307 Het vs KO - - - - - 0.016 - - - - - - - -	WT vs Het - - 0.006 - - 0.828 0.959 - 0.379 0.219 - - -	WT vs KO - 0.033 - - 0.035 - 0.055 - 0.014 0.017 - - -	Het vs KO - - 0.936 - - 0.010 0.032 - 0.073 0.091 - - -	F 3.882 0.443 0.656 0.399 0.010 0.639 0.020 2.235 2.444 0.023 2.235 2.444 0.020 1.431 2.267 0.493 0.192 Gende F	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.053 0.310 0.073 0.216 0.313 0.106 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.905 1.215 0.497 4.258 0.497 1.112 1.471 0.090 0.307	r × geno p value 0.350 0.697 0.016 0.471 0.429 0.307 0.612 0.229 0.307 0.612 0.2241 0.914 0.737 r × geno p value	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.251 0.189 0.251 0.126 0.715 0.233 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P4 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P9 Time to turn (seconds) - P1 Time to turn (seconds) - P13 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482 WT	Het -18.82 \pm 2.48 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 p value 0.000 0.001 0.037 0.227 0.052 0.499 0.238 Het	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299 KO	F 1.821 0.847 1.537 4.418 0.517 0.281 3.787 2.707 0.580 3.269 2.110 1.527 WT vs Het - - 0.693 - F	<i>p</i> value 0.174 0.436 0.226 0.018 0.720 0.756 0.720 0.078 0.564 0.047 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.33 0.228 WT vs KO 0.070 	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.600 0.508 0.140 0.592 0.070 0.410 0.307 Het vs KO 0.016 Power	WT vs Het - - 0.006 - - 0.828 0.959 - 0.379 0.219 - - - - - - - - - - - - - - - - - - -	WT vs KO - - 0.033 - 0.035 - 0.014 0.017 - - - - - - - - - - - - - - - - - - -	Het vs KO - - 0.936 - - 0.010 0.032 - 0.073 0.091 - - - -	F 3.882 0.443 0.656 0.399 0.010 0.699 0.0124 0.023 2.244 0.205 1.431 2.267 0.493 0.192 Gende F	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.053 0.310 0.334 0.073 0.216 0.313 0.106 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.905 1.013 0.497 4.258 2.337 1.412 1.471 0.090 0.307 Gende effect F	r × geno p value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612 0.220 0.308 0.241 0.338 0.241 0.338 0.241 0.737 r × geno p value	type Power 0.227 0.105 0.744 0.172 0.189 0.251 0.189 0.251 0.189 0.251 0.189 0.251 0.189 0.251 0.488 0.217 0.483 0.297 0.063 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity viola Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA Air righting score - P8	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482 WT 0.61 \pm 0.26	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 3.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 p value 0.000 0.001 0.027 0.052 0.499 0.238 Het 0.41 \pm 0.13	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299 KO 0.8 ± 0.29	F 1.821 0.847 1.537 4.418 0.537 4.418 0.537 2.707 3.269 3.122 0.135 2.110 1.527 WT vs Het - - 0.693 - F 1.160	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.030 0.078 0.564 0.874 0.054 0.874 0.133 0.228 WT vs KO <i>p</i> value 0.323	Power 0.360 0.186 0.309 0.732 0.130 0.660 0.502 0.570 0.410 0.592 0.570 0.410 0.307 Het vs KO - - - - - - - - - - - - - - - - - -	WT vs Het - - 0.006 - 0.379 0.219 - - - - - - - - - - - - - - - - - - -	WT vs KO - 0.033 - - - 0.035 - 0.014 0.017 - - - - - - - - - - - - - - - - - - -	Het vs KO 0.936 0.010 0.032 0.073 0.091 	F 3.882 0.443 0.656 0.399 0.010 0.669 0.043 2.235 2.444 0.023 1.431 2.267 0.493 0.192 Gende F 5.791	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.125 0.653 0.125 0.653 0.238 0.139 0.486 0.664 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.330 0.310 0.334 0.310 0.334 0.310 0.334 0.71	Gende effect F 1.077 0.364 4.540 0.013 0.862 1.215 0.497 1.112 1.471 0.090 0.307 Gende effect F 5.562	r × geno p value 0.350 0.697 0.016 0.471 0.987 0.429 0.307 0.612 0.020 0.109 0.338 0.241 0.737 r × geno p value 0.737	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.189 0.251 0.126 0.715 0.448 0.233 0.096 0.096 type Power 0.831
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity viola Day effect Day × genotype effect Day × genotype effect Day × genotype × gender effect Genotype × gender Multifactiorial ANCOVA Air righting score - P8 Air righting score - P8	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal ated	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 21.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482 WT 0.61 \pm 0.26 0.38 \pm 0.21	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.001 0.037 0.227 0.499 0.238 Het 0.41 \pm 0.13 0.93 \pm 0.17	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299 KO 0.8 ± 0.29 0.4 ± 0.22	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.122 0.135 2.110 1.527 WT vs Het - - 0.693 - F 1.160 2.272	<i>p</i> value 0.174 0.436 0.226 0.018 0.720 0.720 0.030 0.078 0.047 0.054 0.874 0.133 0.228 WT vs KO 	Power 0.360 0.186 0.309 0.732 0.100 0.602 0.502 0.502 0.570 0.410 0.592 0.570 0.410 0.307 Het vs K - - - - 0.016 - - - - 0.016 - - - 0.016 0.02 0.592 0.570 0.020 0.592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.570 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0592 0.0140 0.0592	WT vs Het - - 0.006 - 0.379 0.219 - - - - - - - - - - - - - - - - - - -	WT vs KO - - 0.033 - 0.055 - 0.014 0.017 - - - - - - - - - - - - - - - - - - -	Het vs KO - - 0.936 - - 0.070 0.032 - 0.073 0.091 - - - - - - - - - - - - - - - - - - -	F 3.882 0.443 0.656 0.399 0.010 0.659 0.244 0.023 2.235 2.444 0.205 1.431 2.267 0.493 0.192 Gende F 5.791 0.004	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.053 0.310 0.073 0.216 0.313 0.106 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.005 1.215 0.497 4.258 0.497 1.112 1.471 0.090 0.307 Gende effect F 5.562 0.439	r × geno p value 0.350 0.697 0.016 0.471 0.429 0.307 0.612 0.229 0.307 0.612 0.241 0.737 r × geno p value 0.007 0.648	type Power 0.227 0.105 0.744 0.172 0.196 0.052 0.251 0.126 0.715 0.251 0.126 0.715 0.233 0.297 0.063 0.096 v.448 0.233 0.096
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P4 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P9 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Air righting score - P8 Air righting score - P10	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal ated	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482 WT 0.61 \pm 0.26 0.38 \pm 0.21 1.69 $+$ 0.2	Het -18.82 \pm 2.48 -10.82 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 p value 0.000 0.001 0.037 0.227 0.052 0.499 0.238 Het 0.41 \pm 0.13 0.93 \pm 0.17 144 \pm 0.13	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299 KO 0.8 ± 0.29 0.4 ± 0.22 0.7 ± 0.3	F 1.821 0.847 1.537 4.418 0.517 0.281 3.787 2.707 0.580 0.331 3.787 2.707 0.580 0.135 2.110 1.527 WT vs Het - - - 0.693 - - F 1.160 2.272 2.5755 5.755	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.720 0.078 0.078 0.078 0.054 0.054 0.054 0.054 0.054 0.054 0.057 - - - 0.070 - - - 0.070 - - - 0.070 - - - 0.070 - - - 0.070 - - - 0.070 0.022 0.024 0.054 0.022 0.022 0.024 0.054 0.022 0.022 0.025 0.022 0.027 0.024 0.054 0.027	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.600 0.508 0.140 0.590 0.570 0.070 0.410 0.307 Het vs KO 0.016 Power 0.242 0.438	WT vs Het - - 0.006 - - 0.828 0.959 - 0.379 0.219 - - - - - - - - - - - - - - - - - - -	WT vs KO - 0.033 - - 0.014 0.017 - - - - - - - - - - - - - - - - - - -	Het vs KO - - 0.936 - - 0.010 0.032 - 0.073 0.091 - - - - - - - - - - - - - - - - - - -	F 3.882 0.443 0.656 0.399 0.010 0.699 0.0124 0.023 2.244 0.225 2.444 0.225 2.444 0.225 2.444 0.225 2.444 0.225 2.444 0.225 2.444 0.225 2.444 0.225 2.443 0.192 Carbon Cara	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.654 0.238 0.486 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.053 0.310 0.331 0.106 0.216 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.905 1.215 0.497 4.258 2.337 1.412 1.471 0.090 0.307 Gende effect F 5.562 0.439 0.428	r × geno p value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612 0.229 0.307 0.612 0.220 0.338 0.241 0.914 0.737 r × geno p value 0.007 0.648	type Power 0.227 0.105 0.744 0.172 0.196 0.251 0.189 0.251 0.189 0.251 0.189 0.251 0.189 0.251 0.189 0.251 0.488 0.251 0.489 0.251 0.489 0.227 0.489 0.227 0.489 0.227 0.489 0.221 0.490 0.491 0
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity viola Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Air righting score - P8 Air righting score - P10 Air righting score - P10	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 ± 5.21 -8.69 ± 5.99 -6 ± 5.23 9.69 ± 3.67 6.84 ± 4.38 6.3 ± 4.2 12.76 ± 3.75 9.84 ± 2.94 10.92 ± 3.44 11.92 ± 2.92 15.23 ± 3.04 22.69 ± 1.43 6.99 ± 1.25 9 ± 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482 WT 0.61 ± 0.26 0.38 ± 0.21 1.69 ± 0.2 1.3 + 0.26	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 3.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 p value 0.000 0.001 0.027 0.052 0.499 0.238 Het 0.41 \pm 0.13 0.93 \pm 0.17 1.44 \pm 0.13 0.93 \pm 0.17 1.44 \pm 0.13	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299 KO 0.8 ± 0.29 0.4 ± 0.22 0.4 ± 0.26	F 1.821 0.847 1.537 4.418 0.537 4.418 0.537 2.707 3.269 3.122 0.135 2.110 1.527 WT vs WH et - - 0.693 - F 1.160 2.272 5.755 5.402	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.030 0.078 0.564 0.874 0.054 0.874 0.153 0.228 WT vs KO - - - - <i>p</i> value 0.323 0.115 0.006	Power 0.360 0.186 0.309 0.732 0.130 0.660 0.502 0.570 0.410 0.592 0.570 0.410 0.307 Het vs KO - - - - - - - - - - - - - - - - - -	WT vs Het - - 0.006 - 0.379 0.219 - - - - - - - - - - - - - - - - - - -	WT vs KO - 0.033 - - - 0.035 - 0.015 - 0.015 - 0.017 - - - - - - - - - - - - - - - - - - -	Het vs KO 0.936 0.010 0.032 0.073 0.091 	F 3.882 0.443 0.656 0.399 0.010 0.669 0.0124 0.023 2.434 0.205 1.431 2.267 0.493 0.192 Gende F 5.791 0.004 1.456 2.641	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.125 0.653 0.238 0.145 0.653 0.238 0.139 0.486 0.664 <i>p</i> value <i>p</i> value 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.330 0.310 0.334 0.310 0.334 0.310 0.334 0.310 0.334 0.310 0.334 0.310 0.334 0.310 0.334 0.311 0.334 0.312 0.3216 0.051 0.051 0.3216 0.051 0.051 0.051 0.3216 0.051 0.051 0.321 0.051 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.334 0.051 0.345 0.051 0.345 0.051 0.345 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	Gende effect F 1.077 0.364 4.540 0.013 0.862 1.215 0.497 1.112 1.471 0.090 0.307 Gende effect F 5.562 0.439 0.439 0.429	r × geno p value 0.350 0.697 0.016 0.471 0.429 0.307 0.612 0.020 0.338 0.241 0.737 r × geno p value 0.737 0.648 0.648 0.648 0.628	type Power 0.227 0.105 0.744 0.172 0.196 0.752 0.251 0.251 0.251 0.261 0.233 0.297 0.063 0.297 0.063 0.096 Power 0.831 0.117 0.117
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P7 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day effect Day × genotype effect Day × genotype effect Day × genotype × gender effect Genotype × gender Multifactiorial ANCOVA Air righting score - P8 Air righting score - P10 Air righting score - P10 Air righting score - P10	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal ated	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 21.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482 WT 0.61 \pm 0.26 0.38 \pm 0.21 1.69 \pm 0.2	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.001 0.037 0.227 0.499 0.238 Het 0.41 \pm 0.13 0.93 \pm 0.17 1.44 \pm 0.13 1.44 \pm 0.14 1.45 1.4	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299 KO 0.8 ± 0.29 0.4 ± 0.22 0.7 ± 0.3 0.4 ± 0.22	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 0.580 3.122 0.135 2.110 1.527 WT vs Het - - 0.693 - F 1.160 2.272 5.407 5.407 5.407	<i>p</i> value 0.174 0.436 0.226 0.018 0.720 0.720 0.030 0.078 0.047 0.054 0.874 0.323 0.228 WT vs KO 	Power 0.360 0.186 0.309 0.732 0.100 0.602 0.502 0.502 0.570 0.410 0.592 0.570 0.410 0.307 Het vs Kor - - - - 0.016 - - - - 0.016 0.016 0.307	WT vs Het - - 0.006 - 0.379 0.219 - - - - - - - - - - - - - - - - - - -	WT vs KO - - 0.033 - 0.035 0.055 - 0.014 0.017 - - - - - - - - - - - - - - - - - - -	Het vs KO - - 0.936 - - 0.010 0.032 - 0.073 0.091 - - - - - - - - - - - - - - - - - - -	F 3.882 0.443 0.656 0.399 0.010 0.659 0.244 0.023 2.235 2.444 0.205 1.431 2.267 0.493 0.192 Gende F 5.791 0.004 1.456 2.641	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.142 0.653 0.238 0.139 0.486 0.664 <i>p</i> value <i>p</i> value <i>p</i> value	Power 0.487 0.100 0.124 0.055 0.310 0.334 0.334 0.334 0.334 0.334 0.334 0.373 0.216 0.331 0.106 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.005 1.215 0.497 1.121 1.471 0.090 0.307 S.672 C.3377 C.337 C.337 C.337 C.337 C.337 C.337 C.	r × geno p value 0.350 0.697 0.016 0.471 0.429 0.307 0.612 0.229 0.307 0.612 0.229 0.307 0.612 0.109 0.338 0.241 0.914 0.737 r × geno p value 0.007 0.648 0.648 0.533 0.553	type Power 0.227 0.105 0.744 0.172 0.190 0.251 0.126 0.715 0.189 0.251 0.126 0.715 0.189 0.251 0.126 0.715 0.189 0.251 0.189 0.251 0.189 0.251 0.165 0.251 0.189 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.195 0.251 0.251 0.251 0.052 0.251 0.251 0.055 0.251 0.251 0.055 0.251 0.055 0.251 0.055 0.251 0.055 0.251 0.055 0.251 0.055 0.251 0.055 0.251 0.055 0.251 0.055 0.055 0.251 0.055 0.251 0.055 0.251 0.055 0.251 0.055 0.251 0.055 0.251 0.055 0.055 0.055 0.251 0.055 0
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P3 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P9 Time to turn (seconds) - P9 Time to turn (seconds) - P10 Time to turn (seconds) - P10 Time to turn (seconds) - P11 Time to turn (seconds) - P12 Time to turn (seconds) - P13 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Mean Falls Air righting Repeated measures, sphericity violation Day effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Air righting score - P8 Air righting score - P10 Air righting score - P11 Air righting score - P12	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482 WT 0.61 \pm 0.26 0.38 \pm 0.21 1.69 \pm 0.2 1.3 \pm 0.26 1.84 \pm 0.15	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 3.2 \pm 2.97 6.31 \pm 3.13 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 13.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 <i>p</i> value 0.000 0.001 0.037 0.227 0.052 0.499 0.238 Het 0.41 \pm 0.13 1.44 \pm 0.13 1.44 \pm 0.16 1.89 \pm 0.05	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299 KO 0.8 ± 0.29 0.4 ± 0.22 0.7 ± 0.3 0.4 ± 0.22 1.4 ± 0.22	F 1.821 0.847 1.537 4.418 0.517 0.281 3.787 2.707 0.580 3.269 3.269 3.269 3.269 3.269 3.269 3.212 0.135 2.110 1.527 WT vs Het - - - - - - - - - - - - -	<i>p</i> value 0.174 0.436 0.226 0.018 0.600 0.756 0.720 0.078 0.078 0.078 0.047 0.054 0.047 0.054 0.054 0.047 0.054 0.047 0.054 0.047 0.070 - - - 0.070 - <i>p</i> value 0.323 0.115 0.006 0.008 0.028	Power 0.360 0.186 0.309 0.732 0.130 0.092 0.100 0.600 0.500 0.570 0.070 0.410 0.307 Het vs KO 0.016 Power 0.242 0.438 0.844 0.819 0.693	WT vs Het - - - 0.006 - - 0.379 0.379 0.219 - - - - - - - - - - - - - - - - - - -	WT vs KO - 0.033 - - 0.035 - 0.014 0.017 - - - - - - - - - - - - - - - - - - -	Het vs KO - - 0.936 - - 0.010 0.032 - 0.073 0.091 - - - - - - - - - - - - - - - - - - -	F 3.882 0.443 0.656 0.399 0.010 0.699 0.0124 0.023 2.245 2.444 0.225 2.444 0.225 1.431 2.267 0.493 0.192 Gende F 5.791 0.004 1.456 2.641 0.322	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.653 0.238 0.139 0.486 0.654 0.664 <i>p</i> value 0.020 0.948 0.234 0.234 0.234	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.331 0.129 0.331 0.129 0.331 0.130 0.073 0.216 0.071	Gende effect F 1.077 0.364 4.540 0.766 0.013 0.401 1.215 0.497 4.258 2.337 1.412 1.471 0.090 0.307 Gende effect F 5.562 0.439 0.438 0.639 0.643	r × geno p value 0.350 0.697 0.016 0.471 0.412 0.987 0.429 0.307 0.612 0.029 0.109 0.109 0.109 0.338 0.241 0.914 0.737 r × geno p value 0.007 0.648 0.533 0.528 0.221	type Power 0.227 0.105 0.744 0.172 0.196 0.525 0.744 0.172 0.189 0.251 0.126 0.715 0.448 0.233 0.297 0.063 0.096 type Power 0.831 0.117 0.150 0.117 0.150 0.55
Multifactiorial ANCOVA Time to turn (seconds) - P2 Time to turn (seconds) - P4 Time to turn (seconds) - P4 Time to turn (seconds) - P5 Time to turn (seconds) - P6 Time to turn (seconds) - P9 Time to turn (seconds) - P9 Time to turn (seconds) - P1 Time to turn (seconds) - P13 Time to turn (seconds) - P14 Time to turn (seconds) - P14 Time to turn (seconds) - Nean Falls Air righting Repeated measures, sphericity violation Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Air righting score - P8 Air righting score - P10 Air righting score - P11 Air righting score - P12 Air righting score - P13	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Atted	WT -9.66 \pm 5.21 -8.69 \pm 5.99 -6 \pm 5.23 9.69 \pm 3.67 6.84 \pm 4.38 6.3 \pm 4.2 8.3 \pm 4.42 12.76 \pm 3.75 9.84 \pm 2.94 10.92 \pm 3.44 11.92 \pm 2.92 15.23 \pm 3.04 22.69 \pm 1.43 6.99 \pm 1.25 9 \pm 0.83 <i>F</i> 21.651 3.211 2.423 1.309 3.166 0.464 1.482 WT 0.61 \pm 0.26 0.38 \pm 0.21 1.69 \pm 0.21 1.69 \pm 0.26 1.32 \pm 0.26 1.34 \pm 0.15 1.76 \pm 0.16	Het -18.82 \pm 2.48 -15.58 \pm 2.88 -10.82 \pm 1.86 -4.2 \pm 3.15 11.44 \pm 2.71 12.17 \pm 2.44 10.03 \pm 2.29 3.62 \pm 2.17 15.96 \pm 1.74 18.58 \pm 1.5 21.82 \pm 1.17 4.9 \pm 1.06 10.31 \pm 0.48 p value 0.000 0.001 0.027 0.052 0.499 0.238 Het 0.41 \pm 0.13 0.93 \pm 0.17 1.44 \pm 0.13 1.44 \pm 0.16 1.89 \pm 0.05 1.68 \pm 0.13	KO -11.6 ± 4.73 -11.8 ± 5.61 -15.2 ± 3.51 -2.2 ± 5.3 8.5 ± 3.87 12.4 ± 5.82 6.8 ± 6.1 23.1 ± 1.6 19 ± 3.22 15 ± 3.88 22.2 ± 1.33 24.1 ± 0.62 22.3 ± 2.25 8.66 ± 1.1 9.1 ± 0.45 Power 1.000 0.986 0.760 0.664 0.577 0.102 0.299 KO 0.8 ± 0.29 0.4 ± 0.22 0.7 ± 0.3 0.4 ± 0.22 1.7 ± 0.31	F 1.821 0.847 1.537 4.418 0.517 0.281 0.331 3.787 2.707 3.269 3.112 0.135 2.110 1.527 WT vs Het - - 0.693 - F 1.160 2.272 5.407 4.066 0.069	<i>p</i> value 0.174 0.436 0.226 0.018 0.0756 0.756 0.075 0.030 0.078 0.564 0.874 0.054 0.874 0.228 WT vs KO - - - 0.070 - <i>p</i> value 0.323 0.115 0.006 0.024 0.934	Power 0.360 0.186 0.309 0.732 0.100 0.508 0.140 0.592 0.100 0.570 0.070 0.410 0.307 Het vs KO 0.016 Power 0.242 0.438 0.844 0.819 0.6633 0.060	WT vs Het - - 0.006 - - 0.379 0.219 - - - - - - - - - - - - - - - - - - -	WT vs KO - 0.033 - - 0.015 - 0.014 0.017 - - - - - - - - - - - - - - - - - - -	Het vs KO 0.936 0.073 0.091 	F 3.882 0.443 0.656 0.399 0.101 0.669 0.010 0.669 0.124 0.205 1.431 2.267 0.493 0.192 Gende F 5.791 0.004 1.456 2.641 0.332 2.104	<i>p</i> value 0.055 0.509 0.422 0.531 0.920 0.408 0.726 0.880 0.142 0.125 0.653 0.238 0.139 0.486 0.664 0.664 <i>p</i> value 0.664 0.664 0.664	Power 0.487 0.100 0.124 0.051 0.129 0.064 0.310 0.330 0.216 0.313 0.106 0.071 Power 0.653 0.050 0.219 0.356 0.087 0.295	Gende effect F 1.077 0.364 4.540 0.766 0.013 0.862 1.215 0.497 1.112 1.471 0.090 0.307 Gende effect F 5.562 0.439 0.439 0.439 0.439	r × geno p value 0.350 0.697 0.016 0.471 0.429 0.307 0.612 0.020 0.308 0.220 0.109 0.338 0.221 0.737 r × geno p value 0.007 0.648 0.528 0.528 0.675	type Power 0.227 0.105 0.744 0.172 0.196 0.715 0.251 0.126 0.715 0.233 0.096 0.096 type Power 0.831 0.117 0.152 0.110

Air righting		_		_												
Repeated measures, sphericity violat	ted	F	p value	Power	WT vs	WT vs	Het vs									
Air righting score - P14	Nonnormal	2 ± 0	2 + 0	2 ± 0	Het	KU	ĸŬ	_	_	_	_	_		_	_	
Air righting score - P15	Nonnormal	$1 92 \pm 0.07$	2 ± 0 2 ± 0	2 ± 0 2 ± 0	1 621	0 200	0324	_	_	_	1 716	0 107	0.249	1 /6/	0 2/2	0.296
Air righting score - P16	Nonnormal	1.92 ± 0.07 2 ± 0	2 ± 0 2 ± 0	2 ± 0 2 ± 0	-	0.209	0.324	_	_	_	-	0.197	0.249	1.404	0.242	0.290
Air righting score - P17	Nonnormal	2 ± 0	1.96 ± 0.03	2 ± 0	0.398	0.674	0.110	_	_	_	0.331	0.568	0.087	0.196	0.823	0.079
Air righting score - P18	Nonnormal	2 ± 0	2 ± 0	2 ± 0	_	_		_	_	_	_	_		_	_	
Air righting score - P19	Nonnormal	2 ± 0	2 ± 0	2 ± 0	_	_		_	_	_	_	_		_	_	
Air righting score - P20	Nonnormal	2 ± 0	2 ± 0	2 ± 0	-	-		_	-	-	_	-		-	-	
Air righting score - Mean	Nonnormal	1.65 ± 0.06	1.67 ± 0.03	1.49 ± 0.06	3.166	0.049	0.577	0.693	0.070	0.016	0.464	0.499	0.102	1.482	0.238	0.299
First day of two consecutive	Nonnormal	11.84 ± 0.5	11.37 ± 0.29	12.9 ± 0.56	2.814	0.071	0.525	0.378	0.184	0.023	0.959	0.333	0.160	1.173	0.319	0.244
SUCCESSES																
Mine even energies																
Repeated measures sphericity violat	hod	F		Power	WT ve	WT ve	Hot ve									
nepeated measures, sphericity violat	leu	1	p value	Fower	Het	KO	KO									
Dav effect		16.511	0.000	1.000	_	_	_									
Day \times genotype effect		3.538	0.000	0.994	_	_	_									
Day \times gender effect		0.497	0.782	0.186	_	_	_									
$Day\timesgenotype\timesgender\ effect$		0.635	0.787	0.333	-	-	-									
Genotype effect		13.553	0.000	0.997	0.013	0.000	0.001									
Gender effect		0.303	0.585	0.084	-	-	-									
Genotype $ imes$ gender		2.871	0.067	0.534	-	-	-									
											Gende	er effect		Gende	r imes geno	type
Multifactionial ANCOVA		WT	Het	кO	F		Power	WT vo	WT vo	Het ve	F	n value	Power	enect F		Power
Multilactional ANCOVA		**1	i let	NO	'	p value	Fower	Het	KO	KO	1	p value	FOwer	'	p value	FOWer
Suspension time (seconds) - P11	Nonnormal	5.15 ± 1.44	4.37 ± 0.63	2.7 ± 0.47	1.701	0.194	0.338	_	_	-	0.045	0.833	0.055	0.287	0.752	0.093
Suspension time (seconds) - P12	Nonnormal	3.23 ± 1.06	3.13 ± 0.45	3.9 ± 1.65	0.220	0.803	0.082	_	_	_	0.856	0.360	0.148	0.662	0.521	0.154
Suspension time (seconds) - P13	Nonnormal	2.69 ± 0.47	4 ± 0.52	2.8 ± 0.87	1.660	0.202	0.331	-	-	-	2.518	0.120	0.342	0.036	0.965	0.055
Suspension time (seconds) - P14	Nonnormal	7.61 ± 1.97	$5.17~\pm~0.58$	3.7 ± 1.12	2.196	0.123	0.425	_	-	-	0.006	0.938	0.051	1.893	0.163	0.372
Suspension time (seconds) - P15	Nonnormal	9.92 ± 2.29	4.82 ± 0.53	1.7 ± 0.42	10.137	0.000	0.980	0.002	0.000	0.054	0.290	0.593	0.082	0.611	0.547	0.146
Suspension time (seconds) - P16	Nonnormal	13.38 ± 2.18	$6.41~\pm~0.53$	3.7 ± 0.91	15.666	0.000	0.999	0.000	0.000	0.100	0.744	0.393	0.135	1.971	0.151	0.386
Suspension time (seconds) - P17	Nonnormal	18.53 ± 2.34	11.82 ± 1.22	9.3 ± 1.6	6.683	0.003	0.896	0.004	0.002	0.288	0.538	0.467	0.111	1.214	0.307	0.251
Suspension time (seconds) - P18	Nonnormal	16.15 ± 2.22	18.34 ± 1.78	11.1 ± 2.37	2.398	0.103	0.459	-	_	-	0.551	0.462	0.112	0.722	0.491	0.164
Suspension time (seconds) - P19	Nonnormal	18.38 ± 2.11	19.48 ± 1.73	8 ± 1.97	1.474	0.002	0.927	0.921	0.003	0.001	0.000	0.995	0.050	1.609	0.212	0.322
Suspension time (seconds) - P20	Nonnormal	17.07 ± 2.31	12.13 ± 1.54	5.6 ± 0.85	0.858	0.003	0.903	0.053	0.001	0.019	0.646	0.426	0.123	1.283	0.287	0.264
Average	Nonnormai	11.21 ± 1	8.97 ± 0.55	5.25 ± 0.54	13.553	0.000	0.997	0.013	0.000	0.001	0.303	0.585	0.084	2.871	0.067	0.534
Suspension time (seconds) -	Nonnormal	24.3 ± 2.06	23.31 ± 1.37	13.7 ± 1.99	7.828	0.001	0.938	0.525	0.001	0.001	0.168	0.684	0.069	1.205	0.309	0.250
Best score																
Best score																
Best score Open field																
Best score Open field Repeated measures, sphericity violat	ted	F	p value	Power	WT vs	WT vs	Het vs									
Best score Open field Repeated measures, sphericity violat	ted	F	p value	Power	WT vs Het	WT vs KO	Het vs KO									
Best score Open field Repeated measures, sphericity violat Day effect	ted	F 31.056	<i>p</i> value 0.000	Power 1.000	WT vs Het -	WT vs KO -	Het vs KO -									
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype effect	ted	F 31.056 0.874 0.630	<i>p</i> value 0.000 0.572 0.702	Power 1.000 0.501	WT vs Het - -	WT vs KO - -	Het vs KO –									
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype effect Day × genotype x gender effect	ted	F 31.056 0.874 0.630 1.857	<i>p</i> value 0.000 0.572 0.702 0.042	Power 1.000 0.501 0.247 0.887	WT vs Het - - -	WT vs KO - - -	Het vs KO - - -									
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × gender effect Day × gender ye × gender effect Genotype effect	ted	F 31.056 0.874 0.630 1.857 0.117	<i>p</i> value 0.000 0.572 0.702 0.042 0.890	Power 1.000 0.501 0.247 0.887 0.067	WT vs Het 	WT vs KO - - - -	Het vs KO 									
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect	ted	F 31.056 0.874 0.630 1.857 0.117 0.046	<i>p</i> value 0.000 0.572 0.702 0.042 0.890 0.831	Power 1.000 0.501 0.247 0.887 0.067 0.055	WT vs Het 	WT vs KO - - - -	Het vs KO - - - - -									
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender	ted	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755	<i>p</i> value 0.000 0.572 0.702 0.042 0.890 0.831 0.185	Power 1.000 0.501 0.247 0.087 0.067 0.055 0.348	WT vs Het 	WT vs KO 	Het vs KO 									
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender	ted	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755	<i>p</i> value 0.000 0.572 0.702 0.042 0.890 0.831 0.185	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348	WT vs Het 	WT vs KO 	Het vs KO 				Gende	er effect		Gende	r × geno	type
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender	ted	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755	 <i>ρ</i> value 0.000 0.572 0.702 0.042 0.890 0.831 0.185 	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348	WT vs Het 	WT vs KO 	Het vs KO 				Gende	er effect		Gende effect	r × geno	type
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA	ted	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT	<i>p</i> value 0.000 0.572 0.702 0.042 0.890 0.831 0.185 Het	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO	WT vs Het F	WT vs KO ρ value	Het vs KO Power	WT vs	WT vs	Het vs	Gende F	ρ value	Power	Gende effect <i>F</i>	r×geno ρ value	type Power
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA	ted	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT	<i>p</i> value 0.000 0.572 0.702 0.042 0.890 0.831 0.185 Het	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO	WT vs Het F	WT vs KO p value	Het vs KO Power	WT vs Het	WT vs KO	Het vs KO	Gende F	er effect p value	Power	Gende effect F	r × geno p value	type Power
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8	Nonnormal	F 31.056 0.874 0.630 1.857 0.046 1.755 WT 26.07 ± 2.09	<i>p</i> value 0.000 0.572 0.702 0.042 0.831 0.185 Het 27.55 ± 1.19	Power 1.000 0.501 0.247 0.067 0.055 0.348 KO 28.9 ± 0.99	WT vs Het - - - - F	WT vs KO p value 0.626	Het vs KO Power 0.122	WT vs Het -	WT vs KO -	Het vs KO -	Gende F 0.928	preffect p value 0.341	Power 0.156	Gende effect F 0.010	$r \times geno$ p value 0.990	type Power 0.051
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × gender effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P9 Time to escape (seconds) - P9	Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 ± 2.09 23.3 ± 2.82 0.46 ± 2.25	<i>p</i> value 0.000 0.572 0.702 0.042 0.831 0.185 Het 27.55 ± 1.19 21.34 ± 1.83 19.06 ± 1.83	Power 1.000 0.501 0.247 0.887 0.055 0.348 KO 28.9 ± 0.99 24.2 ± 2.64 23.1 ± 2.34	WT vs Het - - - - - F 0.473 0.305	WT vs KO p value 0.626 0.752	Het vs KO - - - - - - - - - - 0.122 0.095	WT vs Het -	WT vs KO –	Het vs KO –	Gende F 0.928 0.774	er effect <i>p</i> value 0.341 0.322	Power 0.156 0.138	Gende effect <i>F</i> 0.010 0.929 1.615	r × geno p value 0.990 0.403	type Power 0.051 0.201
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P10 Time to escape (seconds) - P10	Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 ± 2.09 23.3 ± 2.82 20.46 ± 2.55 22.07 + 2.18	<i>p</i> value 0.000 0.572 0.702 0.042 0.831 0.185 Het 27.55 ± 1.19 21.34 ± 1.83 19.96 ± 1.72 7.55 ± 1.94	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 ± 0.99 24.2 ± 2.64 22.1 ± 2.34 20.2 ± 3.04	WT vs Het - - - - F 0.473 0.305 0.286 0.938	WT vs KO p value 0.626 0.739 0.399	Het vs KO - - - - - - - - - - - - 0.122 0.093 0.202	WT vs Het - -	WT vs KO 	Het vs KO – –	Gende F 0.928 0.774 0.010	er effect <i>p</i> value 0.341 0.321 0.321	Power 0.156 0.138 0.051 0.168	Gende effect F 0.010 0.929 1.615 3.307	r × geno <i>p</i> value 0.990 0.403 0.210 0.046	type Power 0.051 0.323 0.597
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P11	Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 ± 2.09 23.3 ± 2.82 20.46 ± 2.55 22.07 ± 2.18 17 + 2.34	<i>p</i> value 0.000 0.572 0.702 0.042 0.890 0.831 0.185 Het 27.55 ± 1.19 21.34 ± 1.83 19.96 ± 1.72 17.55 ± 1.94 17.55 ± 1.94	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09	WT vs Het - - - - F 0.473 0.305 0.286 0.660	WT vs KO – – – – – p value 0.626 0.739 0.753 0.399 0.522	Het vs KO - - - - - - - - - - - - - - - - - -	WT vs Het 	WT vs KO - - - -	Het vs KO – – –	Gende F 0.928 0.774 0.010 1.030 0.718	er effect <i>p</i> value 0.341 0.384 0.922 0.316 0.401	Power 0.156 0.138 0.051 0.168 0.132	Gende effect F 0.010 0.929 1.615 3.307 1.010	r × geno p value 0.990 0.403 0.210 0.046 0.372	type Power 0.051 0.201 0.323 0.597 0.215
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38	<i>p</i> value 0.000 0.572 0.702 0.42 0.890 0.831 0.185 Het 27.55 ± 1.19 21.34 ± 1.83 19.96 ± 1.72 17.55 ± 1.94 19.27 ± 1.49 18.2 ± 1.72	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25	WT vs Het - - - - F 0.473 0.305 0.286 0.938 0.673	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het 	WT vs KO 	Het vs KO 	Gende F 0.928 0.774 0.010 1.030 0.718 0.015	er effect <i>p</i> value 0.341 0.384 0.922 0.316 0.401 0.902	Power 0.156 0.138 0.051 0.168 0.132 0.052	Gende effect F 0.010 0.929 1.615 3.307 1.010 0.685	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509	type Power 0.051 0.201 0.323 0.597 0.215 0.158
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 ± 2.09 23.3 ± 2.82 20.46 ± 2.55 22.07 ± 2.18 17 ± 2.34 15.61 ± 2.38 17.23 ± 2.78	p value 0.000 0.572 0.702 0.042 0.831 0.185 Het 27.55 \pm 1.19 21.34 \pm 1.83 19.96 \pm 1.72 17.55 \pm 1.94 19.27 \pm 1.49 18.2 \pm 1.72 12.72 \pm 1.6	Power 1.000 0.501 0.247 0.887 0.067 0.355 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 1.6 \pm 1.14	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het 	WT vs KO - - - - -	Het vs KO 	Gende F 0.928 0.774 0.010 1.030 0.718 0.015 0.421	er effect <i>p</i> value 0.341 0.384 0.922 0.316 0.401 0.902 0.520	Power 0.156 0.138 0.051 0.168 0.132 0.052 0.097	Gende effect F 0.010 0.929 1.615 3.307 1.010 0.685 5.349	r × geno <i>p</i> value 0.990 0.403 0.210 0.046 0.372 0.509 0.008	type Power 0.051 0.201 0.323 0.597 0.215 0.158 0.815
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P12 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P14	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 ± 2.09 23.3 ± 2.82 20.46 ± 2.55 22.07 ± 2.18 17 ± 2.34 15.61 ± 2.38 17.23 ± 2.78 4.92 ± 0.38	p value 0.000 0.572 0.702 0.042 0.831 0.185 Het 27.55 \pm 1.19 21.34 \pm 1.83 19.96 \pm 1.72 17.55 \pm 1.94 19.27 \pm 1.49 18.2 \pm 1.72 12.72 \pm 1.6 5.65 \pm 0.39	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 7 \pm 1.46	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – 0.626 0.753 0.399 0.522 0.399 0.522 0.568 0.107	Het vs KO - - - - - - - 0.122 0.095 0.202 0.154 0.350	WT vs Het 	WT vs KO 	Het vs KO 	Gende F 0.928 0.0774 0.010 0.778 0.015 0.421 0.215	er effect <i>p</i> value 0.341 0.322 0.316 0.401 0.902 0.520 0.645	Power 0.156 0.138 0.051 0.168 0.052 0.052 0.057	Gende effect F 0.010 0.929 1.615 3.307 1.010 0.685 5.349 0.019	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.0981	type Power 0.051 0.201 0.597 0.215 0.158 0.815 0.053
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × gender effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P13 Time to escape (seconds) - P13 Time to escape (seconds) - P15 Time to escape (seconds) - P15 Time to escape (seconds) - P16	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 17.61 \pm 2.38 17.23 \pm 2.78 4.92 \pm 0.38 5.61 \pm 0.28	$\begin{array}{c} p \text{ value} \\ \textbf{0.000} \\ 0.572 \\ 0.702 \\ \textbf{0.042} \\ 0.831 \\ 0.185 \\ \end{array}$ Het $\begin{array}{c} 27.55 \pm 1.19 \\ 21.34 \pm 1.83 \\ 19.96 \pm 1.72 \\ 17.55 \pm 1.94 \\ 19.27 \pm 1.49 \\ 18.2 \pm 1.72 \\ 12.72 \pm 1.6 \\ 5.65 \pm 0.39 \\ 3.65 \pm 0.25 \end{array}$	Power 1.000 0.501 0.247 0.887 0.065 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 7 \pm 1.46 4.5 \pm 0.87	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO p value 0.626 0.739 0.739 0.739 0.399 0.399 0.392 0.399 0.392 0.393 0.393 0.336	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het 	WT vs KO 	Het vs KO 	Gender F 0.928 0.774 0.010 0.718 0.015 0.421 0.215 2.068	er effect <i>p</i> value 0.341 0.384 0.316 0.401 0.902 0.520 0.645 0.158	Power 0.156 0.138 0.051 0.168 0.168 0.168 0.052 0.097 0.074 0.074	Gende effect F 0.010 0.0929 1.615 3.307 1.010 0.685 5.349 0.019 0.043	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.008 0.981 0.958	type Power 0.051 0.201 0.323 0.597 0.215 0.158 0.815 0.053
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P13 Time to escape (seconds) - P13 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P16 Time to escape (seconds) - P16	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 17.23 \pm 2.78 4.92 \pm 0.38 3.61 \pm 0.28 2.46 \pm 0.24	$\begin{array}{c} p \text{ value} \\ \textbf{0.000} \\ \textbf{0.572} \\ \textbf{0.702} \\ \textbf{0.42} \\ \textbf{0.831} \\ \textbf{0.185} \\ \end{array}$ Het $\begin{array}{c} 27.55 \pm 1.19 \\ 21.34 \pm 1.83 \\ 19.96 \pm 1.72 \\ 17.55 \pm 1.94 \\ 19.27 \pm 1.49 \\ 18.2 \pm 1.72 \\ 12.72 \pm 1.6 \\ 5.65 \pm 0.28 \\ 3.65 \pm 0.25 \\ 3.48 \pm 0.26 \end{array}$	Power 1.000 0.501 0.247 0.887 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 7 \pm 1.46 4.5 \pm 0.87 3.6 \pm 0.37	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – 0.626 0.739 0.739 0.522 0.568 0.107 0.336 0.336 0.336 0.336 0.336 0.336	Het vs KO – – – – – 0.122 0.095 0.095 0.202 0.154 0.139 0.450 0.350 0.234 0.234	WT vs Het 	WT vs 	Het vs KO 0.745	Gende F 0.928 0.774 0.010 1.030 0.718 0.015 0.421 1.0215 2.068 1.782	er effect p value 0.341 0.384 0.922 0.316 0.401 0.902 0.520 0.645 0.158 0.158	Power 0.156 0.138 0.051 0.168 0.052 0.097 0.074 0.290 0.290	Gende effect F 0.010 0.625 3.307 1.010 0.685 5.349 0.019 0.043 1.179	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.008 0.981 0.958 0.317	type Power 0.051 0.201 0.297 0.215 0.215 0.215 0.215 0.056 0.056 0.056 0.245
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P17	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 17.23 \pm 2.78 4.92 \pm 0.38 3.61 \pm 0.28 2.46 \pm 0.24 2.23 \pm 0.32	$\begin{array}{c} p \text{ value} \\ \textbf{0.000} \\ 0.572 \\ 0.702 \\ \textbf{0.042} \\ 0.831 \\ 0.185 \\ \end{array}$ Het $\begin{array}{c} 27.55 \pm 1.19 \\ 21.34 \pm 1.83 \\ 19.96 \pm 1.72 \\ 17.55 \pm 1.94 \\ 19.27 \pm 1.49 \\ 18.2 \pm 1.72 \\ 12.72 \pm 1.6 \\ 5.65 \pm 0.25 \\ 3.64 \pm 0.26 \\ 2.1 \pm 0.21 \end{array}$	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 7 \pm 1.46 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het 0.014	WT vs KO 	Het vs KO - - - - - - - - - 0.745 -	Gender F 0.928 0.774 0.010 1.030 0.718 0.015 0.421 0.215 0.421 1.782 0.121	er effect p value 0.341 0.384 0.922 0.316 0.401 0.902 0.520 0.645 0.158 0.158 0.730	Power 0.156 0.138 0.051 0.132 0.052 0.077 0.074 0.290 0.257 0.063	Gende effect F 0.010 0.929 1.615 5.349 0.019 0.043 1.179 0.313	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.008 0.958 0.958 0.317 0.733	type Power 0.051 0.201 0.215 0.253 0.215 0.053 0.056 0.245 0.097
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P18 Time to escape (seconds) - P18	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 17.23 \pm 2.78 4.92 \pm 0.38 3.61 \pm 0.24 2.23 \pm 0.32 2.38 \pm 0.33	p value 0.000 0.572 0.702 0.42 0.890 0.831 0.185 Het 27.55 \pm 1.19 21.34 \pm 1.83 19.96 \pm 1.72 17.55 \pm 1.94 18.2 \pm 1.72 12.72 \pm 1.49 18.2 \pm 1.72 12.72 \pm 1.6 5.65 \pm 0.39 3.65 \pm 0.25 3.48 \pm 0.26 2.1 \pm 0.21 2.17 \pm 0.29	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 7 \pm 1.46 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 2 \pm 0.36	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO - - - - - - - - - - - - - - - - - -	Het vs KO - - - - - - - - - - - - - - - - - -	Gender F 0.928 0.774 0.010 0.718 0.015 0.015 0.015 2.068 1.782 0.121 1.947	er effect p value 0.341 0.384 0.922 0.316 0.401 0.902 0.520 0.645 0.158 0.189 0.730 0.170	Power 0.156 0.138 0.051 0.052 0.097 0.074 0.290 0.257 0.063 0.257	Gende effect F 0.010 0.929 1.615 5.349 0.019 0.043 0.1179 0.043 1.179 0.313 2.592	r × geno p value 0.990 0.403 0.210 0.040 0.372 0.509 0.008 0.981 0.958 0.317 0.733 0.086	type Power 0.051 0.201 0.215 0.158 0.158 0.158 0.153 0.053 0.245 0.245 0.097 0.490
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P18 Time to escape (seconds) - P19 Time to escape (seconds) - P10	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 ± 2.09 23.3 ± 2.82 20.46 ± 2.55 22.07 ± 2.18 17 ± 2.34 15.61 ± 2.38 3.61 ± 2.38 4.92 ± 0.31 2.38 ± 0.32 2.38 ± 0.32 19.2 ± 0.21	p value 0.000 0.572 0.702 0.42 0.831 0.185 Het 27.55 \pm 1.19 21.34 \pm 1.83 19.96 \pm 1.72 17.55 \pm 1.94 19.27 \pm 1.49 18.2 \pm 1.72 17.75 \pm 0.39 3.65 \pm 0.25 3.48 \pm 0.26 2.1 \pm 0.21 2.17 \pm 0.29 2.13 \pm 0.16	Power 1.000 0.501 0.247 0.887 0.067 0.355 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 7 \pm 1.46 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 2 \pm 0.36 1.9 \pm 0.17	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO - - - - - - - - - - - - - - - - - -	WT vs Het 	WT vs KO 	Het vs KO – – – – – – – – – – – – – – – – – –	Gende F 0.928 0.0714 0.010 1.030 0.421 2.068 1.782 0.421 1.782 0.121 1.947	er effect p value 0.341 0.384 0.922 0.316 0.401 0.922 0.520 0.645 0.158 0.158 0.170 0.834 0.2730 0.170 0.834	Power 0.156 0.138 0.051 0.168 0.052 0.052 0.057 0.097 0.257 0.063 0.226	Gende effect F 0.010 0.929 1.615 3.307 1.010 0.685 5.349 0.019 0.043 1.179 0.043 2.592 0.205	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.008 0.981 0.988 0.317 0.733 0.086 0.816 0.816	type Power 0.051 0.201 0.323 0.597 0.215 0.158 0.158 0.158 0.158 0.053 0.056 0.245 0.097 0.2490 0.080
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P12 Time to escape (seconds) - P11 Time to escape (seconds) - P11 Time to escape (seconds) - P11 Time to escape (seconds) - P13 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P18 Time to escape (seconds) - P18 Time to escape (seconds) - P19 Time to escape (seconds) - P20 Time to escape (seconds) - P20 Time to escape (seconds) - average	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 20.7 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 17.23 \pm 2.78 3.61 \pm 0.28 2.46 \pm 0.24 2.23 \pm 0.32 1.92 \pm 0.32 1.92 \pm 0.21 12.25 \pm 0.59	p value 0.000 0.572 0.702 0.42 0.890 0.831 0.185 Het 27.55 \pm 1.19 21.34 \pm 1.83 19.96 \pm 1.72 17.55 \pm 1.94 19.27 \pm 1.49 18.2 \pm 1.72 12.72 \pm 1.6 5.65 \pm 0.29 3.65 \pm 0.25 3.48 \pm 0.26 2.1 \pm 0.21 2.17 \pm 0.29 2.13 \pm 0.16 11.98 \pm 0.49	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 14.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.47 2.2 \pm 0.36 1.9 \pm 0.17 12.22 \pm 0.53	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO - - - - - - - - - - 0.122 0.095 0.202 0.154 0.350 0.234 0.450 0.350 0.234 0.667 0.051 0.051 0.149 0.067	WT vs Het 	WT vs KO 	Het vs KO 0.745 	Gender F 0.928 0.774 0.010 0.718 0.421 2.068 1.782 0.121 1.947 0.044	er effect p value 0.341 0.324 0.922 0.316 0.401 0.902 0.520 0.645 0.158 0.158 0.170 0.834 0.831 0.401	Power 0.156 0.138 0.051 0.168 0.052 0.097 0.257 0.063 0.276 0.055 0.055	Gende effect F 0.010 0.929 1.615 3.307 1.010 0.685 5.349 0.019 0.013 1.179 0.313 2.592 0.205 1.755 2.592	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.0981 0.958 0.317 0.733 0.086 0.086 0.0816 0.085	type Power 0.051 0.201 0.323 0.597 0.215 0.158 0.053 0.055 0.055 0.055 0.055 0.056 0.245 0.0490 0.490 0.490 0.490
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P12 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P15 Time to escape (seconds) - P17 Time to escape (seconds) - P17 Time to escape (seconds) - P19 Time to escape (seconds) - P20 Time to escape (seconds) - average First day of two consecutive Supcesses (20-s cutoff)	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 17.23 \pm 2.78 3.61 \pm 0.28 2.46 \pm 0.24 2.23 \pm 0.32 1.92 \pm 0.21 12.25 \pm 0.59 11.92 \pm 0.58	$\begin{array}{c} p \text{ value} \\ \textbf{0.000} \\ 0.572 \\ 0.702 \\ \textbf{0.042} \\ 0.890 \\ 0.831 \\ 0.185 \\ \end{array}$ Het $\begin{array}{c} 27.55 \pm 1.19 \\ 21.34 \pm 1.83 \\ 19.96 \pm 1.72 \\ 17.55 \pm 1.94 \\ 19.27 \pm 1.49 \\ 18.2 \pm 1.72 \\ 12.72 \pm 1.6 \\ 5.65 \pm 0.29 \\ 3.65 \pm 0.25 \\ 3.48 \pm 0.26 \\ 2.1 \pm 0.21 \\ 2.17 \pm 0.29 \\ 2.13 \pm 0.16 \\ 11.98 \pm 0.49 \\ 11.24 \pm 0.32 \end{array}$	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 2 \pm 0.36 1.9 \pm 0.17 12.22 \pm 0.53 11.5 \pm 0.4	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – 0.626 0.739 0.739 0.522 0.568 0.107 0.183 0.336 0.336 0.336 0.336 0.336 0.336 0.536 0.536	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het 	WT vs KO 	Het vs KO 0.745 	Gende F 0.928 0.774 0.010 0.718 0.421 1.030 0.215 2.068 1.782 0.121 1.947 0.044 0.044 0.044 0.701	er effect p value 0.341 0.324 0.922 0.316 0.401 0.902 0.520 0.645 0.158 0.189 0.730 0.170 0.834 0.831 0.407	Power 0.156 0.038 0.051 0.052 0.097 0.257 0.063 0.276 0.055 0.055 0.130	Gende effect F 0.010 0.929 1.615 3.307 1.010 0.685 5.349 0.019 0.019 0.013 1.179 0.013 1.179 0.205 1.755 0.297	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.0981 0.958 0.317 0.733 0.086 0.816 0.816 0.816 0.745	type Power 0.051 0.201 0.597 0.215 0.158 0.053 0.053 0.055 0.055 0.055 0.056 0.245 0.097 0.490 0.080 0.080 0.084 0.094
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Cenotype effect Gender effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P13 Time to escape (seconds) - P13 Time to escape (seconds) - P15 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P18 Time to escape (seconds) - P19 Time to escape (seconds) - P19 Time to escape (seconds) - P19 Time to escape (seconds) - P20 Time to escape (seconds) - average First day of two consecutive successes (30-s cutoff)	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	$\begin{array}{c} F\\ 31.056\\ 0.874\\ 0.630\\ 1.857\\ 0.117\\ 0.046\\ 1.755\\ \end{array}$ WT $\begin{array}{c} 26.07\pm2.09\\ 23.3\pm2.82\\ 20.46\pm2.55\\ 22.07\pm2.18\\ 17\pm2.34\\ 15.61\pm2.38\\ 17.23\pm2.78\\ 4.92\pm0.38\\ 2.46\pm0.24\\ 2.23\pm0.32\\ 2.38\pm0.32\\ 2.38\pm0.32\\ 1.92\pm0.21\\ 1.92\pm0.58\\ \end{array}$	$\begin{array}{c} p \text{ value} \\ \textbf{0.000} \\ 0.572 \\ 0.702 \\ \textbf{0.042} \\ 0.831 \\ 0.185 \\ \end{array}$ Het $\begin{array}{c} 27.55 \pm 1.19 \\ 21.34 \pm 1.83 \\ 19.96 \pm 1.72 \\ 17.55 \pm 1.94 \\ 19.27 \pm 1.49 \\ 18.2 \pm 1.72 \\ 12.72 \pm 1.6 \\ 5.65 \pm 0.39 \\ 3.65 \pm 0.25 \\ 3.48 \pm 0.26 \\ 2.1 \pm 0.21 \\ 2.17 \pm 0.29 \\ 2.13 \pm 0.16 \\ 11.98 \pm 0.49 \\ 11.24 \pm 0.32 \end{array}$	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 10.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 7 \pm 1.46 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 2 \pm 0.36 1.9 \pm 0.17 12.22 \pm 0.53 11.5 \pm 0.4	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO 0.626 0.739 0.739 0.522 0.568 0.107 0.183 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336 0.336	Het vs KO - - - - - - - - - - - - - - - - - -	WT vs Het 	WT vs KO 	Het vs KO 0.745 	Gende F 0.928 0.774 0.010 0.718 0.4215 2.068 1.782 0.121 1.947 0.044 0.046 0.701	er effect p value 0.341 0.384 0.316 0.401 0.902 0.520 0.645 0.158 0.158 0.158 0.189 0.730 0.730 0.834 0.831 0.407	Power 0.156 0.138 0.051 0.168 0.132 0.074 0.290 0.257 0.063 0.276 0.055 0.055 0.130	Gende effect F 0.010 0.929 1.615 5.349 0.019 0.043 1.179 0.313 2.592 0.205 1.755 0.297	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.0981 0.981 0.981 0.958 0.317 0.733 0.086 0.816 0.816 0.745	type Power 0.051 0.201 0.323 0.597 0.215 0.053 0.056 0.245 0.097 0.490 0.080 0.080 0.084 0.094
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Cenotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P18 Time to escape (seconds) - P19 Time to escape (seconds) - P19 Time to escape (seconds) - P10 Time to escape (seconds) - P10 Time to escape (seconds) - P10 Time to escape (seconds) - P13 Time to escape (seconds) - P13 Time to escape (seconds) - P13 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P10 Time to escape (seconds) - P13 Time to escape (seconds) - P10 Time to escape (se	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 17.23 \pm 2.78 4.92 \pm 0.38 2.46 \pm 0.24 2.33 \pm 0.32 2.38 \pm 0.32 1.92 \pm 0.21 12.25 \pm 0.59 11.92 \pm 0.58	$\begin{array}{c} p \text{ value} \\ \textbf{0.000} \\ \textbf{0.572} \\ \textbf{0.702} \\ \textbf{0.42} \\ \textbf{0.890} \\ \textbf{0.831} \\ \textbf{0.185} \\ \end{array}$ Het $\begin{array}{c} 27.55 \pm 1.19 \\ 21.34 \pm 1.83 \\ 19.96 \pm 1.72 \\ 17.55 \pm 1.94 \\ 19.27 \pm 1.49 \\ 18.2 \pm 1.72 \\ 12.72 \pm 1.6 \\ 5.65 \pm 0.25 \\ 3.48 \pm 0.26 \\ 2.1 \pm 0.21 \\ 2.17 \pm 0.29 \\ 2.13 \pm 0.16 \\ 11.98 \pm 0.49 \\ 11.24 \pm 0.32 \end{array}$	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 7 \pm 1.46 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 1.9 \pm 0.17 12.22 \pm 0.53 11.5 \pm 0.4	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO - - - - - - - - - - - - - - - - - -	WT vs Het 0.014 	WT vs Ko 	Het vs KO 0.745 	Gender F 0.928 0.774 0.010 0.421 0.215 2.068 1.782 0.121 1.947 0.044 0.046 0.701	er effect p value 0.341 0.384 0.316 0.401 0.902 0.520 0.645 0.158 0.158 0.158 0.158 0.158 0.170 0.831 0.831 0.407	Power 0.156 0.138 0.051 0.168 0.052 0.097 0.257 0.063 0.276 0.055 0.130	Gende effect F 0.010 0.625 5.349 0.019 0.043 1.179 0.205 0.205 0.297	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.046 0.981 0.988 0.317 0.733 0.086 0.816 0.185 0.745	type Power 0.051 0.201 0.215 0.2597 0.215 0.056 0.245 0.056 0.245 0.056 0.245 0.097 0.490 0.080 0.348 0.094
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P16 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P18 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P13 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P18 Time to escape (seconds) - P19 Time to escape (seconds) - P10 Time to escape (seconds	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 17 \pm 2.34 15.61 \pm 0.28 2.46 \pm 0.24 2.23 \pm 0.32 1.92 \pm 0.21 1.92 \pm 0.58 F	p value 0.000 0.572 0.702 0.42 0.890 0.831 0.185 Het 27.55 \pm 1.19 21.34 \pm 1.83 19.96 \pm 1.72 17.55 \pm 1.94 18.2 \pm 1.72 12.72 \pm 1.6 5.65 \pm 0.25 3.48 \pm 0.26 2.1 \pm 0.21 2.17 \pm 0.29 11.98 \pm 0.49 11.24 \pm 0.32 p value	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 7 \pm 1.46 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 2 \pm 0.36 1.9 \pm 0.17 12.22 \pm 0.53 11.5 \pm 0.4 Power	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO - - - - - - - - - - - - - - - - - -	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO 	Het vs KO - - - - - - - 0.745 - - - - - - - - - - - - - - - - - - -	Gende F 0.928 0.774 0.010 0.421 0.215 0.421 1.947 0.044 0.701	er effect p value 0.341 0.384 0.922 0.316 0.401 0.902 0.645 0.158 0.158 0.170 0.831 0.407	Power 0.156 0.138 0.051 0.132 0.052 0.097 0.074 0.290 0.257 0.063 0.257 0.055 0.130	Gende effect F 0.010 0.929 1.615 5.349 0.019 0.043 1.179 0.205 0.205 0.297	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.008 0.958 0.317 0.733 0.086 0.816 0.185 0.745	type Power 0.051 0.201 0.215 0.253 0.215 0.053 0.056 0.245 0.097 0.490 0.080 0.348 0.094
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P18 Time to escape (seconds) - P19 Time to escape (seconds) - P20 Time to escape (seconds) - average First day of two consecutive successes (30-s cutoff) Ultrasonic vocalizations Number of calls - repeated measures, sphericity assumed	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17. \pm 2.34 15.61 \pm 2.38 17.23 \pm 2.78 4.92 \pm 0.38 3.61 \pm 0.24 2.23 \pm 0.32 1.92 \pm 0.21 12.25 \pm 0.59 11.92 \pm 0.58 F	$\begin{array}{c} p \text{ value} \\ \textbf{0.000} \\ 0.572 \\ 0.702 \\ \textbf{0.42} \\ 0.831 \\ 0.185 \\ \end{array}$ Het $\begin{array}{c} 27.55 \pm 1.19 \\ 21.34 \pm 1.83 \\ 19.96 \pm 1.72 \\ 17.55 \pm 1.94 \\ 19.27 \pm 1.49 \\ 18.2 \pm 1.72 \\ 12.72 \pm 1.6 \\ 5.65 \pm 0.25 \\ 3.48 \pm 0.26 \\ 3.48 \pm 0.26 \\ 3.48 \pm 0.21 \\ 2.17 \pm 0.21 \\ 2.17 \pm 0.29 \\ 2.13 \pm 0.16 \\ 11.98 \pm 0.49 \\ 11.24 \pm 0.32 \end{array}$	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 7 \pm 1.46 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 2 \pm 0.36 1.9 \pm 0.17 12.22 \pm 0.53 11.5 \pm 0.4 Power	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO - - - - - - Power 0.122 0.095 0.093 0.202 0.154 0.350 0.234 0.667 0.234 0.651 0.149 0.067 0.142 No.67	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO 0.026 	Het vs KO - - - - - - - - - - - - - - - - - -	Gender F 0.928 0.774 0.010 1.030 0.421 2.068 1.782 0.421 1.947 0.044 0.701	er effect p value 0.341 0.384 0.922 0.316 0.401 0.922 0.520 0.645 0.158 0.158 0.138 0.730 0.730 0.730 0.731 0.834 0.831 0.407	Power 0.156 0.138 0.051 0.052 0.052 0.097 0.074 0.297 0.063 0.257 0.063 0.255 0.065 0.130	Gende effect F 0.010 0.929 1.615 3.307 1.010 0.685 5.349 0.043 1.179 0.245 1.755 0.297	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.008 0.981 0.988 0.317 0.733 0.086 0.816 0.185 0.745	type Power 0.051 0.201 0.323 0.597 0.215 0.053 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P18 Time to escape (seconds) - P18 Time to escape (seconds) - P19 Time to escape (seconds) - P10 Time to escape (se	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 4.92 \pm 0.38 3.61 \pm 0.28 2.46 \pm 0.24 2.23 \pm 0.32 1.92 \pm 0.21 12.25 \pm 0.59 11.92 \pm 0.58 F 4.600	p value 0.000 0.572 0.702 0.042 0.831 0.185 Het 27.55 \pm 1.19 21.34 \pm 1.83 19.96 \pm 1.72 17.55 \pm 1.94 19.27 \pm 1.49 18.2 \pm 1.72 12.72 \pm 1.6 5.65 \pm 0.25 3.48 \pm 0.26 2.17 \pm 0.29 2.13 \pm 0.16 11.98 \pm 0.49 11.24 \pm 0.32 p value 0.012	Power 1.000 0.501 0.247 0.887 0.067 0.355 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 16.6 \pm 1.14 7 \pm 1.46 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 2 \pm 0.36 1.9 \pm 0.17 12.22 \pm 0.53 11.5 \pm 0.4 Power 0.767	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO - - - - - - - - - - - - - - - - - -	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het 	WT vs KO 	Het vs KO 	Gender F 0.928 0.774 0.010 1.030 0.718 0.042 1.032 0.215 2.068 1.782 0.121 1.947 0.044 0.701	er effect <i>p</i> value 0.341 0.384 0.922 0.316 0.401 0.920 0.645 0.158 0.158 0.170 0.834 0.831 0.407	Power 0.156 0.138 0.051 0.052 0.097 0.097 0.257 0.063 0.276 0.063 0.265 0.130	Gende effect F 0.010 0.929 1.615 3.307 1.010 0.685 0.349 0.043 1.179 0.205 1.755 0.297	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.008 0.0958 0.317 0.733 0.086 0.816 0.185 0.745	type Power 0.051 0.201 0.323 0.597 0.215 0.053 0.053 0.056 0.245 0.097 0.490 0.490 0.490 0.348 0.094
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P12 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P18 Time to escape (seconds) - P18 Time to escape (seconds) - P18 Time to escape (seconds) - P19 Time to escape (seconds) - P18 Time to escape (seconds) - P18 Time to escape (seconds) - P19 Time to escape (seconds) - P19 Time to escape (seconds) - P19 Time to escape (seconds) - P18 Time to escape (seconds) - P19 Time to escape (seconds) - average First day of two consecutive successes (30-s cutoff) Ultrasonic vocalizations Number of calls - repeated measures, sphericity assumed Day effect Day × genotype effect	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 17.23 \pm 2.78 3.61 \pm 0.28 2.46 \pm 0.24 2.23 \pm 0.32 1.92 \pm 0.21 12.25 \pm 0.59 11.92 \pm 0.58 F 4.600 0.991	p value 0.000 0.572 0.702 0.42 0.831 0.185 Het 27.55 \pm 1.19 21.34 \pm 1.83 19.96 \pm 1.72 17.55 \pm 1.94 19.27 \pm 1.49 18.2 \pm 1.72 12.72 \pm 1.6 5.65 \pm 0.29 3.65 \pm 0.25 3.48 \pm 0.26 2.17 \pm 0.29 2.13 \pm 0.16 11.98 \pm 0.49 11.24 \pm 0.32 p value 0.012 0.416	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 2 \pm 0.36 1.9 \pm 0.17 12.22 \pm 0.53 11.5 \pm 0.4 Power 0.767 0.303	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het 	WT vs KO 	Het vs KO 0.745 	Gender F 0.928 0.774 0.010 0.718 0.015 0.421 2.068 1.782 0.121 0.215 2.068 1.782 0.121 0.944 0.046 0.701	er effect <i>p</i> value 0.341 0.324 0.922 0.316 0.401 0.902 0.520 0.645 0.158 0.158 0.170 0.834 0.831 0.407	Power 0.156 0.138 0.051 0.052 0.097 0.257 0.063 0.276 0.276 0.276 0.276 0.276 0.276 0.276 0.276	Gende effect F 0.010 0.929 1.615 3.307 1.010 0.685 5.349 0.019 0.013 1.179 0.2152 0.205 1.755 0.297	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.088 0.317 0.733 0.086 0.816 0.185 0.745	type Power 0.051 0.201 0.323 0.597 0.215 0.158 0.053 0.056 0.245 0.053 0.490 0.490 0.490 0.490 0.348 0.094
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P17 Time to escape (seconds) - P18 Time to escape (seconds) - P11 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P17 Time to escape (seconds) - P19 Time to escape (seconds) - P19 Time to escape (seconds) - P19 Time to escape (seconds) - average First day of two consecutive successes (30-s cutoff) Ultrasonic vocalizations Number of calls - repeated measures, sphericity assumed Day effect Day × genotype eff	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 17.23 \pm 2.78 2.46 \pm 0.24 2.23 \pm 0.38 3.61 \pm 0.28 2.46 \pm 0.24 1.92 \pm 0.58 I.92 \pm 0.59 11.92 \pm 0.58 F 4.600 0.991 1.430 2.30	p value 0.000 0.572 0.702 0.042 0.890 0.831 0.185 Het 27.55 \pm 1.19 21.34 \pm 1.83 19.96 \pm 1.72 17.55 \pm 1.94 19.27 \pm 1.49 18.2 \pm 1.72 12.72 \pm 1.6 5.65 \pm 0.39 3.65 \pm 0.25 3.48 \pm 0.26 2.17 \pm 0.21 2.17 \pm 0.29 2.13 \pm 0.16 11.98 \pm 0.49 11.24 \pm 0.32 p value 0.012 0.416 0.244 0.974	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 Power 0.767 0.303 0.300 0.416	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het 	WT vs KO 	Het vs KO 0.745 	Genda F 0.928 0.774 0.010 0.718 0.421 1.030 0.215 2.068 1.782 0.121 1.947 0.044 0.046 0.701	er effect p value 0.341 0.324 0.922 0.316 0.401 0.902 0.520 0.645 0.158 0.189 0.730 0.170 0.834 0.831 0.407	Power 0.156 0.138 0.051 0.168 0.097 0.257 0.063 0.276 0.055 0.130	Gende effect F 0.010 0.629 0.685 5.349 0.019 0.043 1.179 0.205 1.755 0.297	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.0981 0.958 0.317 0.733 0.086 0.816 0.816 0.816 0.745	type Power 0.051 0.201 0.323 0.597 0.215 0.053 0.056 0.245 0.056 0.245 0.097 0.490 0.080 0.080 0.084 0.094
Best score Open field Repeated measures, sphericity violat Day effect Day × genotype effect Day × genotype effect Day × genotype × gender effect Genotype effect Genotype × gender Multifactiorial ANCOVA Time to escape (seconds) - P8 Time to escape (seconds) - P9 Time to escape (seconds) - P10 Time to escape (seconds) - P11 Time to escape (seconds) - P12 Time to escape (seconds) - P13 Time to escape (seconds) - P14 Time to escape (seconds) - P15 Time to escape (seconds) - P16 Time to escape (seconds) - P17 Time to escape (seconds) - P17 Time to escape (seconds) - P17 Time to escape (seconds) - P19 Time to escape (seconds) - P20 Time to escape (seconds) - average First day of two consecutive successes (30-s cutoff) Ultrasonic vocalizations Number of calls - repeated measures, sphericity assumed Day effect Day × genotype effect Day × genotype effect Day × genotype × gender effect	Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	F 31.056 0.874 0.630 1.857 0.117 0.046 1.755 WT 26.07 \pm 2.09 23.3 \pm 2.82 20.46 \pm 2.55 22.07 \pm 2.18 17 \pm 2.34 15.61 \pm 2.38 17.23 \pm 2.78 4.92 \pm 0.38 3.61 \pm 0.28 2.46 \pm 0.24 2.23 \pm 0.32 1.92 \pm 0.58 F 4.600 0.991 1.430 0.305	p value 0.000 0.572 0.702 0.042 0.890 0.831 0.185 Het 27.55 \pm 1.19 21.34 \pm 1.83 19.96 \pm 1.72 17.55 \pm 1.94 19.27 \pm 1.49 18.2 \pm 1.72 12.72 \pm 1.6 5.65 \pm 0.39 3.65 \pm 0.25 3.48 \pm 0.26 2.13 \pm 0.16 11.98 \pm 0.49 11.24 \pm 0.32 p value 0.012 0.416 0.244 0.874	Power 1.000 0.501 0.247 0.887 0.067 0.055 0.348 KO 28.9 \pm 0.99 24.2 \pm 2.64 22.1 \pm 2.34 20.2 \pm 3.04 16.2 \pm 2.09 15.6 \pm 2.25 10.6 \pm 1.14 4.5 \pm 0.87 3.6 \pm 0.37 2.1 \pm 0.4 Power 0.767 0.303 0.300 0.116 (Cr	WT vs Het - - - - - - - - - - - - - - - - - - -	WT vs KO – – – – – – – – – – – – – – – – – –	Het vs KO – – – – – – – – – – – – – – – – – –	WT vs Het 	WT vs KO 	Het vs KO - - - - - - - - - - - - - - - - - -	Genda F 0.928 0.774 0.010 0.718 0.421 1.030 0.215 0.421 1.947 0.024 0.024 0.044 0.0046 0.701	er effect p value 0.341 0.324 0.922 0.316 0.401 0.902 0.520 0.645 0.158 0.158 0.189 0.730 0.170 0.834 0.831 0.407	Power 0.156 0.138 0.051 0.168 0.132 0.097 0.257 0.063 0.276 0.055 0.130	Gende effect F 0.010 0.629 1.615 3.307 1.010 0.685 5.349 0.019 0.019 0.013 1.179 0.313 2.592 0.205 1.755 0.297	r × geno p value 0.990 0.403 0.210 0.046 0.372 0.509 0.0981 0.958 0.317 0.733 0.086 0.816 0.816 0.745	type Power 0.051 0.201 0.323 0.597 0.215 0.053 0.056 0.245 0.097 0.490 0.080 0.348 0.094

Table 4. Continued

Ultrasonic vocalizations																
Repeated measures, spheric	city violated	F	p value	Power	WT vs	WT vs	Het vs									
					Het	KO	KO									
Genotype effect		0.533	0.590	0.133	-	-	-									
Gender effect		1.697	0.199	0.248	-	-	-									
Genotype $ imes$ gender		0.869	0.426	0.191	-	-	-									
											Gender	r effect		Gende	r imes gen	otype
														effect		
Multifactiorial ANCOVA		WT	Het	КО	F	р	Power	WT vs	s WT vs	Het vs	F	р	Power	F	р	Power
						value		Het	KO	KO		value			value	
Number of calls - minute 1	Nonnormal	13.81 ± 4.24	11.46 ± 2.89	15.88 ± 5.31	0.586	0.562	0.139	-	-	-	0.163	0.689	0.068	0.090	0.914	0.063
Number of calls - minute 2	Nonnormal	18.68 ± 5.15	11.56 ± 2.73	13.22 ± 4.78	0.567	0.572	0.136	-	-	-	0.327	0.571	0.086	0.068	0.935	0.059
Number of calls - minute 3	Nonnormal	15.75 ± 4.72	13.96 ± 3.72	8.33 ± 4.2	0.172	0.843	0.074	-	-	-	3.481	0.071	0.442	0.097	0.908	0.064
Number of calls - total	Nonnormal	48.43 ± 13.28	37.06 ± 7.85	37.44 ± 12.08	0.156	0.856	0.072	-	-	-	1.323	0.258	0.201	0.052	0.949	0.057
Calling time - minute 1	Nonnormal	0.93 ± 0.29	0.75 ± 0.19	1.08 ± 0.38	0.738	0.485	0.165	-	-	-	0.106	0.746	0.062	0.083	0.920	0.062
Calling time - minute 2	Nonnormal	1.24 ± 0.39	0.76 ± 0.19	0.85 ± 0.3	0.368	0.695	0.104	-	-	-	0.231	0.634	0.075	0.059	0.943	0.058
Calling time - minute 3	Nonnormal	1.16 ± 0.4	0.96 ± 0.25	0.53 ± 0.27	0.162	0.851	0.073	-	-	-	4.123	0.050	0.505	0.006	0.994	0.051
Calling time - total	Nonnormal	3.41 ± 1.05	2.48 ± 0.52	2.47 ± 0.81	0.189	0.828	0.077	-	-	-	1.431	0.240	0.213	0.023	0.977	0.053
Average duration - min 1	Nonnormal	0.05 ± 0	0.05 ± 0	0.03 ± 0.01	0.138	0.872	0.069	-	-	-	0.056	0.815	0.056	0.950	0.400	0.197
Average duration - min 2	Nonnormal	0.06 ± 0	0.06 ± 0	0.03 ± 0.01	0.319	0.730	0.095	-	-	-	1.879	0.182	0.262	1.561	0.229	0.301
Average duration - min 3	Nonnormal	0.06 ± 0	0.06 ± 0	0.02 ± 0.01	6.759	0.004	0.883	-	-	-	23.838	0.000	0.997	7.350	0.003	0.909
Average duration - total	Nonnormal	0.08 ± 0.01	0.06 ± 0	0.03 ± 0.01	0.515	0.604	0.125	-	-	-	1.663	0.209	0.237	0.847	0.440	0.179
Latency to first call	Nonnormal	77.28 ± 17.98	80.04 ± 12.54	75.57 ± 27.65	0.411	0.665	0.113	-	-	-	0.155	0.696	0.067	3.311	0.045	0.602
Mean frequency - total	Nonnormal	71337.77 ± 1902.04	73128.73 ± 3879.33	75883.81 ± 3957.75	0.024	0.976	0.053	-	-	-	0.036	0.851	0.054	0.029	0.971	0.054
Mean amplitude - total	Nonnormal	78.43 ± 29.11	66.33 ± 20.80	37.15 ± 17.64	0.189	0.829	0.076	-	-	-	2.440	0.130	0.325	0.442	0.648	0.114
Percentage of noncaller	Nonnormal	18.75 ± 10.08	28.13 ± 8.08	33.33 ± 16.67	0.401	0.672	0.111	-	-	-	0.587	0.447	0.117	1.933	0.155	0.382

WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. Group values are reported as mean \pm SEM. Bold font indicates significant results (p < 0.05). P: postnatal day.

gous animals (Fig. 3A) and reduced spontaneous locomotion was observed during a 1-h open field session in both Shank $3^{\Delta 4-22}$ heterozygous and homozygous mice (Fig. 3B). Across the 60-min session, the time course for total distance traversed by all three genotypes declined as expected, representing habituation to the open field. However, while the distance traveled during the first 10 min was similar for the three groups, the decline was faster for Shank3^{Δ4-22} homozygous mice, possibly reflecting a higher fatigability. Similarly, in the accelerating rotarod test, which assay for gait, balance, motor coordination and endurance, shorter latencies to fall where observed in Shank3^{$\Delta 4-22$}-deficient mice after the first trial, with a milder phenotype observed in the heterozygotes compared to homozygotes. When examining learning in this paradigm, characterized by an improvement of performance (latency to fall) over the trials, Shank3^{$\Delta 4-22$} heterozygous and homozygous animals failed to improve over time, in contrast to wild-type animals which showed typical learning (Fig. 3C).

Impairment of motor coordination and balance was also observed in *Shank3*^{$\Delta 4-22$} homozygous in the beam walking test (Fig. 3*D*; Table 6) as well by reduced strength and endurance in both the inverted screen and hanging tests (Fig. 3*E*), but with no differences in forelimb grip strength (Extended Data Fig. 3-1*A*). There was also a trend toward an increased number of failed attempt in the hindlimb placing for *Shank3*^{$\Delta 4-22$} homozygous mice, compared to their littermates (Extended Data Fig. 3-1*B*).

Sensory abilities in Shank3^{$\Delta 4-22$}-deficient mice

For all sensory-related assays, detailed results are reported in Table 7.

No genotype differences were detected in tactile tests including the pinna reflex, the palpebral reflex, and the toe pinch retraction test. In the tail flick pain sensitivity test, a trend toward a decreased latency to flick the tail in response to a noxious thermal stimulation a was observed in *Shank3*^{$\Delta 4-22$} homozygous animals (Fig. 4*A*).

Normal Preyer reflexes were observed in all genotypes; however, *Shank3*^{$\Delta 4-22$} heterozygous and homozygous mice showed a reduced startle response throughout all the sound intensities (74–92 dB, analyzed as repeated measures) indicating an impaired sound discrimination (Fig. 4*B*). Changes in pre-pulse inhibition of acoustic startle in *Shank3*^{$\Delta 4-22$}-deficient mice are consistent with abnormalities in auditory processing, rather than sensorimotor gating deficits (Extended Data Fig. 4-1*A*).

Normal visual placing/reaching reflexes were observed for all the mice, thus ruling out strong visual impairments (Fig. 4*C*).

Shank3^{Δ4-22} homozygous mice demonstrated strong deficits in the buried food test (Fig. 4D, left panel) with only seven out of 19 mice able to retrieve the food in less than 2 min and nine out of 19 mice not being able to find the food at all (Extended Data Fig. 4-1B). However, all animals showed interest for the food and ate it when it was made visible. To further investigate olfactory function, animals were subjected to the olfactory habituation/dishabituation paradigm using three nonsocial scents (water, banana, and lemon) and two social scents (unfamiliar males and unfamiliar females). Wild-type and Shank3^{Δ4-22} heterozygous animals displayed a normal response, characterized by a robust sniffing elicited by the first scent presentation of each nonsocial and social scent that declined over the second and third presentation of the same scent. In contrast, Shank3^{Δ4-22} homozygous animals had little response to any of the nonsocial scents, even on their first presentation (Fig. 4D, middle panel), thus confirming the results of the buried food test. Interestingly the lack of interest for olfactory stimuli does not appear to be the consequence of anosmia as a normal response to both social scents was observed in Shank $3^{\Delta 4-22}$ homozygous mice (Fig. 4D, right panel).

Figure 2. Delayed developmental milestones of in *Shank3*^{$\Delta 4-22$}-deficient mice. Analysis of markers of developmental milestones revealed genotype differences in *Shank3*^{$\Delta 4-22$} wild-type, heterozygous, and homozygous pups between postnatal days 1 and 21 on measures of (*A*) body weight, (*B*) auditory startle, (*C*) air righting, (*D*) wire suspension, (*E*) grasping reflex, and (*F*) negative geotaxis. Additional milestones (jar opening, tooth eruption, fur development, eye opening, rooting reflex, cliff aversion, ear twitch, surface righting, open field crossing, and ultrasonic vocalizations) are displayed in Extended Data Figure 2-1. WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. *: WT versus KO; o: WT versus Het, #: Het versus KO. *p < 0.05, **p < 0.1, ***p < 0.001.

Social interactions in Shank3^{$\Delta 4-22$}-deficient mice

Mice were evaluated for social abilities during malefemale dyadic social interaction, in the three-chambered social interaction task, and in the social transmission of food preference test and detailed results are reported in Table 8. In freely moving male-female dyads of male mice paired with unfamiliar wild-type estrous C57BL6 females, sniffing time was generally similar across genotypes (Fig.

Table 5. Detailed results and statistical analyses related to general health, physical factors, gross appearance, and spontaneous activity

Physical factors and g	ross appear	rance															
						Genot	ype		Cohort			Genot	ype ×		Pairwis	e risons	
	Test	Data structure	WT	Het	КО	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs KO	Het vs KO
3-months weight (g)	2wANOVA	Normal	26.33 ± 0.87	27.18 ± 0.57	26.01 ± 0.54	1.241	0.298	0.258	2.546	0.117	0.347	2.000	0.146	0.394	-	_	_
15-months weight (g)	2wANOVA	Normal	33.41 ± 2	31.06 ± 1.21	29.36 ± 1.73	1.578	0.222	0.310	0.269	0.608	0.079	0.491	0.617	0.123	_	_	_
20-months weight (g)	2wANOVA	Normal	32.9 ± 1.86	31.43 ± 1.2	28.84 ± 1.5	0.982	0.390	0.199	0.034	0.856	0.054	0.018	0.982	0.052	_	_	_
Length	2wANOVA	Nonnormal	16.45 ± 0.24	16.84 ± 0.24	16.73 ± 0.25	1.062	0.353	0.226	91.207	0.000	1.000	0.471	0.627	0.123	_	_	_
Coat appearance	2wANOVA	Nonnormal	2.63 ± 0.13	2.89 ± 0.07	2.94 ± 0.05	2.558	0.087	0.489	2.615	0.112	0.355	1.424	0.250	0.291	0.119	0.050	0.915
Skin color	_	_	0 ± 0	0 ± 0	0 ± 0	_	_	_	_	_	_	_	_	_	_	_	_
Whisker barbering	_	_	0 ± 0	0 ± 0	0 ± 0	_	_	_	_	_	_	_	_	_	_	_	_
Missing fur on face	_	_	0 ± 0	0 ± 0	0 ± 0	_	_	_	_	_	_	_	_	_	_	_	_
Missing fur on body	_	_	0 ± 0	0 ± 0	0 ± 0	_	_	_	_	_	_	_	_	_	_	_	_
Wounding	2wANOVA	Nonnormal	0.15 ± 0.11	0 ± 0	0.05 ± 0.05	1.078	0.348	0.229	0.028	0.869	0.053	0.279	0.758	0.092	_	_	_
Body tone	2wANOVA	Nonnormal	1.1 ± 0.07	1.1 ± 0.07	1 ± 0.07	0.563	0.573	0.138	2.225	0.142	0.310	0.563	0.573	0.138	_	_	_
Palpebral closure	_	_	0 ± 0	0 ± 0	0 ± 0	_	_	_	_	_	_	_	_	_	_	_	_
Piloerection	-	-	0 ± 0	0 ± 0	0 ± 0	-	-	-	-	-	-	-	-	-	-	-	-
Jar observation																	
						Genot	ype		Cohort			Genot cohort	ype ×		Pairwis compa	e risons	
	Test	Data	WT	Het	КО	F	p	Power	F	p	Power	F	p	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Body position	2wANOVA	Nonnormal	4.15 ± 0.08	4.1 ± 0.07	4.26 ± 0.1	0.702	0.500	0.162	4.949	0.031	0.588	0.139	0.871	0.070	-	_	_
Spontaneous activity	2wANOVA	Nonnormal	1.68 ± 0.1	1.57 ± 0.11	1.63 ± 0.11	0.223	0.801	0.083	0.282	0.598	0.082	0.279	0.758	0.092	-	_	_
Latency to sit/stand (s)	_	_	0 ± 0	0 ± 0	0 ± 0	_	_	_	_	_	_	_	_	_	_	_	_
Latency to rear (s)	2wANOVA	Nonnormal	8.94 ± 1.36	8.05 ± 1.03	5.63 ± 1.02	2.137	0.128	0.418	0.036	0.850	0.054	0.046	0.955	0.057	_	_	_
Repeated jumps (%)	2wANOVA	Nonnormal	15.78 ± 8.59	10.52 ± 7.23	26.31 ± 10.37	0.702	0.500	0.162	4.949	0.031	0.588	0.139	0.871	0.070	-	_	_
Circling (%)	2wANOVA	Nonnormal	5.26 ± 5.26	10.52 ± 7.23	10.52 ± 7.23	0.289	0.750	0.093	5.177	0.027	0.607	0.289	0.750	0.093	_	_	_
Urination	2wANOVA	Nonnormal	0.47 ± 0.19	0.1 ± 0.1	0.15 ± 0.11	1.540	0.224	0.312	0.023	0.881	0.052	1.213	0.306	0.253	_	_	_
Defecation (number)	2wANOVA	Nonnormal	1.57 ± 0.35	0.94 ± 0.29	0.94 ± 0.27	1.065	0.352	0.226	0.003	0.958	0.050	2.592	0.085	0.494	_	_	_
Respiration	_	_	2 ± 0	2 ± 0	2 ± 0	_	_		_	_		_	_		_	_	_
Tremor	-	-	0 ± 0	0 ± 0	0 ± 0	-	-		-	-		-	-		-	-	-
Cage transfer																	
						Genot	ype		Cohort			Genot cohort	ype ×		Pairwis compa	e risons	
	Test	Data	WT	Het	КО	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs	Het vs
Transfer arousal	2wANOVA	Nonnormal	3 21 + 0 22	3 21 + 0 22	3 15 + 0 2	0.037	0.964	0.055	1 470	0 231	0 221	2 055	0 139	0 404	_	_	_
Gait	2wANOVA	Nonnormal	0 + 0	0.15 + 0.08	0.05 + 0.05	1 783	0 178	0.356	0.003	0.957	0.050	0.637	0.533	0 151	_	_	_
Pelvic elevation	2wANOVA	Nonnormal	2 + 0	2 15 + 0.08	2 ± 0.07	1 730	0.188	0.347	0.141	0 709	0.066	0.141	0.869	0.071	_	_	_
Tail elevation	2wANOVA	Nonnormal	1.89 ± 0.15	1.73 ± 0.18	1.21 ± 0.18	4.003	0.024	0.691	4.469	0.039	0.545	0.204	0.816	0.080	0.530	0.009	0.043

WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. Group values are reported as mean \pm SEM. Bold font indicates significant results (p < 0.05). Individual results and statistical analyses for cohorts 1 and 2 are available in Extended Data Table 5-1. 2wANOVA: 2-way ANOVA.

5A, left panel). A significant increase in latency for the first event of anogenital sniffing was found in male $Shank3^{\Delta 4-22}$ homozygous mice (Fig. 5A, right panel), and we can note that this latency may contribute to trend toward reduced anogenital sniffing time in those animals. Ultrasonic vocalizations did not show significant difference across genotypes (Extended Data Fig. 5-1A).

Similarly, In the three-chambered test for social preference, sociability, defined as spending more time interacting with the mouse than with the object, was found in all genotypes. Hence, in all groups, significantly more time was spent in the chamber containing the novel mouse than in the chamber containing the novel object, and more time was spent sniffing the novel mouse than the novel object (Fig. 5B). All genotypes showed the normal absence of innate chamber side bias during the 10-min habituation phase before the start of the sociability test.

Finally, mice were tested in the social transmission of food preference test that combines social behavior, olfactory recognition and memory skills. A modest decrease of the number of sniffing bouts initiated by the observer mouse toward the demonstrator mouse was observed during the observer-demonstrator interaction phase in

May/June 2018, 5(3) e0046-18.2018

Shank $3^{\Delta 4-22}$ homozygous mice but not in heterozygotes (Extended Data Fig. 5-1*B*). All genotypes showed a strong preference for the cued food flavor that was exposed to them through the demonstrator, as compared to the non-cued food flavor, as shown both by significantly more time spent interacting with the jar containing the cued food than the noncued food (Fig. 5*C*) or by eating significantly more cued food than noncued food during the choice phase (Table 8). Note that two flavors were randomly used as cued and noncued food flavor and all genotypes showed an absence of flavor preference. However, the total amount of food (cued and noncued) eaten by Shank $3^{\Delta 4-22}$ homozygous mice was significantly lower than the total amount of food eaten by their wild-type and homozygous littermates.

Object avoidance in $Shank^{\Delta 4-22}$ -deficient mice

While testing mice in different set-ups involving object interactions, a strong avoidance toward inanimate objects was observed in *Shank3*^{$\Delta 4-22$} homozygous mice (Table 9).

This avoidance behavior was initially observed in the novel object recognition task. This highly validated test for recognition memory is designed to evaluate differences in the exploration time of novel and familiar objects. Mice

Table 6. Detailed results and statistical analyses related to motor functions

Gait analysis																	
						Genoty	pe		Cohort			Genot	ype ×		Pairwis	se	
	Test	Data	WT	Het	ко	F	p	Power	F	p	Power	Conor F	p	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Stance mean (cm)	2wANOVA	Normal	3.55 ± 0.09	3.41 ± 0.12 0.15 ± 0.02	3.27 ± 0.14	1.466	0.240	0.299	40.902	0.000	1.000	1.291	0.284	0.267	_	_	_
Stride mean (cm)	2wANOVA 2wANOVA	Normal	5.39 ± 0.23	5.64 ± 0.21	6.43 ± 0.24	5.443	0.029	0.826	15.476	0.000	0.971	0.499	0.404	0.108	0.674	0.003	0.028
Stride variance (cm)	2wANOVA	Nonnormal	0.77 ± 0.13	0.86 ± 0.14	0.83 ± 0.18	0.137	0.873	0.070	12.150	0.001	0.928	3.459	0.039	0.622	_	_	_
Sway mean (cm)	2wANOVA	Nonnormal	3.4 ± 0.17	3.55 ± 0.16	3.59 ± 0.22	0.191	0.826	0.078	186.368	0.000	1.000	2.443	0.097	0.470	-	-	-
Sway variance (cm)	2wANOVA	Nonnormal	0.08 ± 0.01	0.17 ± 0.04	0.14 ± 0.02	1.909	0.159	0.378	3.781	0.057	0.479	0.400	0.672	0.111	-	-	-
Open field spontaned	ous activity	(traveled di	istance)														
						Genoty	pe		Cohort			Genot	ype $ imes$		Pairwis	se	
	Test	Data	WT	Hot	KO	F	n	Power	F	n	Power	cohor	t n	Power	compa	risons	Hot ve
	Test	structure	VVI	Her	KO	F	p value	Fower	r	p value	Fower	F	value	Fower	Het	KO	KO
Total distance (cm)	2wANOVA	Normal	13,816.17 ± 828.27	11,273.16 ± 764.09	10,099.24 ± 621.43	6.633	0.003	0.896	12.836	0.001	0.940	0.073	0.930	0.061	0.016	0.001	0.299
Distance	Teet	Data				F		Dowor	WT vo	M/T 1/0	Hat vo						
Distance	Test	structure				F	p value	Power	Het	KO	KO						
- Time	rMeasures	Sph.viol				36.350	0.000	1.000	-	-	-						
- Time $ imes$ gen.	rMeasures	Sph.viol				2.235	0.029	0.917	_	-	-						
- Genotype	rMeasures	Sph.viol				6.633	0.003	0.896	0.029	0.001	0.449						
- Time \times den. \times coh.	rMeasures	Sph.viol				0.878	0.532	0.940	_	_	_						
- gen. × coh.	rMeasures	Sph.viol				0.073	0.930	0.061	-	-	-						
						_						_					
						Genoty	pe		Cohort			Genot	ype ×		Pairwis	Se risons	
Individual time bins	Test	Data	WT	Het	ко	F	p	Power	F	p	Power	F	p	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Distance 0-10 min	2wANOVA	Normal	2723.06 ± 185.28	2365.11 ± 166.4	2479.64 ± 164.36	0.894	0.415	0.196	7.573	0.008	0.770	0.224	0.800	0.083	-	-	-
Distance 10-20 min	2wANOVA	Nonnormal	2516.77 ± 150.09	2064.33 ± 169.75 1010 27 + 150 57	1684.88 ± 108.32	8.357	0.001	0.954	13.148	0.001	0.945	0.026	0.975	0.054	0.030	0.000	0.069
Distance 30-40 min	2wANOVA 2wANOVA	Normal	2203.27 ± 139.79	1680.09 ± 143.29	1589.41 ± 114.03	6.091	0.001	0.868	11.521	0.001	0.924	0.020	0.980	0.053	0.007	0.000	0.710
Distance 40-50 min	2wANOVA	Normal	2090.38 ± 156.71	1657.47 ± 139.76	1380 ± 116.11	6.255	0.004	0.877	5.904	0.019	0.664	0.035	0.965	0.055	0.035	0.001	0.185
Distance 50-60 min	2wANOVA	Nonnormal	1933.14 ± 160.59	1586.87 ± 98.6	1498.28 ± 139.38	3.074	0.055	0.568	3.755	0.058	0.477	1.459	0.242	0.298	0.055	0.026	0.733
Botarod																	
Latency	Test	Data				F	р	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Trial	rMeasures	Sph.viol				9.369	0.000	1.000	-	-	-						
- mai × gen. - Genotype	rMeasures	Sph.viol				2.200	0.015	0.921	0.123	0.000	0.044						
- Cohort	rMeasures	Sph.viol				2.573	0.115	0.350	_	_	-						
- Session $ imes$ gen.	rMeasures	Sph.viol				1.867	0.050	0.848	_	-	-						
- Gen X coh	rMeasures	Sph viol				0 726	0 489	0 166	_	_	_						
	Infeadured	Opin.vioi				0.720	0.400	0.100									
						Genoty	pe		Cohort			Genot	ype $ imes$		Pairwis	se	
Individual trials	Test	Data	WT	Hot	KO	F	n	Power	F	n	Power	cohor	t n	Power	compa	risons	Hot ve
	1631	structure	***	1160	NO	'	value	I Ower	,	value	I Ower	'	value	I Ower	Het	KO	KO
Latency trial 1	2wANOVA	Normal	181.28 ± 15.25	175.51 ± 14.58	149.17 ± 13.24	1.323	0.275	0.273	0.053	0.819	0.056	1.320	0.276	0.273	-	-	-
Latency trial 2	2wANOVA	Normal	198.66 ± 19.58	190.76 ± 20.22	135.84 ± 15.82	3.395	0.041	0.614	0.001	0.979	0.050	3.956	0.025	0.685	0.947	0.042	0.085
Latency trial 3	2wANOVA	Normal	222.75 ± 20.99 260.92 + 18.73	$1/8.3 \pm 14.43$ 209 71 + 15 54	128.94 ± 14.01 168.01 + 16.99	7.010 6.767	0.002	0.913	1.047	0.311	0.171	0.816	0.448	0.182	0.159	0.001	0.106
Latency trial 5	2wANOVA	Normal	270.8 ± 21.62	228.95 ± 22.25	172.55 ± 21.59	4.498	0.016	0.744	1.536	0.221	0.229	1.050	0.357	0.224	0.368	0.007	0.168
Latency trial 6	2wANOVA	Normal	273.51 ± 19.16	192.29 ± 25.69	133.8 ± 15.59	11.838	0.000	0.992	9.021	0.004	0.838	0.222	0.802	0.083	0.013	0.000	0.094
Latency day 1	2wANOVA	Normal	200.9 ± 15.13	181.52 ± 14.32	137.98 ± 11.9	5.026	0.010	0.793	0.108	0.744	0.062	2.253	0.115	0.438	0.578	0.006	0.072
Latency day 2	2wANOVA	Normal	268.41 ± 16.68	210.32 ± 19.07	158.12 ± 14.54	10.061	0.000	0.980	5.783	0.020	0.655	0.060	0.942	0.059	0.041	0.000	0.073
Beam walking																	
						Genoty	pe		Cohort			Genot	ype $ imes$		Pairwis	se	
	Test	Data	WT	Het	ко	F	n	Power	F	n	Power	cohor	с р	Power	compa WT vc	INT VO	Het vo
	Test	structure	VVI	Her	KO	r	p value	FOWer	r	p value	Fower	F	p value	FOWer	Het	KO	KO
% mice falling (large)	2wANOVA	NA	0 ± 0	0 ± 0	0 ± 0	NA	NA	NA	NA	NA	NA	NA	NA	NA	-	-	-
% mice falling	2wANOVA	Nonnormal	0 ± 0	0 ± 0	6.57 ± 2.59	6.339	0.003	0.882	0.395	0.533	0.095	0.396	0.675	0.111	1.000	0.003	0.003
(meaium) % mice falling (small)		Nonnormal	32.80 ± 7.41	26 31 + 7 27	78.94 + 6.12	16 788	0 000	1 000	3 622	0.063	0.463	0 072	0 385	0.210	0.366	0 000	0 000
Distance (large,cm)	2wANOVA	Nonnormal	95.05 ± 2.27	90.92 ± 4.66	99.07 ± 0.92	1.819	0.173	0.362	1.416	0.240	0.215	0.242	0.786	0.086	-	-	_
Distance (medium, cm)	2wANOVA	Nonnormal	87.17 ± 4.25	90.41 ± 4.35	88.15 ± 5.03	0.129	0.879	0.069	2.525	0.118	0.344	0.482	0.620	0.125	-	-	-
Distance (small, cm)	2wANOVA	Normal	47.19 ± 5.45	53.77 ± 8.03	26.24 ± 6.14	4.380	0.018	0.732	0.447	0.507	0.101	0.346	0.709	0.102	0.438	0.044	0.006
% mice fully crossing	2wANOVA	Nonnormal	94.73 ± 2.4	89.47 ± 5.83	98.68 ± 1.31	1.567	0.219	0.317	1.486	0.228	0.223	0.107	0.899	0.066	-	-	-
% mice fully crossing	2wANOVA	Nonnormal	76.31 ± 7.01	80.7 ± 7.12	80.26 ± 7.29	0.089	0.915	0.063	4.278	0.044	0.528	0.947	0.394	0.205	_	_	_
(medium)										_							
% mice fully crossing	2wANOVA	Nonnormal	27.63 ± 7.12	38.4 ± 9.57	9.21 ± 5.47	3.568	0.035	0.637	0.692	0.409	0.129	0.316	0.730	0.098	0.278	0.128	0.010
(smail)					(Continued)												
					,												

Table 6. Continued

						Genoty	pe		Cohort			Genot	ype $ imes$		Pairwis	е	
Individual triala	Teet	Data	W/T	List	KO	~		Douvor	~		Douvor	cohor		Douvor	compa	risons	Het vo
individual triais	Test	Data structure	VVI	Het	ĸŬ	F	<i>p</i> value	Power	F	<i>p</i> value	Power	F	<i>p</i> value	Power	Het	KO	Het vs KO
Paw misplacements (large, all mice)	2wANOVA	Nonnormal	0.47 ± 0.14	0.56 ± 0.16	1.06 ± 0.14	4.197	0.021	0.712	0.137	0.713	0.065	1.662	0.200	0.334	0.693	0.010	0.026
Paw misplacements (medium, all mice)	2wANOVA	Normal	1.71 ± 0.29	1.5 ± 0.26	2.38 ± 0.41	1.762	0.182	0.352	0.525	0.472	0.110	0.055	0.947	0.058	-	-	-
Paw misplacements (small, all mice)	2wANOVA	Nonnormal	1.44 ± 0.13	2.48 ± 0.47	1.78 ± 0.18	3.330	0.044	0.605	3.700	0.060	0.471	0.760	0.473	0.172	0.015	0.462	0.082
Paw misplacements (large, crossing mice)	2wANOVA	Nonnormal	0.52 ± 0.17	0.6 ± 0.17	1.07 ± 0.14	3.194	0.049	0.585	0.210	0.649	0.073	1.333	0.273	0.275	0.937	0.053	0.119
Paw misplacements (medium, crossing mice)	2wANOVA	Nonnormal	1.67 ± 0.33	1.37 ± 0.27	2.33 ± 0.53	1.343	0.271	0.276	0.851	0.361	0.148	0.027	0.973	0.054	-	-	-
Paw misplacements (small, crossing mice)	2wANOVA	Nonnormal	1.79 ± 0.23	2.77 ± 0.53	2.81 ± 0.64	1.189	0.327	0.227	2.465	0.134	0.318	0.102	0.904	0.063	-	-	-
Time to cross (large, fully crossing)	2wANOVA	Nonnormal	10.05 ± 1.3	9.11 ± 1.91	7.17 ± 1.15	0.911	0.409	0.199	3.043	0.087	0.402	1.213	0.306	0.253	-	-	-
Time to cross (medium, fully crossing)	2wANOVA	Nonnormal	28.54 ± 5.32	16.62 ± 3.28	18.14 ± 4.47	1.643	0.204	0.330	2.898	0.095	0.386	2.415	0.100	0.464	-	-	-
Time to cross (small, fully crossing)	2wANOVA	Normal	54.56 ± 7.16	44.74 ± 5.25	22.43 ± 6	4.119	0.030	0.667	0.037	0.850	0.054	2.660	0.092	0.473	0.479	0.030	0.169
Time to cross (large, all mice) Time to cross (medium, all mice)	2wANOVA 2wANOVA	Nonnormal Nonnormal	$\begin{array}{r} 15.75 \pm 3.07 \\ 46.34 \pm 8.74 \end{array}$	20.75 ± 6.73 36.11 ± 8.58	8.5 ± 2.21 34.61 ± 8.93	4.443 1.157	0.027 0.337	0.370 0.109	0.327 1.444	0.574 0.245	0.094 0.682	0.427 0.472	0.659 0.632	0.070 0.218	0.015 	0.033 	0.820 -
Time to cross (small, all mice)	2wANOVA	Normal	99.92 ± 4.67	89.98 ± 7.71	111.65 ± 4.61	3.540	0.051	0.606	0.524	0.478	0.073	3.236	0.063	0.158	0.017	0.428	0.220
Motor reflexes						Genoty	ре		Cohort			Genot	ype ×		Pairwis	e	
												cohor	t		compa	risons	
	Test	Data	WT	Het	КО	F	p value	Power	F	p value	Power	F	p value	Power	WT vs	WT vs	Het vs
Righting reflex	2wANOVA	Nonnormal	0.05 ± 0.05	0 ± 0	0 ± 0	0.721	0.491	0.165	0.727	0.398	0.133	0.721	0.491	0.165	-	-	_
Hindlimb placing, score	2wANOVA	Nonnormal	5.57 ± 0.24	5.26 ± 0.34	4.21 ± 0.57	2.778	0.072	0.524	0.093	0.762	0.060	0.117	0.890	0.067	0.618	0.029	0.086
Hindlimb placing, latency to climb	2wANOVA	Nonnormal	8.29 ± 1.61	7.21 ± 1.66	10.96 ± 2.57	0.836	0.439	0.186	0.333	0.567	0.087	0.117	0.890	0.067	-	-	-
Hindlimb placing, failed attempts	2wANOVA	Nonnormal	0.21 ± 0.12	0.36 ± 0.17	0.89 ± 0.28	2.778	0.072	0.524	0.093	0.762	0.060	0.117	0.890	0.067	0.618	0.029	0.086
Inverted screen, latency to fall	2wANOVA	Nonnormal	33.78 ± 5.09	37 ± 4.72	9 ± 3.13	11.464	0.000	0.991	0.701	0.406	0.130	0.645	0.529	0.152	0.522	0.000	0.000
Hanging, score Hanging, latency to fall	2wANOVA 2wANOVA	Nonnormal Nonnormal	$\begin{array}{c} 6.26 \pm 0.18 \\ 25.44 \pm 2.27 \end{array}$	6 ± 0.25 23.66 ± 2.66	$\begin{array}{l} 4.84 \pm 0.27 \\ 8.48 \pm 1.05 \end{array}$	10.223 18.838	0.000 0.000	0.982 1.000	2.691 0.269	0.107 0.606	0.363 0.080	0.834 0.816	0.440 0.448	0.185 0.182	0.486 0.643	0.000 0.000	0.001 0.000
Grip strength																	
Latency	Test	Data				F	p	Power	WT vs	WT vs	Het vs						
0		structure				0.500	value	0.044	Het	KO	KO						
- Session × gen	rMeasures	Sph.viol				3.520	0.033	0.644	_	_	_						
- Genotype	rMeasures	Sph.viol				0.324	0.105	0.575	_	_	_						
- Cohort	rMeasures	Sph viol				47 402	0.000	1 000	_	_	_						
- Session \times gen. \times coh.	rMeasures	Sph.viol				2.687	0.035	0.729	_	_	_						
- Gen. × coh.	rMeasures	Sph.viol				1.044	0.359	0.223	-	_	-						
						_						_					
						Genoty	pe		Cohort			Genot	ype ×		Pairwis	ie risons	
Individual trials	Test	Data	WT	Het	KO	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs	Het vs KO
Session 1	2wANOVA	Normal	0.94 ± 0.05	0.99 ± 0.06	1.03 ± 0.06	0.502	0.608	0.128	25.973	0.000	0.999	1.564	0.219	0.317	-	_	_
Session 2	2wANOVA	Normal	0.86 ± 0.07	0.85 ± 0.06	1.01 ± 0.05	2.222	0.119	0.433	36.967	0.000	1.000	1.631	0.206	0.329	_	_	_
Session 3	2wANOVA	Normal	0.91 ± 0.06	0.92 ± 0.06	0.89 ± 0.06	0.320	0.728	0.098	23.585	0.000	0.997	1.883	0.163	0.374	_	-	_
Mean strength	2wANOVA	Normal	0.9 ± 0.05	0.92 ± 0.05	0.98 ± 0.04	0.324	0.725	0.099	47.402	0.000	1.000	1.044	0.359	0.223	_	-	_
Highest score	2wANOVA	Nonnormal	1.08 ± 0.05	1.07 ± 0.05	1.13 ± 0.05	0.243	0.785	0.086	26.793	0.000	0.999	0.821	0.446	0.183	-	-	-

WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. Group values are reported as mean \pm SEM. Bold font indicates significant results (p < 0.05). Individual results and statistical analyses for cohorts 1 and 2 are available in Extended Data Table 6-1. 2wANOVA: 2-way ANOVA, rMeasures: repeated measures, Sph.viol: sphericity violated, gen: genotype, coh: cohort.

are expected to spend more time investigating a novel object than a familiar object, and this is what was observed for wild-type and heterozygous mice (Fig. 6A, left panel). However, in homozygous mice, results were difficult to interpret due to strikingly reduced object interactions (Fig. 6A, left and middle panels). Homozygous mice spent most of both of the test sessions (the first involving familiarization with identical objects and the second involving interaction with one familiar and one novel object) away from both objects, spending excessive time in the corners of the open field as shown on heatmaps (Extended Data Fig. 6-1A) and demon-

strating longer latency to explore any of the objects (Fig. 6A, right panel).

Object avoidance was further confirmed in multiple independent tests, including the marble burying, a test used to assess stereotypic behavior and/or anxiety. In this paradigm, 20 marbles were spread across the cage floor in a 4×5 pattern, leaving little space for the mice to move around the marbles. While both wild-type and *Shank3*^{$\Delta 4-22$} heterozygous mice quickly buried most of the marbles as is typical, *Shank3*^{$\Delta 4-22$} homozygous mice left the marbles almost completely undisturbed for the whole 15-min duration of the test (Fig. 6B; Extended Data Fig. 6-1*B*).

Figure 3. Impaired motor performances in in Shank $3^{\Delta 4-22}$ -deficient mice. **A**, Average stance, stride, and sway. Gait analysis showed an increase stride length in Shank $3^{\Delta 4-22}$ homozygous mice. **B**, Distance traveled during a 60-min session in an open field.

Spontaneous locomotor activity in the open field was reduced in *Shank3*^{$\Delta 4-22$} homozygous mice relative to other genotypes. **C**, Latency to fall over six trials (three trials per day for two consecutive days) in the accelerating rotarod task. Motor learning on the accelerating rotarod was deficient in *Shank3*^{$\Delta 4-22$} homozygous mice compared to wild-type animals as they failed to improve over time. Heterozygous mice had an intermediate phenotype. **D**, Percentage of falls and distance crossed during the beam walking test. While not different on the large (L, 1 inch) and medium (M, $\frac{1}{2}$ inch) beams, *Shank3*^{$\Delta 4-22$} homozygous mice were strongly impaired in the small (S, $\frac{1}{4}$ inch) beam walking test, as shown by a significant increase of the number of falls and a decrease of the distance crossed. **E**, Strength and endurance measured in the inverted screen and hanging tests. Endurance strength was significantly impaired in *Shank3*^{$\Delta 4-22$} homozygous mice as they exhibited significantly shorter latency to fall in both the inverted screen and hanging tests. Additional results of motor tests (hindlimb placing and grip strength) are available in Extended Data Figure 3-1. WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. *: WT versus KO; o: WT versus Het, #: Het versus KO. *p < 0.05, **p < 0.1, ***p < 0.001.

Consistent with these result, a significant decrease of the time spent exploring objects in the four-object exploration test was observed in the *Shank3*^{$\Delta 4-22$} homozygous mice as compared to their littermate (Fig. 6C).

During assessment of nest building, nests build by $Shank3^{\Delta 4-22}$ homozygous mice were significantly less elaborate than nests built by wild-type or heterozygous mice, with some homozygotes leaving the nesting material completely untouched (Fig. 6*D*; Extended Data Fig. 6-1*C*). Note that, in an attempt to reduce stress and improve breeding rates, dams used to produce the cohorts described here were provided with plastic huts in their home cage. Interestingly, while most of the wild-type dams (seven out of ten) chose to build their nest inside the huts, only a single $Shank3^{\Delta 4-22}$ heterozygous dam out of 20 used the hut to establish their nests (wild-type vs heterozygotes: $t_{(28)} = -5.085$, p < 0.001). Additionally, three of the $Shank3^{\Delta 4-22}$ heterozygous dams did not build a nest until after the birth.

Object avoidance might also explain the reduction of the total time of direct interactions (grabbing, touching, biting, or climbing) with the applicator used to present the different scents during the olfactory habituation and dishabituation test in *Shank3*^{$\Delta 4-22$} homozygous mice, compared to their wild-type and heterozygous littermates (Fig. 6*E*).

Hyper-reactivity and escape behaviors in Shank3^{$\Delta 4$ -} 22-deficient mice

Unusual hyper-reactivity was observed in *Shank3*^{$\Delta 4-22$} homozygous mice during handling and confirmed in several behavioral tests (Table 10). This hyper-reactivity was characterized by a higher score in the touch escape test (Fig. 7A, left panel), a lower score (reflecting a higher tendency to struggle in response to sequential handling) in the positional passivity (Fig. 7A, middle panel), and a shorter latency to move from the beam during the catalepsy test (Fig. 7A, right panel). As in newborn mice, a shorter latency to turn was seen for *Shank3*^{$\Delta 4-22$} homozygous mice in the negative geotaxis test (Fig. 7B, left panel). Similarly, in the beam walking test, the latency to start crossing on the smallest beam was shorter in *Shank3*^{$\Delta 4-22$} homozygous mice (Fig. 7B, right panel) but often led to a premature fall (Fig. 3D).

Escape attempts were observed in several tests and high-wall enclosures had to be built around testing cages to prevent successful attempts. Escape behaviors were scored in three different home cage tests. During the habituation portion of the buried food test (where no objects were visible at the surface of the cage bedding), no escape behavior nor genotype differences were observed (Fig. 7C, left panel). However, when the mice were tested in the same cages during the four-object interaction test both the number of escape attempts and the percentage of mice engaged in this behavior increased and significant genotype differences were observed (Fig. 7C, middle panel). This behavior was even more marked in the marble burying test (Fig. 7C, right panel), during which 94% of heterozygous mice and 100% of homozygous mice tried to escape. This indicated that the escape behavior is elicited by the presence of unfamiliar objects in the testing cage.

Repetitive behaviors, stereotypies, and inflexibly in Shank $3^{\Delta 4-22}$ -deficient mice

Repetitive and restricted behaviors are one of the core features of ASD. Therefore, during all of the behavioral tests, mice were also carefully monitored for stereotypies, as well as perseverative and repetitive behaviors. Detailed results are reported in Table 11.

While no genotype difference was observed in the number of spontaneous grooming bouts observed during the 10 first minutes of the open field test, *Shank3*^{$\Delta 4-22$} homozygous mice engaged in longer episodes of self-grooming, as shown by a significant increase in the cumulative time spent grooming all body regions when compared to their wild-type and heterozygous littermates. However, skin lesions were frequently observed in older mice (over eight-month-old) of all three genotypes without obvious genotype effect. Significantly more rotations were also observed in *Shank3*^{$\Delta 4-22$} homozygous animals as well as a trend toward an increase of head twitching/ shaking in both *Shank3*^{$\Delta 4-22$} heterozygous and homozygous mice, as compared to their wild-type littermates (Fig. 8*A*).

Object preferences, exploration patterns and frequency of repetitive contacts with novel objects were evaluated in the repetitive novel object contact task. Although the cumulative time spend interacting with the objects was decreased in *Shank3*^{$\Delta 4-22$} homozygous mice (Fig. 6C), this test failed to display genotype difference in either the total number of interactions, the preference for any specific objects or the preference for any specific preferred sequence of three-object or four-object explorations (Fig. 8*B*).

Table 7. Detailed results and statistical analyses related to the sensory profile

Reflexes and reactions to simple stimul	Reflexes	and	reactions	to	simple	stimuli	
---	----------	-----	-----------	----	--------	---------	--

Image: biole into into into into into into into into		•					Genoty	/pe		Cohort			Geno	type ×		Pairwis	se	
$ \begin{array}{ c $		Tost	Data	W/T	Hot	KO	F	0	Power	F		Power	cohor	t	Power	compa	arisons	Hot ve
Texp control relations 2 work ON here remained (3 = 2 = 0.0 All (3 + 2		Test	structure	VVI	Her	KU	F	ρ value	Fower	F	p value	Power	F	p value	Fower	Het	KO	KO
$ \begin{array}{c} \mbox{Deal} \mbox{left} left$	Pinna reflex	2wANOVA	Nonnormal	0.89 ± 0.07	0.68 ± 0.1	0.73 ± 0.1	1.790	0.1773	0.357	13.988	0.000	0.956	1.155	0.323	0.243	_	_	_
To p and here the state is a s	Cornel reflex	2wANOVA	Nonnormal	1.05 ± 0.05	0.94 ± 0.05	1.05 ± 0.05	1.518	0.2289	0.308	0.389	0.536	0.094	1.518	0.229	0.308	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Toe pinch retraction	2wANOVA	Nonnormal	2.05 ± 0.37	2.36 ± 0.33	2.26 ± 0.43	0.144	0.8659	0.071	1.073	0.305	0.174	0.072	0.931	0.060	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Preyer reflex	2wANOVA	Nonnormal	1.47 ± 0.15	1.36 ± 0.13	1.42 ± 0.17	0.135	0.8740	0.070	22.250	0.000	0.996	1.478	0.238	0.301	-	-	-
Tate Diat Second Diat Second Normal	visual placing			9 ± 0	9 ± 0	9 ± 0	_	_		_	_		_	_		_	_	_
LatencyLatencyMater	Tail flick																	
Total Y gen Here NO Total Y gen Measures Schule 0.000 0.0000 0.000 0.0000 0	Latency	Test	Data				F	p	Power	WT vs	WT vs	Het vs						
Tail Original Original <t< td=""><td>Trial</td><td></td><td>structure</td><td></td><td></td><td></td><td>0.001</td><td>value</td><td>0 5 0 0</td><td>Het</td><td>KO</td><td>KO</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Trial		structure				0.001	value	0 5 0 0	Het	KO	KO						
- Concept - Concept - Measures Schwid - Measure	- Trial X gen	rMeasures	Sph.viol				0.169	0.0500	0.583	_	_	_						
Control Measures Sphulo Sphulo <td>- Genotype</td> <td>rMeasures</td> <td>Sph.viol</td> <td></td> <td></td> <td></td> <td>1.118</td> <td>0.3347</td> <td>0.236</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- Genotype	rMeasures	Sph.viol				1.118	0.3347	0.236	_	_	_						
Index year Option Option </td <td>- Cohort</td> <td>rMeasures</td> <td>Sph.viol</td> <td></td> <td></td> <td></td> <td>83.467</td> <td>0.0000</td> <td>1.000</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- Cohort	rMeasures	Sph.viol				83.467	0.0000	1.000	-	-	-						
- Gen, X con, Messure Sphuel 2,162 0,125 0,22 Genotype Cohor Good Power Vire Set value control Contro Control Contro Control Control Control Control Control	- Trial $ imes$ gen. $ imes$ coh.	rMeasures	Sph.viol				0.489	0.7438	0.162	-	-	-						
Indicate training Test MT Hef No. F No. No. No. No. <	- Gen. $ imes$ coh.	rMeasures	Sph.viol				2.162	0.1255	0.422	-	-	-						
Control Control <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Genoty</td><td>me</td><td></td><td>Cohort</td><td></td><td></td><td>Geno</td><td>lvne ×</td><td></td><td>Pairwie</td><td>20</td><td></td></t<>							Genoty	me		Cohort			Geno	lvne ×		Pairwie	20	
Inductor							achoty	po		Conort			cohor	t t		compa	risons	
Latercy that 1 (b) Survey Normal 11.32 ± 0.07 11.31 ± 0.00 10.00	Individual trials	Test	Data	WT	Het	KO	F	p	Power	F	р	Power	F	p	Power	WT vs	WT vs	Het vs
$ \begin{array}{c} \mbox{label{line}} \mbox{label{line}} \mbox{label} label$	Laterary trial 1 (a)	0	structure	11.00 + 0.07	11.00 + 0.70	10.00 + 0.00	0.050	value	0 104	10.000	value	0.050	0 1 45	value	0.071	Het	KO	KO
$ \begin{array}{c} \mbox{Larrency} (\mu) & 2 \mbox{Nonmorm} (\mu) & 10.6 \\ \mbox{Larrency} (\mu) & 2 \mbox{Nonmorm} (\mu) & 11.6 \\ \mbox{Larrency} (\mu) & 2 \mbox{Nonmorm} (\mu) & 11.4 \\ \mbox{Larrency} (\mu) & 2 \mbox{Nonmorm} (\mu) & 2 \mbox{Larrency} (\mu) & 2 \mbox{Larrency} (\mu) & 2 \mbox{Nonmorm} (\mu) & 2 \mbox{Larrency} (\mu) & 2 Larren$	Latency trial 1 (s)	2WANOVA 2WANOVA	Normal	11.39 ± 0.97 10.99 + 1.08	11.32 ± 0.78 9.67 + 0.98	10.28 ± 0.82 8.86 + 0.82	0.356	0.7023	0.104	36 614	0.001	0.952	0.145	0.865	0.071	_	_	_
Shortsmitterry (i) 2xxMAVOX Normal 8.03 ± 0.02 7.99 ± 0.67 7.99 ± 0.67 7.99 ± 0.67 7.99 ± 0.67 7.99 ± 0.67 7.99 ± 0.67 7.99 ± 0.67 7.91 ± 0.75 9.48 ± 0.72 0.000 1.000 1.180 0.000 0.000 1.000 1.88 ± 0.000 0.000 0.000<	Latency trial 3 (s)	2wANOVA	Normal	11.05 ± 1.23	10.06 ± 1.01	9.29 ± 0.94	0.526	0.5942	0.132	91.329	0.000	1.000	1.578	0.216	0.319	_	_	_
Langest Latency (a) 2x4AKOVA Kononormal 14.14 = 0.84 12.82 = 0.75 1.19 ± 0.72 2.11 0.118 0.431 6.410 0.41 6.000 1.000 1.000 1.000 0.216 0.200 0.234	Shortest latency (s)	2wANOVA	Normal	8.03 ± 0.82	7.99 ± 0.87	7.47 ± 0.78	0.064	0.9379	0.059	42.964	0.000	1.000	1.039	0.361	0.222	-	_	-
Mean latency (a) 2wANOVA Nonnormal 11.14 = 0.88 10.35 ± 0.78 9.48 ± 0.72 1.118 0.3347 0.238 63.467 0.000 1.000	Longest latency (s)	2wANOVA	Nonnormal	14.17 ± 0.94	12.82 ± 0.75	11.91 ± 0.72	2.213	0.1198	0.431	64.815	0.000	1.000	1.659	0.200	0.334	-	-	-
Static regions Test Data WT Het KO F No Source Sourc	Mean latency (s)	2wANOVA	Nonnormal	11.14 ± 0.88	10.35 ± 0.78	9.48 ± 0.72	1.118	0.3347	0.236	83.467	0.000	1.000	2.162	0.126	0.422	-	-	-
Calculation Genotype Cohort Somotype Pairwise Cohort	Startle response																	
Test Data structure WT Het KO F palle Power F palle							Genoty	/pe		Cohort			Geno	type ×		Pairwis	se	
Test Data WT Het KO F p Power F p< Power F p													cohor	t		compa	arisons	
Startis 74 dB 2900000 1000000000000000000000000000000000000		Test	Data	WT	Het	КО	F	p	Power	F	p	Power	F	p	Power	WT vs	WT vs	Het vs
Startle R2 dB 2wMNOVA Noncommal 193.48 ± 22 157.4 ± 1663 100.9 ± 1498 3.111 0.0589 0.057 5.77 0.022 0.647 3.873 0.038 0.038 0.046 0.045	Startle 74 dB		Nonnormal	179 96 + 20 24	165 57 + 17 22	158 01 + 10 36	2 376	value 0 1077	0 448	9 123	value 0.005	0.836	2 255	0 120	0 428	Het	- -	- KU
Startie 82 dB 2waNOVA Nonnormal 197.45 : 28.03 (60.06 ± 14.07 175.8 ± 13.82 3.25 (0.050 0.58 0.38) 0.05 (0.77 0.68) 0.480 (2.71 0.76 0.68 0.024 0.49 0.40 0.40 0.40 0.40 0.40 0.40 0.4	Startle 78 dB	2wANOVA	Nonnormal	183.48 ± 22	157.4 ± 16.93	160.69 ± 14.89	3.181	0.0538	0.571	5.779	0.022	0.647	3.673	0.036	0.638	0.046	0.025	0.770
Startle 66 dB 2wkNOVA Nonnormal 246.33 ± 35.36 162.3 ± 15.01 176.15 ± 12.88 2350 0.0080 0.027 0.059 0.271 0.764 0.089 0.024 0.041 0.039 0.045 0.029 0.77 0.059 0.271 0.764 0.089 0.024 0.041 0.039 0.045 0.029 0.267 0.27 0.059 0.271 0.764 0.069 0.77 0.059 0.271 0.764 0.069 0.457 0.027 0.581 0.027 0.267 0.267 0.267 0.27 0.267 0.267 0.267 0.267 0.27 0.279 0.267 0.267 0.267 0.279 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.27 0.267 <	Startle 82 dB	2wANOVA	Nonnormal	197.45 ± 26.03	160.09 ± 14.07	175.58 ± 13.87	3.254	0.0500	0.582	3.939	0.055	0.488	2.621	0.087	0.487	0.019	0.063	0.591
Startle 92 dB 2wkNOVX Nonnormal 257.25 ± 40.4 192.63 ± 19.03 201.41 ± 23.01 2.153 0.131 0.411 0.039 0.445 0.054 1.323 0.277 -	Startle 86 dB	2wANOVA	Nonnormal	246.33 ± 35.36	162.3 ± 15.61	176.15 ± 12.88	3.255	0.0500	0.582	0.082	0.777	0.059	0.271	0.764	0.089	0.024	0.042	0.812
Static response Test Data structure Structure F P P VICUS WICUS	Startle 92 dB	2wANOVA	Nonnormal	257.25 ± 40.4	192.63 ± 19.03	201.41 ± 23.01	2.153	0.1313	0.411	0.039	0.845	0.054	1.323	0.279	0.267	-	-	-
Control Massures Sph.ass Sph.as Sph.ass Sph.as Sph.as Sph.as Sph.as	Startle response	Test	Data				F	n	Power	WT vs	WT vs	Het vs						
- Sound intensity yeen Measures Sph.ass 2.000 0.0570 0.0605 0.024 0.0264 0.989 - Genotype Measures Sph.ass 1.842 0.0183 0.262 0.024 0.989 0.024 0.989 - Genotype Measures Sph.ass 1.842 0.0183 0.262 - - - - - Gen. × och. Measures Sph.ass . 1.842 0.183 0.262 - <		1001	structure				'	value	1 0 100	Het	ко	KO						
- Sound intensity × gen. Measures Sph.ass 0.424 0.6260 0.216 - <td>- Sound intensity</td> <td>rMeasures</td> <td>Sph.ass</td> <td></td> <td></td> <td></td> <td>2.900</td> <td>0.0510</td> <td>0.605</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- Sound intensity	rMeasures	Sph.ass				2.900	0.0510	0.605	-	-	-						
- Genotype Measures Sph.ass 3.049 0.039 0.022 0.024 0.039 - Gohort Measures Sph.ass 0.022 0.035 0.276 - - - Gen. × coh. Measures Sph.ass 0.022 0.035 0.276 - - - Gen. × coh. Measures Sph.ass 0.022 0.035 0.276 - - - Gen. × coh. Measures Sph.ass 0.022 0.014 0.037 - - - Gen. × coh. Test Data WT Het KO F p Power F p Power WT vs WT vs Wt vs Het Startle 74 dB nom. to weight 2wANOVA Nonormal 7.01 ± 0.82 6.18 ± 0.64 6.17 ± 0.32 2.484 0.0718 0.583 2.760 0.022 0.645 2.780 0.026 0.026 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.046 0.045 0.049 0.045 0.046 0.045 0.049 0.046 0.045 0.049 0.046 0.046 0.046 0.046 0.046 0.046 <	- Sound intensity \times gen.	rMeasures	Sph.ass				0.642	0.6620	0.219	-	-	-						
Conditional Superiors Interactional Superiors 0.022 0.0235 0.276 - <td>- Genotype - Cobort</td> <td>rMeasures</td> <td>Sph.ass</td> <td></td> <td></td> <td></td> <td>3.649</td> <td>0.0364</td> <td>0.635</td> <td>0.022</td> <td>0.024</td> <td>0.989</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- Genotype - Cobort	rMeasures	Sph.ass				3.649	0.0364	0.635	0.022	0.024	0.989						
- Gen. × coh. rMeasures Sph.ass 1.922 0.1614 0.372 - - - Gen. × coh. Test Data WT Het KO F p Power F P P Power F P Power F P P <td>- Sound intensity × gen. × coh.</td> <td>rMeasures</td> <td>Sph.ass</td> <td></td> <td></td> <td></td> <td>0.822</td> <td>0.5335</td> <td>0.276</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- Sound intensity × gen. × coh.	rMeasures	Sph.ass				0.822	0.5335	0.276	_	_	_						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- Gen. × coh.	rMeasures	Sph.ass				1.922	0.1614	0.372	-	-	_						
Genotype Calce Genotype Calce Pairwise Comparisons Test Data WT Het KO F p Power F p <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
Test Data structure WT Het KO F p Power F p Power WT vs Het KO VS VS <							Genoty	/pe		Cohort			Geno	type × +		Pairwis	Se risons	
structure value value value value value value value Het KO vs KO Startle 74 dB norm. to weight 2wANOVA Nonnormal 7.19 ± 0.89 6.18 ± 0.64 6.17 ± 0.32 2.843 0.0718 0.522 5.749 0.022 0.645 2.780 0.076 0.512 0.040 0.042 0.958 0.964 Startle 74 dB norm. to weight 2wANOVA Nonnormal 7.19 ± 0.89 5.86 ± 0.64 6.35 ± 0.58 3.376 0.0466 0.599 1.00 0.201 0.245 2.368 0.056 0.059 0.409 0.446 0.015 0.028 0.261 0.201 0.245 2.368 0.056 0.059 0.050 0.259 0.030 0.861 0.035 0.268 0.766 0.098 0.409 Startle 82 dB norm. to weight 2wANOVA Nonnormal 7.19 ± 0.88 6 ± 0.49 7.03 ± 0.58 8.18 ± 1.15 1.758 0.1873 0.323 0.261 0.245 0.261 0.29 0.293 0.811 0.833 0.6173 0.808 0.816		Test	Data	WT	Het	ко	F	Ø	Power	F	Ø	Power	F	p	Power	WT vs	WT vs	Het
Startle 74 dB norm. to weight 2wANOVA Nonnormal 7.01 ± 0.82 6.18 ± 0.64 6.17 ± 0.32 2.43 0.0778 0.522 5.749 0.022 0.645 2.780 0.076 0.512 0.045 0.038 0.036 0.038 0.036 0.036 0.038 0.036 0.038 0.038 0.036 0.038 0.049 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.048 0.049 0.040			structure					value			value			value		Het	KO	vs KO
Startie v di norm. to weight 2wANOVA Nonnormal 7.19 ± 0.89 5.86 ± 0.64 6.35 ± 0.58 3.051 0.0670 0.552 2.92 0.94 0.389 3.611 0.038 0.303 0.038 0.046 0.049 Startie 82 dB norm. to weight 2wANOVA Nonnormal 7.19 ± 0.58 5.89 ± 0.41 6.98 ± 0.64 6.393 0.0456 0.599 1.700 0.261 0.268 0.168 0.026 0.268 0.069 0.228 0.268 0.763 0.089 0.026 0.026 0.268 0.026 0.268 0.026 0.268 0.026 0.268 0.026 0.268 0.026 <td>Startle 74 dB norm. to weight</td> <td>2wANOVA</td> <td>Nonnormal</td> <td>7.01 ± 0.82</td> <td>6.18 ± 0.64</td> <td>6.17 ± 0.32</td> <td>2.843</td> <td>0.0718</td> <td>0.522</td> <td>5.749</td> <td>0.022</td> <td>0.645</td> <td>2.780</td> <td>0.076</td> <td>0.512</td> <td>0.045</td> <td>0.042</td> <td>0.959</td>	Startle 74 dB norm. to weight	2wANOVA	Nonnormal	7.01 ± 0.82	6.18 ± 0.64	6.17 ± 0.32	2.843	0.0718	0.522	5.749	0.022	0.645	2.780	0.076	0.512	0.045	0.042	0.959
Startle 82 dB norm. to weight 2wANOVA Nonnormal 10.04 ± 1.77 5.89 ± 0.43 5.89 ± 0.43 5.89 ± 0.43 5.87 ± 0.43 0.245	Startle 78 dB norm. to weight	2wANOVA	Nonnormal	7.19 ± 0.89	5.86 ± 0.64	6.35 ± 0.58	3.051	0.0601	0.553	2.972	0.094	0.389	3.611	0.038	0.630	0.038	0.036	0.964
Startle 92 dB norm. to weight 2wANOVA Nonnormal 10.04 \pm 1.77 7.09 \pm 0.58 8.18 \pm 1.15 1.758 0.1873 0.343 0.323 0.573 0.086 1.291 0.288 0.261 -	Startle 82 dB norm to weight	2wANOVA 2wANOVA	Nonnormal	7.74 ± 1.06 9.86 ± 1.66	5.89 ± 0.41 6 + 0.49	6.98 ± 0.63 7 03 ± 0.64	2 888	0.0450	0.599	0.030	0.201	0.245	2.305	0.109	0.446	0.015	0.089	0.409
Startle response normalized to weightTest structureData structureF structure p valuePower Het KT vs KO KT vs vs Vs Vs Vs NT vs NT vs NS KT vs Vs Vs NT vs NS KT vs Vs Vs NT vs NS KT vs Vs Vs NT vs NS KT vs Vs Vs NT vs NS KT vs Vs Vs NS KT vs Vs NS KT vs NS <	Startle 92 dB norm. to weight	2wANOVA	Nonnormal	10.04 ± 1.77	7.09 ± 0.58	8.18 ± 1.15	1.758	0.1873	0.343	0.323	0.573	0.086	1.291	0.288	0.261	_	-	_
Startic response normalized to weight Test Data structure Data structure F p Power value WT vs WT vs WT vs Het Value VT vs																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Startle response normalized	Test	Data				F	p	Power	WT vs	WT vs	Het						
Sound intensity gen. intersity gen. intersity gen. intersity gen. intersity gen. intersity gen. intersity intersity <td>- Sound intensity</td> <td>rMaasuras</td> <td>Structure</td> <td></td> <td></td> <td></td> <td>2 506</td> <td></td> <td>0.248</td> <td>Het</td> <td>KU</td> <td>vs ku</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- Sound intensity	rMaasuras	Structure				2 506		0.248	Het	KU	vs ku						
- Genotype rMeasures Sph.ass 3.38 0.0471 0.593 0.127 0.407 0.783 - Cohort rMeasures Sph.ass 0.455 0.5046 0.101 - - - - Sound intensity × gen. × coh. rMeasures Sph.ass 0.716 0.5922 0.079 - - - - Gen. × coh. rMeasures Sph.ass 0.716 0.5922 0.079 - - - - Gen. × coh. rMeasures Sph.ass 0.716 0.5922 0.079 - - - Pre-pulse inhibition (PPI) Test Data WT Het KO F p Power F p Power WT vs VT vs Het KO value value value value Het KO vs KO value value value VT vs VT vs VT vs KO vs KO value value value Het KO vs KO value value value kt KO vs KO KO v	- Sound intensity \times gen.	rMeasures	Sph.ass				0.580	0.7933	0.098	_	_	_						
- Cohort rMeasures Sph.ass - Sound intensity × gen. × coh. rMeasures Sph.ass - Test Data WT Het KO F p Power F p Power F p Power WT vs WT vs Het structure r Het KO rsh value Het KO vs KO PPI % (74 dB) 2wANOVA Normal 22.47 ± 5.7 15.1 ± 4.72 10.56 ± 6.03 0.625 0.5409 0.212 11.06 10.002 0.519 1.821 0.177 0.190 P PPI % (78 dB) 2wANOVA Normal 31.81 ± 4.48 14.84 ± 6.7 21.18 ± 5.03 3.513 0.0407 0.543 21.819 0.000 0.793 1.008 0.375 0.352 0.058 0.312 0.656 PPI % (82 dB) 2wANOVA Normal 30.39 ± 5.51 21.53 ± 6.08 13.34 ± 5.99 0.151 0.8604 0.426 14.892 0.000 0.480 0.422 0.959 0.348	- Genotype	rMeasures	Sph.ass				3.338	0.0471	0.593	0.127	0.407	0.783						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- Cohort	rMeasures	Sph.ass				0.455	0.5046	0.101	-	-	-						
Pre-pulse inhibition (PPI) Genotype Cohort Genotype × Pairwise cohort comparisons Test Data WT Het KO F p Power F p Power WT vs WT vs Het Value value value value value Het KO value value value Het KO value value VT vs WT vs WT vs Het PPI % (74 dB) 2wANOVA Normal 22.47 ± 5.7 15.1 ± 4.72 10.56 ± 6.03 0.625 0.5409 0.212 11.061 0.002 0.519 1.821 0.177 0.190 - - - - PPI % (78 dB) 2wANOVA Normal 31.81 ± 4.48 14.84 ± 6.7 21.18 ± 5.03 3.513 0.0407 0.543 21.819 0.000 0.793 1.008 0.355 0.556 0.312 0.656 PPI % (78 dB) 2wANOVA Normal 30.39 ± 5.51 21.53 ± 6.08 13.34 ± 5.99 0.151 0.8604 0.426 14.892 0.000 0.480 0.042 0.959 0.348 - - - - PI % (82 dB) 2wANOVA Normal 3	- Sound intensity \times gen. \times coh.	rMeasures	Sph.ass				0.716	0.5922	0.079	-	-	-						
Pre-pulse inhibition (PPI) Genotype / Chort Genotype / Chort Cohort Cohort </td <td>- Gen. × con.</td> <td>rivieasures</td> <td>Spn.ass</td> <td></td> <td></td> <td></td> <td>1.812</td> <td>0.1783</td> <td>0.353</td> <td>-</td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- Gen. × con.	rivieasures	Spn.ass				1.812	0.1783	0.353	-	-	_						
Genotype Cohort Genotype × cohort Pairwise cohort Comparisons Test Data WT Het KO F p Power F p Power WT vs Het KO value value value value value Het KO vs VS VS <td>Pre-pulse inhibition (PPI)</td> <td></td>	Pre-pulse inhibition (PPI)																	
Test Data structure WT Het KO F p Power /VT value Het KO value value value value value value Het KO value value value value value VI vs Het KO value value value value Het KO vs KO PPI % (74 dB) 2wANOVA Normal 22.47 ± 5.7 15.1 ± 4.72 10.56 ± 6.03 0.625 0.5409 0.212 11.061 0.002 0.519 1.821 0.177 0.190 - - - PPI % (78 dB) 2wANOVA Normal 31.81 ± 4.48 14.84 ± 6.7 21.18 ± 5.03 3.513 0.0407 0.543 21.819 0.000 0.793 1.008 0.375 0.352 0.058 0.312 0.656 PPI % (82 dB) 2wANOVA Normal 30.39 ± 5.51 21.53 ± 6.08 13.34 ± 5.99 0.151 0.8604 0.426 0.480 0.042 0.959 0.348 - - -							Genoty	/pe		Cohort			Geno	type ×		Pairwis	se	
PPI % (74 dB) 2wANOVA Normal 22.47 ± 5.7 15.1 ± 4.72 10.56 ± 6.03 0.625 0.5409 0.212 11.06 0.002 0.519 1.821 0.177 0.190 - - - PPI % (74 dB) 2wANOVA Normal 31.81 ± 4.48 14.84 ± 6.7 21.18 ± 5.03 3.513 0.0407 0.543 21.819 0.000 0.793 1.008 0.375 0.352 0.056 0.312 0.656 PPI % (82 dB) 2wANOVA Normal 30.39 ± 5.51 21.53 ± 6.08 13.34 ± 5.99 0.151 0.8604 0.426 14.892 0.000 0.480 0.042 0.959 0.348 - <t< td=""><td></td><td>Tos+</td><td>Data</td><td>WT</td><td>Hot</td><td>KO</td><td>F</td><td>0</td><td>Power</td><td>F</td><td>n</td><td>Power</td><td>cohor</td><td>t</td><td>Power</td><td>compa</td><td>arisons</td><td>Het</td></t<>		Tos+	Data	WT	Hot	KO	F	0	Power	F	n	Power	cohor	t	Power	compa	arisons	Het
PPI% (74 dB) 2wANOVA Normal 22.47 ± 5.7 15.1 ± 4.72 10.56 ± 6.03 0.625 0.5409 0.212 11.061 0.002 0.519 1.821 0.177 0.190 -		rest	structure	vvI	net	NU	r	μ value	rower	r	μ value	rower	r	μ value	rower	Het	KO	net vs KO
PPI % (78 dB) 2wANOVA Normal 31.81 ± 4.48 14.84 ± 6.7 21.18 ± 5.03 3.513 0.0407 0.543 21.819 0.000 0.793 1.008 0.375 0.352 0.058 0.312 0.656 PPI % (82 dB) 2wANOVA Normal 30.39 ± 5.51 21.53 ± 6.08 13.34 ± 5.99 0.151 0.8604 0.420 14.892 0.000 0.480 0.042 0.959 0.348 -	PPI % (74 dB)	2wANOVA	Normal	22.47 ± 5.7	15.1 ± 4.72	10.56 ± 6.03	0.625	0.5409	0.212	11.061	0.002	0.519	1.821	0.177	0.190	_	_	-
PPI % (82 dB) 2wANOVA Normal 30.39 ± 5.51 21.53 ± 6.08 13.34 ± 5.99 0.151 0.8604 0.426 14.892 0.000 0.480 0.042 0.959 0.348 (Continued)	PPI % (78 dB)	2wANOVA	Normal	31.81 ± 4.48	14.84 ± 6.7	21.18 ± 5.03	3.513	0.0407	0.543	21.819	0.000	0.793	1.008	0.375	0.352	0.058	0.312	0.656
	PPI % (82 dB)	2wANOVA	Normal	30.39 ± 5.51	21.53 ± 6.08	13.34 ± 5.99	0.151	0.8604	0.426	14.892	0.000	0.480	0.042	0.959	0.348	-	-	-
						(Continued)												

						Genoty	pe		Cohort			Genot	ype ×		Pairwis	e risons	
	Test	Data	WT	Het	ко	F	р	Power	F	р	Power	F	p	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
PPI % (86 dB)	2wANOVA	Nonnormal	31.73 ± 7.95	21.04 ± 7.37	27.04 ± 4.63	1.411	0.2575	0.176	37.139	0.000	0.909	0.463	0.633	0.217	-	-	-
PPI % (92 dB) PPI % (average)		Nonnormal	43.62 ± 7.01	34.35 ± 5.82 21.37 + 5.48	29.93 ± 6.97 20.41 ± 5.03	0.989	0.3821	0.212	54.683	0.000	0.892	2.258	0.120	0.222	_	_	_
TTT // (average)	ZWANOVA	Normai	02 - 0.00	21.07 ± 0.40	20.41 - 5.05	0.100	0.0000	0.000	07.400	0.000	0.007	0.010	0.700	0.270			
PPI	Test	Data				F	р	Power	WT vs	WT vs	Het vs						
.		structure					value		Het	KO	KO						
- Sound intensity	rMeasures	Sph.viol				15.396	0.0000	1.000	-	-	_						
- Genotype	rMeasures	Sph.viol				1.502	0.2325	0.305	_	_	_						
- Cohort	rMeasures	Sph.viol				9.806	0.0029	0.867	_	_	_						
- Sound intensity \times gen. \times coh.	rMeasures	Sph.viol				0.978	0.4540	0.427	-	-	-						
- Gen. $ imes$ coh.	rMeasures	Sph.viol				1.349	0.2686	0.278	-	-	-						
Burried food test																	
						Genoty	pe		Cohort			Genot	ype $ imes$		Pairwis	e	
	T	Dut	14/7		1/0	-			-			cohort			compa	risons	
	lest	Data structure	VV I	Het	KO	F	p value	Power	F	p value	Power	F	p value	Power	WI vs Het	WI VS KO	Het vs KO
Latency to retrieve and eat	2wANOVA	Nonnormal	51.11 ± 9.9	94.81 ± 23.69	500.28 ± 94.92	17.848	0.0000	1.000	0.001	0.976	0.050	0.000	1.000	0.050	0.858	0.000	0.000
food (s)																	
Olfactory habituation/disbab	ituation en	iffing only															
Water	Test	Data				F	p	Power	WT vs	WT vs	Het						
		structure					value		Het	KO	vs KO						
- Trial	rMeasures	Sph.viol				8.290	0.0019	0.958	-	-	-						
- Trial × gen.	rMeasures	Sph.viol				1.108	0.3505	0.337	-	-	-						
- Genotype	rMoasures	Sph.viol				2.973	0.0602	0.059	0.660	0.027	0.066						
- Trial × gen. × coh.	rMeasures	Sph.viol				1.739	0.1683	0.515	_	_	_						
- Gen. × coh.	rMeasures	Sph.viol				1.015	0.3696	0.217	_	-	_						
Banana	Test	Data				F	p	Power	WT vs	WT vs	Het						
- Trial	rMaasuras	Structure				10 117	value	0 083	Het	KU	vs ku						
- Trial × gen.	rMeasures	Sph.ass				3.908	0.0054	0.888	_	_	_						
- Genotype	rMeasures	Sph.ass				5.681	0.0060	0.842	0.433	0.002	0.017						
- Cohort	rMeasures	Sph.ass				11.933	0.0011	0.923	_	-	_						
- Trial $ imes$ gen. $ imes$ coh.	rMeasures	Sph.ass				0.486	0.7461	0.161	-	-	-						
- Gen. × coh.	rMeasures	Sph.ass				0.134	0.8752	0.069	-	-	-						
Lemon	Test	Data				F	р	Power	WT vs	WT vs	Het						
		structure					value		Het	KO	vs KO						
- Trial	rMeasures	Sph.viol				6.699	0.0041	0.908	-	-	_						
- Irial × gen.	rMeasures	Sph.viol				0.047	0.9890	0.059	-	-	- 0.025						
- Genotype - Cohort	rMeasures	Sph.viol				2.715	0.0760	0.513	0.404	0.100	0.025						
- Trial \times gen. \times coh.	rMeasures	Sph.viol				0.667	0.5828	0.211	_	_	_						
- Gen. × coh.	rMeasures	Sph.viol				0.159	0.8534	0.073	-	-	-						
						_		_									
IVIAIE SCENT	IEST	⊔ata structure				r	p value	Power	vv i vs Het	WIVS KO	Het vs KO						
- Trial	rMeasures	Sph.viol				27.903	0.0000	1.000	_	_	_						
- Trial $ imes$ gen.	rMeasures	Sph.viol				1.089	0.3581	0.332	-	-	-						
- Genotype	rMeasures	Sph.viol				0.739	0.4828	0.168	-	-	-						
- Cohort	rMeasures	Sph.viol				2.500	0.1201	0.341	-	-	-						
- Irial × gen. × coh.	rMeasures	Sph.viol				1.603	0.19/6	0.479	_	_	_						
	Theasures	3pri.vi0i				0.541	0.3037	0.134	_	_	_						
Female scent	Test	Data				F	р	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Trial	rMeasures	Sph.viol				20.922	0.0000	1.000	-	-	_						
- Irial × gen.	rMeasures	Sph.viol				0.131	0.9321	0.076	_	_	_						
- Cohort	rMeasures	Sph viol				14 771	0.0003	0.142	_	_	_						
- Trial \times gen. \times coh.	rMeasures	Sph.viol				0.348	0.7765	0.126	_	_	_						
- Gen. × coh.	rMeasures	Sph.viol				1.651	0.2022	0.332	-	-	-						
												~					
						Genoty	pe		Cohort			Genot	ype ×		Pairwis	e risons	
Individual trials	Test	Data	WT	Het	КО	F	р	Power	F	p	Power	F	p	Power	WT vs	WT vs	Het
		structure					value			value			value		Het	KO	vs KO
Water 1	2wANOVA	Nonnormal	1.82 ± 0.37	1.81 ± 0.42	0.9 ± 0.16	2.205	0.1208	0.429	0.199	0.658	0.072	1.697	0.194	0.340	-	-	-
water 2	2wANOVA	Nonnormal	1.02 ± 0.15	0.98 ± 0.14	0.7 ± 0.15	1.438	0.1990	0.294	0.078	0.781	0.059	0.711	0.496	0.163	_	_	_
Banana 1	2wANOVA	Nonnormal	0.97 ± 0.15 1.34 ± 0.12	0.02 ± 0.14 1.04 + 0.23	0.7 ± 0.11 0.44 + 0.15	8.742	0.1008	0.961	∠.900 6.201	0.095	0.585	0.466	0.630	0.100	0.322	0.001	0.052
Banana 2	2wANOVA	Nonnormal	0.65 ± 0.12	0.65 ± 0.1	0.44 ± 0.13	1.641	0.2040	0.330	6.658	0.013	0.716	0.240	0.787	0.086	-	_	-
Banana 3	2wANOVA	Nonnormal	0.52 ± 0.09	0.72 ± 0.19	0.44 ± 0.13	1.167	0.3196	0.245	7.761	0.008	0.780	0.050	0.951	0.057	_	-	-
					(Continued)											

Table 7. Continued

						Genoty	oe		Cohort			Genoty	/pe ×		Pairwis compar	e risons	
	Test	Data	WT	Het	КО	F	p	Power	F	р	Power	F	р	Power	WT vs	WT vs	Het vs
1	0.0000	structure	0.50 . 0.40	0.77 . 0.45	0.50 + 0.47	0 700	value	0.405	0.570	value	0.010	0.044	value	0.050	Het	KO	KO
Lemon 1	2wANOVA	Nonnormal	0.58 ± 0.18	0.77 ± 0.15	0.52 ± 0.17	0.720	0.4916	0.165	8.572	0.005	0.819	0.041	0.960	0.056	-	-	-
Lemon 2		Nonnormal	0.39 ± 0.11	0.52 ± 0.1	0.24 ± 0.07	2.679	0.0785	0.507	9.784	0.003	0.866	0.037	0.964	0.055	0.709	0.411	0.099
Male 1		Nonnormal	6.35 ± 0.00	0.46 ± 0.09	0.23 ± 0.03 4 94 + 1 07	0.659	0.0000	0.480	1 095	0.009	0.701	1 091	0.033	0.478	-	-	_
Male 2	2wANOVA	Nonnormal	2.25 ± 0.34	2.77 ± 0.46	1.26 ± 0.31	4.095	0.0225	0.700	0.564	0.456	0.114	3.078	0.055	0.568	0.752	0.116	0.020
Male 3	2wANOVA	Nonnormal	1.54 ± 0.38	1.25 ± 0.24	1.72 ± 0.63	0.322	0.7264	0.098	2.465	0.123	0.337	0.312	0.733	0.097	_	_	_
Female 1	2wANOVA	Nonnormal	5.68 ± 0.98	6.43 ± 1.34	6.32 ± 1.93	0.129	0.8790	0.069	11.509	0.001	0.914	0.879	0.422	0.193	_	_	_
Female 2	2wANOVA	Nonnormal	2.18 ± 0.3	2.24 ± 0.43	2.62 ± 0.81	0.189	0.8283	0.078	1.936	0.170	0.276	0.289	0.751	0.093	_	-	_
Female 3	2wANOVA	Nonnormal	1.42 ± 0.26	1.82 ± 0.52	2.76 ± 0.88	1.600	0.2120	0.323	7.672	0.008	0.775	1.792	0.177	0.357	-	-	-
Olfactory habituation	/dichabitua	tion all into	ractions														
Water	Test	Data	actions			F	n	Power	WT vs	WT vs	Het						
Water	1000	structure				,	value	1 00001	Het	ко	vs KO						
- Trial	rMeasures	Sph.viol				1.891	0.1664	0.385	-	-	-						
- Trial $ imes$ gen.	rMeasures	Sph.viol				0.718	0.5478	0.225	-	-	-						
- Genotype	rMeasures	Sph.viol				7.210	0.0017	0.920	0.637	0.001	0.015						
- Cohort	rMeasures	Sph.viol				2.639	0.1104	0.357	-	-	-						
- Trial × gen. × coh.	rMeasures	Sph.viol				0.920	0.4371	0.283	-	_	_						
- Gen. × coh.	rMeasures	Sph.viol				1.133	0.3300	0.239	-	_	_						
Banana	Test	Data				F	p	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Trial	rMeasures	Sph.viol				5.229	0.0133	0.821	-	-	_						
- Trial × gen.	rMeasures	Sph.viol				1.282	0.2866	0.388	-	-	_						
- Genotype	rivieasures	Spn.viol				5./3/	0.0057	0.846	0.744	0.060	0.008						
- Conort Trial × con × coh	rMoasures	Sph.viol				1.922	0.0070	0.788	_	_	_						
- Gen × coh	rMeasures	Sph.viol				0.930	0.4204	0.207	_	_	_						
	Interesting	0011.0101				0.000	0.0707	0.210									
Lemon	Test	Data				F	p .	Power	WT vs	WT vs	Het						
T / 1		structure				1 000	value	0.070	Het	KO	vs KO						
- Irial Trial X gap	rivieasures	Spn.viol				1.303	0.2728	0.276	-	_	-						
- Genotype	rMeasures	Sph.viol				1 893	0.00115	0.221	0 295	0.048	0.003						
- Cohort	rMeasures	Sph.viol				4.053	0.0276	0.701	0.295	-	-						
- Trial \times gen. \times coh.	rMeasures	Sph.viol				0.527	0.6738	0.172	_	_	_						
- Gen. × coh.	rMeasures	Sph.viol				2.405	0.1006	0.463	_	_	_						
						_		_									
Male scent	Test	Data				F	p value	Power	WT vs Het	WT vs	Het vs KO						
- Trial	rMeasures	Sph.viol				28.652	0.0000	1.000	_	_	-						
- Trial × gen.	rMeasures	Sph.viol				0.790	0.4993	0.246	_	_	_						
- Genotype	rMeasures	Sph.viol				5.722	0.0057	0.845	0.839	0.005	0.022						
- Cohort	rMeasures	Sph.viol				2.953	0.0918	0.392	_	_	_						
- Trial $ imes$ gen. $ imes$ coh.	rMeasures	Sph.viol				0.367	0.7697	0.131	-	-	-						
- Gen. $ imes$ coh.	rMeasures	Sph.viol				0.009	0.9906	0.051	-	-	-						
Female scent	Test	Data				F	n	Power	WT vs	WT vs	Het						
	1000	structure				,	value	1 OWCI	Het	ко	vs KO						
- Trial	rMeasures	Sph.ass				25.044	0.0000	1.000	_	_	_						
- Trial $ imes$ gen.	rMeasures	Sph.ass				0.884	0.4762	0.264	-	-	-						
- Genotype	rMeasures	Sph.ass				1.119	0.3346	0.236	-	-	-						
- Cohort	rMeasures	Sph.ass				6.400	0.0145	0.699	-	-	-						
- Trial \times gen. \times coh.	rMeasures	Sph.ass				1.911	0.1143	0.541	-	-	-						
- Gen. × coh.	rMeasures	Sph.ass				0.431	0.6521	0.116	-	_	_						
						Genotv	се		Cohort			Genot	vpe ×		Pairwis	е	
												cohort	/		compar	risons	
Individual trials	Test	Data	WT	Het	КО	F	p	Power	F	р	Power	F	p	Power	WT vs	WT vs	Het
Water 1	OWANOVA	structure	2 52 + 0 0	2 00 ± 1	1 25 ± 0.07	0.057	value	0 455	2 200	value	0.400	1 1 1 1 0	value	0.005	Het	KU	vs KO
Water 1		Nonnormal	3.52 ± 0.9 3.45 ± 0.71	3.88 ± 1 1.79 ± 0.49	1.35 ± 0.27	2.337	0.1053	0.455	3.302	0.075	0.429	1.110	0.330	0.235	-	0.006	-
Water 3		Nonnormal	3.43 ± 0.71 2.53 ± 0.54	1.70 ± 0.40 2.3 ± 0.6	0.95 ± 0.23	2 997	0.0109	0.780	0.000	0.447	0.054	0.373	0.200	0.207	0.101	0.078	0.304
Banana 1	2wANOVA	Nonnormal	2.8 ± 0.42	3.38 ± 1.16	0.72 ± 0.43	3.854	0.0279	0.672	6.603	0.013	0.712	1.080	0.348	0.229	-	_	-
Banana 2	2wANOVA	Nonnormal	1.46 ± 0.49	1.06 ± 0.35	0.57 ± 0.18	1.902	0.1601	0.376	4.991	0.030	0.591	1.056	0.355	0.224	_	_	_
Banana 3	2wANOVA	Nonnormal	1.38 ± 0.55	2 ± 0.63	0.4 ± 0.1	3.927	0.0262	0.680	1.920	0.172	0.274	1.097	0.342	0.232	0.334	0.380	0.020
Lemon 1	2wANOVA	Nonnormal	1.47 ± 0.37	2.21 ± 0.74	0.45 ± 0.19	3.707	0.0317	0.653	2.710	0.106	0.365	0.878	0.422	0.193	0.412	0.339	0.024
Lemon 2	2wANOVA	Nonnormal	1.21 ± 0.35	0.98 ± 0.36	0.28 ± 0.09	2.536	0.0895	0.484	3.609	0.063	0.461	1.012	0.371	0.216	0.781	0.091	0.315
Lemon 3	2wANOVA	Nonnormal	0.8 ± 0.18	0.61 ± 0.15	0.2 ± 0.08	1.362	0.2656	0.280	1.615	0.210	0.238	1.334	0.273	0.275	-	-	-
Male 1	2wANOVA	Nonnormal	55.55 ± 6.73	48.98 ± 7.22	27.15 ± 6.11	3.341	0.0436	0.605	2.419	0.126	0.332	0.054	0.948	0.058	0.655	0.030	0.199
Male 2	2wANOVA	Nonnormal	27.09 ± 6.01	29.19 ± 5.33	7.48 ± 4.34	4.753	0.0130	0.768	1.196	0.280	0.189	0.012	0.988	0.052	0.986	0.020	0.030
Male 3	2wANOVA	Nonnormal	17.57 ± 5.5	14.39 ± 4.43	5.26 ± 1.63	2.323	0.1087	0.449	1.329	0.255	0.204	0.978	0.383	0.210	-	-	-
remale 1		Nonnormal	53.65 ± 5.97	50.59 ± 5.48	31.16 ± 7.21	1.781	0.1/92	0.355	0.118	0.017	0.079	1.565	0.219	0.316	_	_	_
Female 3		Nonnormal	23.20 ± 0.37	115 + 360	14.01 ± 4.3	0.427	0.0001	0.110	2.110	0.102	0.297 0.115	1 702	0.707	0.103	_	_	_
i eillale o	ZWANUVA	Nonnonnal	14.37 - 3.65	11.5 ± 3.09	14.01	0.209	0.7000	0.090	0.070	0.402	0.110	1.703	0.193	0.041	-	-	_

WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. Group values are reported as mean \pm SEM. Bold font indicates significant results (p < 0.05). Individual results and statistical analyses for cohorts 1 and 2 are available in Extended Data Table 7-1. 2wANOVA: 2-way ANOVA, rMeasures: repeated measures, Sph.ass: sphericity assumed, Sph.viol: sphericity violated, gen: genotype, coh: cohort.

Figure 4. Altered sensory profile in *Shank3*^{$\Delta 4-22$}-deficient mice. **A**, Somatosensation evaluated with corneal reflex, toe pinch retraction, pinna reflex, and tail flick. Normal tactile and pain responses were observed in *Shank3*^{$\Delta 4-22$}-deficient mice. **B**, Auditory functions measured with the Preyer reflex and startle response to increasing sound intensities. No genotype difference was observed for Preyer reflex, however startle response was decreased in both heterozygous and homozygous *Shank3*^{$\Delta 4-22$} mice compared to their wild-type littermate with genotype differences being more marked for the higher startle intensities. Pre-pulse inhibition results are displayed in Extended Data Figure 4-1*A*. **C**, Gross visual function assessed by the visual placing test. Normal visual placing was observed for all genotypes. **D**, Olfactory abilities evaluated by the time to find hidden food in buried food test and the cumulative time sniffing the applicator without direct interactions during olfactory habituation and dishabituation to nonsocial and social odors. Strong impairments were observed in the buried food test for *Shank3*^{$\Delta 4-22$} homozygous mice as shown by a significant increase in the latency to retrieve the buried food, compared to their heterozygous and wild-type littermates. Individual performances are available in *Shank3*^{$\Delta 4-22$} homozygous mice but not in heterozygotes and wild-type during olfactory habituation/dishabituation, while they still

Table 8. Detailed results and statistical analyses related to social behavior

Three chambered socia	al interaction	n test - soci	al preference														
Zone comparison, three	zones, time i	n chambers															
All mice	Test	Data				F	р	Power	C vs	C vs	M vs						
		structure					value		М	0	0						
- Chamber	rMeasures	Sph.viol				149.525	0.0000	1.000	0.000	0.000	0.000						
- Cohort	rMeasures	Sph.viol				1.456	0.2328	0.452	-	-	-						
- Chamber \times cohort	rMeasures	Sph.viol				2.267	0.1149	0.220	-	-	-						
WT	Test	Data				F	р	Power	WT vs	WT vs	Het						
		structure					value		Het	KO	vs KO						
- Chamber	rMeasures	Sph.ass				78.786	0.0000	1.000	0.000	0.001	0.000						
- Cohort	rMeasures	Sph.ass				5.360	0.0342	0.585	-	-	-						
- Chamber \times cohort	rMeasures	Sph.ass				1.546	0.2285	0.297	-	-	-						
Het	Test	Data				F	p	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Chamber	rMeasures	Sph.viol				61.909	0.0000	1.000	0.000	0.001	0.000						
- Cohort	rMeasures	Sph.viol				1.252	0.2787	0.184	-	-	-						
- Chamber \times cohort	rMeasures	Sph.viol				3.768	0.0508	0.543	-	-	-						
КО	Test	Data				F	p	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Chamber	rMeasures	Sph.ass				30.043	0.0000	1.000	0.000	0.002	0.000						
- Cohort	rMeasures	Sph.ass				2.003	0.1751	0.267	-	-	-						
- Chamber \times cohort	rMeasures	Sph.ass				0.227	0.7982	0.082	-	-	-						
Zone comparison, two z	ones, Mouse	A vs object	interaction time														
	Test	Data				All F	All p	Power	WT F	WT p	Power	Het F	Het p	Power	KO F	KO p	Power
		structure					value			value			value			value	
- Chamber	rMeasures	Sph.ass				40.069	0.0000	1.000	10.622	0.005	0.864	14.120	0.002	0.943	19.123	0.000	0.984
- Cohort	rMeasures	Sph.ass				1.078	0.3038	0.175	0.561	0.465	0.109	3.631	0.769	0.059	0.434	0.519	0.095
- Chamber \times cohort	rMeasures	Sph.ass				0.921	0.3414	0.156	0.002	0.963	0.050	0.089	0.074	0.436	0.617	0.443	0.115
						Genotyp	e		Cohort			Genoty	pe ×		Pairwis	e	
												cohort			compa	risons	
	Test	Data structure	WT	Het	KO	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs	Het vs KO
Time in mouse or object	2wANOVA	Nonnormal	528.42 ± 10.99	509.46 ± 27.36	501.19 ± 14.27	0.428	0.6540	0.116	2.557	0.116	0.348	0.131	0.878	0.069	-	-	-
cnamber																	
Time sniffing mouse or object	2wANOVA	Normal	89.02 ± 6.62	103.43 ± 10.43	101.27 ± 11.18	0.670	0.5160	0.156	2.367	0.130	0.326	1.153	0.324	0.242	-	-	-
Time close to mouse or object	2wANOVA	Normal	162.11 ± 8.5	168.73 ± 11.02	146.49 ± 10.45	1.165	0.3200	0.244	0.888	0.351	0.152	0.037	0.964	0.055	-	-	-

Male-female social interactions, sniffing

		5				Genotyp	e		Cohort			Genoty cohort	pe ×		Pairwise compar	e isons	
	Test	Data	WT	Het	KO	F	p	Power	F	р	Power	F	р	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Anogenital, time (s)	2wANOVA	Nonnormal	10.22 ± 1.62	12.36 ± 1.86	9.05 ± 1.43	0.933	0.4000	0.202	0.154	0.696	0.067	0.097	0.908	0.064	-	-	-
Anogenital, number	2wANOVA	Nonnormal	12.56 ± 3.44	14.28 ± 4.04	7.77 ± 2.36	1.049	0.3580	0.223	0.050	0.824	0.056	0.653	0.525	0.153	-	-	-
Anogenital, latency to first (s)	2wANOVA	Nonnormal	26.91 ± 11.44	19.61 ± 8.63	83.18 ± 25.05	4.238	0.0200	0.715	2.222	0.143	0.309	1.172	0.318	0.245	0.619	0.032	0.008
Nose to body, time (s)	2wANOVA	Nonnormal	14.94 ± 2.05	14.94 ± 2.71	16.58 ± 2.86	0.348	0.7080	0.103	0.783	0.381	0.140	1.722	0.190	0.344	-	-	-
Nose to body, number	2wANOVA	Nonnormal	10.93 ± 1.54	10.83 ± 1.68	13.91 ± 4.35	0.333	0.7190	0.100	0.483	0.490	0.105	2.192	0.123	0.426	-	-	-
Nose to body, latency to first (s)	2wANOVA	Nonnormal	18.89 ± 5.38	20.94 ± 8.22	13.38 ± 3.97	0.332	0.7190	0.100	1.025	0.316	0.168	0.915	0.408	0.199	-	-	-
Nose to nose, time (s)	2wANOVA	Nonnormal	8.55 ± 0.85	10.73 ± 1.07	9.58 ± 1.13	0.133	0.8760	0.069	0.717	0.401	0.132	1.107	0.339	0.233	-	-	-
Nose to nose number	2wANOVA	Nonnormal	6.31 ± 0.79	6.91 ± 0.63	6.61 ± 1.18	1.118	0.3350	0.235	0.020	0.889	0.052	0.394	0.676	0.110	-	-	-
Nose to nose, latency to first (s)	2wANOVA	Nonnormal	34.72 ± 7.85	34.09 ± 9.24	16.58 ± 3.97	1.599	0.2130	0.322	0.062	0.804	0.057	0.417	0.661	0.114	-	-	-
All sniffing, time (s)	2wANOVA	Nonnormal	33.77 ± 3.7	38.05 ± 4.77	35.23 ± 4.63	0.155	0.8570	0.073	0.686	0.412	0.128	0.654	0.524	0.153	-	-	-
All sniffing, number	2wANOVA	Nonnormal	29.81 ± 4.59	32.03 ± 5.13	28.29 ± 6.45	0.313	0.7330	0.097	0.138	0.712	0.065	1.522	0.229	0.308	-	-	-
All sniffing, latency to first (s)	2wANOVA	Nonnormal	5.52 ± 1.85	4.29 ± 1.55	7.41 ± 2.92	0.586	0.5610	0.142	1.267	0.266	0.197	0.042	0.959	0.056	-	-	-

Male-female social interactions, ultrasonic vocalization

	uotionis, un					Genotyp	e		Cohort			Genoty cohort	pe \times		Pairwis compa	ə risons	
	Test	Data structure	WT	Het	КО	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs KO	Het vs KC
USV, all calls	2wANOVA	Nonnormal	380.11 ± 50.36	378.33 ± 64.78	287.58 ± 31.87	1.345	0.2704	0.276	3.242	0.078	0.422	0.193	0.825	0.078	-	-	-
USV, minute 1	2wANOVA	Nonnormal	84.16 ± 12.35	94.11 ± 21.67	64.7 ± 8.21	1.071	0.3507	0.227	1.180	0.283	0.186	0.865	0.428	0.190	-	-	_
USV, minute 2	2wANOVA	Nonnormal	68.11 ± 9.01	73.22 ± 14.22	57.41 ± 5.55	0.649	0.5271	0.152	1.150	0.289	0.183	0.070	0.932	0.060	-	-	_
USV, minute 3	2wANOVA	Nonnormal	77.61 ± 11.62	68.72 ± 8.59	57.7 ± 8.2	1.363	0.2659	0.279	2.155	0.149	0.301	0.799	0.456	0.178	-	-	_
USV, minute 4	2wANOVA	Nonnormal	74.5 ± 14.48	76.44 ± 13	52.7 ± 4.98	1.566	0.2197	0.316	4.139	0.048	0.513	0.276	0.760	0.091	-	-	-
USV, minute 5	2wANOVA	Nonnormal	75.72 ± 14.21	65.83 ± 11.73	55.05 ± 8.13	1.092	0.3439	0.230	5.269	0.026	0.613	0.049	0.952	0.057	-	-	-
USV	Test	Data structure				F	p value	Power	WT vs Het	WT vs KO	Het vs KO						
- Time	rMeasures	Sph.viol				2.964	0.0210	0.785	_	_	_						
- Time \times genotype	rMeasures	Sph.viol				0.558	0.8110	0.254	_	_	_						
- Genotype	rMeasures	Sph.viol				1.345	0.2704	0.276	_	_	_						
- Cohort	rMeasures	Sph.viol				3.242	0.0782	0.422	_	_	_						
- Time $ imes$ gen. $ imes$ coh.	rMeasures	Sph.viol				1.245	0.2750	0.564	_	_	_						
- Gen. × coh.	rMeasures	Sph.viol				0.193	0.8248	0.078	_	_	_						
					(Continu	ued)											

Social transmission of fo	od prefere	nce															
						Genoty	pe		Cohort			Genoty cohort	pe ×		Pairwis compa	e risons	
	Test	Data structure	WT	Het	КО	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs KO	Het vs KO
Demonstrator sniffing time (s)	2wANOVA	Nonnormal	29.8 ± 6.01	37.44 ± 6.25	24.69 ± 6.39	0.756	0.4752	0.171	4.407	0.041	0.538	0.202	0.818	0.080	-	-	-
Number of sniffing bouts	2wANOVA	Nonnormal	9.68 ± 1.51	13.57 ± 1.48	7.26 ± 1.36	4.064	0.0236	0.695	2.772	0.103	0.371	0.099	0.906	0.064	0.126	0.733	0.021
Time exploring all food (s)	2wANOVA	Nonnormal	1533.36 ± 98.47	1456.68 ± 98.14	1715.26 ± 124.97	1.372	0.2635	0.281	0.361	0.551	0.091	0.216	0.806	0.082	-	-	-
Time pre-exposed/all food (%)	2wANOVA	Nonnormal	64.89 ± 3.55	59.21 ± 4.8	64.54 ± 4.71	0.589	0.5589	0.142	0.150	0.700	0.067	1.790	0.178	0.356	-	-	-
Time new/all food (%)	2wANOVA	Nonnormal	35.1 ± 3.55	40.78 ± 4.8	35.45 ± 4.71	0.589	0.5589	0.142	0.150	0.700	0.067	1.790	0.178	0.356	-	-	-
Ratio time pre-exposed/ new	2wANOVA	Nonnormal	2.6 ± 0.45	2.31 ± 0.47	3.06 ± 0.64	0.636	0.5338	0.150	1.077	0.305	0.174	0.739	0.483	0.168	-	-	-
Time spent exploring cocoa/all food (%)	2wANOVA	Nonnormal	51.21 ± 4.98	50.65 ± 5.26	50.97 ± 5.82	0.003	0.9969	0.050	0.240	0.626	0.077	0.856	0.431	0.188	-	-	-
Time exploring cinnamon/ all food (%)	2wANOVA	Nonnormal	48.78 ± 4.98	49.34 ± 5.26	49.02 ± 5.82	0.003	0.9969	0.050	0.240	0.626	0.077	0.856	0.431	0.188	-	-	-
Ratio time cocoa/ cinnamon	2wANOVA	Nonnormal	1.55 ± 0.31	1.67 ± 0.4	2.07 ± 0.64	0.585	0.5611	0.141	0.769	0.385	0.138	0.433	0.651	0.116	-	-	-
Total amount of eaten food (g)	2wANOVA	Nonnormal	1.21 ± 0.18	0.82 ± 0.15	0.58 ± 0.06	4.286	0.0195	0.720	1.848	0.180	0.265	0.726	0.489	0.166	0.146	0.011	0.491
Amount of eaten food, pre-exposed (q)	2wANOVA	Nonnormal	0.87 ± 0.14	0.67 ± 0.14	0.46 ± 0.07	2.346	0.1068	0.452	2.802	0.101	0.375	1.058	0.355	0.224	-	-	-
Amount of eaten food, new (g)	2wANOVA	Nonnormal	0.34 ± 0.08	0.15 ± 0.04	0.13 ± 0.03	4.130	0.0223	0.703	0.063	0.803	0.057	1.108	0.339	0.233	0.065	0.048	0.990
Amount of eaten food,	2wANOVA	Nonnormal	0.59 ± 0.13	0.36 ± 0.11	0.3 ± 0.07	1.887	0.1629	0.373	0.343	0.561	0.089	0.720	0.492	0.165	-	-	-
Amount of eaten food, cinnamon (g)	2wANOVA	Nonnormal	0.62 ± 0.13	0.46 ± 0.13	0.3 ± 0.05	1.563	0.2202	0.315	1.125	0.294	0.180	0.165	0.849	0.074	_	-	-
Percentage pre-	Test	Data				All F	All p	Power	WT F	WT p	Power	Het F	Het p	Power	KO F	KO p	Power
exposed vs new		structure					value			value			value			value	
- Flavor	rMeasures	Sph.ass				25.686	0.0000	0.999	18.792	0.000	0.983	4.601	0.045	0.433	9.230	0.007	0.817
- Cohort	rMeasures	Sph.ass				0.000	1.0000	0.050	0.800	0.384	NA	0.196	0.663	NA	0.531	0.476	0.106
- Flavor $ imes$ cohort	rMeasures	Sph.ass				0.009	0.9227	0.051	6.593	0.020	0.678	0.195	0.665	0.070	1.137	0.301	0.172
Time cacao vs cinnamon	Test	Data structure				All F	All p value	Power	WT F	WT p value	Power	Het F	Het <i>p</i> value	Power	KO F	KO p value	Power
- Flavor	rMeasures	Sph.ass				0.001	0.9745	0.050	0.058	0.812	0.050	0.035	0.854	0.054	0.058	0.812	0.063
- Cohort	rMeasures	Sph.ass				0.100	0.7525	0.061	0.080	0.780	0.135	0.196	0.663	0.070	0.080	0.780	0.058
- Flavor $ imes$ cohort	rMeasures	Sph.ass				0.001	0.9702	0.050	0.004	0.950	0.178	0.957	0.342	0.152	0.004	0.950	0.050
Amount of eaten food,	Test	Data				All F	All p	Power	WT F	WT p	Power	Het F	Het p	Power	KO F	KO p	Power
pre-expose vs new		structure					value			value			value			value	
- Flavor	rMeasures	Sph.ass				42.099	0.0000	1.000	13.852	0.002	0.935	13.378	0.002	0.929	13.503	0.002	0.931
- Cohort	rMeasures	Sph.ass				2.399	0.1276	0.330	0.400	0.537	0.091	2.323	0.147	0.299	0.131	0.722	0.063
- Flavor $ imes$ cohort	rMeasures	Sph.ass				3.445	0.0692	0.445	4.346	0.055	0.496	0.872	0.364	0.142	0.080	0.781	0.058
Amount of eaten food,	Test	Data				All F	All p	Power	WT F	WT p	Power	Het F	Het p	Power	KO F	KO p	Power
cacao vs cinnamon		structure					value			value			value			value	
- Flavor	rMeasures	Sph.ass				0.212	0.6473	0.074	0.005	0.945	0.050	0.265	0.614	0.077	0.011	0.918	0.051
- Cohort	rMeasures	Sph.ass				2.399	0.1276	0.330	0.400	0.537	0.091	2.323	0.147	0.299	0.131	0.722	0.063
- Flavor × cohort	rMeasures	Sph ass				0 117	0 7342	0.063	0 178	0 679	0.068	0.052	0.822	0.055	0 271	0.610	0 078

WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. C, center chamber; M, mouse chamber; O, object chamber. Group values are reported as mean \pm SEM. Bold font indicates significant results (p < 0.05). Individual results and statistical analyses for cohorts 1 and 2 are available in Extended Data Table 8-1. 2wANOVA: 2-way ANOVA, rMeasures: repeated measures, Sph.ass: sphericity assumed, Sph.viol: sphericity violated, gen: genotype, coh: cohort.

Individuals with ASD can maintain rigid habits and frequently show strong insistence on sameness and upset by changes in routine. To examine this domain, *Shank3*^{$\Delta 4-22$} mice were trained for 4 d in the Barnes maze, a test of spatial learning and memory, until all the mice were able to quickly locate an escape box hidden under one of the target locations, then the location of the escape box was moved and mice were tested for reversal learning for four additional days. During the initial learning, all the genotypes were able to find the escape hatch equally well, although Shank $3^{\Delta 4-22}$ homozygous mice took 1 d longer to reach criteria (Fig. 8C, left panel). All genotypes preferred the correct quadrant in the first probe test ran immediately after the initial training (Fig. 8C, middle panel). When the escape hatch was moved to the opposite side of the maze, both *Shank* $3^{\Delta 4-22}$ wild-type and heterozygotes immediately learned the new position, while a 1-d delay was, once again, observed for the *Shank* $3^{\Delta 4-22}$ homozygous mice. Genotypes differed markedly in the second probe test, however; while wild-type mice spent most

continued

displayed normal habituation/dishabituation for social scents (unfamiliar male and female bedding). The olfactory habituation and dishabituation to nonsocial and social odors was measured as cumulative time spent sniffing a sequence of identical and novel odors delivered on cotton swabs inserted into a clean cage. WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. *p < 0.05, **p < 0.1, ***p < 0.001.

Figure 5. Social behavior of $Shank3^{\Delta4-22}$ -deficient mice. *A*, Male social interaction in response to the presentation of an unfamiliar conspecific female in estrus and scored by the cumulative sniffing time and latency from the male toward different body regions of the female. No genotype differences were evident in the dyadic male-female social interaction for the overall sniffing time from the male toward the female, however a trend toward a decrease in anogenital sniffing as well as a significant increase of the latency to initiate the first anogenital sniffing event was observed in $Shank3^{\Delta4-22}$ homozygous mice. *B*, Preference for social stimulus in the three-chambered social interaction test measured by cumulative time interacting with either a mouse or an inanimate object. All three genotypes demonstrated a significant preference for an unfamiliar mouse over a nonsocial object. *C*, Social transmission of food preference measured by the time spent by the test mouse sniffing the demonstrator mouse and the time spent interacting with both cued and noncued food. All genotypes had a strong preference for the food flavor presented by the demonstrator mouse. USVs and time spent sniffing the demonstrator during the demonstrator interaction phase are displayed in Extended Data Figure 5-1. WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. *p < 0.05, **p < 0.1, ***p < 0.001.

time in the new target quadrant, $Shank3^{\Delta4-22}$ heterozygous mice split their time 75/25% between new and old targets, whereas $Shank3^{\Delta4-22}$ homozygous animals spent equal time in both targets (Fig. 8*C*, right panel). This impaired reversal learning implies that *Shank3* deficiency increases susceptibility to proactive interference where learning of a previous rule interferes with the new rule.

Learning and memory in Shank3^{Δ4-22}-deficient mice

In addition to the Barnes maze, animals were tested in two additional learning and memory tests, specifically, the Y-maze spontaneous alternation test and the fear conditioning test. Detailed results are reported in Table 12.

When looking at the spontaneous alternation behavior in the Y-maze, no differences were observed between the genotypes in any of the background strains regarding either the total number of choices, the percentage of correct choices or the percentage of errors (Fig. 9A). Moreover, no arm preference was seen for any of the groups.

In the training session of the fear conditioning test, minimal levels of freezing behavior were seen for all the genotypes during the 5-min habituation period; however, while this percentage of spontaneous freezing decreased before the presentations of cue-shock pairings for the Shank $3^{\Delta 4-22}$ wild-type and heterozygotes, it remained at significantly higher level for Shank $3^{\Delta 4-22}$ homozygous mice. A significant genotype effect was then found during the training session in postshock freezing, with Shank3^{Δ4-22} homozygous mice displaying higher levels of freezing compared with wild-type and heterozygous mice (Fig. 9B, left panel). The opposite was observed during contextual recall where even if all the mice freeze significantly more than during the habituation of the training sessions a trend toward a decrease (significant during the first minute) of freezing was observed for Shank $3^{\Delta 4-22}$ homozygous mice compared to wild-type or heterozygous littermates (Fig. 9B, middle

Table 9. Detailed results and statistical analyses related to the avoidance behavior

Novel object habituation																	
						Genoty	/pe		Cohort			Genoty cohort	pe ×		Pairwis compa	se arisons	
	Test	Data	WT	Het	KO	F	р	Power	F	р	Power	F	р	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Total distance (cm)	2wANOVAA	Nonnormal	3616.84 ± 351.4	3111.83 ± 221.31	3118.64 ± 277.29	0.724	0.490	0.166	15.022	0.000	0.967	0.927	0.402	0.202	_	-	-
Time in left side (s)	2wANOVA	Normal	314.74 ± 20.15	306.42 ± 15.26	276.81 ± 23.06	1.079	0.348	0.229	0.100	0.753	0.061	2.014	0.144	0.397	-	_	_
Time in right side (s)	2wANOVA	Normal	284.74 ± 20.17	293.06 ± 15.23	322.76 ± 23.1	1.086	0.345	0.230	0.112	0.739	0.062	2.009	0.145	0.396	-	-	-
Time spend in left vs right half side	Test	Data structure				All F	All <i>p</i> value	Power	WT F	WT p value	Power	Het F	Het <i>p</i> value	Power	KO F	KO <i>p</i> value	Power
- Side	rMeasures	Sph.ass				0.001	0.979	0.052	0.445	0.514	0.097	0.145	0.708	0.065	1.249	0.279	0.184
- Cohort	rMeasures	Sph.ass				12.824	0.001	0.937	3.326	0.086	0.406	10.401	0.005	0.860	3.035	0.100	0.376
- Side $ imes$ cohort	rMeasures	Sph.ass				0.044	0.835	0.062	0.096	0.761	0.060	1.352	0.261	0.195	2.506	0.132	0.321

Novel object recognition: training with two identical objects

	5					Genoty	/pe		Cohort			Genoty cohort	pe ×		Pairwis compa	se trisons	
	Test	Data structure	WT	Het	КО	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs KO	Het vs KO
Total distance (cm)	2wANOVA	Nonnormal	2421.86 ± 196.94	2175 ± 173.66	1631.78 ± 118.14	5.366	0.008	0.820	2.961	0.091	0.393	0.804	0.453	0.180	0.540	0.004	0.059
Time in left side (s)	2wANOVA	Normal	150.86 ± 9.32	148.91 ± 10.25	176.59 ± 16.36	1.489	0.235	0.303	0.040	0.843	0.054	0.905	0.411	0.198	_	_	-
Time in right side (s)	2wANOVA	Normal	148.86 ± 9.35	150.82 ± 10.23	122.95 ± 16.33	1.511	0.230	0.307	0.042	0.839	0.055	0.896	0.414	0.196	_	_	-
Number of side switches	2wANOVA	Normal	15.94 ± 1.28	14.26 ± 1	13.89 ± 1.21	0.822	0.445	0.183	0.259	0.613	0.079	0.459	0.635	0.121	_	_	-
Number of left object exploration	2wANOVA	Nonnormal	21.84 ± 2.83	19.52 ± 2.54	14.1 ± 1.67	2.641	0.081	0.502	0.335	0.565	0.088	1.071	0.350	0.227	0.777	0.070	0.261
Number of right object exploration	2wANOVA	Nonnormal	33.42 ± 7.21	28.84 ± 7.87	16.78 ± 2.65	1.558	0.220	0.316	2.295	0.136	0.318	0.443	0.645	0.118	-	-	-
Time exploring left object (s)	2wANOVA	Nonnormal	22.2 ± 3.15	19.89 ± 3.1	10.67 ± 2.11	4.527	0.015	0.747	0.536	0.467	0.111	0.993	0.377	0.214	0.834	0.016	0.066
Time exploring right object (s)	2wANOVA	Nonnormal	23.97 ± 3.28	23.94 ± 4.06	11.28 ± 2.37	5.322	0.008	0.817	2.582	0.114	0.351	0.277	0.759	0.092	1.000	0.024	0.025
Latency to left object (s)	2wANOVA	Nonnormal	15.89 ± 4.3	21.74 ± 7.62	20.67 ± 3.94	0.353	0.704	0.104	0.068	0.796	0.057	0.138	0.872	0.070	-	_	_
Latency to right object (s)	2wANOVA	Nonnormal	15.03 ± 3.6	13.99 ± 5.42	17.92 ± 3.01	0.348	0.708	0.103	3.325	0.074	0.432	0.816	0.448	0.182	_	_	-
Total number of object exploration	2wANOVA	Nonnormal	55.26 ± 9.69	48.36 ± 9.86	30.89 ± 4.09	1.992	0.147	0.393	0.959	0.332	0.161	0.596	0.555	0.144	-	-	-
Total time exploring objects (s)	2wANOVA	Nonnormal	46.18 ± 5.82	43.83 ± 6.59	21.95 ± 4.26	5.733	0.006	0.846	1.680	0.201	0.246	0.041	0.960	0.056	0.954	0.011	0.024
Latency to any object (s)	2wANOVA	Nonnormal	8.92 ± 3.11	13.43 ± 5.8	17.5 ± 3.36	0.674	0.514	0.157	1.455	0.233	0.220	0.482	0.621	0.125	-	-	-
Sniffing time,left vs right (s)	Test	Data structure				All F	All <i>p</i> value	Power	WT F	WT p value	Power	Het F	Het <i>p</i> value	Power	KO F	KO p value	Power
- Side	rMeasures	Sph.ass				2.505	0.119	0.343	1.375	0.257	0.198	1.701	0.209	0.234	0.128	0.725	0.063
- Cohort	rMeasures	Sph.ass				0.943	0.336	0.159	0.245	0.627	0.075	0.607	0.447	0.114	1.226	0.284	0.182
- Side \times cohort	rMeasures	Sph.ass				1.598	0.211	0.237	7.358	0.015	0.725	0.829	0.375	0.138	1.756	0.203	0.240
Number of interactions, left vs right	Test	Data structure				All F	All <i>p</i> value	Power	WT F	WT p value	Power	Het F	Het <i>p</i> value	Power	KO F	KO p value	Power
- Side	rMeasures	Sph.ass				8.030	0.006	0.795	4.264	0.055	0.495	2.075	0.168	0.275	3.519	0.078	0.425
- Cohort	rMeasures	Sph.ass				1.277	0.263	0.199	1.149	0.299	0.173	0.375	0.548	0.089	0.311	0.585	0.082
- Side $ imes$ cohort	rMeasures	Sph.ass				6.312	0.015	0.694	1.703	0.209	0.234	2.023	0.173	0.269	6.059	0.025	0.641
Time in left vs right halves (s)	Test	Data structure				All F	All <i>p</i> value	Power	WT F	WT p value	Power	Het F	Het <i>p</i> value	Power	KO F	KO p value	Power
- Side	rMeasures	Sph.ass				1.555	0.218	0.232	0.000	0.994	0.050	0.013	0.909	0.051	2.506	0.132	0.321
- Cohort	rMeasures	Sph.ass				0.591	0.445	0.117	0.142	0.711	0.065	3.906	0.065	0.462	0.161	0.693	0.067
- Side $ imes$ cohort	rMeasures	Sph.ass				0.110	0.742	0.062	0.371	0.551	0.089	0.224	0.642	0.073	0.856	0.368	0.141

Novel object recognition: test with one new object

		,	-			Genoty	/pe		Cohort			Genoty	pe × c	ohort	Pairwis compa	se irisons	
	Test	Data structure	WT	Het	KO	F	p I value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs KO	Het vs KO
Total distance (cm)	2wANOVA	Normal	1973.56 ± 156.94	1482.1 ± 167.46	1057.83 ± 110.93	9.082	0.000	0.968	0.000	0.989	0.050	1.066	0.352	0.227	0.059	0.000	0.117
Time in new object side (s)	2wANOVA	Normal	151.59 ± 9.78	143.64 ± 15.18	174.14 ± 19.84	0.985	0.380 (0.212	0.004	0.947	0.050	0.545	0.583	0.135	_	_	_
Time pre-exposed object side (s)	2wANOVA	Normal	147.79 ± 9.8	155.86 ± 15.26	125.22 ± 19.97	0.983	0.381 (0.212	0.001	0.972	0.050	0.533	0.590	0.133	-	-	-
Number of side switches	2wANOVA	Normal	14.57 ± 0.77	9.84 ± 1.32	8.52 ± 1.05	8.853	0.001	0.964	0.422	0.519	0.098	1.128	0.332	0.238	0.009	0.001	0.666
Number of new object exploration	2wANOVA	Nonnormal	22.73 ± 2.66	17.84 ± 2.68	6.26 ± 0.93	14.115	0.000	0.998	1.316	0.257	0.203	0.241	0.787	0.086	0.289	0.000	0.002
Number of pre-exposed object exploration	2wANOVA	Nonnormal	18.52 ± 4.35	13.05 ± 2.92	5.78 ± 0.76	3.898	0.027	0.678	1.389	0.244	0.212	1.540	0.224	0.312	0.413	0.012	0.216
Time exploring new object (s)	2wANOVA	Nonnormal	27.84 ± 3.58	21.74 ± 2.89	6.04 ± 1.39	20.724	0.000	1.000	11.516	0.001	0.915	0.182	0.835	0.077	0.225	0.000	0.000
Time exploring pre-exposed object (s)	2wANOVA	Nonnormal	12.49 ± 2.05	12.03 ± 2.55	3.8 ± 0.78	6.051	0.004	0.866	0.047	0.829	0.055	0.351	0.706	0.103	0.985	0.009	0.014
Latency new object (s)	2wANOVA	Nonnormal	16.68 ± 5.17	50.97 ± 18.18	72.65 ± 14.88	3.295	0.045	0.600	1.589	0.213	0.236	0.299	0.743	0.095	0.193	0.043	0.753
Latency to pre-exposed object (s)	2wANOVA	Nonnormal	30.73 ± 8.99	49.62 ± 18.45	68.71 ± 13.88	1.728	0.188 (0.346	0.164	0.687	0.068	0.245	0.783	0.087	-	-	-
Total number of object exploration	2wANOVA	Nonnormal	41.26 ± 6.59	30.89 ± 5.37	12.05 ± 1.53	8.267	0.001	0.952	0.036	0.850	0.054	0.920	0.405	0.200	0.321	0.000	0.029
Total time exploring objects (s)	2wANOVA	Nonnormal	40.33 ± 5.04	33.77 ± 4.55	9.85 ± 1.88	17.130	0.000	1.000	5.284	0.026	0.616	0.009	0.991	0.051	0.481	0.000	0.000
Novel object, latency to observe any object (s)	2wANOVA	Nonnormal	14.17 ± 4.79	16.53 ± 7.27	41.36 ± 11.68	2.538	0.089 (0.485	3.004	0.089	0.398	0.853	0.432	0.188	0.581	0.081	0.459
					(Continued)												

Table 9. Continued

Sniffing time, new vs	Test	Data				All F	All p	Power	WT F	WT p	Power	Het F	Het p	Power	KO F	KO p	Power
Side	*Maggiurga	Siluciare				27 010	0.000	1 000	27 620	0.000	1 000	10 010	0.000	0.020	2 202	0.007	0 402
- Side	rivieasures	Spri.ass				0 146	0.000	0.202	1 001	0.000	0.101	1 1 6 4	0.002	0.930	3.302	0.007	0.403
- Conort	rivieasures	Spri.ass				2.140	0.149	0.302	1.221 E 649	0.200	0.101	1.104	0.290	0.175	14.732	0.001	0.951
- Side × conort	rivieasures	opn.ass				0.100	0.000	0.796	5.646	0.029	0.011	4.020	0.040	0.526	3.000	0.073	0.439
Number of interactions, new	Test	Data				All F	All p	Power	WT F	WT p	Power	Het F	Het p	Power	KO F	KO p	Power
vs pre-exposed		structure					value			value			value			value	
- Side	rMeasures	Sph.ass				9.499	0.003	0.857	3.824	0.067	0.454	11.442	0.004	0.890	0.314	0.582	0.083
- Cohor	rMeasures	Sph.ass				0.221	0.640	0.075	0.567	0.462	0.110	0.045	0.835	0.055	16.708	0.001	0.970
- Side $ imes$ cohort	rMeasures	Sph.ass				9.882	0.003	0.870	5.751	0.028	0.618	5.258	0.035	0.580	1.686	0.211	0.232
Time in new vs pre-	Test	Data				All F	All p	Power	WT F	WT p	Power	Het F	Het p	Power	KO F	KO p	Power
exposed halves (s)		structure					value			value			value			value	
- Side	rMeasures	Sph.ass				0.565	0.456	0.114	0.029	0.867	0.053	0.185	0.673	0.069	1.375	0.257	0.198
- Cohort	rMeasures	Sph.ass				5.062	0.028	0.599	2.758	0.115	0.347	2.527	0.130	0.323	1.348	0.262	0.195
- Side $ imes$ cohort	rMeasures	Sph.ass				0.020	0.889	0.052	0.010	0.920	0.051	0.446	0.513	0.097	0.397	0.537	0.091
Marble burying																	
						Genoty	pe		Cohort			Genoty cohort	pe ×		Pairwis compa	e risons	
	Test	Data	WT	Het	КО	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs	Het vs
Number of burried marbles	2wANOVA	Nonnormal	13.63 ± 1.29	13.78 ± 1	3.77 ± 1.07	18.723	0.000	1.000	0.069	0.793	0.217	0.370	0.693	0.051	0.995	0.000	0.000
Repetitive novel object con	tact tack o	voloration															
hepetitive novel object con	laot lask, e	xpioration				Genoty	pe		Cohort			Genoty	pe × co	hort	Pairwis	e	
						_		_	_		_	_		_	compa	risons	
	Test	Data	WT	Het	KO	F	р	Power	F	p	Power	F	р	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Time exploring all the objects	2wANOVA	Nonnormal	82.08 ± 11.28	84.8 ± 7	53.37 ± 5.01	7.964	0.001	0.943	24.654	0.000	0.998	0.647	0.528	0.152	0.956	0.014	0.006
Total number of object interactions	2wANOVA	Normal	83.27 ± 7.92	94.21 ± 6.22	83.47 ± 6.4	2.108	0.133	0.412	73.475	0.000	1.000	1.110	0.338	0.234	-	-	-
Nest building																	
						Genoty	pe		Cohort			Genoty	pe × co	hort	Pairwis	e risons	
	Test	Data	WT	Het	ко	F	D	Power	F	p	Power	F	p	Power	WT vs	WT vs	Het vs
	1000	structure					value			value		·	value		Het	KO	KO
Nest shredded	2wANOVA	Nonnormal	1.84 ± 0.08	1.94 ± 0.05	1.36 ± 0.15	7,785	0.001	0.939	2.814	0.100	0.377	0.364	0.697	0.105	0.455	0.005	0.000
Nest dispersion		Nonnormal	1.01 ± 0.00 1.94 ± 0.05	1.01 ± 0.05 1.94 ± 0.05	1.00 ± 0.10 1.73 ± 0.14	1 580	0.216	0.320	0.919	0.342	0.156	3 4 2 5	0.040	0.618	_	_	_
Nest density	2w/4N/0V/4	Nonnormal	1 26 + 0 14	0.73 ± 0.05	0.73 ± 0.14	2 726	0.075	0.515	0.393	0.534	0.094	0.266	0.768	0.090	0.050	0.046	0.966
Neet chang	200000	Nonnormal	2 57 + 0 10	2.05 ± 0.10	136 ± 0.27	5 851	0.005	0.854	3.065	0.086	0.404	0.007	0.700	0.064	0.152	0.001	0.055
Nest walls		Nonnormal	2.37 ± 0.19	2.03 ± 0.23 1 + 0.19	0.42 ± 0.27	5.640	0.005	0.004	0.007	0.000	0.404	0.037	0.300	0.004	0.100	0.001	0.000
Neet total coore		Nonnormal	9.94 + 0.45	7 69 + 0 51	5.42 ± 0.17	7 002	0.000	0.040	1 1 2 1	0.700	0.001	0.000	0.440	0.100	0.009	0.002	0.023
INEST TOTAL SCOLE	ZWANOVA	NOTITIOTTAL	0.04 ± 0.45	1.00 ± 0.01	0.03 ± 0.73	1.223	0.002	0.921	1.121	0.295	0.100	0.020	0.900	0.003	0.104	0.000	0.019

WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. Group values are reported as mean \pm SEM. Bold font indicates significant results (p < 0.05). Individual results and statistical analyses for cohorts 1 and 2 are available in Extended Data Table 9-1. 2wANOVA: 2-way ANOVA, rMeasures: repeated measures, Sph.ass: sphericity assumed, gen: genotype, coh: cohort.

panel). An increase of freezing was seen in both during and after the cue presentation (trend for the first cue, significant during and after the second cue) *Shank3*^{$\Delta 4-22$} homozygous mice (Fig. 9*B*, right panel).

Anxiety-related behaviors in Shank $3^{\Delta 4-22}$ -deficient mice

Anxiety-like behaviors were monitored in the open field and in the elevated zero-maze, and detailed results are displayed in Table 13.

No significant difference between the genotypes was observed in the open field thigmotaxis level (Fig. 10*A*), but a decrease in the total number of times the mice reared (mainly driven by against wall rears) was observed in the *Shank3*^{$\Delta 4-22$} homozygous animals (Fig. 10*B*). No significant effects of an interaction between the time and genotype were observed for any of the parameters.

In the elevated zero-maze, all animals showed a preference for the closed arcs versus the open arcs; however, *Shank3*^{$\Delta 4-22$} homozygotes spent less time in the open arcs than their wild-type and heterozygous littermates. Similarly, a significant decrease of the duration of head dipping exploratory behavior in the open arcs was seen in those animals (Fig. 10*B*). No genotype differences were seen for other parameters.

This indicates increases in anxiety in the *Shank3*^{$\Delta 4-22$} homozygotes. In support of this, the long-lasting spontaneous freezing observed in *Shank3*^{$\Delta 4-22$} homozygous animals during the habituation and before the sound-shock association in the fear conditioning training (Fig. 9B) could also be explained by a higher anxiety level those animals.

Discussion

Given the prevalence of complete *SHANK3* deletions in PMS, we generated *Shank3*^{$\Delta 4-22$} mice by targeting exons 4-22, thereby disrupting all isoforms and providing improved construct validity compared to previously reported models. We conducted an extensive behavioral phenotyping of neonatal (P0–P21) and adult (three to eight months) mice to address both core symptoms and comorbidities observed in PMS. We confirmed our prediction that *Shank3*^{$\Delta 4-22$} mice homozygous and in some instances heterozygous mice have a more severe phenotype than previously published models with partial deletions of *Shank3* (summarized in Fig. 11). Our findings are

Figure 6. Object avoidance behavior in *Shank3*^{$\Delta 4-22$}-deficient mice. *A*, Short-term memory measured by the time of interaction with familiar and new object in the novel object recognition test. The test consisted of a training with two identical objects followed 1 h later by a testing session where one of the object was replaced by a novel object. During the testing session, both wild-type and *Shank3*^{$\Delta 4-22$} heterozygous mice had a strong preference for the novel object over the familiar object, while *Shank3*^{$\Delta 4-22$} homozygous mice failed to display a preference. However, this failure was due to an avoidance of both objects as shown by the strong decrease in object interaction and the increase in latency to explore any of the object for the first time in *Shank3*^{$\Delta 4-22$} homozygous animals, rather than to a real lack of object preference. Representative heatmaps for the three genotypes are available in Extended Data Figure 6-1A. **B**, Repetitive behavior and object avoidance measured in the marble burying test by the number of marble buried during a 30-min session. *Shank3*^{$\Delta 4-22}</sup> homozygous mice displayed a strongly impaired burying behavior, leaving most of the marbles undisturbed. Representative pictures and individual data are displayed in Extended Data Figure 6-1B.$ **C**, Time spend exploring objects than their wild-type and heterozygous littermates.**D**, Nest building scores.*Shank3* $^{<math>\Delta 4-22}</sup> homozygous mice are building less elaborate nests and use less nesting material than their wild-type and heterozygous littermates. Representative pictures of the nests and individual data are displayed 6-1C.$ **E**, Time interacting with the scent applicator (touching, biting, climbing) during the olfactory habituation/dishabituation test.*Shank3* $^{<math>\Delta 4-22}$ homozygous mice are avoiding interaction with the scent</sup></sup></sup>

continued

applicator for all nonsocial scents and for a social male scent but have interaction level similar to wild-type and heterozygous animals when presented with a female scent. WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. *p < 0.05, **p < 0.1, ***p < 0.001.

consistent with recent results from an independent model also generated by disrupting all *Shank3* isoforms (Wang et al., 2016b).

PMS is a neurodevelopmental disorder that manifests as early as in infancy by neonatal hypotonia and a generalized developmental delay. Previous studies have shown normal neonatal development in Δ 4-9 mice (Bozdagi et al., 2010; Wang et al., 2011; Yang et al., 2012) or only minor delays limited to ear opening and paw positioning in Δ 4-22 mice (Wang et al., 2016b). In the current study, both physical and behavioral developmental milestones were investigated. Physical delays were limited to a slower growth rate in Shank3^{$\Delta 4-22$}-deficient animals. In addition, a non-Mendelian genotype distribution showing a deficit for $Shank3^{\Delta4-22}$ homozygous mice was explained, at least partially, by an increased postnatal mortality observed in the Shank3^{$\Delta 4-22$} mice homozygous animals. Similar non-Mendelian genotype distributions have been previously observed in other mouse and rat Shank3 models (Drapeau et al., 2014; Harony-Nicolas et al., 2017). As Shank3 is known to be highly expressed

in placenta (Beri et al., 2007), this suggests that *Shank3* deficiency could lead to placental insufficiency responsible for *in utero* developmental delays and increased perinatal mortality. Despite a slower growth curves during the first weeks of life, the weight of surviving homozygous animals is no longer different from their littermates when examined at three months of age, indicating a post birth correction, and survival curves between 2 and 22 months do not show any significant genotype difference.

Extensive sensory-motor deficits were observed in newborn *Shank3*-deficient mice. Some of them, such as the response to an auditory startle or the air righting ability, were only delayed, while others, such as performances in the wire suspension tests and the grasping reflex, were still present at the time of weaning. On homecage observation and physical examination of adult mice we did not observe severe deficits that would preclude advanced testing.

Hypotonia, motor-coordination impairments and gait abnormalities are a hallmark of PMS that persists beyond

Table 10. Detailed results ar	nd statistical a	analyses related	to the hyper-reactivit	y and escape	behavio
-------------------------------	------------------	------------------	------------------------	--------------	---------

Reflexes and reactions to	Aeflexes and reactions to simple stimuli																
		Genoty	pe		Cohort			Genot cohor	ype × t		Pairwis compa	ie irisons					
	Test	Data	WT	Het	KO	F	р	Power	F	р	Power	F	р	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Touch escape	2wANOVA	Nonnormal	1.26 ± 0.1	1.15 ± 0.11	2 ± 0.15	12.962	0.000	0.996	0.046	0.831	0.055	0.862	0.428	0.190	0.648	0.000	0.000
Positional passivity (sum)	2wANOVA	Nonnormal	2.15 ± 0.25	$1.84\ \pm\ 0.23$	$2.84\ \pm\ 0.2$	11.737	0.000	0.992	106.722	0.000	1.000	1.993	0.147	0.393	0.034	0.011	0.000
Positional passivity (score)	2wANOVA	Nonnormal	1.78 ± 0.24	2.21 ± 0.21	$0.94\ \pm\ 0.2$	14.029	0.000	0.998	44.935	0.000	1.000	3.871	0.027	0.675	0.034	0.004	0.000
Catalepsy (4 trials)	2wANOVA	Nonnormal	2.98 ± 0.57	2.75 ± 0.54	0.56 ± 0.25	7.578	0.001	0.933	4.681	0.035	0.565	1.116	0.336	0.236	0.836	0.001	0.002
Trunk curl	2wANOVA	Nonnormal	1 ± 0	0.89 ± 0.07	1 ± 0	2.547	0.088	0.487	2.537	0.117	0.346	2.547	0.088	0.487	0.057	1.000	0.056
Negative geotaxis, latency to turn	2wANOVA	Nonnormal	6.73 ± 1.06	8.21 ± 1.9	3.22 ± 0.58	4.201	0.020	0.713	2.978	0.090	0.395	0.707	0.498	0.163	0.499	0.042	0.008

Beam walking

Escape behavior

						Genotype		Cohort			Genot cohor	ype ×		Pairwis compa	e risons		
	Test	Data structure	WT	Het	КО	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs KO	Het vs KO
Latency to cross (large, s)	2wANOVA	Nonnormal	8.34 ± 2.79	10.8 ± 4.52	3.96 ± 1.75	1.163	0.321	0.244	0.251	0.618	0.078	1.300	0.281	0.269	-	-	-
Latency to cross (medium, s) Latency to cross (small, s)	2wANOVA 2wANOVA	Nonnormal Nonnormal	$\begin{array}{r} 15.9\pm4.8\\ 54.71\pm5.89\end{array}$	$\begin{array}{l} 7.17 \pm 4.16 \\ 46.15 \pm 7.59 \end{array}$	$\begin{array}{l} 7.65 \pm 6.13 \\ 33.72 \pm 7.84 \end{array}$	0.811 2.204	0.450 0.121	0.181 0.430	3.349 0.235	<i>0.073</i> 0.630	0.435 0.076	0.121 0.437	0.887 0.648	0.068 0.117	_	_	_

					Genotype				Cohort			Genot cohor	ype × t		Pairwis	se irisons	
	Test	Data structure	WT	Het	КО	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs KO	Het vs KO
Buried food, number of attempts	2wANOVA	Nonnormal	0.63 ± 0.35	0.68 ± 0.32	0.42 ± 0.31	0.666	0.519	0.155	1.738	0.194	0.253	0.220	0.804	0.082			
Buried food, % of escapers	2wANOVA	Nonnormal	21.05 ± 9.6	26.31 ± 10.37	15.78 ± 8.59	0.760	0.473	0.172	3.639	0.062	0.464	0.159	0.853	0.073			
Four-object, number of attempts	2wANOVA	Nonnormal	0.41 ± 0.21	2.05 ± 0.73	3.88 ± 1.21	5.323	0.008	0.815	5.320	0.025	0.618	3.316	0.045	0.601	0.187	0.002	0.050
Four-object, % of escapers	2wANOVA	Nonnormal	23.52 ± 10.6	36.84 ± 11.36	50 ± 12.12	1.502	0.233	0.305	4.351	0.042	0.534	2.575	0.087	0.490			
Marble burying, number of attempts	2wANOVA	Nonnormal	4.32 ± 1.28	10.63 ± 1.98	16.05 ± 2.38	8.063	0.001	0.946	6.649	0.013	0.715	1.239	0.299	0.257	0.034	0.000	0.055
Marble burying, % of escapers	2wANOVA	Nonnormal	47.36 ± 11.76	94.73 ± 5.26	100 ± 0	12.009	0.000	0.993	7.713	0.008	0.777	4.474	0.017	0.740	0.000	0.000	0.598

WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. Group values are reported as mean \pm SEM. Red font indicates significant results (p < 0.05). Individual results and statistical analyses for cohorts 1 and 2 are available in Extended Data Table 10-1. 2wANOVA: 2-way ANOVA.

Figure 7. Hyper-reactivity and escape behavior in $Shank3^{\Delta 4-22}$ -deficient mice. **A**, Hyper-reactivity measured by animal response in touch escape, positional passivity, and catalepsy. $Shank3^{\Delta 4-22}$ homozygous mice have hyper-reactive responses as shown by a higher score in the touch escape indicating an escape response to lighter strokes, a lower score in positional passivity indicating that they struggle more when restrained, and a lower latency to get off a rdownod in the catalepsy test. **B**, Impulsivity in the negative geotaxis and beam walking tests. The latency to start turning in the negative geotaxis test and to start crossing in the beam walking test are significantly lower in $Shank3^{\Delta 4-22}$ homozygous mice compared to their wild-type and heterozygous littermates and often associated with higher failure rates (data not shown) thus demonstrating impulsive behavior. **C**, Escape behavior measured in different tests with increased inanimate object exposure. No escape attempts were observed for any genotype during the habituation phase of the buried food test (empty home cage with clean bedding). Object exposure induced a significant escape behavior in $Shank3^{\Delta 4-22}$ homozygous mice with a number of attempts increasing with the number of objects in the cage (same home cage, four objects in the repetitive novel object contact task, 20 objects in the marble burying test). Very little escape attempts were observed in wild-type mice, while an intermediate phenotype was observed in heterozygous mice. WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. *: WT vs KO; o: WT vs Het. *p < 0.05, **p < 0.1, ***p < 0.001.

Table 11. Detailed results and statistical analyses related to stereotypies, repetitive behavior, perseveration, and cognitive flexibility

Sterotypies in open field												_					
						Genotyp	e		Cohort			Genoty	/pe ×		Pairwis compa	e risons	
	Test	Data	WT	Het	KO	F	p	Power	F	p	Power	F	p	Power	WT vs	WT vs	Het vs
Grooming, time (s)	2wANOVA	structure Nonnormal	67.01 ± 7.01	62.6 ± 5.58	92.49 ± 10.45	4.929	value 0.011	0.784	22.806	value 0.000	0.997	2.530	value 0.090	0.484	Het 0.883	ко 0.023	ко 0.006
Grooming, number	2wANOVA	Normal	25.42 ± 1.51	22.26 ± 1.5	27.1 ± 1.93	2.000	0.146	0.394	1.402	0.242	0.213	1.745	0.185	0.349	-	-	-
Jumping, time (s)	2wANOVA	Nonnormal	0.07 ± 0.05	0 ± 0 0 ± 0	0.18 ± 0.1	1.666	0.199	0.335	0.033	0.857	0.054	1.149	0.325	0.242	_	_	_
Rotation, time (s)	2wANOVA 2wANOVA	Nonnormal	0.30 ± 0.23 0.39 ± 0.1	0 ± 0 1.49 ± 0.81	4.21 ± 2.76	1.560	0.201	0.269	2.069	0.096	0.292	1.038	0.361	0.362	_	_	_
Rotation, number	2wANOVA	Nonnormal	1.63 ± 0.39	2.21 ± 0.46	6.15 ± 1.82	5.883	0.005	0.856	3.301	0.075	0.430	3.022	0.057	0.561	0.920	0.010	0.028
Twitching/shaking, time (s)	2wANOVA	Nonnormal	0.28 ± 0.07	0.69 ± 0.33	0.63 ± 0.1	1.089	0.344	0.231	0.540	0.466	0.111	0.879	0.422	0.193	-	-	-
i witching/snaking, number	ZWANOVA	Nonnormai	1.73 ± 0.42	2.63 ± 0.88	3 ± 0.47	1.194	0.311	0.250	1.484	0.229	0.223	0.589	0.559	0.143	-	-	-
Repetitive novel object c	ontact task,	object prefe	erence, time														
Object exploration, time (s)	Test	Data				F	p value	Power	WT vs Hot	WT vs	Het vs						
- Object	rMeasures	Sph.viol				10.533	0.000	0.999	-	_	_						
- Object × gen.	rMeasures	Sph.viol				2.150	0.069	0.753	-	-	-						
- Genotype	rMeasures	Sph.viol				7.964	0.001	0.943	0.956	0.014	0.006						
- Object × gen. × coh.	rMeasures	Sph.viol				0.366	0.859	0.350	_	_	_						
- Gen. × coh.	rMeasures	Sph.viol				0.647	0.528	0.152	-	-	-						
						Genotyn	<u>م</u>		Cohort			Genot	/ne ×		Pairwis	0	
						Genotyp	0		CONOIL			cohort	pe v		compa	risons	
Object exploration	Test	Data	WT	Het	KO	F	p	Power	F	p	Power	F	p	Power	WT vs	WT vs	Het vs
Dice, time (s)	2wANOVA	Nonnormal	16.51 ± 2.49	14.82 ± 1.66	12.14 ± 1.79	1.748	0.185	0.349	4.640	value 0.036	0.560	0.833	0.441	0.185	Het	KU _	- -
Jack, time (s)	2wANOVA	Nonnormal	21.78 ± 3.18	27.99 ± 5.1	15.39 ± 2	4.078	0.023	0.697	14.158	0.000	0.958	0.500	0.610	0.127	0.311	0.443	0.025
Lego, time (s)	2wANOVA	Nonnormal	24.91 ± 3.59	28.25 ± 2.94	14.97 ± 1.87	8.622	0.001	0.959	20.965	0.000	0.994	0.774	0.467	0.174	0.509	0.031	0.001
Pin, time (s)	2wANOVA	Nonnormal	20.8 ± 4.3	13.72 ± 1.82	10.86 ± 1.7	3.199	0.050	0.585	4.532	0.038	0.550	0.057	0.944	0.058	0.244	0.067	0.755
Object exploration, %	Test	Data				F	р	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Object	rMeasures	Sph.ass				8.329	0.000	0.985	_	_	_						
- Genotype	rMeasures	Sph.ass				0.750	0.478	0.233	_	_	_						
- Cohort	rMeasures	Sph.ass				0.000	1.000	0.050	-	-	-						
- Object × gen. × coh.	rMeasures	Sph.ass				0.652	0.688	0.236	_	_	_						
	Tivieasures	opri.ass				0.000	1.000	0.050	_	_	_						
						Genotyp	е		Cohort			Genot	/pe \times		Pairwis	e	
Object exploration	Test	Data	WT	Het	ко	F	D	Power	F	p	Power	conort F	p	Power	compa WT vs	WT vs	Het vs
		structure				-	value		-	value			value		Het	KO	KO
Dice, time (%)	2wANOVA	Nonnormal	20.09 ± 1.78	19.13 ± 2.11	24.11 ± 3.72	1.259	0.293	0.261	4.635	0.036	0.560	1.179	0.316	0.246	-	-	-
Lego, time (%)	2wanova 2wANOVA	Normal	20.80 ± 3.3 29.85 ± 2.19	30.29 ± 3.61 32.98 ± 2.28	28.38 ± 3.26 27.98 ± 2.5	1.174	0.803	0.083	0.986	0.222	0.228	0.022	0.978	0.053	_	_	_
Pin, time (%)	2wANOVA	Nonnormal	23.18 ± 3.02	17.57 ± 2.65	19.51 ± 2.32	0.701	0.501	0.161	0.186	0.669	0.071	1.684	0.196	0.337	-	-	-
	T	Data				F	_	Deview	MT	M/T	11-4						
by preference	Test	structure				F	<i>p</i> value	Power	Het	KO	Het vs KO						
- Object	rMeasures	Sph.viol				110.887	0.000	1.000	_	_	-						
- Object × gen.	rMeasures	Sph.viol				5.483	0.002	0.996	-	-	-						
- Genotype - Cohort	rMeasures	Sph.viol				8.054 24.578	0.001	0.946	0.948	0.014							
- Object $ imes$ gen. $ imes$ coh.	rMeasures	Sph.viol				1.187	0.321	0.457	-	-	-						
- Gen. $ imes$ coh.	rMeasures	Sph.viol				0.643	0.530	0.152	-	-	-						
						Genotyp	е		Cohort			Genot	/pe ×		Pairwis	e	
						_		_	_		_	cohort		_	compa	risons	
Object exploration	lest	Data structure	WI	Het	KO	F	p value	Power	F	p value	Power	F	p value	Power	WIvs Het	WI vs KO	Het vs KO
Object #1, time (s)	2wANOVA	Nonnormal	31.83 ± 3.59	37.45 ± 4.09	20.53 ± 1.64	9.051	0.000	0.967	15.093	0.000	0.968	0.934	0.400	0.202	0.264	0.048	0.001
Object #2, time (s)	2wANOVA	Nonnormal	24.5 ± 3.27	22.95 ± 2.14	15.23 ± 1.78	6.709	0.003	0.899	22.529	0.000	0.996	0.456	0.637	0.120	0.941	0.016	0.033
Object #3, time (s) Object #4, time (s)	2wanova 2wANOVA	Nonnormal	15.68 ± 2.69 12 ± 2.41	15.29 ± 1.56 9.34 ± 0.96	10.48 ± 1.15 7.12 ± 0.99	4.224 3.763	0.020	0.714	12.155	0.000	0.992	0.630	0.280	0.269	0.998	0.094 0.074	0.102
Object exploration, ranked	Test	Data				F	p voluo	Power	WT vs	WT vs	Het vs						
- Object	rMeasures	Sph.viol				146.534	0.000	1.000	- -	- -	- -						
- Object × gen.	rMeasures	Sph.viol				0.832	0.490	0.321	-	-	-						
- Genotype	rMeasures	Sph.viol				0.812	0.450	0.181	_	-	-						
- Conort - Object × aen. × coh.	rMeasures	Sph.viol				1.054	0.381	0.140	_	_	_						
- Gen. × coh.	rMeasures	Sph.viol				0.812	0.450	0.181	-	-	-						
						Genetic	0		Cohort			Genet	/ne ~		Dainuia	•	
						аепотур	0		CONDIT			cohort	he v		compa	risons	
Object exploration	Test	Data	WT	Het	KO	F	p	Power	F	p	Power	F	p	Power	WT vs	WT vs	Het vs
Object #1. time (%)	2wANOVA	structure Nonnormal	39.5 ± 2.19	43 ± 1.71	40.58 ± 2.74	1.029	value 0.365	0.219	1.745	value 0.193	0.254	0.963	vaiue 0.389	0.207	Het	- -	κυ -
Object #2, time (%)	2wANOVA	Nonnormal	28.98 ± 1.16	27.21 ± 1.2	27.58 ± 1.39	0.805	0.453	0.180	1.231	0.273	0.193	2.400	0.102	0.461	-	-	-
Object #3, time (%)	2wANOVA	Normal	17.99 ± 1.18	18.73 ± 1.21	19.28 ± 1.12	0.093	0.911	0.063	0.228	0.635	0.076	0.347	0.709	0.102	-	-	-
Object #4, time (S)	ZWANOVA	Normal	13.51 ± 0.92	11.02 ± 0.99	12.54 ± 1.16 (Cont	inued)	0.344	0.230	0.423	0.518	0.098	0.747	0.479	0.169	-	-	-
					· ·												

Repetitive novel object conta	ct task, obje	ect preferen	ce, number														
Object interactions, number	Test	Data				F	р	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Object	rMeasures	Sph.viol				2.653	0.051	0.638	-	-	-						
- Object × gen.	rMeasures	Sph.viol				0.858	0.528	0.331	-	-	-						
- Genotype	rMeasures	Sph.viol				2.108	0.133	0.412	-	-	-						
- Cohort	rMeasures	Sph.viol				73.475	0.000	1.000	-	-	-						
- Object \times gen. \times coh.	rMeasures	Sph.viol				0.459	0.837	0.184	-	-	-						
- Gen. $ imes$ coh.	rMeasures	Sph.viol				1.110	0.338	0.234	-	-	-						
						Gonoty	20		Cohort			Gonot	/no ×		Poinvio	~	
						Genoty	pe		Conort			cohort	ype ×		compa	e risons	
Exploration numbers	Test	Data	WT	Het	ко	F	n	Power	F	n	Power	F	n	Power	WT vs	WT vs	Het vs
Exploration numbers	1000	structure		not	NO	'	value	1 0 1 01	'	value	1 0 1001	,	value	1 Ower	Het	KO	KO
Dice	2wANOVA	Nonnormal	20.17 ± 1.7	21.05 ± 1.39	20.76 ± 1.69	0.054	0.948	0.058	15.707	0.000	0.973	0.620	0.542	0.148	_	_	_
Jack	2wANOVA	Normal	20.17 ± 2.46	23.42 ± 2.38	20.94 ± 1.95	1.196	0.311	0.249	72.111	0.000	1.000	1.200	0.310	0.250	_	_	_
Lego	2wANOVA	Normal	23.94 ± 2.46	26.31 ± 1.71	20.82 ± 2	2.785	0.072	0.523	17.510	0.000	0.984	0.367	0.695	0.106	0.495	0.573	0.091
Pin	2wANOVA	Normal	20.17 ± 2.46	23.42 ± 2.38	20.94 ± 1.95	1.196	0.311	0.249	72.111	0.000	1.000	1.200	0.310	0.250	-	-	-
Object interaction %	Test	Data				F	р	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Object	rMeasures	Sph.viol				4.812	0.022	0.897	-	-	-						
- Object × gen.	rMeasures	Sph.viol				0.363	0.762	0.151	-	-	-						
- Genotype	rivieasures	Spn.viol				0.328	0.722	0.099	_	-	-						
	rMonouron	Sph.viol				0.560	0.009	0.756	_	_	_						
- Object × gen. × con.	rMonouron	Sph.viol				0.300	0.027	0.220	_	_	_						
	Tivieasures	3p11.0101				0.320	0.722	0.099	_	_	_						
						Genoty	pe		Cohort			Genot	vpe ×		Pairwis	e	
						,						cohort	/		compa	risons	
Object interaction number	Test	Data	WT	Het	КО	F	р	Power	F	р	Power	F	р	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Dice	2wANOVA	Normal	24.87 ± 1.44	23.13 ± 1.27	25.81 ± 1.7	1.119	0.335	0.235	10.075	0.003	0.875	0.297	0.745	0.094	-	-	-
Jack	2wANOVA	Normal	23.14 ± 1.35	24.09 ± 1.09	24.69 ± 0.91	0.164	0.849	0.074	11.956	0.001	0.923	0.546	0.583	0.135	-	-	-
Lego	2wANOVA	Nonnormal	28.84 ± 2	28.66 ± 1.57	24.78 ± 1.41	1.507	0.232	0.305	2.901	0.095	0.386	1.286	0.286	0.265	-	-	-
Pin	2wANOVA	Nonnormal	33.55 ± 7.69	32.7 ± 6.64	30.85 ± 4.83	0.235	0.792	0.085	10.476	0.002	0.887	0.467	0.630	0.122	-	-	-
	- .					-			14/7								
Object interaction number,	lest	Data				F	p	Power	WIVS	WIVS	Het vs						
Object ranked by preference		Structure				74.004	value	1 000	Het	ĸŪ	ĸŪ						
- Object	rivieasures	Spn.viol				14.224	0.000	0.225	-	-	-						
	rMeasures	Sph.viol				2 228	0.499	0.335	_	_	_						
- Cohort	rMeasures	Sph.viol				72 220	0.119	1 000	_	_	_						
- Object × gen × coh	rMeasures	Sph viol				0.653	0.649	0.254	_	_	_						
- Gen. × coh.	rMeasures	Sph.viol				1.142	0.328	0.239	_	_	_						
						Genoty	pe		Cohort			Genot	vpe ×		Pairwis	е	
						,						cohort	// ·		compa	risons	
Object interaction number	Test	Data	WT	Het	KO	F	р	Power	F	p	Power	F	р	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Object #1	2wANOVA	Normal	26.88 ± 2.3	29.15 ± 1.88	25.58 ± 1.75	1.682	0.197	0.337	30.522	0.000	1.000	0.173	0.842	0.075	-	-	-
Object #2	2wANOVA	Nonnormal	23.23 ± 2.05	25.15 ± 2.07	21.64 ± 1.85	2.474	0.095	0.473	59.810	0.000	1.000	0.752	0.477	0.170	0.421	0.829	0.167
Object #3	2wANOVA	Nonnormal	17.94 ± 2.12	21.94 ± 1.92	18.88 ± 1.7	2.307	0.110	0.446	66.844	0.000	1.000	1.460	0.242	0.297	-	-	-
Object #4	2wANOVA	Nonnormal	16.41 ± 1.91	17.94 ± 1.34	16.94 ± 1.62	0.441	0.646	0.118	54.987	0.000	1.000	2.377	0.104	0.457	_	_	-
Object interaction % object	Teet	Data				F		Devuer	W/T 1/0	M/T 1/0	Hatva						
ranked by preference	rest	Dala				r	p value	Power	WI VS Hot	KU N2	KO KO						
- Object	rMeasures	Sph viol				86 885	0.000	1.000	_	_	_						
- Object × gen.	rMeasures	Sph.viol				0.745	0.578	0.288	_	_	_						
- Genotype	rMeasures	Sph.viol				1.010	0.411	0.207	_	_	_						
- Cohort	rMeasures	Sph.viol				0.960	0.390	0.163	_	_	_						
- Object $ imes$ gen. $ imes$ coh.	rMeasures	Sph.viol				0.979	0.327	0.390	_	_	_						
- Gen. $ imes$ coh.	rMeasures	Sph.viol				0.960	0.390	0.207	-	-	-						
						Genoty	ре		Cohort			Genot	ype \times		Pairwis	e	
Object interaction 0/	Teet	Dete	WT	Het	KO	~		Devue	-		Davis	cohort		Der	compa	risons	
Object interaction %	lest	Data	VV I	Het	KO	F	p	Power	F	p	Power	F	p	Power	VVI VS	WI VS	Het vs
Object #1	214/4101/4	Nonnormal	32 55 + 1 /1	31 /8 + 1 00	31 10 + 0.00	0.066	value n ose	0.050	11 200	value	0.010	0.066	vaiue 0.000	0 200		-	-
Object #2		Normal	28 09 + 0.86	26.68 ± 0.74	25.78 + 0.99	1 433	0.900	0.009	0 000	0.002	0.051	0.900	0.000	0.200	_	_	_
Object #3	2wANOVA	Nonnormal	20.49 + 0.83	22.71 + 0.81	22.52 + 0.79	1.538	0.225	0.311	9.140	0.004	0.842	2,049	0.140	0.402	_	_	_
Object #4	2wANOVA	Normal	18.85 ± 0.7	19.11 ± 0.83	20.08 ± 0.64	0.454	0.638	0.120	2.559	0.116	0.348	0.975	0.385	0.210	_	_	_
Repetitive novel object contact	ct task, pat	tern of objec	t investigation	1													
						Genoty	ре		Cohort			Genot	ype $ imes$		Pairwis	е	
						_		_	_		_	cohort		_	compa	risons	
Three-object sequences	Test	Data	WT	Het	КО	F	р.	Power	F	р.	Power	F	р.	Power	WT vs	WT vs	Het vs
Total sussels as af 0. 11. 1. 1.	0	structure	F0 11 + 0.6	50.57 . 4.65	50.11 . 0.65	0.077	value	0.004	10.050	value	0.005	0.570	value	0.1.10	Het	KO	KO
Number of different 2 shist		Normal	30.11 ± 3.2	33.37 ± 4.82	33.11 ± 3.29	0.077	0.926	0.061	12.053	0.001	0.925	0.5/3	0.567	0.140	_	_	_
sequences	ZWANUVA	NOTHIAI	20.3 ± 0.57	20.00 ± 1.21	20.47 ± 0.93	0.405	0.009	0.112	1.502	0.009	0.700	0.630	0.442	0.184	-	_	-
3394011000					(Continu	ied)											

Pairwise comparisons

Table 11. Continued

Number of repetition of top preferred sequence	2wANOVA	Nonnormal	4.88 ± 0.4	4.78 ± 0.37	4.64 ± 0.29	0.012	0.988 0.052	10.796	0.002	0.896	0.052 0.9	0.057	-	-	-
Number of repetition of 2nd preferred sequence	2wANOVA	Nonnormal	4.27 ± 0.27	4.15 ± 0.33	4.05 ± 0.26	0.017	0.983 0.052	8.748	0.005	0.826	0.312 0.73	3 0.097	-	-	-
Number of repetition of 3rd preferred sequence	2wANOVA	Nonnormal	3.83 ± 0.23	3.68 ± 0.3	3.7 ± 0.25	0.042	0.959 0.056	6.542	0.014	0.708	0.303 0.74	0 0.095	-	-	-
Number of repetition of top 3 preferred sequences	2wANOVA	Normal	13 ± 0.87	12.63 ± 0.98	12.41 ± 0.78	0.008	0.992 0.051	9.545	0.003	0.857	0.146 0.80	65 0.071	-	-	-
% top preferred sequence choice	2wANOVA	Nonnormal	8.57 ± 0.32	9.41 ± 0.61	8.75 ± 0.19	1.324	0.276 0.272	0.000	0.994	0.050	1.436 0.24	8 0.293	-	-	-
% top 2 preferred sequence choice	2wANOVA	Nonnormal	16.22 ± 0.52	17.48 ± 1.01	16.43 ± 0.32	1.179	0.316 0.246	0.143	0.707	0.066	1.543 0.22	4 0.312	-	-	-
% top 3 preferred sequence choice	2wANOVA	Nonnormal	23.14 ± 0.71	24.69 ± 1.43	23.44 ± 0.51	0.837	0.439 0.185	0.564	0.456	0.114	1.040 0.36	0.221	-	-	-

						Genotyp	е		Cohort			Genot	ype ×		Pairwis compa	e risons	
Four-object sequences	Test	Data structure	WT	Het	КО	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs KO	Het vs KO
Total number of 4-object choices	2wANOVA	Normal	55.55 ± 3.26	53.26 ± 4.79	52.58 ± 3.24	0.067	0.935	0.060	10.400	0.002	0.885	0.528	0.593	0.132	-	-	-
Number of different 4-object sequences	2wANOVA	Normal	40.77 ± 1.59	39.63 ± 2.78	39 ± 2.03	0.097	0.908	0.064	9.857	0.003	0.868	0.895	0.415	0.195	-	-	-
Number of repetition of top preferred sequence	2wANOVA	Nonnormal	3.05 ± 0.2	3.1 ± 0.2	3.41 ± 0.17	1.297	0.283	0.267	4.144	0.047	0.514	0.050	0.951	0.057	-	-	-
Number of repetition of 2nd preferred sequence	2wANOVA	Nonnormal	2.83 ± 0.2	2.84 ± 0.2	2.76 ± 0.18	0.034	0.967	0.055	4.324	0.043	0.531	1.214	0.306	0.253	-	-	-
Number of repetition of 3rd preferred sequence	2wANOVA	Nonnormal	2.44 ± 0.16	2.47 ± 0.19	2.23 ± 0.13	0.468	0.629	0.122	4.499	0.039	0.547	1.063	0.353	0.225	-	-	-
Number of repetition of top 3 preferred sequences	2wANOVA	Nonnormal	8.33 ± 0.53	8.42 ± 0.55	8.41 ± 0.42	0.087	0.916	0.063	5.267	0.026	0.614	0.634	0.535	0.150	-	-	-
% top preferred sequence choice	2wANOVA	Nonnormal	5.58 ± 0.3	6.31 ± 0.47	6.66 ± 0.27	2.187	0.123	0.425	2.759	0.103	0.370	1.056	0.356	0.224	-	-	-
% top 2 preferred sequence choice	2wANOVA	Nonnormal	10.7 ± 0.44	11.99 ± 0.77	12.09 ± 0.51	1.734	0.187	0.346	2.734	0.105	0.367	1.166	0.320	0.244	-	-	-
% top 3 preferred sequence choice	2wANOVA	Nonnormal	15.14 ± 0.54	16.93 ± 1.02	16.43 ± 0.67	1.557	0.221	0.314	3.181	0.081	0.416	1.237	0.299	0.257	-	-	-

Barnes maze initial training - distance

Darnes maze muai uaming	- uistance								
Distance	Test	Data	F	р	Power	WT vs	WT vs	Het vs	
		structure		value		Het	KO	KO	
- Day	rMeasures	Sph.ass	13.695	0.000	1.000	-	-	_	
- Day $ imes$ gen.	rMeasures	Sph.ass	2.062	0.062	0.684	-	-	_	
- Genotype	rMeasures	Sph.ass	2.663	0.080	0.503	0.659	0.145	0.515	
- Cohort	rMeasures	Sph.ass	11.841	0.001	0.920	-	-	_	
- Day $ imes$ gen. $ imes$ coh.	rMeasures	Sph.ass	1.173	0.324	0.416	-	-	_	
- Gen. $ imes$ coh.	rMeasures	Sph.ass	1.114	0.337	0.234	-	-	-	
			Genotyp	e		Cohort			$\begin{array}{l} \text{Genotype} \times \\ \text{cohort} \end{array}$

Individual days	lest	Data	WI	Het	KO	F	р	Power	F	р	Power	F	р	Power	WIVS	WIVS	Het vs
		structure					value			value			value		Het	KO	KO
Day 1	2wANOVA	Normal	$501.24\ \pm\ 48.28$	485.42 ± 47.71	484.49 ± 53.07	0.003	0.997	0.050	4.283	0.044	0.526	0.084	0.919	0.062	-	-	_
Day 2	2wANOVA	Normal	427.6 ± 43.5	468.59 ± 40.26	504.18 ± 47.17	1.234	0.301	0.256	9.205	0.004	0.844	1.918	0.158	0.378	-	-	_
Day 3	2wANOVA	Normal	292.36 ± 29.11	340.26 ± 31.24	485.74 ± 41.16	11.293	0.000	0.989	6.902	0.012	0.730	3.082	0.055	0.567	0.496	0.000	0.005
Day 4	2wANOVA	Normal	311.01 ± 34.75	370.86 ± 29.61	367.31 ± 42.11	1.479	0.239	0.300	5.449	0.024	0.628	0.666	0.519	0.155	-	-	-

Barnes maze reversal - distance

Distance	Test	Data	F	р	Power	WT vs	WT vs	Het vs
		structure		value		Het	KO	КО
- Day effect	rMeasures	Sph.ass	26.455	0.000	1.000	_	-	-
- Day $ imes$ gen.	rMeasures	Sph.ass	2.612	0.023	0.824	-	-	-
- Genotype	rMeasures	Sph.ass	1.811	0.175	0.359	-	-	-
- Cohort	rMeasures	Sph.ass	1.924	0.172	0.274	-	-	-
- Day $ imes$ gen. $ imes$ coh.	rMeasures	Sph.ass	3.192	0.007	0.902	-	-	-
- Genotype $ imes$ cohort effect	rMeasures	Sph.ass	0.290	0.750	0.093	-	-	-

						Genotype		Cohort			Genot	ype $ imes$		Pairwise			
												cohort			compa	risons	
Individual days	Test	Data	WT	Het	KO	F	р	Power	F	р	Power	F	р	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Day 1	2wANOVA	Nonnormal	420.93 ± 37.75	437.03 ± 37.86	591.59 ± 38.48	5.592	0.007	0.834	0.793	0.378	0.141	1.475	0.239	0.299	0.948	0.009	0.018
Day 2	2wANOVA	Normal	336.81 ± 35.36	413.64 ± 32.4	390.91 ± 45	1.285	0.286	0.265	0.374	0.544	0.092	2.525	0.091	0.481	-	_	_
Day 3	2wANOVA	Normal	357.93 ± 35.96	421.04 ± 44.36	395.85 ± 48.06	0.666	0.519	0.155	3.371	0.073	0.436	0.116	0.890	0.067	-	_	_
Day 4	2wANOVA	Normal	$288.54\ \pm\ 39.85$	288.65 ± 37.41	337.24 ± 38.59	0.965	0.389	0.207	8.849	0.005	0.829	1.373	0.264	0.281	_	_	-

Barnes maze initial training probe test

barnes maze initial training	j probe test											
				Genotyp	е		Quadra	ant pairv	ise con	parisor	ıs	
All animals	Test	Data		F	р	Power	T vs	T vs	T vs	L vs	L vs	R vs
		structure			value		L	R	0	R	0	0
- Quadrant	rMeasures	Sph.viol		296.653	0.000	1.000	0.000	0.000	0.000	0.555	0.201	0.628
- Cohort	rMeasures	Sph.viol		10.200	0.002	1.000						
- Quadrant $ imes$ coh.	rMeasures	Sph.viol		11.435	0.000	0.983						
			(Continued)									

Table 11. Continued

WT	Test	Data structure				F	p value	Power	T vs	T vs R	T vs O	L vs B	L vs O	R vs O			
- Quadrant	rMeasures	Sph.viol				58.318	0.000	1.000	0.000	0.000	0.000	0.057	0.168	0.335			
- Cohort	rMeasures	Sph.viol				9.373	0.007	0.820									
- Quadrant × coh.	rMeasures	Sph.viol				4.241	0.010	0.831									
Het	Test	Data				F	p	Power	T vs	T vs	T vs	L vs	L vs	R vs			
		structure					value		L	К	0	R	0	0			
- Quadrant	rMeasures	Sph.viol				107.980	0.000	1.000	0.000	0.000	0.000	0.205	0.895	0.278			
- Cohort	rMeasures	Sph.viol				65.390	0.000	1.000									
- Quadrant \times coh.	rMeasures	Sph.viol				5.366	0.003	0.915									
1/0	. .					-			-	-	-			-			
KU	Test	Data				F	p	Power	IVS	I VS	T VS	LVS	LVS	R VS			
Quadrant	Maggiurga	Structure				270 E 46		1 000	L 000	0.000	0 000	п 0.020	0.079	0.241			
- Quaurant	rMoacures	Sph.viol				900 226	0.000	1.000	0.000	0.000	0.000	0.032	0.270	0.341			
- Conort	rMoacures	Sph.viol				1 692	0.000	0.406									
	Tivieasures	Spi1.vioi				1.005	0.100	0.400									
						Genotyp	<u>م</u>		Cohort			Genot	vne ×		Pairwis	0	
						Genetyp	0		Conort			cohort	ype A		compa	risons	
Probe test quadrants	Test	Data	WT	Het	ко	F	p	Power	F	Ø	Power	F	p	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Target	2wANOVA	Nonnormal	107.29 ± 7.96	125.68 ± 7.96	142.87 ± 4.53	5.342	0.008	0.816	12.144	0.001	0.927	0.935	0.400	0.202	0.112	0.001	0.173
Left	2wANOVA	Nonnormal	28.57 ± 4.6	14.87 ± 2.32	11.37 ± 2.49	7.081	0.002	0.914	4.207	0.046	0.519	0.660	0.522	0.154	0.010	0.002	0.740
Right	2wANOVA	Nonnormal	16.92 ± 3.86	20.57 ± 4.93	12.28 ± 2.15	1.097	0.342	0.231	7.056	0.011	0.739	1.048	0.359	0.222	0.763	0.678	0.290
Opposite	2wANOVA	Nonnormal	22.28 ± 4.49	14.37 ± 3.47	9.2 ± 2.09	2.438	0.099	0.466	10.443	0.002	0.886	1.149	0.326	0.240	0.199	0.024	0.526
Barnes maze revers	sal probe te	st															
						Genotype	е		Quadra	nt pairw	ise com	oarisons	5				
All animals	Test	Data				F	р	Power	T vs	T vs	T vs	L vs	L vs	R vs			
		structure					value		L	R	0	R	0	0			
- Quadrant	rMeasures	Sph.viol				50.865	0.000	1.000	0.000	0.000	0.000	0.242	0.000	0.000			
- Cohort	rMeasures	Sph.viol				24.530	0.000	0.998									
- Quadrant \times coh.	rMeasures	Sph.viol				4.443	0.005	0.870									
WT	Teet	Data				-		Dowor	T	Two	Tue	1.10	1.10	D va			
VVI	Test	Dala				Г	μ value	Power	IVS	I VS R	∩ rvs	L VS R					
- Quadrant	rMeasures	Sph viol				32 279	0 000	1 000	0.000	0.000	0,000	0.005	0 024	0.003			
- Cohort	rMeasures	Sph viol				159 377	0.000	1 000	0.000	0.000	0.000	0.000	0.024	0.000			
- Quadrant × coh	rMeasures	Sph viol				0.007	0.956	0.051									
quadrant in com	modeliee	opinitio				0.007	0.000	0.001									
Het	Test	Data				F	p	Power	T vs	T vs	T vs	L vs	L vs	R vs			
		structure					value		L	R	0	R	0	0			
- Quadrant	rMeasures	Sph.viol				28.198	0.000	1.000	0.000	0.000	0.001	0.235	0.001	0.086			
- Cohort	rMeasures	Sph.viol				6.412	0.021	0.666									
- Quadrant $ imes$ coh.	rMeasures	Sph.viol				10.315	0.000	0.998									
KO	Test	Data				F	р	Power	T vs	T vs	T vs	L vs	L vs	R vs			
		structure					value		L	R	0	R	0	0			
- Quadrant	rMeasures	Sph.viol				12.026	0.000	0.999	0.000	0.010	0.646	0.070	0.000	0.000			
- Cohort	rMeasures	Sph.viol				397.250	0.000	1.000									
- Quadrant \times con.	rivieasures	Spn.vioi				2.273	0.095	0.531									
						Constur			Cohort			Conot			Deinuie		
						Genotyp	8		CONOIL			cohort	ype ~		compa	e risons	
Probe test quadrants	Test	Data	WT	Het	ко	F	Ø	Power	F	p	Power	F	p	Power	WT vs	WT vs	Het vs
		structure					value			value			value		Het	KO	KO
Target	2wANOVA	Nonnormal	115.33 ± 11.27	105.35 ± 12.55	67.82 ± 11.65	5.430	0.008	0.822	8.183	0.006	0.800	3.469	0.040	0.621	0.773	0.010	0.046
Left	2wANOVA	Nonnormal	18.44 ± 3.76	8.03 ± 2.15	9.68 ± 2.79	3.343	0.044	0.604	2.079	0.156	0.292	0.172	0.842	0.075	0.039	0.123	0.923
Right	2wANOVA	Nonnormal	9.8 ± 2.46	18.48 ± 7.8	23.17 ± 5.32	1.367	0.265	0.280	1.873	0.178	0.268	2.980	0.061	0.551	0.489	0.229	0.826
Opposite	2wANOVA	Nonnormal	32.67 ± 6.87	42.82 ± 10	75.15 ± 10.65	6.632	0.003	0.894	7.210	0.010	0.748	2.097	0.134	0.409	0.662	0.004	0.030

WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. Group values are reported as mean \pm SEM. Bold font indicates significant results (p < 0.05). Individual results and statistical analyses for cohorts 1 and 2 are available in Extended Data Table 11-1. 2wANOVA: 2-way ANOVA, rMeasures: repeated measures, Norm: normal, No-normal, Sph.ass: sphericity assumed, Sph.viol: sphericity violated, gen: genotype, coh: cohort. 2wANOVA: 2-way ANOVA, rMeasures: repeated measures, Sph.ass: sphericity assumed, Sph.viol: sphericity violated, gen: genotype, coh: cohort.

childhood (Phelan and McDermid, 2012; Soorya et al., 2013). In previous studies, motor performances have been frequently found to be impaired in adult *Shank3*-deficient mice (Fig. 11). Hence, decreased locomotion in the open field has been reported in many existing models including models with Δ 4-9, Δ 13-16, Δ 21 deletions, or point mutations (Yang et al., 2012; Kouser et al., 2013; Speed et al., 2015; Bidinosti et al., 2016; Mei et al., 2016; Zhou et al., 2016; Copping et al., 2017) even if not always replicated in other models with similar or different deletions (Δ 4-9, Δ 9, Δ 13, Δ 13-16, Δ 21; Peça et al., 2011; Drapeau et al., 2014; Duffney et al., 2015; Lee et al., 2015; Jaramillo et al., 2016, 2017). Similarly, motor learning in

accelerating rotarod was found to be impaired in Δ 4-9, Δ 11, Δ 13, Δ 13-16, and Δ 21 models (Bozdagi et al., 2010; Wang et al., 2011; Yang et al., 2012; Kouser et al., 2013; Zhu et al., 2014; Speed et al., 2015; Mei et al., 2016; Jaramillo et al., 2017; Vicidomini et al., 2017) although not replicated in other studies (Δ 4-9, Δ 13-16, or Δ 2; Peça et al., 2011; Drapeau et al., 2014; Duffney et al., 2015; Bidinosti et al., 2016; Jaramillo et al., 2016; Li et al., 2017). In agreement with Wang et al. (2011), both spontaneous locomotion and rotarod learning were strongly impaired in our *Shank3*^{Δ 4-22} mouse model. Interestingly, while most models only reported deficits in homozygous animals, heterozygous mice were also affected, albeit less se-

Figure 8. Repetitive behavior, stereotypies, and cognitive flexibility in Shank3²⁴⁻²²-deficient mice. A. Repetitive behaviors in the open field test. Shank3¹⁴⁻²² homozygous mice engaged in significantly more self-grooming and rotations relative to the other genotypes. A trend toward an increase amount of head stereotypies was also observed. B, Object preference and pattern of exploration in the repetitive novel object contact task. For each mouse, the time spent interacting with each object was measured and the objects were then ranked from the most (1) to less (4) preferred (left panel). No genotype differences were observed for the proportions of visits to each object. The pattern of object exploration was analyzed by recording specific sequential pattern of visits to three or four specific toys to identify the total number of three-object or four-object sequence investigations, the number of unique sequences, and the percentage of choices of the top, top two, or top three preferred sequences. All groups had identical percentage of their preferred three-object or four-object sequences choices over the total number of sequence choices. C, Cognitive flexibility measured by reversal learning in the Barnes maze. During initial learning (d1 to d4, each point represents the mean of traveled distance for four independent trials), improvement shown by reduction of the travel distance was faster in Shank3^{Δ4-22} wild-type and heterozygous mice than in homozygous animals; however, by day 4, the three groups were not different anymore and all of them had a strong preference for the escape hole quadrant during the initial probe test. During the reversal training (r1 to r4, each point represents the mean of travel distance for four independent trials), Shank3^{Δ4-22} homozygous mice initially traveled for longer distances but were still able to learn the new position and performed as well as their littermates on reversal days 2, 3, and 4. However, the reversal probe test at the end of the reversal training showed that while wild-type and heterozygous animals had a significant preference for the new target quadrant, the homozygous mice had a similar preference for the quadrants containing the initial and the reversal escape holes. WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. *: WT versus KO; #: Het versus KO. *p < 0.05, **p < 0.1, ***p < 0.001.

Table 12. Detailed results and statistical analyses related to learning and memory

Y-maze.	spontaneous	alternation	behavior
i marc,	opontaneous	unconnucion	benavior

	lonnution b						Genoty	pe		Cohort			Genoty	pe ×		Pairwis	e	
% of choices		Data	WT	Het		ко	F	p	Power	F	p	Power	cohort F	p .	Power	compar WT vs	risons WT vs	Het vs
Arm 1	2ωΔΝΟ\/Δ	Structure	32 34 + 0.8	7 3/ 2/ +	- 0 93	32 77 + 1 17	0.844	value	0 187	0.035	value	0.054	0 /12	value	0 113	Het	KO	KO
Arm 2	2wANOVA	Normal	35.17 ± 1.1	7 32.74 ±	- 0.32	35.18 ± 1.36	1.548	0.223	0.314	9.976	0.002	0.873	0.119	0.888	0.067	_	_	_
Arm 3	2wANOVA	Normal	32.19 ± 1.4	6 32.98 ±	1.09	32.04 ± 1.02	0.285	0.753	0.093	10.366	0.002	0.885	0.520	0.598	0.131	-	-	-
Chance level comparison	Test	Data					All t	All p	Power	WT t	WT p	Power	Het t	Het p	Power	KO t	KO p	Power
Arm 1	1S-t test	Normal					Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
Arm 2	1S-t test	Normal					1.465	0.148	NA	1.578	0.132	NA	-0.534	0.600	NA	1.354	0.193	NA
Arm 3	1S-t test	Normal					-1.338	0.186	NA	-0.772	0.450	NA	-0.312	0.759	NA	-1.262	0.223	NA
							Genoty	ре		Cohort			Genoty	pe ×		Pairwis	e	
	Test	Data	WT	Het		ко	F	n	Power	F	n	Power	F	n	Power	WT vs	WT vs	Het vs
		structure						value			value			value		Het	КО	KO
Total number of choices	2wANOVA	Normal	43.42 ± 3.2	5 40.26 ±	2.54	38.47 ± 2.75	0.612	0.546	0.147	0.164	0.687	0.068	2.244	0.116	0.437	-	-	-
Number of correct choice	2wANOVA	Normal	57.46 ± 1.5	9 60.68 ±	1.93	57.52 ± 1.61	1.227	0.302	0.256	2.987	0.090	0.396	0.927	0.402	0.202	-	-	-
Number of type 2 errors	2wANOVA 2wANOVA	Nonnormal	4 04 + 1 11	5 47 +	1 02	451 + 107	2.290	0.111	0.445	4 402	0.041	0.084	3 449	0.039	0.604	_	_	-
	211/11/01/1			0 =			0.001	0.07.1	0			0.000	0.110	0.000	0.021			
Fear conditioning	Test	Data					F	n	Power	WT vs	WT vs	Het vs						
rianing	1001	structure					,	value	1 0 1 01	Het	ко	KO						
- Time	rMeasures	Sph.viol					43.998	0.000	1.000	-	_	-						
- Time $ imes$ genotype	rMeasures	Sph.viol					3.194	0.002	0.970	-	-	-						
- Genotype	rMeasures	Sph.viol					14.505	0.000	0.998	0.809	0.000	0.000						
- Time × gen × coh	rMeasures	Sph.viol					0.602	0.001	0.932	_	_	_						
- Gen. × coh.	rMeasures	Sph.viol					0.494	0.613	0.127	_	_	_						
							Genoty	pe		Cohort			Genoty	pe ×		Pairwis	e	
													cohort			compar	risons	
Training, individual	Test	Data	WT	Het		KO	F	p	Power	F	p valuo	Power	F	p voluo	Power	WT vs	WT vs	Het vs
Habituation	2wANOVA	Nonnormal	16.85 ± 2.9	3 10.45 ±	2.37	21.6 ± 5.3	2.081	0.135	0.408	0.015	0.903	0.052	0.061	0.941	0.059	— —	- -	-
Pre-tone 0-120	2wANOVA	Nonnormal	10.45 ± 1.7	2 8.15 ±	1.43	21.01 ± 3.97	6.546	0.003	0.892	0.330	0.568	0.087	0.041	0.960	0.056	0.820	0.021	0.004
Tone/shock 120-140	2wANOVA	Nonnormal	10.58 ± 3.2	$6.85 \pm$	2.82	19.94 ± 6.06	2.361	0.105	0.456	0.020	0.887	0.052	0.199	0.820	0.079	_	_	-
Post-tone 140-260	2wANOVA	Nonnormal	19.74 ± 3.7	3 18.83 ±	3.86	47.68 ± 6.71	13.149	0.000	0.996	5.506	0.023	0.634	2.222	0.119	0.433	0.990	0.000	0.000
Tone/shock 260-280	2wANOVA	Nonnormal	15.07 ± 4.7	24.58 ±	: 5.22 - c c	47.23 ± 7.47	7.613	0.001	0.934	0.026	0.871	0.053	0.762	0.472	0.173	0.507	0.001	0.027
Tone/shock 400-420	2wANOVA 2wANOVA	Nonnormal	31.00 ± 5.1 31.03 ± 5.8	+ 37.00 ± 6 40.59 ±	. 0.0	65.23 ± 6.72 65.21 ± 5.94	9.728	0.000	0.995	12.565	0.000	0.985	0.061	0.941	0.059	0.503	0.000	0.002
Post-tone 420-540	2wANOVA	Nonnormal	36.71 ± 6.5	3 47.61 ±	7.36	61.74 ± 6.78	7.880	0.001	0.942	45.207	0.000	1.000	0.135	0.874	0.070	0.303	0.003	0.139
Context	Test	Data					F	p	Power	WT vs	WT vs	Het vs						
_		structure						value		Het	KO	KO						
- Time	rMeasures	Sph.ass					4.558	0.004	0.880	_	_	_						
 Time × genotype Genotype 	rMeasures	Sph.ass					1 788	0.670	0.262	_	_	_						
- Cohort	rMeasures	Sph.ass					0.542	0.465	0.112	_	_	_						
- Time $ imes$ gen. $ imes$ coh.	rMeasures	Sph.ass					0.918	0.481	0.355	-	_	-						
- Gen. $ imes$ coh.	rMeasures	Sph.ass					1.026	0.366	0.219	-	-	-						
							Genoty	pe		Cohort			Genoty	pe ×		Pairwis	e	
Context, individual time	Test	Data	WT	Het		КО	F	p	Power	F	р	Power	conort F	р	Power	WT vs	WT vs	Het vs
bins		structure						value			value	-		value		Het	КО	ко
0-60	2wANOVA	Nonnormal	$63.09~\pm~5.1$	3 57.19 ±	5.63	44.3 ± 6.21	2.643	0.081	0.502	0.582	0.449	0.116	0.558	0.576	0.137	0.750	0.063	0.261
60-120	2wANOVA	Nonnormal	66.34 ± 6.8	3 66 ± 6.	.94	59.6 ± 7.41	0.230	0.795	0.084	0.676	0.415	0.127	2.233	0.118	0.435	-	-	-
180-240		Nonnormal	56.12 ± 6.5	+ 02.11 ± 6 54 45 +	- 0.47 - 7.58	43.33 + 6 29	2.203 0.944	0.114	0.440	0.092	0.334	0.094	0.958	0.890	0.207	_	_	-
mean	2wANOVA	Nonnormal	62.05 ± 5.5	7 59.94 ±	5.31	47.51 ± 5.84	1.788	0.178	0.357	0.542	0.465	0.112	1.026	0.366	0.219	_	-	-
Cued	Test	Data					F	p	Power	WT vs	WT vs	Het vs						
_		structure						value		Het	KO	KO						
- Time	rMeasures	Sph.viol					25.753	0.000	1.000	_	_	_						
- Time A genotype	rMeasures	Sph.viol					5.657	0.002	0.800	0.645	0.007	0.065						
- Cohort	rMeasures	Sph.viol					4.255	0.044	0.525	-	_	_						
- Time \times gen. \times coh.	rMeasures	Sph.viol					4.116	0.000	0.995	-	-	-						
- Gen. $ imes$ coh.	rMeasures	Sph.viol					1.616	0.209	0.326	-	-	-						
						(C	ontinued	1)										

Table 12. Continued

						Genoty	Genotype Cohort		bhort Genotype × cohort								
Cued, individual	Test	Data	WT	Het	KO	F	р	Power	F	р	Power	F	р	Power	WT vs	WT vs	Het vs
time bins		structure					value			value			value		Het	KO	KO
Pre-tone 0-60	2wANOVA	Nonnormal	1.64 ± 1.14	0.4 ± 0.28	4.9 ± 2.59	1.897	0.160	0.376	5.996	0.018	0.671	1.527	0.227	0.310	0.841	0.311	0.114
Pre-tone 60-120	2wANOVA	Nonnormal	0.84 ± 0.38	1.96 ± 0.89	2.37 ± 0.88	1.056	0.355	0.225	18.576	0.000	0.988	0.747	0.479	0.170	0.461	0.238	0.896
Tone 120-140	2wANOVA	Nonnormal	10.94 ± 4.37	12.14 ± 4.53	25.23 ± 6.38	3.005	0.058	0.558	7.144	0.010	0.746	1.298	0.282	0.268	0.984	0.106	0.150
Post-tone 140-200	2wANOVA	Nonnormal	8.52 ± 2.11	7.41 ± 1.76	13.09 ± 3.74	1.367	0.264	0.281	1.610	0.210	0.238	0.118	0.889	0.067	-	-	-
Post-tone 200-260	2wANOVA	Nonnormal	2.29 ± 1.03	6.59 ± 1.53	10.03 ± 4.8	1.551	0.222	0.314	1.595	0.212	0.236	1.203	0.309	0.251	-	-	-
Tone 260-280	2wANOVA	Nonnormal	13.87 ± 5.15	19.36 ± 5.92	39.08 ± 7.75	7.219	0.002	0.921	15.352	0.000	0.970	7.888	0.001	0.942	0.733	0.003	0.025
Post-tone 280-340	2wANOVA	Nonnormal	8.92 ± 2.71	19.61 ± 5.1	26.7 ± 6.01	3.891	0.027	0.677	5.448	0.024	0.629	1.180	0.316	0.247	0.240	0.024	0.527
Post-tone 340-400	2wANOVA	Nonnormal	5.09 ± 1.34	9.96 ± 2.78	20.99 ± 4.81	6.189	0.004	0.874	1.570	0.216	0.233	1.068	0.351	0.227	0.549	0.003	0.054

WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. Group values are reported as mean \pm SEM. Bold font indicates significant results (p < 0.05). Individual results and statistical analyses for cohorts 1 and 2 are available in Extended Data Table 12-1. 2wANOVA: 2-way ANOVA, rMeasures: repeated measures, one sample t test: 1S-t test, Norm: normal, No-norm: non-normal, Sph.ass: sphericity assumed, Sph.viol: sphericity violated, gen: genotype, coh: cohort. 2wANOVA: 2-way ANOVA, rMeasures: repeated measures, one sample t test: 1S-t test, Sph.ass: sphericity assumed, Sph.viol: sphericity is sphericity is sphericity is sphericity assumed, Sph.viol: sphericity is sphericity is sphericity assumed, Sph.viol: sphericity is sphericity assumed, Sph.viol: sphericity is sphericity is

Figure 9. Learning and memory in *Shank3*^{$\Delta 4-22$}-deficient mice. *A*, Working memory in Y-maze measured by spontaneous alternation behavior. All genotypes showed comparable number of arm choices, percentage of correct choices (three-way alternation), type 1 error (three consecutive choices where the first and third choices are identical), or type 2 error (three consecutive choices where the second and third choices are identical). *B*, Contextual and cued fear conditioning in *Shank3* mice. A higher percentage of freezing was observed in *Shank3*^{$\Delta 4-22$} homozygous mice compared to wild-type and heterozygous animals on day 1. While the difference was already present before the sound-shocks associations, it was strongly increased posttraining. No genotype differences were detected in freezing scores in the posttraining session on day 1. Opposite results were observed for contextual conditioning (day 2) and cued conditioning (day 3): *Shank3*^{$\Delta 4-22$} homozygous mice showed an impairment of contextual learning compared to their wild-type and heterozygous littermates but an enhancement of freezing postcues during the cued testing. WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. *: WT versus KO; #: Het versus KO. *p < 0.05, **p < 0.1, ***p < 0.001.

Table 13. Detailed results and statistical analyses related to anxiety-like behaviors

Open field thigmotaxis	5					0			0.1			0			D		
						Genot	ype		Conort			cohort	ype ×		comp	se arisons	
	Test	Data	WT	Het	КО	F	p	Power	F	p	Power	F	p	Power	WT vs	WT vs	s Het vs
		structure					value			value			value		Het	KO	KO
Border distance (cm)	2wANOVA	Normal	10507.07 ± 558.17	8848.23 ± 548.19	9 7942.17 ± 394.99	6.537	0.003	3 0.892	10.443	0.002	0.887	0.080	0.923	0.062	0.022	0.001	0.235
Border distance (cm)	Test	Data				F	p	Power	WT vs	WT vs	Het vs						
_		structure					value		Het	KO	KO						
- Time	rMeasures	Sph.viol				52.599	0.000	1.000	-	-	-						
- Time × genotype	rMoasures	Sph.viol				2.490	0.007	0.877	- 042	0.001	-						
- Cohort	rMeasures	Sph.viol				10 443	0.003	0.052	-	-	-						
- Time \times gen. \times coh.	rMeasures	Sph.viol				0.923	0.492	2 0.399	_	_	_						
- Genotype \times cohort	rMeasures	Sph.viol				0.080	0.923	8 0.062	-	-	-						
						Genot	ype		Cohort			Genot	ype ×		Comp	se arisons	
	Test	Data	WT	Het	КО	F	p	Power	F	p	Power	F	p	Power	WT vs	WT vs	s Het vs
		structure					value			value			value		Het	KO	KO
Center distance (cm)	2wANOVA	Nonnormal	3276.58 ± 335.66	2390.56 ± 291.66	6 2139.7 ± 246.94	3.932	0.026	6 0.682	9.890	0.003	0.870	0.049	0.952	0.057	0.036	0.011	0.622
Center distance (cm)	Test	Data				F	n	Power	WT vs	WT vs	Het vs						
Center distance (cm)	1631	structure				,	value	1 0 000	Het	KO	KO						
- Time	rMeasures	Sph.viol				1.158	0.330	0.343	-	_	_						
- Time $ imes$ genotype	rMeasures	Sph.viol				1.327	0.237	0.571	-	-	-						
- Genotype	rMeasures	Sph.viol				3.932	0.026	6 0.682	0.070	0.015	0.798						
- Cohort	rMeasures	Sph.viol				9.890	0.003	3 0.870	-	-	-						
- Time \times gen. \times coh.	rMeasures	Sph.viol				0.695	0.683	3 0.302	-	-	-						
- Genotype × cohort	rMeasures	Sph.viol				0.049	0.952	2 0.057	-	-	_						
						Genot	ype		Cohort			Genot	ype $ imes$		Pairwi	se	
	Teet	Dete	WT	Hat	KO	F		Dowor	F		Dowor	cohort		Dowor	compa	arisons	Hotwo
	Test	structure	VVI	пес	KU	F	р value	Fower	F	р value	Fower	F	p value	Fower	Het	KO	KO
Border/total distance	2wANOVA	Normal	76.87 ± 1.51	79.57 ± 1.69	79.69 ± 1.29	0.950	0.393	3 0.206	5.570	0.022	0.639	0.049	0.952	0.057	-	-	-
Border/total distance	Test	Data				F	р	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Time	rMeasures	Sph.viol				5.035	0.001	0.957	-	-	-						
- Time $ imes$ genotype	rMeasures	Sph.viol				1.182	0.312	2 0.531	-	_	-						
- Genotype	rMeasures	Sph.viol				1.017	0.369	0.218	-	-	-						
- Conort	rivieasures	Spn.viol				5.820	0.019	0.058	-	-	_						
- Genotype × cohort	rMeasures	Sph.viol				0.079	0.911	0.064	_	_	_						
						Genot	ype		Cohort			Genot	ype ×		Pairwi compa	se arisons	
	Test	Data	WT	Het	КО	F	р.	Power	F	p .	Power	F	р.	Power	WT vs	WT v	s Het vs
Center/total distance	2wANOVA	structure	22 88 + 1 51	20 15 + 1 68	20 16 + 1 27	0 939	value 0.398	3 0 204	4 471	value 0.039	0 546	0 048	value 0.953	0.057	Het	к0 —	K0 _
	211/11/01/1			20110 _ 1100	20110 - 1121	0.000	0.000	0.201		0.000	0.010	0.0.10	0.000	0.007			
Center/total distance	Test	Data				F	р	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Time	rMeasures	Sph.viol				5.177	0.001	0.962	-	-	-						
- Time × genotype	rMeasures	Sph.viol				1.1//	0.315	0.527	_	_	-						
- Genotype	rMeasures	Sph.viol				1.001	0.375	0.215	_	_	_						
- Time × aen × coh	rMeasures	Sph.viol				0.652	0.728	3 0 292	_	_	_						
- Genotype × cohort	rMeasures	Sph.viol				0.088	0.916	6 0.063	_	_	_						
						Genot	ype		Cohort			Genot	ype \times	cohort	Pairwi	se arisono	
	Test	Data	WT	Het	ко	F	р	Power	F	р	Power	F	р	Power	WT vs	WT v	s Het vs
		structure					value			value			value		Het	KO	KO
Border/Center distance	2wANOVA	Nonnormal	3.78 ± 0.38	4.87 ± 0.74	4.34 ± 0.36	0.990	0.379	0.213	3.522	0.066	0.453	0.216	0.807	0.082	_	-	-
Border/Center distance	Test	Data				F	p	Power	WT vs	WT vs	Het vs						
		structure					value		Het	KO	KO						
- Time	rMeasures	Sph.viol				5.177	0.001	0.240	-	-	-						
- Time × genotype	rMeasures	Sph.viol				1.177	0.315	0.456	-	-	-						
- Genotype	rMeasures	Sph.viol				1.001	0.375	0.309	-	-	-						
	rivieasures	Sph.viol				4./5/	0.034	0.469	_	_	_						
 Genotype × cohort 	rMeasures	Sph.viol				0.052	0.728	6 0.196 6 0.230	_	_	_						
						Genot	vne		Cobort			Genot	vne V		Painwi	se	
						Genot	, he		JUNUT			cohort	, oo v		compa	arisons	
	Test	Data	WT	Het	KO	F	p	Power	F	p	Power	F	p	Power	WT vs	WT v	s Het vs
Border time (s)	2wANOVA	structure Normal	2969.88 ± 70.88	2993.1 ± 77.46	3067.4 ± 62.2	0.481	value 0.621	0.124	1.088	vaiue 0.302	0.176	0.582	value 0.563	0.141	Het -	к0 -	к0 —
					(Continued)												

Border time (s)	Test	Data				F	p	Power	WT vs	WT vs	Het vs						
- Time	rMaasuras	Sch viol				2 960		0 773	Het	KO	к0 —						
- Time × genotype	rMeasures	Sph.viol				0.836	0.568	0.374	_	_	_						
- Genotype	rMeasures	Sph.viol				0.481	0.621	0.124	-	_	-						
- Cohort	rMeasures	Sph.viol				1.088	0.302	0.176	-	-	-						
- Time \times gen. \times coh.	rMeasures	Sph.viol				0.792	0.606	0.354	-	-	-						
- Genotype × cohort	rMeasures	Sph.viol				0.582	0.563	0.141	-	-	-						
						Geno	ype		Cohort			Genot	ype $ imes$		Pairwis	se	
	T	D. L.			1/0	-			-			cohor	t		compa	risons	
	lest	Data	VV I	Het	ко	F	p value	Power	F	p value	Power	F	p value	Power	WIVS Hot	WI VS	Het vs
Center time (s)	2wANOVA	Normal	612.08 ± 71.17	587.82 ± 77.5	517.59 ± 62.2	0.451	0.640	0.119	0.871	0.355	0.150	0.589	0.559	0.143	-	_	_
Center time (s)	Test	Data				F	p voluo	Power	WT vs ⊌ot	WT vs	Het vs						
- Time	rMeasures	Sph viol				3 200	0.016	0 807	_	-	-						
- Time × genotype	rMeasures	Sph.viol				0.836	0.568	0.363	_	_	_						
- Genotype	rMeasures	Sph.viol				0.481	0.621	0.119	_	-	-						
- Cohort	rMeasures	Sph.viol				1.088	0.302	0.150	-	-	-						
- Time × gen. × coh.	rMeasures	Sph.viol				0.792	0.606	0.090	-	-	-						
- Genotype × conort	rivieasures	Spn.vioi				0.582	0.563	0.143	-	-	-						
						Geno	ype		Cohort			Genot	ype ×		Pairwis	e	
												cohor	t		compa	risons	
	Test	Data	WT	Het	КО	F	p	Power	F	p	Power	F	p	Power	WT vs	WT vs	Het vs
Border/center time	2wANOVA	Nonnormal	6 95 + 1 32	83 + 188	9 76 + 2 27	0 476	0 624	0 124	0.533	0 469	0 111	0 107	0 898	0 066	пеі –	- -	- -
Bordon contor anto	2					00	0.02 .	0.121	0.000	000	0	001	0.000	0.000			
Border/center time	Test	Data				F	p	Power	WT vs	WT vs	Het vs						
-		structure					value		Het	KO	KO						
- Time	rMeasures	Sph.viol				0.290	0.822	0.103	_	_	_						
- Genotype	rMeasures	Sph.viol				0.429	0.103	0.373	_	_	_						
- Cohort	rMeasures	Sph.viol				1.546	0.220	0.230	_	_	_						
- Time \times gen. \times coh.	rMeasures	Sph.viol				0.575	0.740	0.219	_	-	-						
- Genotype $ imes$ cohort	rMeasures	Sph.viol				1.594	0.213	0.322	-	-	-						
Vertical activity in open fi	hd																
vertiour dourity in open in	i a																
						Geno	ype		Cohort			Genot	vpe ×		Pairwis	e	
						Geno	ype		Cohort			Genot cohor	ype × t		Pairwis compa	se risons	
	Test	Data	WT	Het	ко	Genot F	ype p	Power	Cohort F	p	Power	Genot cohor F	ype × t p	Power	Pairwis compa WT vs	se risons WT vs	Het vs
Free rears duration (s)	Test 2wANOVA	Data structure Nonnormal	WT 4 66 ± 1 25	Het 7 93 + 1 62	KO 6 18 + 1 48	Genot F	p value 0.322	Power	Cohort F	p value 0.850	Power	Genot cohort F	ype × t p value 0.237	Power	Pairwis compa WT vs Het –	se risons WT vs KO -	Het vs KO –
Free rears duration (s) Free rears number	Test 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13	Het 7.93 ± 1.62 10.63 ± 1.66	KO 6.18 ± 1.48 7.57 ± 1.21	Genot F 1.159 0.837	ype <i>p</i> value 0.322 0.439	Power 0.243 0.186	Cohort <i>F</i> 0.036 1.988	<i>p</i> value 0.850 0.165	Power 0.054 0.283	Genot cohort F 1.480 1.369	ype × p value 0.237 0.264	Power 0.301 0.281	Pairwis compa WT vs Het -	se rrisons WT vs KO –	Het vs KO –
Free rears duration (s) Free rears number Wall rears duration (s)	Test 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84	Genot F 1.159 0.837 5.023	ype <i>p</i> value 0.322 0.439 0.010	Power 0.243 0.186 0.793	Cohort F 0.036 1.988 1.924	p value 0.850 0.165 0.171	Power 0.054 0.283 0.275	Genot cohort F 1.480 1.369 0.397	ype × <i>p</i> value 0.237 0.264 0.675	Power 0.301 0.281 0.111	Pairwis compa WT vs Het - 0.805	se vrisons WT vs KO – – 0.045	Het vs KO - 0.009
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88	Genot F 1.159 0.837 5.023 3.576	p value 0.322 0.439 0.010 0.035	Power 0.243 0.186 0.793 0.638	Cohort F 0.036 1.988 1.924 19.306	<i>p</i> value 0.850 0.165 0.171 0.000	Power 0.054 0.283 0.275 0.991	Genot cohort F 1.480 1.369 0.397 0.414	ype × <i>p</i> value 0.237 0.264 0.675 0.663	Power 0.301 0.281 0.111 0.113	Pairwis compa WT vs Het - 0.805 0.996	se wrisons WT vs KO - 0.045 0.036	Het vs KO - 0.009 0.030
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears duration (s)	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal	WT 4.66 \pm 1.25 8.42 \pm 2.13 14.68 \pm 1.77 27.26 \pm 2.68 19.34 \pm 2.3 25 68 \pm 2.92	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86 24.07 ± 3.01 28.15 ± 2.04	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.04 ± 2.09	Genot F 1.159 0.837 5.023 3.576 3.140	ype p value 0.322 0.439 0.010 0.035 0.052	Power 0.243 0.186 0.793 0.638 0.578	Cohort F 0.036 1.988 1.924 19.306 0.646	<i>p</i> value 0.850 0.165 0.171 0.000 0.425	Power 0.054 0.283 0.275 0.991 0.124	Genot cohort F 1.480 1.369 0.397 0.414 1.240	ype × p value 0.237 0.264 0.675 0.663 0.298 0.200	Power 0.301 0.281 0.111 0.113 0.258 0.262	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.820	se WT vs KO - 0.045 0.036 0.468	Het vs KO 0.009 0.030 0.038
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86 24.07 ± 3.01 38.15 ± 3.94	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08	Genot F 1.159 0.837 5.023 3.576 3.140 3.240	p value 0.322 0.439 0.010 0.035 0.052 0.047	Power 0.243 0.186 0.793 0.638 0.578 0.592	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104	<i>p</i> value 0.850 0.165 0.171 0.000 0.425 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976	Genot cohort F 1.480 1.369 0.397 0.414 1.240 1.267	ype × <i>p</i> value 0.237 0.264 0.675 0.663 0.298 0.290	Power 0.301 0.281 0.111 0.113 0.258 0.263	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829	se wrisons WT vs KO 0.045 0.036 0.468 0.107	Het vs KO - 0.009 0.030 0.038 0.028
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number All rears number Zero-maze	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86 24.07 ± 3.01 38.15 ± 3.94	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08	Genot F 1.159 0.837 5.023 3.576 3.140 3.240	ype p value 0.322 0.439 0.010 0.035 0.052 0.047	Power 0.243 0.186 0.793 0.638 0.578 0.592	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104	<i>p</i> value 0.850 0.165 0.171 0.000 0.425 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976	Genot cohort F 1.480 1.369 0.397 0.414 1.240 1.267	ype × <i>p</i> value 0.237 0.264 0.675 0.663 0.298 0.290	Power 0.301 0.281 0.111 0.113 0.258 0.263	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829	e risons WT vs KO 0.045 0.036 0.468 0.107	Het vs KO - 0.009 0.030 0.038 0.028
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number All rears number Zero-maze	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86 24.07 ± 3.01 38.15 ± 3.94	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08	Genot F 1.159 0.837 5.023 3.576 3.140 3.240 Genot	ype p value 0.322 0.439 0.010 0.035 0.052 0.047 ype	Power 0.243 0.186 0.793 0.638 0.578 0.592	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort	<i>p</i> value 0.850 0.165 0.171 0.000 0.425 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976	Genot cohort F 1.480 1.369 0.397 0.414 1.240 1.267 Genot	ype × <i>p</i> value 0.237 0.264 0.675 0.663 0.298 0.290 ype ×	Power 0.301 0.281 0.111 0.113 0.258 0.263	Pairwis compa WT vs Het 0.805 0.996 0.374 0.829 Pairwis	e risons WT vs KO - 0.045 0.045 0.468 0.107 ie	Het vs KO – 0.009 0.030 0.038 0.028
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number All rears number Zero-maze	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86 24.07 ± 3.01 38.15 ± 3.94	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08	Genot F 1.159 0.837 5.023 3.576 3.140 3.240 Genot	ype p value 0.322 0.439 0.010 0.035 0.052 0.047 ype	Power 0.243 0.186 0.793 0.638 0.578 0.592	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort	<i>p</i> value 0.850 0.165 0.171 0.000 0.425 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976	Genot cohort <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohort	ype × <i>p</i> value 0.237 0.264 0.675 0.663 0.298 0.290 ype ×	Power 0.301 0.281 0.111 0.113 0.258 0.263	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa	se rrisons WT vs KO − 0.045 0.036 0.468 0.107 ie risons	Het vs KO - 0.009 0.030 0.038 0.028
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears duration (s) All rears number Zero-maze	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA Test	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86 24.07 ± 3.01 38.15 ± 3.94 Het	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO	Genot F 1.159 0.837 5.023 3.576 3.140 3.240 Genot F	ype <i>p</i> value 0.322 0.439 0.010 0.035 <i>0.052</i> 0.047 ype <i>p</i> value	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F	р value 0.850 0.165 0.171 0.000 0.425 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power	Genot cohort <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohort <i>F</i>	ype × p value 0.237 0.264 0.675 0.663 0.298 0.290 ype × p value p	Power 0.301 0.281 0.111 0.113 0.258 0.263	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het	e wrisons WT vs KO - - 0.045 0.468 0.107 ie risons WT vs KO	Het vs KO – 0.009 0.030 0.038 0.028 Het vs KO
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number Zero-maze	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA Test 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31	Genot F 1.159 0.837 5.023 3.576 3.140 3.240 Genot F 0.400	ype <i>p</i> value 0.322 0.439 0.010 0.035 <i>0.052</i> 0.047 ype <i>p</i> value 0.672	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684	р value 0.850 0.165 0.171 0.000 0.425 0.000 р value 0.001	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952	Genot cohort <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohort <i>F</i>	ype × <i>p</i> value 0.237 0.264 0.675 0.663 0.298 0.290 ype × <i>p</i> value 0.734	Power 0.301 0.281 0.111 0.113 0.258 0.263 Power 0.097	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het -	se wT vs KO - 0.045 0.045 0.468 0.107 se risons WT vs KO -	Het vs KO – 0.009 0.030 0.038 0.028 Het vs KO –
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA Test 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Data	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63	Genot F 1.159 0.837 5.023 3.576 3.140 3.240 Genot F 0.400 3.652	ype <i>p</i> value 0.322 0.439 0.010 0.035 0.052 0.047 ype <i>p</i> value 0.672 0.033	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.646	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459	р value 0.850 0.165 0.171 0.000 0.425 0.000 0.425 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000	Genot cohord <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohord <i>F</i> 0.311 0.114	ype × p value 0.237 0.264 0.675 0.663 0.298 0.290 ype × p value 0.734 0.893	Power 0.301 0.281 0.111 0.113 0.258 0.263 Power 0.097 0.066	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het - 0.138	se rrisons WT vs KO 0.045 0.045 0.036 0.468 0.107 se risons WT vs KO 0.009	Het vs KO - 0.009 0.030 0.038 0.028 Het vs KO - 0.489
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d1 Closed arc time, m	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA Test 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 422.46 ± 42.53	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86 24.07 ± 3.01 38.15 ± 3.94 Het 441.68 ± 13.82 492.29 ± 16.58 466.99 ± 13.34	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 0.552	ype p value 0.322 0.439 0.010 0.035 0.052 0.047 ype p value 0.672 0.033 0.158 0.52	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.415	р value 0.850 0.165 0.171 0.000 0.425 0.000 0.000 value 0.001 0.000 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 1.000	Genot cohord F 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohord F 0.311 0.114 0.253 0.402	ype × p value 0.237 0.264 0.675 0.663 0.298 0.290 ype × p value 0.734 0.893 0.778 0.693	Power 0.301 0.281 0.111 0.158 0.258 0.263 Power 0.097 0.066 0.088 0.114	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het - 0.138 -	se rrisons WT vs KO 0.045 0.045 0.036 0.468 0.107 se risons WT vs KO 0.045 0.468 0.107 se risons WT vs KO -	Het vs KO - 0.009 0.030 0.038 0.028 Het vs KO - 0.489 -
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d1 Open arc time, d2	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Normal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86 24.07 ± 3.01 38.15 ± 3.94 Het 441.68 ± 13.82 492.29 ± 16.58 466.99 ± 13.34 153.09 ± 13.34 153.09 ± 13.4	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 0.562 3.053	ype p value 0.322 0.439 0.035 0.035 0.052 0.047 ype p value 0.672 0.033 0.158 0.574 0.056	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315	P value 0.850 0.165 0.000 0.425 0.000 0.000 0.001 0.000 0.000 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 1.000 0.886 1.000	Genot cohort <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohort <i>F</i> 0.311 0.114 0.253 0.420 0.151	ype × <i>p</i> value 0.237 0.264 0.675 0.663 0.298 0.290 ype × <i>p</i> value 0.734 0.893 0.778 0.893 0.778 0.893	Power 0.301 0.281 0.111 0.258 0.263 Power 0.097 0.066 0.088 0.114 0.072	Pairwis compa WT vs Het 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het 0.138 0.194	se trisons WT vs KO - - 0.045 0.0468 0.107 wT vs KO - 0.009 - 0.015	Het vs KO 0.009 0.030 0.038 0.028 Het vs KO 0.489 0.502
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d1 Open arc time, d2 Open arc time, d2 Open arc time, d2 Open arc time, m	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Normal Normal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.53	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86 24.07 ± 3.01 38.15 ± 3.94 Het 441.68 ± 13.82 492.29 ± 16.58 466.99 ± 13.34 153.09 ± 13.6 102.14 ± 16.74 127.61 ± 13.25	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.83 106.56 ± 16.4	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.653	ype p value 0.322 0.439 0.010 0.035 0.052 0.047 ype p value 0.672 0.033 0.158 0.574 0.033 0.158 0.576 0.052 0.033 0.158 0.052 0.033 0.158 0.052 0.033 0.052 0.047 0.047 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.056	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343	P value 0.850 0.165 0.171 0.000 0.425 0.000 0.000 0.001 0.000 0.000 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 1.000 0.886 1.000 0.999	Genoti cohorn F 1.4800 1.369 0.397 0.414 1.240 1.267 Genoti Cohorn F 0.311 0.114 0.253 0.420 0.151 0.340	ype × p value 0.237 0.264 0.675 0.663 0.298 0.290 ype × p value 0.734 0.893 0.778 0.680 0.680 0.0758 0.680 0.0758 0.680 0.778 0.680 0.778 0.680 0.778 0.680 0.778 0.680 0.778 0.680 0.778 0.680 0.778 0.680 0.778 0.680 0.778 0.778 0.680 0.778 0.778 0.680 0.7788 0.7788 0.77	Power 0.301 0.281 0.111 0.113 0.258 0.263 Power 0.097 0.066 0.088 0.114 0.072 0.072 0.011	Pairwis compa WT vs Het 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het - 0.138 - 0.194 -	se trisons WT vs KO - 0.045 0.0468 0.107 wT vs KO - 0.009 - 0.015 -	Het vs KO - 0.009 0.030 0.038 0.028 Het vs KO - 0.489 - 0.502 -
Free rears duration (s) Free rears number Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d2 Open arc time, d1 Open arc time, d1	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Normal Normal Normal Normal Normal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.53 4.08 ± 0.85	Het 7.93 ± 1.62 10.63 ± 1.66 16.13 ± 2.02 27.52 ± 2.86 24.07 ± 3.01 38.15 ± 3.94 Het 441.68 ± 13.82 492.29 ± 16.58 466.99 ± 13.34 153.09 ± 13.6 102.14 ± 16.74 127.61 ± 13.25 3.74 ± 0.98	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.917 0.562 1.917 0.562 1.917 0.400 0.400 0.305 0.400 0.4	ype p value 0.322 0.439 0.010 0.035 0.052 0.047 ype p value 0.672 0.033 0.158 0.574 0.056 0.056 0.056 0.057 0.052 0.033 0.158 0.052 0.033 0.052 0.047 0.047 0.052 0.047 0.052 0.047 0.052 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.166	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369 0.369 0.369	Cohort <i>F</i> 0.036 1.988 1.924 19.306 0.646 16.104 Cohort <i>F</i> 13.684 36.459 28.873 10.417 37.315 26.343 9.172	р vvalue 0.850 0.165 0.171 0.000 0.425 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 1.000 0.886 1.000 0.886 0.999 0.843	Genot cohort F 1.480 0.397 0.414 1.240 1.267 Genot cohort F 0.311 0.114 0.253 0.420 0.151 0.340 0.340	ype × p value 0.237 0.264 0.675 0.663 0.298 0.290 ype × p value 0.734 0.893 0.778 0.669 0.669 0.675 0.669 0.675 0.663 0.298 0.297 0.264 0.297 0.264 0.298 0.754 0.655 0.663 0.298 0.754 0.655 0.663 0.758 0.758 0.655 0.663 0.778 0.663 0.778 0.666 0.666 0.778 0.666 0.675 0.666 0.778 0.666 0.675 0.666 0.778 0.666 0.666 0.778 0.666 0.675 0.666 0.675 0.666 0.675 0.666 0.675 0.666 0.675 0.666 0.675 0.666 0.676 0.666 0.676 0.666 0.676 0.676 0.668 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.778 0.668 0.678 0.648 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.658 0.778 0.7	Power 0.301 0.281 0.111 0.258 0.263 Power 0.097 0.066 0.088 0.114 0.072 0.101 0.117	Pairwis compa WT vs Het - - 0.805 0.996 0.374 0.829 WT vs Het - 0.138 - - 0.1138 - - -	e risons WT vs KO - 0.045 0.045 0.0468 0.107 risons WT vs KO - 0.009 - 0.009 - 0.0015 - -	Het vs KO - 0.009 0.030 0.038 0.028 Het vs KO - 0.489 - 0.502 - - -
Free rears duration (s) Free rears number Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.53 4.08 ± 0.85 6.95 ± 1.95	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.71 127.61 \pm 13.25 3.74 \pm 0.98 25.36 \pm 18.5	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.863 0.820 0.969	ype p value 0.322 0.439 0.0439 0.035 0.052 0.047 ype p value 0.672 0.033 0.158 0.574 0.056 0.166 0.447 0.387	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369 0.182 0.209	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901	 <i>ρ</i> value 0.850 0.165 0.171 0.000 0.425 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.019 	Power 0.054 0.283 0.991 0.124 0.976 Power 0.952 1.000 0.886 1.000 0.886 1.000 0.999 0.843 0.663	Genot cohort F 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohort F 0.311 0.420 0.311 0.420 0.151 0.340 0.340 0.340	ype × p value 0.237 0.264 0.675 0.663 0.298 0.290 ype × p value 0.734 0.893 0.778 0.659 0.669 0.669 0.675 0.669 0.774 0.669 0.774 0.669 0.774 0.669 0.774 0.7	Power 0.301 0.281 0.111 0.258 0.263 Power 0.097 0.066 0.088 0.114 0.072 0.101 0.117 0.169	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het - 0.138 - - 0.194 - - 0.194 -	ee ririsons WT vs KO - 0.045 0.036 0.0468 0.107 risons WT vs KO - 0.009 - - - 0.015 - - -	Het vs KO - 0.009 0.030 0.038 0.028 Het vs KO - 0.489 - - 0.502 - - - -
Free rears duration (s) Free rears number Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normarmal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.53 4.08 ± 0.85 6.95 ± 1.95 4.61 ± 1 424.23 ± 0.62	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 3.74 \pm 0.98 25.36 \pm 18.5 5.55 \pm 1.95	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.863 0.820 0.969 1.207	ype p value 0.322 0.439 0.0439 0.035 0.052 0.047 ype p value 0.672 0.033 0.158 0.574 0.056 0.166 0.447 0.387 0.387 0.362 0.499 0.022 0.033 0.052 0.047 0.035 0.052 0.047 0.052 0.047 0.052 0.053 0.052 0.052 0.053 0.052 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.052 0.053 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.158 0.166	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369 0.182 0.209 0.251	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378	 <i>ρ</i> value 0.850 0.165 0.171 0.000 0.425 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.001 0	Power 0.054 0.283 0.975 0.927 0.976 Power 0.952 1.000 0.886 1.000 0.888 0.603 0.999 0.843 0.663 0.911	Genot cohort <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohort <i>F</i> 0.311 0.311 0.340 0.420 0.438 0.438 0.438	ype × p value 0.237 0.264 0.675 0.648 0.290 ype × p value 0.734 0.893 0.778 0.893 0.778 0.659 0.8659 0.6648 0.479 0.648 0.675	Power 0.301 0.281 0.111 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.097 0.066 0.088 0.114 0.072 0.1017 0.117 0.119 0.117	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het - 0.138 - - 0.194 - -	ee ririsons WT vs KO - 0.045 0.045 0.036 0.045 0.045 0.0458 0.107 Fisons WT vs KO - 0.009 - - - 0.015 - - -	Het vs KO - 0.009 0.030 0.028 Het vs KO - 0.489 - 0.502 - - - - - -
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d1 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d2 Close/open time, d2	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Normal Normal Norman Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.25 143.08 ± 21.29 154.55 ± 18.25 4.08 ± 0.85 6.95 ± 1.95 4.61 ± 1 48.47 ± 4.88 42.42 ± 5 18	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 3.74 \pm 0.98 25.36 \pm 18.5 5.55 \pm 1.95 50.52 \pm 4.46 36 52 \pm 4.83	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.863 0.820 0.969 1.207 1.870	ype p value 0.322 0.439 0.052 0.052 0.052 0.047 ype p value 0.672 0.033 0.158 0.574 0.036 0.156 0.166 0.166 0.166 0.166 0.047 0.387 0.388 0.429 0.429 0.032 0.044 0.032 0.032 0.0429 0.052 0.035 0.052 0.035 0.052 0.035 0.052 0.035 0.052 0.035 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.038 0.147 0.387 0.247 0.398 0.147 0.247	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369 0.369 0.209 0.221	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378 14.589 19.291 11.378 14.589 19.24 19.306 16.104 10.004	ρ value 0.850 0.165 0.171 0.000 value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 0.886 1.000 0.888 0.633 0.643 0.643 0.941 0.963	Genot cohort <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohort <i>F</i> 0.311 0.311 0.340 0.438 0.438 0.638 0.638	ype × p value 0.237 0.264 0.675 0.648 0.290 ype × p value 0.734 0.659 0.6639 0.648 0.479 0.587 0.587	Power 0.301 0.281 0.111 0.113 0.258 0.258 0.263 0.263 0.263 0.263 0.263 0.097 0.066 0.088 0.114 0.072 0.1017 0.117 0.169 0.1134 0.114	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het - 0.138 - - - - - - - - -	ee virisons WT vs KO - - 0.045	Het vs KO - 0.009 0.030 0.028 Het vs KO - 0.028 - 0.502 - - - - - - - - - - -
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d2 Close/open arc entries, d1 Open arc entries, d2	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normar	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.25 143.08 ± 21.29 154.55 ± 18.25 4.08 ± 0.85 6.95 ± 1.95 4.61 ± 1 48.47 ± 4.88 42.42 ± 5.18 45.44 ± 4.16	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 5.55 \pm 1.95 50.52 \pm 4.46 36.52 \pm 4.83 43.52 \pm 4.04	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 28.98 ± 11.02 8.57 ± 2.42 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07 44.34 ± 5.81	Genoi F 1.159 0.837 5.023 3.576 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.863 0.820 0.969 1.207 1.278 0.420 0.320 0.969 1.277 0.523 0.820 0.820 0.820 0.820 0.820 0.821 0.822 0.822 0.823 0.822 0.822 0.822 0.823 0.820 0.8	ype p value 0.322 0.439 0.035 0.052 0.047 ype p value 0.672 0.035 0.056 0.067 0.035 0.057 0.056 0.033 0.057 0.035 0.052 0.047 0.305 0.047 0.305 0.047 0.305 0.047 0.305 0.047 0.035 0.047 0.035 0.047 0.035 0.047 0.035 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.052 0.047 0.035 0.047 0.035 0.047 0.035 0.047 0.035 0.052 0.035 0.047 0.035 0.047 0.035 0.047 0.035 0.047 0.035 0.047 0.035 0.047 0.035 0.052 0.047 0.038 0.158 0.047 0.387 0.047 0.387 0.0487 0.049 0.0487 0.04	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.464 0.369 0.369 0.369 0.369 0.369 0.325 0.225	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378 14.588 19.130 0.4.720	ρ value 0.850 0.165 0.171 0.000 value 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.0001 0.0001	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 1.000 0.886 1.000 0.888 0.991 0.843 0.663 0.911 0.963 0.990	Genot cohort <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohort <i>F</i> 0.311 0.341 0.253 0.420 0.151 0.340 0.438 0.603 0.137 0.447	ype × p value 0.237 0.264 0.675 0.663 0.290 ype × p value 0.734 0.734 0.659 0.648 0.479 0.587 0.648 0.479 0.587	Power 0.301 0.281 0.111 0.113 0.258 0.258 0.263 0.263 0.263 0.263 0.263 0.097 0.066 0.088 0.114 0.072 0.101 0.117 0.169 0.113	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het - 0.138 - - 0.138 - - - - - - - -	ee rrisons WT vs KO - 0.045 0.046 0.468 0.107 ee risons WT vs KO - 0.009 - - 0.009 - - - 0.009 - - - - 0.005	Het vs KO - 0.009 0.030 0.028 Het vs KO - 0.038 0.028 - - 0.502 - - - - - - - - - - - - - - - - - - -
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d2 Close/open arc entries, d1 Open arc entries, d1 Open arc entries, m Open entering arc latency	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.25 143.08 ± 21.29 154.55 ± 18.25 4.08 ± 0.85 6.95 ± 1.95 4.61 ± 1 48.47 ± 4.88 42.42 ± 5.18 45.44 ± 4.16 39.29 ± 13.16	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 5.55 \pm 1.95 50.52 \pm 4.46 36.52 \pm 4.83 43.52 \pm 4.04 47.08 \pm 31.35	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 28.98 ± 11.02 8.57 ± 2.42 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07 44.34 ± 5.81 22.99 ± 10.38	Genoi F 1.159 0.837 5.023 3.576 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.863 0.820 0.969 1.207 1.870 0.310	ype p value 0.322 0.439 0.035 0.052 0.047 ype p value 0.672 0.035 0.054 0.574 0.056 0.158 0.574 0.056 0.158 0.574 0.056 0.158 0.574 0.056 0.038 0.158 0.0477 0.387 0.388 0.0447 0.387 0.388 0.0447 0.387 0.388 0.0447 0.387 0.388 0.0447 0.387 0.388 0.0447 0.387 0.388 0.0447 0.387 0.388 0.0447 0.387 0.388 0.0447 0.387 0.388 0.0447 0.387 0.388 0.0447 0.387 0.388 0.0447 0.387 0.387 0.387 0.388 0.047 0.387 0.387 0.388 0.047 0.387 0.388 0.047 0.387 0.388 0.047 0.387 0.388 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.387 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.0487 0.04	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.464 0.369 0.369 0.369 0.369 0.329 0.225 0.209 0.2251 0.277 0.072 0.072	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378 14.588 19.130 0.4.720 0.684	ρ value 0.850 0.165 0.171 0.000 value 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 1.000 0.886 1.000 0.888 0.992 1.000 0.843 0.663 0.911 0.963 0.990 0.998 0.128	Genot cohort <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohort <i>F</i> 0.311 0.340 0.533 0.420 0.438 0.603 0.137 0.447 1.282	ype × p value 0.237 0.264 0.675 0.638 0.290 ype × p value 0.734 0.648 0.648 0.648 0.6479 0.587 0.648 0.642 0.642 0.642 0.642	Power 0.301 0.281 0.111 0.113 0.258 0.263 0.263 0.263 0.263 0.097 0.066 0.088 0.114 0.072 0.101 0.117 0.169 0.113 0.114 0.013	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa WT vs Het - 0.138 - - - - - - - - - - - - - -	ee rrisons WT vs KO - - 0.045 0.046 0.1468 0.107 ee rrisons WT vs KO - 0.009 - - 0.009 - - 0.005 - - - - - - - - - - - - - - - - - -	Het vs KO - 0.009 0.030 0.028 Het vs KO - 0.038 0.028 - - 0.502 - - - - - - - - - - - - - - - - - - -
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d2 Close/open time, m Open arc entries, d1 Open arc entries, m Open entering arc latency Open arc crossing latency	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normarmal Nonnormal Nonnormal Normarmal Nonnormal Nonnormal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.53 4.08 ± 0.85 4.08 ± 0.85 4.61 ± 1 48.47 ± 4.88 42.42 ± 5.18 45.44 ± 4.16 39.29 ± 13.16 149.34 ± 34.87	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 3.74 \pm 0.98 5.55 \pm 1.95 50.52 \pm 4.83 43.52 \pm 4.04 47.08 \pm 31.35 139.69 \pm 35.2	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07 44.34 ± 5.81 22.99 ± 10.38 95.2 ± 32.99	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.863 0.820 0.306 1.207 1.237 8.0150 0.310 0.766	ype p value 0.322 0.439 0.010 0.035 0.052 0.047 ype p value 0.672 0.047 0.355 0.047 0.356 0.158 0.574 0.056 0.158 0.574 0.387 0.387 0.388 0.447 0.387 0.388 0.447 0.387 0.447 0.387 0.447 0.387 0.447 0.387 0.447 0.387 0.447 0.387 0.447 0.387 0.447 0.387 0.447 0.447 0.387 0.447 0.447 0.447 0.452 0.448 0.524 0.452 0.452 0.452 0.452 0.452 0.452 0.452 0.452 0.452 0.452 0.452 0.452 0.452 0.455 0.455 0.457 0.455 0.457 0.456 0.457 0.456 0.457 0.456 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.457 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.447 0.456 0.447 0.457 0.447 0.457	Power 0.243 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369 0.138 0.566 0.369 0.2251 0.251 0.257 0.272 0.271 0.257	Cohort F 0.036 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378 14.588 19.130 24.720 0.684 1.515 	ρ value 0.850 0.165 0.171 0.000 0.425 0.001 0.002 0.000 0.002 0.000 0.002 0.000 0.001 0.002 0.000 0.001 0.002 0.000 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.003 0.00412 0.224	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 1.000 0.886 1.000 0.886 1.000 0.886 0.999 0.663 0.991 0.998 0.226	Genot cohori F 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohori F 0.311 0.420 0.311 0.420 0.420 0.420 0.420 0.438 0.439 0.447 1.282 0.395	ype × p value 0.237 0.264 0.675 0.643 0.290 0.290 ype × p value 0.734 0.648 0.479 0.587 0.648 0.479 0.587 0.642 0.644 0.645 0.648 0.6	Power 0.301 0.281 0.113 0.258 0.263 Power 0.097 0.066 0.088 0.114 0.072 0.110 0.119 0.119 0.169 0.119 0.265 0.119	Pairwis compa Het - - 0.805 0.396 0.374 0.805 0.374 0.829 WT vs Het - 0.138 - - - - - - - - - - - - - - -	ee ririsons WT vs KO - - 0.045 0.046 0.1468 0.107 - - - - - - - - - - - - - - - - - - -	Het vs KO - - 0.009 0.030 0.038 0.028 Het vs KO - 0.489 - - 0.489 - - 0.502 - - - - - - - - - - - - - - -
Free rears duration (s) Free rears number Wall rears duration (s) Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d2 Close/open time, d2 Close/open time, d2 Close/open time, d2 Close/open time, d2 Open arc entries, d2 Open arc entries, d2 Open arc entries, m Open arc entries, m Open arc rossing latency Close arc dipping number, d1	Test 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.53 4.08 ± 0.85 6.95 ± 1.95 4.61 ± 1 48.47 ± 4.88 42.42 ± 5.18 45.44 ± 4.16 39.29 ± 13.16 149.34 ± 34.87 51.73 ± 6.81	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 3.74 \pm 0.98 25.36 \pm 1.85 5.55 \pm 1.95 50.52 \pm 4.46 36.52 \pm 4.83 43.52 \pm 4.04 47.08 \pm 31.35 139.69 \pm 35.2 55.42 \pm 6.48	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07 44.34 ± 5.81 22.99 ± 10.38 95.2 ± 32.99 51.47 ± 7.31 29.21 ± 2.97	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 1.207 1.207 1.203 0.363 0.320 0.3683 0.320 0.3693 0.320 0.3693 0.320 0.3063 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.320	ype p value 0.322 0.439 0.010 0.035 0.052 0.047 ype p value 0.672 0.033 0.158 0.574 0.056 0.466 0.447 0.387 0.308 0.165 0.498 0.165 0.498 0.165 0.498 0.166 0.498 0.165 0.498 0.166 0.498 0.165 0.498 0.574 0.574 0.387 0.387 0.308 0.165 0.498 0.574 0.588 0.574 0.735 0.7457 0.7577 0.7577 0.7577 0.7577 0.7577 0.7577 0.7577 0.75777 0.75777 0.75777 0.757777 0.	Power 0.243 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369 0.188 0.251 0.371 0.257 0.072 0.097 0.178 0.097	Cohort F 0.036 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378 14.588 19.130 24.720 0.684 1.515 54.807 54.020	 <i>ρ</i> value 0.850 0.165 0.171 0.000 0.425 0.000 0.001 0.000 0.002 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.000 0.001 	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 0.998 0.886 1.000 0.999 0.843 0.663 0.991 0.993 0.991 0.998 0.226 1.000	Genot cohord <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohord <i>F</i> 0.311 0.114 0.253 0.420 0.420 0.438 0.746 0.538 0.633 0.137 0.447 1.282 0.395 0.395	ype × p value 0.237 0.264 0.675 0.263 0.298 0.290 0.633 0.298 0.290 0.639 0.734 0.873 0.642 0.6587 0.551 0.872 0.642 0.287 0.675 0.663 0.298 0.479 0.551 0.875 0.655 0.655 0.663 0.298 0.734 0.659 0.659 0.659 0.734 0.659 0.659 0.734 0.659 0.754 0.659 0.754 0.659 0.754 0.655 0.298 0.290 0.754 0.655 0.298 0.290 0.754 0.655 0.298 0.754 0.655 0.298 0.754 0.655 0.298 0.754 0.655 0.655 0.754 0.655 0.754 0.655 0.754 0.655 0.655 0.655 0.655 0.255 0.655 0.655 0.655 0.655 0.754 0.655 0.655 0.655 0.754 0.655	Power 0.301 0.281 0.113 0.258 0.263 0.263 Power 0.097 0.066 0.088 0.088 0.014 0.072 0.101 0.117 0.169 0.134 0.134 0.134 0.134 0.119 0.265 0.110	Pairwis compa Het - - 0.805 0.374 0.829 Pairwis compa 0.374 0.829 WT vs Het - 0.138 - - - - - - - - - - - - - -	ee ririsons WT vs KO - 0.045 0.045 0.0468 0.107 ee ririsons WT vs KO - 0.009 - 0.009 - 0.015 - - - - - - - - - - - - - - - - - - -	Het vs KO - 0.009 0.030 0.038 0.028 Het vs KO - 0.489 - 0.489 - - 0.489 - - 0.502 - - - - - - - - - - - - - - - - - - -
Free rears duration (s) Free rears number Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d2 Close/open time, d2 Open arc entries, d1 Open arc entries, d2 Open arc entries, d2 Open arc entries, m Open entering arc latency Open arc cossing latency Close arc dipping number, d2 Close arc dipping number, d2	Test 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.53 4.08 ± 0.85 6.95 ± 1.95 4.61 ± 1 48.47 ± 4.88 42.42 ± 5.18 45.44 ± 4.16 39.29 ± 13.16 149.34 ± 34.87 51.73 ± 6.81 31.94 ± 3.01 41.84 ± 4.31	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 3.74 \pm 0.98 25.36 \pm 1.95 50.52 \pm 4.46 36.52 \pm 4.83 43.52 \pm 4.04 47.08 \pm 31.35 139.69 \pm 35.2 55.42 \pm 6.48 28.94 \pm 3.69 42.5 \pm 4.48	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07 44.34 ± 5.81 22.99 ± 10.38 95.2 ± 32.99 51.47 ± 7.31 22.19 ± 3.87 3.684 ± 5.05	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.863 0.820 0.969 1.207 1.870 1.238 0.310 0.310 0.310 0.310 0.313 2.182 0.303 2.182 0.303 2.182 0.303 2.182 0.303 2.182 0.303 2.182 0.303 0.294 0.303 2.182 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.305 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.294 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.303 0.295 0.2	ype p value 0.322 0.430 0.035 0.052 0.047 ype p value 0.672 0.033 0.158 0.574 0.056 0.166 0.447 0.387 0.308 0.165 0.497 0.387 0.308 0.165 0.497 0.387 0.308 0.165 0.497 0.387 0.308 0.165 0.497 0.387 0.308 0.165 0.497 0.387 0.308 0.165 0.497 0.387 0.308 0.165 0.497 0.387 0.397 0.377 0.397 0.377 0.397 0.377	Power 0.243 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369 0.182 0.209 0.251 0.371 0.257 0.072 0.097 0.178 0.097 0.178	Cohort F 0.036 1.924 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 5.901 11.378 14.588 19.130 24.720 0.684 1.515 54.807 54.920 94.671	 <i>ρ</i> value 0.850 0.165 0.171 0.000 0.425 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 0.886 0.999 0.843 0.663 0.991 0.998 0.226 1.000 0.128 0.226 1.000	Genot cohord <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohord <i>F</i> 0.311 0.114 0.253 0.420 0.438 0.746 0.538 0.633 0.137 0.447 1.282 0.395 0.035	ype × value 0.237 0.264 0.675 0.263 0.298 0.290 0.663 0.298 0.290 0.663 0.734 0.893 0.659 0.659 0.659 0.659 0.659 0.6551 0.655 0.655 0.655 0.622 0.642 0.287 0.642 0.287	Power 0.301 0.281 0.113 0.258 0.263 Power 0.097 0.066 0.088 0.114 0.072 0.101 0.117 0.169 0.134 0.134 0.134 0.265 0.110	Pairwis compa WT vs Het - 0.805 0.374 0.829 Pairwis compa 0.374 0.829 WT vs - - 0.138 - - - - - - - - - - - - - - - - - - -	ee ririsons WT vs KO - - 0.045 0.045 0.045 0.045 0.045 0.045 0.045 - 0.009 - - 0.009 - - - 0.009 - - - - - - - - - - - - - - - - - -	Het vs KO - - 0.009 0.030 0.030 0.038 0.028 Het vs KO - 0.489 - - 0.489 - - 0.502 - - - - - - - - - - - - - - - - - - -
Free rears duration (s) Free rears number Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d1 Open arc entries, d2 Open arc entries, d1 Open arc entries, d1 Open arc entries, d2 Open arc entries, d1 Open arc entries, d2 Open arc entries, d2 Open arc entries, d2 Open arc entries, m Open entering arc latency Open arc cossing latency Close arc dipping number, d1 Close arc dipping number, d1	Test 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Nonnormal	WT 4.66 \pm 1.25 8.42 \pm 2.13 14.68 \pm 1.77 27.26 \pm 2.68 19.34 \pm 2.3 35.68 \pm 3.83 WT 428.66 \pm 18.61 448.33 \pm 20.43 438.5 \pm 18.27 166.03 \pm 18.25 143.08 \pm 21.29 154.55 \pm 18.53 4.08 \pm 0.85 6.95 \pm 1.95 4.61 \pm 1 48.47 \pm 4.88 42.42 \pm 5.18 45.44 \pm 4.16 39.29 \pm 13.16 149.34 \pm 3.417 31.73 \pm 6.81 31.94 \pm 3.01 41.84 \pm 4.31 131.15 \pm 14.57	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 3.74 \pm 0.98 25.36 \pm 18.5 5.55 \pm 1.95 50.52 \pm 4.46 36.52 \pm 4.83 43.52 \pm 4.04 47.08 \pm 31.35 139.69 \pm 35.2 55.42 \pm 6.48 28.94 \pm 3.69 42.5 \pm 4.48 145.82 \pm 14.24	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07 44.34 ± 5.81 22.99 ± 10.38 95.2 ± 32.99 51.47 ± 7.31 22.21 ± 3.87 36.84 ± 5.05 117.88 ± 13.74	Genoi F 1.159 0.837 5.023 3.576 3.140 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.863 0.820 0.969 1.207 1.870 1.238 0.150 0.310 0.320 0.320 0.320 0.320 0.320 0.400 0.320 0.562 1.207 1.207 1.207 1.207 1.207 1.207 0.303 2.182 0.303 0.310 0.320 0.310 0.310 0.310 0.320 0.320 0.320 0.310 0.310 0.320 0.320 0.320 0.310 0.320 0.320 0.320 0.310 0.320 0.320 0.320 0.320 0.310 0.320 0.3	ype p value 0.322 0.439 0.052 0.035 0.052 0.047 ype p value 0.672 0.033 0.158 0.574 0.056 0.166 0.447 0.387 0.308 0.165 0.299 0.861 0.387 0.740 0.325 0.740 0.386 0.574 0.385 0.574 0.385 0.574 0.385 0.574 0.385 0.385 0.385 0.378 0.381 0.378 0.381 0.388 0.578 0.388 0.578 0.388 0.578 0.388 0.578 0.388 0.578 0.388 0.578 0.388 0.574 0.388 0.574 0.385 0.385 0.385 0.385 0.385 0.375 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.374 0.385 0.385 0.385 0.385 0.374 0.385 0.385 0.375 0.385 0.374 0.385 0.385 0.374 0.385 0.374 0.385 0.385 0.374 0.385 0.374 0.385 0.385 0.374 0.385 0.385 0.374 0.385 0.374 0.385 0.375 0.385 0.385 0.375 0.385 0.375 0.385 0.375 0.385 0.375 0.385 0.375 0.385 0.375 0.385 0.385 0.375 0.385 0.375 0.385 0.375 0.385 0.375 0.385 0.375 0.385 0.375 0.385 0.385 0.375 0.385 0.385 0.375 0.385	Power 0.243 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369 0.182 0.201 0.251 0.371 0.257 0.072 0.097 0.097 0.178 0.096 0.425	Cohort F 0.036 1.928 1.924 1.9306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378 14.588 19.130 24.720 0.684 1.515 54.807 54.920 94.671 57.892	 <i>ρ</i> value 0.850 0.165 0.171 0.000 0.425 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 0.886 0.999 0.843 0.663 0.999 0.843 0.691 0.991 0.998 0.226 1.000 0.128 0.226 1.000 1.000	Genot cohord <i>F</i> 1.480 1.369 0.397 0.414 1.240 1.267 Genot cohord <i>F</i> 0.311 0.114 0.253 0.420 0.438 0.420 0.438 0.430 0.438 0.430 0.438 0.538 0.633 0.137 0.255 0.593 0.179 0.648	ype × p value 0.237 0.264 0.675 0.298 0.290 ype × p value 0.734 0.893 0.774 0.893 0.774 0.663 0.663 0.6639 0.6639 0.6639 0.6639 0.6659 0.5571 0.551 0.552 0.527 0.555	Power 0.301 0.281 0.113 0.258 0.263 Power 0.097 0.066 0.088 0.114 0.072 0.101 0.117 0.169 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.115 0.111 0.115 0.111 0.111 0.111 0.258 0.263	Pairwis compa WT vs Het - 0.805 0.374 0.829 Pairwis compa 0.374 0.829 Pairwis compa 0.374 0.829 - 0.138 - - 0.138 - - - - - - - - - - - - - - - - - - -	se irrisons WT vs KO - 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 - 0.009 - 0.009 - - 0.009 - - - - - - - - - - - - - - - - - -	Het vs KO - 0.009 0.030 0.030 0.038 0.028 Het vs KO - 0.489 - - 0.489 - - 0.502 - - - - - - - - - - - - - - - - - - -
Free rears duration (s) Free rears number Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d2 Open arc entries, m Open arc entries, d2 Open arc rossing latency Close arc dipping number, d1 Close arc dipping number, d1 Close arc dipping number, d1 Close arc dipping time, d1	Test 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Nonnormal	WT 4.66 \pm 1.25 8.42 \pm 2.13 14.68 \pm 1.77 27.26 \pm 2.68 19.34 \pm 2.3 35.68 \pm 3.83 WT 428.66 \pm 18.61 448.33 \pm 20.43 438.5 \pm 18.27 166.03 \pm 18.25 143.08 \pm 21.29 154.55 \pm 18.53 4.08 \pm 0.85 6.95 \pm 1.95 4.61 \pm 1 48.47 \pm 4.88 42.42 \pm 5.18 45.44 \pm 4.16 39.29 \pm 13.16 149.34 \pm 34.87 51.73 \pm 6.81 31.94 \pm 3.01 41.84 \pm 4.31 131.15 \pm 14.57 94.51 \pm 10	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 3.74 \pm 0.98 25.36 \pm 18.5 5.55 \pm 1.95 50.52 \pm 4.46 36.52 \pm 4.83 43.52 \pm 4.04 47.08 \pm 31.35 139.69 \pm 35.2 55.42 \pm 6.48 28.94 \pm 3.69 42.5 \pm 4.48 145.82 \pm 14.24 100.08 \pm 13.98	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07 44.34 ± 5.81 22.99 ± 10.38 95.2 ± 32.99 51.47 ± 7.31 22.92 ± 10.38 95.2 ± 32.99 51.47 ± 7.31 22.92 ± 3.87 36.84 ± 5.05 117.88 ± 13.74 64.33 ± 12.46	Genoi F 1.159 0.837 5.023 3.576 3.240 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.863 0.820 0.969 1.207 1.278 0.300 3.140 3.063 1.207 1.238 0.310 0.303 2.182 0.303 0.304 0.3	ype p value 0.322 0.439 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.672 0.303 0.156 0.308 0.166 0.308 0.308 0.328 0.574 0.381 0.735 0.457 0.740 0.381 0.378 0.381 0.312	Power 0.243 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369 0.182 0.205 0.251 0.257 0.072 0.072 0.077 0.078 0.096 0.425 0.096 0.425	Cohort F 0.036 1.928 1.924 1.9306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378 14.588 19.130 24.720 0.684 1.515 54.807 54.920 94.671 57.892 26.004	 <i>ρ</i> value 0.850 0.161 0.000 0.425 0.000 	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 0.886 0.1000 0.999 0.843 0.663 0.999 0.843 0.911 0.911 0.913 0.991 0.912 0.991 0.991 0.128 0.912 0.912 0.914 0.915 0.911 0.911 0.915 0.911 0.911 0.911 0.912 0.911 0.912 0.912 0.911 0.999 0.912 0.999 0.912 0.911 0.909 0.912 0.909 0.912 0.909 0.912 0.909 0.912 0.909 0.912 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.9090 0.9090 0.9090 0.9090 0.9090 0.9090 0.9090 0.9090 0.9090 0.9090 0.9090 0.9090 0.9090 0.9090 0.9090 0.0000 0.0000 0.9090 0.0000 0.9090 0.0000 0.00000000	Genot cohord <i>F</i> 1.480 0.397 0.414 1.240 1.267 Genot cohord <i>F</i> 0.311 0.114 0.253 0.420 0.438 0.746 0.538 0.633 0.137 0.447 1.282 0.035 0.538 0.179 0.648 0.342	ype × p value 0.237 0.264 0.290 0.290 ype × p value 0.734 0.893 0.774 0.863 0.774 0.663 0.298 0.290 0.734 0.653 0.653 0.653 0.6559 0.6551 0.6551 0.657 0.5551 0.657 0.5551 0.657 0.577 0.557 0.577 0.577 0.577	Power 0.301 0.281 0.113 0.258 0.263 0.263 0.263 0.088 0.114 0.072 0.101 0.117 0.169 0.114 0.172 0.101 0.134 0.134 0.134 0.265 0.145 0.265 0.145 0.076 0.0153 0.153 0.152	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa VT vs - - 0.138 - - - - - - - - - - - - - - - - - - -	se irrisons WT vs KO - - 0.045 0.040	Het vs KO - - 0.009 0.030 0.030 0.038 0.028 Het vs KO - 0.489 - - 0.489 - - - - - - - - - - - - - - - - - - -
Free rears duration (s) Free rears number Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d1 Open arc entries, d2 Open arc crossing latency Close arc dipping number, d1 Close arc dipping number, d1 Close arc dipping time, d2 Close arc dipping time, d2 Close arc dipping time, d2	Test 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.53 4.08 ± 0.85 6.95 ± 1.95 4.61 ± 1 48.47 ± 4.88 42.42 ± 5.18 45.44 ± 4.16 39.29 ± 13.16 149.34 ± 34.87 51.73 ± 6.81 31.15 ± 14.57 94.51 ± 10 112.83 ± 11.57	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 3.74 \pm 0.98 25.36 \pm 18.5 5.55 \pm 1.95 50.52 \pm 4.46 36.52 \pm 4.83 43.52 \pm 4.04 47.08 \pm 31.35 139.69 \pm 35.2 55.42 \pm 6.48 28.94 \pm 3.69 42.5 \pm 4.48 145.82 \pm 14.24 100.08 \pm 13.98 124.49 \pm 12.37	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07 44.34 ± 5.81 22.99 ± 10.38 95.2 ± 32.99 51.47 ± 7.31 22.29 ± 3.74 6.84 ± 5.05 117.88 ± 13.74 64.33 ± 12.46 91.1 ± 10.18	Genoi F 1.159 0.837 5.023 3.576 3.240 3.240 Genoi F 0.400 3.652 1.917 0.562 3.063 1.863 0.920 0.3692 1.207 1.278 0.310 0.310 0.310 0.310 0.310 0.303 2.182 0.239 0.984 2.111 2.386 0.984 2.111	ype p value 0.322 0.439 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.672 0.303 0.574 0.056 0.457 0.308 0.308 0.308 0.308 0.308 0.308 0.457 0.308 0.308 0.308 0.457 0.308 0.308 0.457 0.308 0.308 0.308 0.457 0.308 0.457 0.308 0.308 0.457 0.308 0.308 0.457 0.308 0.308 0.308 0.457 0.308 0.457 0.308 0.457 0.308 0.457 0.308 0.457 0.308 0.457 0.308 0.457 0.308 0.457 0.308 0.457 0.457 0.308 0.308 0.457 0.457 0.308 0.308 0.457 0	Power 0.243 0.186 0.793 0.638 0.578 0.592 Power 0.111 0.646 0.379 0.138 0.566 0.369 0.182 0.251 0.251 0.257 0.072 0.072 0.072 0.072 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.079 0.178 0.0790000000000	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378 19.130 24.720 0.684 1.515 54.807 54.920 94.671 57.892 26.004 72.826 74.920 94.671 57.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892 26.004 75.892	 <i>ρ</i> value 0.850 0.171 0.000 0.425 0.000 0.001 0.000 0.002 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 0.886 0.128 0.999 0.843 0.999 0.843 0.991 0.999 0.886 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.993 0.991 0.993 0.993 0.991 0.993 0.991 0.991 0.993 0.993 0.993 0.993 0.991 0.993 0.993 0.991 0.000 0.999 0.993 0.991 0.000 0.999 0.000 0.991 0.000 0.999 0.000 0.999 0.000 0.990 0.000 0.990 0.000 0.990 0.000 0.990 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.000000	Genot cohord <i>F</i> 1.480 0.397 0.414 1.240 1.267 Genot cohord <i>F</i> 0.311 0.114 0.253 0.420 0.438 0.746 0.538 0.746 0.538 0.746 0.395 0.395 0.397 0.447 1.282 0.395 0.593 0.137	ype × p value 0.237 0.264 0.675 0.663 0.298 0.290 ype × value 0.734 0.893 0.774 0.863 0.774 0.860 0.713 0.648 0.479 0.557 0.862 0.287 0.712 0.450 0.527 0.712 0.452 0.557 0.551 0.672 0.557 0.557 0.712 0.452 0.557	Power 0.301 0.281 0.113 0.258 0.263 Power 0.097 0.066 0.088 0.114 0.072 0.101 0.117 0.169 0.134 0.072 0.134 0.134 0.072 0.134 0.075 0.134 0.075 0.145 0.0155 0.102 0.153 0.153	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa VT vs Het - 0.138 - - 0.138 - - - 0.194 - - - - - - - - - - - - - - - - - - -	se irrisons WT vs KO 0.0450	Het vs KO - - 0.009 0.030 0.030 0.038 0.028 - - - - - - - - - - - - - - - - - - -
Free rears duration (s) Free rears number Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d2 Open arc entries, d2 Open arc crossing latency Close arc dipping number, d1 Close arc dipping number, d1 Close arc dipping time, d2 Close arc dipping time, d4 Close arc dipping time d4 Close arc dipping time d4 Close arc d1 Close arc d1	Test 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Nonnormal	WT 4.66 ± 1.25 8.42 ± 2.13 14.68 ± 1.77 27.26 ± 2.68 19.34 ± 2.3 35.68 ± 3.83 WT 428.66 ± 18.61 448.33 ± 20.43 438.5 ± 18.27 166.03 ± 18.25 143.08 ± 21.29 154.55 ± 18.53 4.08 ± 0.85 6.95 ± 1.95 4.61 ± 1 48.47 ± 4.88 42.42 ± 5.18 45.44 ± 4.16 39.29 ± 13.16 149.34 ± 34.87 51.73 ± 6.81 31.15 ± 14.57 94.51 ± 10 112.83 ± 11.57 27.15 ± 3.63	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 3.74 \pm 0.98 25.36 \pm 18.5 5.55 \pm 1.95 50.52 \pm 4.46 36.52 \pm 4.83 43.52 \pm 4.04 47.08 \pm 31.35 139.69 \pm 35.2 55.42 \pm 6.48 28.94 \pm 3.69 42.5 \pm 4.48 145.82 \pm 14.24 100.08 \pm 13.98 124.49 \pm 12.37 20.26 \pm 2.46	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07 44.34 ± 5.81 22.99 ± 10.38 95.2 ± 32.99 51.47 ± 7.31 22.21 ± 3.87 36.84 ± 5.05 117.88 ± 13.74 64.33 ± 12.46 91.1 ± 10.18 19.5 ± 3.92 8.84 + 2.54	Genoi F 1.159 0.837 5.023 3.576 3.240 3.240 Genoi F 0.400 3.652 1.917 0.562 1.917 0.562 0.303 1.207 1.238 0.150 0.310 0.300 0.310 0.303 0.240 0.303 1.227 1.238 0.120 0.303 0.240 0.303 0.240 0.303 0.240 0.303 0.240 0.303 0.240 0.303 0.240 0.305 0.240 0.305 0.257 0.2	ype p value 0.322 0.439 0.052 0.052 0.052 0.052 0.052 0.052 0.057 0.672 0.303 0.574 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.457 0.740 0.381 0.152 0.457 0.740 0.381 0.152 0.457 0.740 0.381 0.152 0.457 0.740 0.395 0.457 0.740 0.395 0.457 0.740 0.395 0.457 0.740 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.388 0.574 0.457 0.388 0.457 0.388 0.574 0.457 0.388 0.574 0.388 0.574 0.457 0.388 0.574 0.457 0.388 0.457 0.457 0.457 0.388 0.574 0.457 0.588 0.548 0.588 0.514 0.588 0.514 0.588 0.514 0.588 0.514 0.588 0.514 0.578 0.388 0.512 0.457 0.388 0.388 0.398 0.398 0.398 0.397 0.398 0.398 0.397 0.397 0.398 0.397 0.397 0.397 0.398 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.397 0.398 0.398 0.397 0.398 0.397 0.398 0.398 0.391 0.397 0.398 0.398 0.398 0.391 0.398 0.391 0.398 0.391 0.398 0.391 0.398 0.391 0.398 0.391 0.398 0.391 0.395 0.3988 0.3988 0.3988 0.3988 0.3988 0.3988 0.3988 0	Power 0.243 0.186 0.793 0.578 0.578 0.578 0.578 0.578 0.592 Power 0.111 0.646 0.369 0.138 0.250 0.251 0.257 0.0720 0.0720 0.0720000000000	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378 19.300 24.720 0.684 15.55 54.807 54.920 94.671 57.892 26.004 72.828 8.140 17.131 17.135 17.155 1	ρ value 0.850 0.165 0.000 0.425 0.000 0.425 0.000	Power 0.054 0.283 0.275 0.991 0.124 0.976 Power 0.952 1.000 0.886 0.128 0.683 0.999 0.843 0.999 0.843 0.999 0.943 0.999 0.911 0.992 0.991 0.991 0.991 0.992 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.992 0.991 0.991 0.991 0.991 0.991 0.992 0.991 0.999 0.886 0.991 0.991 0.991 0.999 0.886 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.999 0.886 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.993 0.991 0.993 0.991 0.993 0.991 0.993 0.993 0.993 0.999 0.993 0.991 0.999 0.993 0.999 0.993 0.999 0.993 0.999 0.993 0.999 0.993 0.999 0.000 0.999 0.000 0.999 0.0000 0.999 0.0000 0.999 0.0000 0.999 0.0000 0.999 0.0000 0.0000 0.0000 0.00000000	Genot cohord <i>F</i> 1.480 0.397 0.414 1.240 1.267 Genot cohord <i>F</i> 0.311 0.114 0.253 0.420 0.438 0.746 0.538 0.746 0.538 0.746 0.395 0.603 0.137 0.447 0.253 0.395 0.603 0.137 0.442 0.395 0.648 0.392 0.392 0.392	ype × p value 0.237 0.264 0.675 0.663 0.298 0.298 0.290 ype × value 0.734 0.893 0.774 0.863 0.774 0.860 0.713 0.648 0.479 0.557 0.862 0.287 0.712 0.450 0.527 0.712 0.450 0.571 0.712 0.450 0.571 0.712 0.450 0.571 0.712 0.450 0.571 0.712 0.450 0.571 0.712 0.571 0.712 0.571 0.712 0.571 0.712 0.571 0.712 0.571 0.712 0.571 0.712 0.571 0.712 0.571 0.712 0.712 0.571 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.712 0.771 0.712	Power 0.301 0.281 0.113 0.258 0.263 Power 0.097 0.066 0.088 0.114 0.072 0.101 0.117 0.169 0.134 0.072 0.110 0.134 0.072 0.110 0.134 0.070 0.113 0.115 0.110 0.115 0.110 0.115 0.110 0.115 0.110 0.111 0.115 0.111 0.111 0.111 0.111 0.111 0.258 0.263	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa VT vs Het - 0.138 - - 0.138 - - - 0.194 - - - - - - - - - - - - - - - - - - -	se virisons WT vs KO - - 0.045 0.045 0.045 0.045 0.045 0.045 0.045 - - - - - - - - - - - - -	Het vs KO - - 0.009 0.030 0.030 0.038 0.028 Het vs - - - - - - - - - - - - - - - - - - -
Free rears duration (s) Free rears number Wall rears number All rears number All rears number Zero-maze Closed arc time, d1 Closed arc time, d2 Closed arc time, d2 Closed arc time, d1 Open arc time, d1 Open arc time, d1 Open arc time, d1 Close/open time, d1 Close/open time, d1 Close/open time, d2 Open arc entries, d2 Open arc entries, d2 Open arc entries, d1 Open arc entries, d2 Open arc entries, d2 Close arc dipping number, d1 Close arc dipping number, d1 Close arc dipping number, d1 Close arc dipping time, d2 Close arc dipping time, d2 Close arc dipping number, d2 Open arc dipping number, d2 Open arc dipping number, d2	Test 2wANOVA	Data structure Nonnormal Nonnormal Nonnormal Nonnormal Nonnormal Normal Normal Normal Nonnormal	WT $\begin{array}{l} 4.66 \pm 1.25 \\ 8.42 \pm 2.13 \\ 14.68 \pm 1.77 \\ 27.26 \pm 2.68 \\ 19.34 \pm 2.3 \\ 35.68 \pm 3.83 \\\end{array}$ WT $\begin{array}{l} 428.66 \pm 18.61 \\ 448.33 \pm 20.43 \\ 438.5 \pm 18.27 \\ 166.03 \pm 18.25 \\ 143.08 \pm 21.29 \\ 154.55 \pm 18.53 \\ 4.08 \pm 0.85 \\ 6.95 \pm 1.95 \\ 4.61 \pm 1 \\ 48.47 \pm 4.88 \\ 42.42 \pm 5.18 \\ 45.44 \pm 4.16 \\ 39.29 \pm 13.16 \\ 149.34 \pm 34.87 \\ 51.73 \pm 6.81 \\ 31.94 \pm 3.01 \\ 41.84 \pm 4.31 \\ 131.15 \pm 14.57 \\ 94.51 \pm 10 \\ 112.83 \pm 11.57 \\ 27.15 \pm 3.63 \\ 16.94 \pm 3.04 \\ 22.05 \pm 3.15 \\ \end{array}$	Het 7.93 \pm 1.62 10.63 \pm 1.66 16.13 \pm 2.02 27.52 \pm 2.86 24.07 \pm 3.01 38.15 \pm 3.94 Het 441.68 \pm 13.82 492.29 \pm 16.58 466.99 \pm 13.34 153.09 \pm 13.6 102.14 \pm 16.74 127.61 \pm 13.25 3.74 \pm 0.98 25.36 \pm 18.5 5.55 \pm 1.95 50.52 \pm 4.46 36.52 \pm 4.83 43.52 \pm 4.04 47.08 \pm 31.35 139.69 \pm 3.52 55.42 \pm 6.48 28.94 \pm 3.69 42.5 \pm 4.48 145.82 \pm 14.24 100.08 \pm 13.98 124.49 \pm 12.37 20.26 \pm 2.46 12.22 \pm 2.34 16.97 \pm 2.15	KO 6.18 ± 1.48 7.57 ± 1.21 9.01 ± 0.84 19.36 ± 1.88 15.2 ± 1.99 26.94 ± 2.08 KO 456.86 ± 18.31 487.59 ± 29.63 472.23 ± 20.15 134.72 ± 17.99 78.39 ± 17.83 106.56 ± 16.4 5.76 ± 1.6 28.98 ± 11.02 8.57 ± 2.42 59.36 ± 7.73 29.31 ± 5.07 44.34 ± 5.81 22.99 ± 10.38 95.2 ± 32.99 51.47 ± 7.31 22.21 ± 3.87 36.84 ± 5.05 11.788 ± 13.74 64.33 ± 12.46 91.1 ± 10.18 19.5 ± 3.92 8.84 ± 2.54 14 ± 2.9	Genoi F 1.159 0.837 5.023 3.576 3.240 3.240 Genoi F 0.400 3.652 1.917 0.562 1.917 0.562 1.917 0.562 0.303 1.863 0.820 0.369 1.207 1.238 0.150 0.310 0.303 2.182 0.390 0.390 0.390 0.390 0.391 0.392 0.392 0.393 0.525 0.310 0.964 0.303 0.1207 1.238 0.1207 1.238 0.140 0.303 2.182 0.395 0	ype p value 0.322 0.439 0.052 0.052 0.052 0.052 0.052 0.052 0.056 0.166 0.447 0.387 0.755 0.299 0.861 0.735 0.457 0.740 0.457 0.740 0.381 0.735 0.138	Power 0.243 0.186 0.793 0.638 0.578 0.578 0.572 Power 0.111 0.646 0.369 0.138 0.266 0.369 0.138 0.257 0.072 0.073 0.078 0.078 0.078 0.078 0.078 0.0792	Cohort F 0.036 1.988 1.924 19.306 0.646 16.104 Cohort F 13.684 36.459 28.873 10.417 37.315 26.343 9.172 5.901 11.378 14.588 19.130 24.720 0.684 15.55 54.807 54.920 94.671 57.892 26.004 72.828 8.140 17.231 6.721 6.722 6.721 7.315 7.822 7.822 7.825 7.725 7.825 7.725 7.825 7.755 7.7	ρ value 0.850 0.165 0.000 0.425 0.000 0.425 0.000	Power 0.054 0.283 0.275 0.991 0.991 0.124 0.976 Power 0.952 1.000 0.886 0.999 0.843 0.999 0.843 0.999 0.843 0.991 0.963 0.999 1.000 0.999 1.000 0.999 1.000 0.799 1.000 0.799 0.982	Genot cohord <i>F</i> 1.480 0.397 0.414 1.240 1.267 Genot cohord <i>F</i> 0.311 0.114 0.253 0.420 0.438 0.746 0.538 0.746 0.538 0.746 0.395 0.395 0.395 0.397 0.447 1.282 0.395 0.395 0.395 0.395 0.395 0.392 0.395 0.392 0.392 0.392 0.395 0.	ype × p value 0.237 0.264 0.675 0.663 0.298 0.298 0.290 ype × value 0.734 0.893 0.774 0.893 0.774 0.860 0.713 0.648 0.479 0.551 0.872 0.652 0.552 0.552 0.552 0.652 0.552 0.552 0.552 0.552 0.552 0.652 0.552 0.552 0.652 0.552 0.652 0.552 0.652 0.552 0.552 0.652 0.552 0.652 0.552 0.652 0.552 0.652 0.552 0.652 0.552 0.652 0.552 0.652 0.552 0.652 0.552 0.652 0.552 0.552 0.552 0.652 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.552 0.652 0.552	Power 0.301 0.281 0.113 0.258 0.263 Power 0.097 0.066 0.088 0.114 0.072 0.101 0.117 0.169 0.134 0.072 0.119 0.265 0.143 0.070 0.119 0.265 0.143 0.070 0.113 0.110 0.155 0.120 0.153 0.153	Pairwis compa WT vs Het - 0.805 0.996 0.374 0.829 Pairwis compa VT vs - 0.138 - - 0.138 - - 0.138 - - - 0.194 - - - - - - - - - - - - - - - - - - -	se irrisons WT vs KO 0.0450	Het vs KO - - 0.009 0.030 0.030 0.038 0.028 Het vs - - - - - - - - - - - - - - - - - - -

Zero-maze																	
		Data WT He			KO K				Cohort			Genotyp cohort	e ×		Pairwise comparis	sons	
	Test	Data structure	WT	Het	KO	F	p value	Power	F	p value	Power	F	p value	Power	WT vs Het	WT vs KO	Het vs KO
Open arc dipping time, d1	2wANOVA	Nonnormal	62.85 ± 10.83	42.28 ± 5.15	25.57 ± 5.27	5.700	0.006	0.843	13.928	0.000	0.955	1.730	0.188	0.346	0.091	0.001	0.245
Open arc dipping time, d2	2wANOVA	Nonnormal	51.3 ± 10.52	35.3 ± 8.44	$17.87~\pm~5.34$	3.798	0.029	0.665	20.104	0.000	0.993	0.427	0.655	0.115	0.278	0.008	0.269
Open arc dipping time, m	2wANOVA	Nonnormal	57.07 ± 9.63	39.17 ± 5.86	21.72 ± 4.71	6.448	0.003	0.886	23.422	0.000	0.997	1.299	0.282	0.268	0.088	0.001	0.157
Time open vs close, d1	Test	Data structure				All F	All <i>p</i> value	Power	WT F	WT p value	Power	Het F	Het <i>p</i> value	Power	KO F	KO p value	Power
- Zone	rMeasures	Sph.ass				277.319	0.000	1.000	73.861	0.000	1.000	125.301	0.000	1.000	83.255	0.000	1.000
- Cohort	rMeasures	Sph.ass				8.156	0.006	0.935	5.563	0.031	0.604	8.257	0.011	0.773	3.298	0.087	0.403
- Zone $ imes$ cohort	rMeasures	Sph.ass				12.518	0.001	0.801	7.248	0.015	0.718	3.063	0.098	0.379	2.143	0.161	0.282
Time open vs close, d2	Test	Data structure				All F	All <i>p</i> value	Power	WT F	WT p value	Power	Het F	Het <i>p</i> value	Power	KO F	KO p value	Power
- Zone	rMeasures	Sph.ass				440.281	0.000	1.000	94.767	0.000	1.000	278.317	0.000	1.000	119.843	0.000	1.000
- Cohort	rMeasures	Sph.ass				0.578	0.450	0.218	1.269	0.276	0.186	2.497	0.132	0.320	0.921	0.351	0.148
- Zone $ imes$ cohort	rMeasures	Sph.ass				25.848	0.000	1.000	12.054	0.003	0.905	18.624	0.000	0.982	3.749	0.070	0.447
Time open vs close, m	Test	Data structure				All F	All <i>p</i> value	Power	WT F	WT p value	Power	Het F	Het <i>p</i> value	Power	KO F	KO p value	Power
- Zone	rMeasures	Sph.ass				440.281	0.000	1.000	103.409	0.000	1.000	274.392	0.000	1.000	131.582	0.000	1.000
- Cohort	rMeasures	Sph.ass				0.578	0.450	0.116	0.006	0.941	0.051	0.422	0.524	0.094	0.484	0.496	0.101
- Zone $ imes$ cohort	rMeasures	Sph.ass				25.848	0.000	0.999	11.720	0.003	0.897	12.720	0.002	0.919	3.786	0.068	0.451

WT, wild-type mice; Het, heterozygous mice; KO, homozygous knock-out mice. Group values are reported as mean \pm SEM. Bold font indicates significant results (p < 0.05). Individual results and statistical analyses for cohorts 1 and 2 are available in Extended Data Table 13-1. 2wANOVA: 2-way ANOVA, rMeasures: repeated measures, Norm: normal, No-norm: non-normal, Sph.ass: sphericity assumed, Sph.viol: sphericity violated, gen: genotype, coh: cohort, d1: day 1, d2: day 2, m: day 1 - day 2 mean. 2wANOVA: 2-way ANOVA, rMeasures: repeated measures, Sph.ass: sphericity assumed, Sph.viol: sphericity violated, gen: genotype, coh: cohort, d1: day 1, d2: day 2, m: day 1 - day 2 mean.

verely. Difficulties in fine motor coordination have been described in $\Delta 4$ -9 and $\Delta 11$ *Shank3*-deficient mice (Wang et al., 2011; Drapeau et al., 2014; Vicidomini et al., 2017) and were confirmed in the current study. In addition, our homozygous mice were strongly impaired in the hanging test, the hindlimb placing test and the inverted screen and had small gait abnormalities.

Hypersensitivity or hyposensitivity to sensory stimuli is frequently observed in PMS and ASD patients (Klintwall et al., 2011; Phelan and Betancur, 2011). However, little was known regarding the sensory abilities of Shank3deficient mice. No deficits were reported in Δ 4-9 or Δ 4-22 animals for either olfaction, audition, vision, neuromuscular reflexes or pain sensitivity (Bozdagi et al., 2010; Wang et al., 2011, 2016b; Yang et al., 2012). Normal pre-pulse inhibition was observed in many models including Δ 4-9, Δ 13, Δ 21, and Δ 4-22 *Shank*3-deficient mice (Yang et al., 2012; Kouser et al., 2013; Wang et al., 2016b; Jaramillo et al., 2017) even if decreased pre-pulse inhibition was reported in in lines with point mutations in exon 21 (Zhou et al., 2016). Here, we observed that Shank $3^{\Delta 4-22}$ homozygous mice have no strong visual deficits, and normal neuromuscular reflexes, but are hyper-reactive in response to handling and tactile stimuli. In addition, we observed a delay in the acquisition of the startle response in newborns and a decrease of the startle response in both heterozygous and homozygous adults. Since social behavior strongly relies on olfaction in rodents, we used different behavioral paradigms to evaluate our model. Interestingly, Shank3^{$\Delta 4-22$} homozygous mice had a low interest for nonsocial olfactory stimuli as shown by deficits in the buried food test and by low amount of sniffing during the olfactory habituation/dishabituation paradigm. However. Shank3¹⁴⁻²²-deficient mice were able to discriminate odors in the test for social transmission of food preference or to show interest for social stimuli during olfactory habituation/dishabituation, suggesting that they do not have anosmia but rather show reduced interest in nonsocial scents, which can be overcome when adding a social component.

One of the defining features of autism is the impairment of social interactions that can manifest by deficits in social approach, reciprocal social interactions and/or verbal and nonverbal communication. Mild social deficits have been reported, however with variability, in some of the previous studies of PMS mouse models (Fig. 11). In one of the most commonly used test, the three-chambered social approach test, no differences between the genotypes were reported in Δ 4-9. Δ 4-7. and Δ 9 models (Peca et al., 2011: Yang et al., 2012; Drapeau et al., 2014; Lee et al., 2015), while social deficits characterized by a lack of preference for a social stimulus were reported the models targeting Δ 11, Δ 13, or Δ 13-16 deletions (Peça et al., 2011; Duffney et al., 2015; Mei et al., 2016; Jaramillo et al., 2017; Luo et al., 2017; Vicidomini et al., 2017). Conflicting results were reported for $\Delta 21$ models (Kouser et al., 2013; Duffney et al., 2015; Speed et al., 2015; Bidinosti et al., 2016; Zhou et al., 2016). Interestingly, consistent with Wang et al., 2016b and colleagues' study, we observed only minimal social deficit in our Δ 4-22 model. All genotypes had a similar preference for social stimulus in the three-chambered social approach test or the social transmission of food preference and only trends toward a decrease of interaction time and vocalization were found during male-female social interactions. Rodent social behavior is highly influenced by experimental conditions such as the animals' age, housing conditions, or animals handling and that can explain differences observed between cohorts of animals with identical or similar alterations of the Shank3 gene. While not representative of

Figure 10. Anxiety-like behavior in *Shank3*^{$\Delta 4-22$}-deficient mice. **A**, Thigmotaxic behavior in open field. No genotype differences were found for the time spent in the center of the open field, the time spent close to the chamber walls (borders), or their ratio. **B**, Vertical activity in open field. The cumulated time spend in free standing rears and rears against the walls of the open field were both counted. When compared to wild-type and heterozygotes littermates, *Shank3*^{$\Delta 4-22$} homozygous mice displayed decreased rearing activity due to a decrease of wall rears rather than free standing rears. **C**, *Shank3*^{$\Delta 4-22$} homozygous mice spent a lower amount of time in the open area when compared to wild-type and heterozygous mice. Similarly, the number of head dipping from the open arcs to the outside of the maze was reduced in *Shank3*^{$\Delta 4-22$} homozygous mice; Het, heterozygous mice; KO, homozygous knock-out mice. *p < 0.05, **p < 0.1, ***p < 0.001.

typical autism, this subtle behavior can reflect the phenotype of many patients with PMS. Indeed, unlike patients with idiopathic ASD, individuals with PMS show preserved responses to social communication cues (Soorya et al., 2013; Wang et al., 2016a) and roughly equal orienting to social versus nonsocial stimuli, despite meeting criteria for ASD. Moreover, the fact that not all individuals with PMS are diagnosed with ASD indicates that animal models for PMS should not necessarily present with strong social behavioral deficits. As the expression and

Figure 11. Main features and comorbidities associated with Phelan–McDermid displayed by different mouse models with *Shank3* deficits. Green indicates an absence of genotype difference. Blue indicates a decrease of the associated behavior in *Shank3*-deficient animals. Red indicates an increase of the associated behavior in *Shank3*-deficient animals. Gray indicates the behavior has not been studied in the corresponding article. Age column: d = days, w = weeks, m = months, * indicates that only the age at the beginning of the testing was provided.

alternative splicing of Shank3 isoforms and even their subcellular distribution has been shown to be cell-type specific, activity dependent, and regionally and developmentally regulated (Wang et al., 2014), these differences also raise the possibility that different Shank3 isoforms could make distinct contributions to the phenotype of PMS and suggests that Shank3c and Shank3d (affected by deletions containing exons 11-16) could be particularly involved in the regulation of social behavior compared to isoforms Shank3a, Shank3b, or Shank3a/b that are disrupted by deletions of exons 4-9. The apparent absence of social deficit in the models with a complete deletion of Shank3 could be explained by the fact that those animals have a strong aversion for objects and be interpreted as an avoidance of the chamber containing the object rather than a real social preference.

One of the strongest phenotype observed in the current study was indeed an active avoidance of inanimate objects. In the novel object recognition test, lack of preference for a novel object had previously been observed in two lines of Δ 4-9 mice (Wang et al., 2011; Yang et al., 2012) but not in a third line (Jaramillo et al., 2016) nor in $\Delta 9$ Shank3-deficient mice (Lee et al., 2015). However, in the present study, homozygous animals had very little interactions with both familiar and novel object making it impossible to properly compare novelty preference. Instead, they mostly spent their time in the corners of the open field away from the objects. Surprisingly, similar avoidance behavior was observed in the marble burying test and in the repetitive novel object contact task. We also observed a strong decrease of direct interactions with the applicator in the olfactory habituation/dishabituation test and a reduction of the quality of the nests build by Shank3^{$\Delta 4-22$}-deficient animals with some mice even leaving the building material fully untouched. Some studies have reported that children with autism respond to novelty with avoidance behaviors and patients with PMS have enhanced reactivity to novel environments and reduced interest for objects. Decrease of marble burying has been consistently been described in other models of Shank3 deficiency as were nest building impairments $(\Delta 11, \Delta 13, \Delta 21, \text{ and exon } 21 \text{ point mutations; Kouser})$ et al., 2013; Speed et al., 2015; Bidinosti et al., 2016; Jaramillo et al., 2017; Vicidomini et al., 2017). While we have shown that those animals are hypoactive and have significant motor deficits that could impact behavioral assays relying on exploratory locomotion, it is unlikely that this avoidance behavior is attributable to impaired motor activity or poor motivation as homozygous mice have normal pattern of investigation in an empty open field and actively avoid objects or even escape from the cages by jumping out while they will not escape from an empty cage or a cage containing an unfamiliar mouse. Furthermore, the number of escape attempts increased in relation with the number of objects present in the cage. In addition to this escape behavior, a high level of impulsivity was observed for adult homozygous mice in the beam walking test and for both newborn and adult homozygous mice in the negative geotaxis test.

Stereotypies, repetitive behaviors with restricted interests and resistance to change form the second set of core symptoms of ASD. Excessive grooming with or without development of skin lesions is the most commonly observed repetitive behavior in rodents. Repetitive/compulsive grooming has been reported in most of the previously published *Shank3* mouse models (Fig. 11) while skin lesions where noticed only in some of them (Δ 4-9, Δ 11, Δ 13-16, Δ 21, and point mutations in exon 21; Peça et al.,

2011; Schmeisser et al., 2012; Drapeau et al., 2014; Mei et al., 2016; Zhou et al., 2016) suggesting different levels of severity. The homozygous mice from Wang et al. (2016b) displayed both increased grooming and development of skin lesions. However, in the present study, even if we did occasionally observe some bald patches with or without skin lesions in our oldest animals all genotypes were impacted and group differences where only found for the grooming behavior. Our Shank $3^{\Delta 4-22}$ -deficient mice also engaged more frequently in other stereotyped and repetitive behaviors. By contrast, we did not observe any perseveration in the Y-maze nor object or pattern preference in the repetitive novel object contact task. To investigate both cognitive flexibility and insistence on sameness our animals were tested in the Barnes maze. The initial training showed a delay in the acquisition of the task in homozygous mice but after 4 d of training all genotypes had comparable performances and spent similar amount of time in the target quadrant during a probe test. Mice were then retrained after moving the escape box. Our homozygous mice exhibited impaired cognitive flexibility characterized by a delay in the time needed to learn the new rule and by a similar preference for either the reversal target quadrant or the initial target quadrant during the probe test; heterozygous mice had an intermediate phenotype. This suggests that Shank3 deficiency increases susceptibility to proactive interference, a deficit associated with prefrontal cortex dysfunction. Similar reversal impairments have been published in either the Morris water maze or T-maze in Δ 4-9, Δ 11, Δ 21, point mutations, or Δ 4-22 mice (Wang et al., 2011; Kouser et al., 2013; Speed et al., 2015; Wang et al., 2016b; Vicidomini et al., 2017) while other models had comparable results for all genotypes (Δ 4-9, Δ 9; Yang et al., 2012; Lee et al., 2015; Jaramillo et al., 2016).

Because a majority of patients with SHANK3 mutation/ deletion exhibit some degree of ID, our animals were also tested for short-term memory by examining spontaneous alternation behavior in the Y-maze and for hippocampal or amygdala-dependent memories using contextual and cued fear conditioning. As in other models investigated (Δ 4-9 and point insertions; Drapeau et al., 2014; Zhou et al., 2016), we found no differences in performance in the Y-maze spontaneous alternation test suggesting normal basic working memory. Neither contextual nor cued memories had been found to be affected by genotype in any of the previously published exon specific models (Δ 4-9; Yang et al., 2012; Drapeau et al., 2014; Jaramillo et al., 2016) while a small increase of freezing was noticed in Δ 4-22 homozygous mice during contextual recall (Wang et al., 2016b). Interestingly, in our new mouse model, we observed distinct responses to each phase of the testing. While not different at first during the pre-training habituation phase, the level of freezing quickly decreased in wild-type and heterozygous mice but not in the homozygous animals, likely reflecting a higher anxiety level. On presentation of the sound/shock associations, the increase of freezing was significantly more noted in homozygous mice. Remarkably, the opposite was observed during the contextual recall thus demonstrating an impairment of hippocampo dependent memory in homozygous animals, while the same mice displayed increased freezing on the presentation of sounds during the amygdaladependent cued recall.

These region-specific alterations of behavior suggest that different Shank3 deletions could alter different neuronal circuits through the modulation of the expression of different Shank3 isoforms. The Shank3b isoform (present in the $\Delta 21$ mouse models) is expressed at low level throughout the brain, while a regional specificity was observed for the other Shank3 isoforms. Shank3a (absent in all the mouse models) and *Shank3e* (absent only in $\Delta 21$ and complete gene models) are highly expressed in the striatum but are low in the olfactory bulb and the cerebellum. In contrast, *Shank3c* (absent in $\Delta 9$, $\Delta 4$ -7, $\Delta 4$ -9, and complete gene models) and *Shank3d* (absent in Δ 13-16, Δ 21, and complete gene models) are predominantly enriched in the cerebellum (Wang et al., 2014). Specific subcategories of learning and memory behaviors have only been studied in limited number of previous models. Heterozygous $\Delta 21$ mice lacking the cerebellum-specific Shank3c and Shank3d isoforms as well as Shank3e and Shank3f isoforms exhibit impaired eye-blink conditioning, a cerebellar-dependent learning task (Kloth et al., 2015). Δ13-16 Shank3-deficient mice are impaired in pairwise visual discrimination learning in the automated touchscreen task depending on normal functions of interconnected cortical and subcortical regions (Copping et al., 2017). Finally, Δ 4-22 homozygous mice have deficits in a striatal-dependent instrumental learning task (Wang et al., 2016b). Further studies examining the extend of impairment of region-specific behaviors will be required to fully understand the relationships between brain circuitry, Shank3 isoforms expression, and behavior.

Altogether, the hyper-reactivity to handling and tactile stimuli, the impulsivity, the object neophobia, the escape behavior, the increased freezing response in the pretraining phase of the fear conditioning and in cued retrieval suggest high levels of anxiety in our mouse model. Hyperactivity and anxiety symptoms are other common features of PMS (Dhar et al., 2010; Soorya et al., 2013; Sarasua et al., 2014a). In previously published models, analysis of anxiety-like behavior measured either elevated mazes, in the open fields or in dark/light emergence boxes have demonstrated a relationship between the targeted isoforms and the manifestations of anxiety likebehavior. While little differences were observed in mouse models with Δ 4-9, Δ 4-7, Δ 9, and Δ 11 deletions (Peça et al., 2011; Wang et al., 2011; Schmeisser et al., 2012; Yang et al., 2012; Drapeau et al., 2014; Lee et al., 2015; Jaramillo et al., 2016; Reim et al., 2017; Vicidomini et al., 2017) increased levels of anxiety were reported in mice with $\Delta 13$, $\Delta 13$ -16, and $\Delta 21$ deletions or point mutations (Peça et al., 2011; Kouser et al., 2013; Speed et al., 2015; Mei et al., 2016; Zhou et al., 2016; Copping et al., 2017; Jaramillo et al., 2017). Increased levels of anxiety were confirmed in the light-dark emergence test and in the open field in the Δ 4-22 mouse model from Wang et al., 2016b and colleagues and in the elevated maze and in the open field in our model.

In conclusion, our complete Shank $3^{\Delta 4-22}$ mouse line provides a new and improved genetic model for studying mechanisms underlying ASD and PMS and is characterized both by better construct and face validities than previously reported lines of Shank3 mutants. Our in-depth behavioral characterization revealed behavioral features that reflect those observed in PMS and therefore suggest a greater potential as a translational model. Mice with a complete deletion of Shank3 are more severely affected than previously published mouse models with a partial deletion. Both sensory and motor disabilities were detected in neonate and adult mice. Shank $3^{\Delta 4-22}$ -deficient mice showed modest deficits in social behavior, reflected in reduced male to female anogenital sniffing and ultrasonic vocalization, but no major deficits in social preference in the three-chambered social interaction task. These findings are consistent with an independently generated mouse model (Wang et al., 2016b). Also in agreement with Wang's study, our Shank3⁴⁻²² mice showed increased anxiety and hyper-reactivity to novel stimuli, increased escape behaviors, and increased repetitive behaviors. Together with the increased freezing behavior in the cued fear conditioning, this suggest a dysregulation of amygdala circuitry that will require further investigation. In addition, our mice displayed impairments in several hippocampal-dependent learning and memory tests as well as cognitive inflexibility, thus recapitulating ID and insistence on sameness observed in autism and in the majority of patients with PMS. Although PMS patients are heterozygous for Shank3 mutations/deletions, most of the previous models have failed to demonstrate any relevant phenotype in heterozygous animals. Here, we were able to observe an intermediate phenotype for heterozygous mice in several of the parameters tested, notably in the open field, rotarod, startle response, escape behavior, reversal probe test, and elevated zero-maze. Heterozygous animals being less affected than their homozygous, we hypothesize that more challenging paradigms, for example by introducing a variable reward probability in tests such as the Barnes maze, would allow us to further highlight differences in heterozygous animals. Past studies have often failed to replicate behavioral phenotype even in models with very similar Shank3 disruption or in different cohorts from the same model. The concordant findings from two independently derived and analyzed Shank3 mouse models, including the comparison of two independent cohorts in our laboratory, demonstrate, for the first time, strong reproducibility and validity for a genetically modified mouse model of PMS, providing a valuable model for further investigations of the neurobiological basis of PMS and ASD.

References

- Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93:74–104. CrossRef
- Benthani F, Tran PN, Currey N, Ng I, Giry-Laterriere M, Carey L, Kohonen-Corish MR, Pangon L (2015) Proteogenomic analysis identifies a novel human SHANK3 isoform. Int J Mol Sci 16:11522– 11530. CrossRef

- Beri S, Tonna N, Menozzi G, Bonaglia MC, Sala C, Giorda R (2007) DNA methylation regulates tissue-specific expression of Shank3. J Neurochem 101:1380–1391. CrossRef
- Betancur C, Buxbaum JD (2013) SHANK3 haploinsufficiency: a "common" but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism 4:17. CrossRef
- Bidinosti M, Botta P, Krüttner S, Proenca CC, Stoehr N, Bernhard M, Fruh I, Mueller M, Bonenfant D, Voshol H, Carbone W, Neal SJ, McTighe SM, Roma G, Dolmetsch RE, Porter JA, Caroni P, Bouwmeester T, Lüthi A, Galimberti I (2016) CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 351:1199–1203. CrossRef
- Bonaglia MC, Giorda R, Beri S, De Agostini C, Novara F, Fichera M, Grillo L, Galesi O, Vetro A, Ciccone R, Bonati MT, Giglio S, Guerrini R, Osimani S, Marelli S, Zucca C, Grasso R, Borgatti R, Mani E, Motta C, et al. (2011) Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/Mc-Dermid syndrome. PLoS Genet 7:e1002173. CrossRef
- Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, Kajiwara Y, Yang M, Katz AM, Scattoni ML, Harris MJ, Saxena R, Silverman JL, Crawley JN, Zhou Q, Hof PR, Buxbaum JD (2010) Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 1:15. CrossRef
- Carter RJ, Morton J, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci Chapter 8:Unit 8.12.
- Copping NA, Berg EL, Foley GM, Schaffler MD, Onaga BL, Buscher N, Silverman JL, Yang M (2017) Touchscreen learning deficits and normal social approach behavior in the Shank3B model of Phelan-McDermid syndrome and autism. Neuroscience 345:155–165. CrossRef
- Cusmano-Ozog K, Manning MA, Hoyme HE (2007) 22q13.3 deletion syndrome: a recognizable malformation syndrome associated with marked speech and language delay. Am J Med Genet C Semin Med Genet 145C:393–398. CrossRef
- Deacon RM (2006) Assessing nest building in mice. Nat Protoc 1:1117–1119. CrossRef Medline
- De Rubeis S, Siper PM, Durkin A, Weissman J, Muratet F, Halpern D, Trelles MDP, Frank Y, Lozano R, Wang AT, Holder JL Jr, Betancur C, Buxbaum JD, Kolevzon A (2018) Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol Autism 9:31. CrossRef
- Dhar SU, del Gaudio D, German JR, Peters SU, Ou Z, Bader PI, Berg JS, Blazo M, Brown CW, Graham BH, Grebe TA, Lalani S, Irons M, Sparagana S, Williams M, Phillips JA 3rd, Beaudet AL, Stankiewicz P, Patel A, Cheung SW, et al. (2010) 22q13.3 deletion syndrome: clinical and molecular analysis using array CGH. Am J Med Genet A 152A:573–581. CrossRef
- Drapeau E, Dorr NP, Elder GA, Buxbaum JD (2014) Absence of strong strain effects in behavioral analyses of Shank3-deficient mice. Dis Model Mech 7:667–681. CrossRef Medline
- Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, Qin L, Ma K, Dietz DM, Kajiwara Y, Buxbaum JD, Yan Z (2015) Autism-like deficits in Shank3-deficient mice are rescued by targeting actin regulators. Cell Rep 11:1400–1413. CrossRef
- Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, et al. (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27. CrossRef
- Fox WM (1965) Reflex-ontogeny and behavioural development of the mouse. Anim Behav 13:234–241. Medline
- Harony-Nicolas H, Kay M, Hoffmann JD, Klein ME, Bozdagi-Gunal O, Riad M, Daskalakis NP, Sonar S, Castillo PE, Hof PR, Shapiro ML, Baxter MG, Wagner S, Buxbaum JD (2017) Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3deficient rat. Elife 6. CrossRef

- Heyser CJ (2004) Assessment of developmental milestones in rodents. Curr Protoc Neurosci Chapter 8:Unit 8.18.
- Jaramillo TC, Speed HE, Xuan Z, Reimers JM, Liu S, Powell CM (2016) Altered striatal synaptic function and abnormal behaviour in Shank3 Exon4-9 deletion mouse model of autism. Autism Res 9:350–375. CrossRef
- Jaramillo TC, Speed HE, Xuan Z, Reimers JM, Escamilla CO, Weaver TP, Liu S, Filonova I, Powell CM (2017) Novel Shank3 mutant exhibits behaviors with face validity for autism and altered striatal and hippocampal function. Autism Res 10:42–65. CrossRef
- Klintwall L, Holm A, Eriksson M, Carlsson LH, Olsson MB, Hedvall A, Gillberg C, Fernell E (2011) Sensory abnormalities in autism. A brief report. Res Dev Disabil 32:795–800. CrossRef Medline
- Kloth AD, Badura A, Li A, Cherskov A, Connolly SG, Giovannucci A, Bangash MA, Grasselli G, Peñagarikano O, Piochon C, Tsai PT, Geschwind DH, Hansel C, Sahin M, Takumi T, Worley PF, Wang SS (2015) Cerebellar associative sensory learning defects in five mouse autism models. Elife 4:e06085. CrossRef
- Kouser M, Speed HE, Dewey CM, Reimers JM, Widman AJ, Gupta N, Liu S, Jaramillo TC, Bangash M, Xiao B, Worley PF, Powell CM (2013) Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J Neurosci 33:18448–18468. CrossRef
- Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, Giuliano F, Stordeur C, Depienne C, Mouzat K, Pinto D, Howe J, Lemière N, Durand CM, Guibert J, Ey E, Toro R, Peyre H, Mathieu A, Amsellem F, et al. (2014) Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 10:e1004580. CrossRef
- Lee J, Chung C, Ha S, Lee D, Kim DY, Kim H, Kim E (2015) Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front Cell Neurosci 9:94. CrossRef
- Li C, Schaefer M, Gray C, Yang Y, Furmanski O, Liu S, Worley P, Mintz CD, Tao F, Johns RA (2017) Sensitivity to isoflurane anesthesia increases in autism spectrum disorder Shank3+/c mutant mouse model. Neurotoxicol Teratol 60:69–74. CrossRef
- Luciani JJ, de Mas P, Depetris D, Mignon-Ravix C, Bottani A, Prieur M, Jonveaux P, Philippe A, Bourrouillou G, de Martinville B, Delobel B, Vallee L, Croquette MF, Mattei MG (2003) Telomeric 22q13 deletions resulting from rings, simple deletions, and translocations: cytogenetic, molecular, and clinical analyses of 32 new observations. J Med Genet 40:690–696. CrossRef
- Luo J, Feng Q, Wei L, Luo M (2017) Optogenetic activation of dorsal raphe neurons rescues the autistic-like social deficits in Shank3 knockout mice. Cell Res 27:950–953.
- Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, et al. (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257. CrossRef
- Mei Y, Monteiro P, Zhou Y, Kim JA, Gao X, Fu Z, Feng G (2016) Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature 530:481–484. CrossRef Medline
- Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81:1289–1297. CrossRef Medline
- Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303–314. CrossRef
- Pearson BL, Pobbe RL, Defensor EB, Oasay L, Bolivar VJ, Blanchard DC, Blanchard RJ (2011) Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism. Genes Brain Behav 10:228–235. CrossRef
- Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display

autistic-like behaviours and striatal dysfunction. Nature 472:437-442. CrossRef

- Phelan K, Betancur C (2011) Clinical utility gene card for: deletion 22q13 syndrome. Eur J Hum Genet 19.
- Phelan K, McDermid HE (2012) The 22q13.3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol 2:186–201. Medline Medline
- Reim D, Distler U, Halbedl S, Verpelli C, Sala C, Bockmann J, Tenzer S, Boeckers TM, Schmeisser MJ (2017) Proteomic analysis of post-synaptic density fractions from Shank3 mutant mice reveals brain region specific changes relevant to autism spectrum disorder. Front Mol Neurosci 10:26. CrossRef
- Sarasua SM, Boccuto L, Sharp JL, Dwivedi A, Chen CF, Rollins JD, Rogers RC, Phelan K, DuPont BR (2014a) Clinical and genomic evaluation of 201 patients with Phelan-McDermid syndrome. Hum Genet 133:847–859. CrossRef Medline
- Sarasua SM, Dwivedi A, Boccuto L, Chen CF, Sharp JL, Rollins JD, Collins JS, Rogers RC, Phelan K, DuPont BR (2014b) 22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay, and physical features in Phelan-McDermid syndrome. Genet Med 16:318–328. CrossRef
- Scattoni ML, Ricceri L, Crawley JN (2011) Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. Genes Brain Behav 10:44–56. CrossRef Medline
- Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, Janssen AL, Udvardi PT, Shiban E, Spilker C, Balschun D, Skryabin BV, Dieck St, Smalla KH, Montag D, Leblond CS, Faure P, Torquet N, Le Sourd AM, Toro R, et al. (2012) Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486:256–260. CrossRef Medline
- Soorya L, Kolevzon A, Zweifach J, Lim T, Dobry Y, Schwartz L, Frank Y, Wang AT, Cai G, Parkhomenko E, Halpern D, Grodberg D, Angarita B, Willner JP, Yang A, Canitano R, Chaplin W, Betancur C, Buxbaum JD (2013) Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism 4:18. CrossRef
- Speed HE, Kouser M, Xuan Z, Reimers JM, Ochoa CF, Gupta N, Liu S, Powell CM (2015) Autism-associated insertion mutation (InsG) of Shank3 exon 21 causes impaired synaptic transmission and behavioral deficits. J Neurosci 35:9648–9665. CrossRef
- Steinbach JM, Garza ET, Ryan BC (2016) Novel object exploration as a potential assay for higher order repetitive behaviors in mice. J Vis Exp
- Sykes NH, Toma C, Wilson N, Volpi EV, Sousa I, Pagnamenta AT, Tancredi R, Battaglia A, Maestrini E, Bailey AJ, Monaco AP; International Molecular Genetic Study of Autism Consortium (IMGSAC) (2009) Copy number variation and association analysis of SHANK3 as a candidate gene for autism in the IMGSAC collection. Eur J Hum Genet 17:1347–1353. CrossRef Medline
- Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R (2009) Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology (Berl) 204:361–373. CrossRef
- Vicidomini C, Ponzoni L, Lim D, Schmeisser MJ, Reim D, Morello N, Orellana D, Tozzi A, Durante V, Scalmani P, Mantegazza M, Genazzani AA, Giustetto M, Sala M, Calabresi P, Boeckers TM, Sala C, Verpelli C (2017) Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry 22:784.
- Waga C, Asano H, Sanagi T, Suzuki E, Nakamura Y, Tsuchiya A, Itoh M, Goto Y, Kohsaka S, Uchino S (2014) Identification of two novel Shank3 transcripts in the developing mouse neocortex. J Neurochem 128:280–293. Medline
- Wang AT, Lim T, Jamison J, Bush L, Soorya LV, Tavassoli T, Siper PM, Buxbaum JD, Kolevzon A (2016a) Neural selectivity for communicative auditory signals in Phelan-McDermid syndrome. J Neurodev Disord 8:5. CrossRef

- Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, Kim CJ, Berrios J, Colvin JS, Bousquet-Moore D, Lorenzo I, Wu G, Weinberg RJ, Ehlers MD, Philpot BD, Beaudet AL, Wetsel WC, Jiang YH (2011) Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 20:3093–3108. CrossRef
- Wang X, Xu Q, Bey AL, Lee Y, Jiang YH (2014) Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Mol Autism 5:30. CrossRef
- Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, Duffney LJ, Kumar S, Mague SD, Hulbert SW, Dutta N, Hayrapetyan V, Yu C, Gaidis E, Zhao S, Ding JD, Xu Q, Chung L, Rodriguiz RM, Wang F, et al. (2016b) Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun 7:11459. CrossRef
- Wrenn CC, Harris AP, Saavedra MC, Crawley JN (2003) Social transmission of food preference in mice: methodology and application to galanin-overexpressing transgenic mice. Behav Neurosci 117:21–31. CrossRef

- Yang M, Crawley JN (2009) Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci Chapter 8:Unit 8.24.
- Yang M, Bozdagi O, Scattoni ML, Wöhr M, Roullet FI, Katz AM, Abrams DN, Kalikhman D, Simon H, Woldeyohannes L, Zhang JY, Harris MJ, Saxena R, Silverman JL, Buxbaum JD, Crawley JN (2012) Reduced excitatory neurotransmission and mild autismrelevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 32:6525–6541. CrossRef
- Zhou Y, Kaiser T, Monteiro P, Zhang X, Van der Goes MS, Wang D, Barak B, Zeng M, Li C, Lu C, Wells M, Amaya A, Nguyen S, Lewis M, Sanjana N, Zhou Y, Zhang M, Zhang F, Fu Z, Feng G (2016) Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron 89:147–162. CrossRef
- Zhu L, Wang X, Li XL, Towers A, Cao X, Wang P, Bowman R, Yang H, Goldstein J, Li YJ, et al. (2014) Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet 23:1563–1578. CrossRef Medline