
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18624  | https://doi.org/10.1038/s41598-020-75180-9

www.nature.com/scientificreports

Combining multiple spatial 
statistics enhances the description 
of immune cell localisation 
within tumours
Joshua A. Bull1*, Philip S. Macklin2, Tom Quaiser3, Franziska Braun3, Sarah L. Waters4, 
Chris W. Pugh2 & Helen M. Byrne1

Digital pathology enables computational analysis algorithms to be applied at scale to histological 
images. An example is the identification of immune cells within solid tumours. Image analysis 
algorithms can extract precise cell locations from immunohistochemistry slides, but the resulting 
spatial coordinates, or point patterns, can be difficult to interpret. Since localisation of immune 
cells within tumours may reflect their functional status and correlates with patient prognosis, novel 
descriptors of their spatial distributions are of biological and clinical interest. A range of spatial 
statistics have been used to analyse such point patterns but, individually, these approaches only 
partially describe complex immune cell distributions. In this study, we apply three spatial statistics 
to locations of CD68+ macrophages within human head and neck tumours, and show that images 
grouped semi-quantitatively by a pathologist share similar statistics. We generate a synthetic dataset 
which emulates human samples and use it to demonstrate that combining multiple spatial statistics 
with a maximum likelihood approach better predicts human classifications than any single statistic. 
We can also estimate the error associated with our classifications. Importantly, this methodology 
is adaptable and can be extended to other histological investigations or applied to point patterns 
outside of histology.

The importance of the immune response to tumour biology and therapy is increasingly recognised and improved 
understanding is required. Immune responses are multifaceted, with different functions being mediated by 
individual leukocyte sub-types. These leukocyte sub-types (and some aspects of their function) are defined 
by the expression of unique proteins. The location within tumour material of these proteins, and thus the cells 
expressing them, can be identified by immunohistochemistry1. Since approximately 50% of a tumour is composed 
of host-derived stroma, knowledge of which immune cells infiltrate the regions occupied by malignant cells is 
key to understanding their function in influencing tumour biology2–4. In this study we use as an exemplar the 
distribution of cells expressing CD68, a protein expressed by macrophages.

In current clinical practice assessment of leukocyte infiltration into tumours is undertaken by highly trained 
histopathologists using semi-quantitative approaches. Detailed analysis is limited by the effort required to make 
the measurements, concerns over inter-observer variability and uncertainty about how to handle the manifest 
biological variability present in tumour material. Despite these issues, current estimates of leukocyte infiltra-
tion provide clinically useful information that is both helpful in predicting prognosis and guiding treatment 
decisions5–7. It is likely that deeper analysis would reveal currently untapped information, providing an impetus 
to develop methods that are more quantitative and can be automated.

Digital pathology provides new opportunities to improve and automate tasks8,9 such as cell counting10,11, iden-
tifying structures within tumours12,13, and classification and scoring of routine clinical parameters14–16. However, 
it introduces new challenges related to the size of imaging datasets and variability of staining from slide to slide17. 
While existing open source18–21 and commercial software alternatives can be used to extract (x, y)-coordinates of 
cell centres, we use a pipeline which allows relatively robust and facile identification of cell locations (described 
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in the Supplementary Information, Sects. A, B). The availability of (x, y)-coordinates for each cell of a given type 
allows their distribution to be described using spatial statistics. Individual spatial statistics provide quantitative 
mathematical descriptions which have varying degrees of correlation with histopathological classifications22–30. 
Importantly, we show that by combining spatial statistical descriptions of this data we can automatically derive 
information which is comparable to that currently reported by a pathologist and more accurate than that obtained 
using a single spatial statistic.

Differences in tissue architecture, cellular morphology and staining intensity permit manual discrimination 
between tumour cell nests and adjacent stroma in histology images. However, automated tissue compartmentali-
sation is not straightforward. Whilst several hand-crafted machine learning approaches have been developed31–33, 
this task may be best performed through deep learning34–36, a technique that is not yet routinely available. There-
fore, our statistical method considers only the (x, y)-coordinates of the point patterns formed by cell centres and 
does not depend upon the identification of the tumour/stroma boundary. Furthermore, by using only (x, y)-
coordinates of cell centres there is also no requirement for multiplex immunohistochemistry or depletion of 
tumour tissue by labelling adjacent histological sections for other markers, although the methodology described 
here can be easily adapted to incorporate additional information generated by such approaches.

The approaches we describe provide a route to explore extra information about leukocyte distribution that 
is not specifically captured by current pathology classifications. Examples could include heterogeneity of infil-
tration (explored in this report), cellular co-localisation and position relative to tumour micro-environmental 
measures. By providing precise quantitation, this methodology will allow the underlying biological significance 
and mechanisms to be explored and hopefully be of both scientific and clinical utility.

Methodology
Datasets.  We consider two types of point patterns; cell centroids extracted from human head and neck can-
cer IHC slides, and computer generated synthetic infiltration patterns. Other tumour types are discussed in the 
Supplementary Information (Sect. F).

Head and neck cancer: regions of interest.  A cohort of 16 resected human head and neck tumours was stained 
to show macrophage locations (CD68+). 4  μm sections were cut from formalin-fixed paraffin embedded tissue 
blocks of 16 cases of human head and neck squamous cell carcinoma. The sections underwent immunohisto-
chemistry staining on a Leica BOND-MAX automated staining machine (Leica Biosystems). Briefly, sections 
were deparaffinized, underwent epitope retrieval and endogenous peroxidase activity was blocked with 3% 
hydrogen peroxide (5 min). Subsequently, sections were incubated with the primary antibody (30 min) fol-
lowed by post-primary and polymer reagents (8 min each). Next, 3,3′-Diaminobenzidine (DAB) chromogen was 
applied (10 min) and slides were counterstained with haematoxylin (all reagents included within the BOND Pol-
ymer Refine Detection kit, Leica Biosystems, catalogue no. DS9800). The following primary antibody was used 
during staining: CD68 (mouse monoclonal, clone PG-M1), Agilent Technologies, UK (catalogue no. M087601-
2), 1:200 concentration. The positive control sample comprised a section of human tonsil tissue. Stained slides 
were scanned at ×200 magnification using the NanoZoomer S210 digital slide scanner (Hamamatsu). Whole 
slide images were reviewed by a pathologist (PSM) who annotated tumour regions and any artefactual changes. 
Non-overlapping 1.5 mm × 1.5 mm regions of interest (ROIs) were then randomly sampled from within the 
tumour region on each slide until the region was saturated. This resulted in 549 1.5 mm × 1.5 mm ROIs from 
across the cohort. Centroids of CD68+ cells were extracted from each ROI using a custom image analysis pipe-
line (see Supplementary Information, Sects. A, B).

As previously reported37, patients were approached and informed consent obtained for use of their tissue. 
Access to these tissue samples for this study was approved under Oxford Radcliffe Biobank (ORB) research tissue 
bank ethics, reference 09/H0606/5+5 (approved by the National Research Ethics Service [NRES] Committee 
South Central—Oxford C). All experimental protocols were approved prospectively by the ORB committee and 
subsequently conducted in accordance with its conditions and those of NRES.

Synthetic datasets.  The process for generating synthetic data is described in detail in the Supplementary 
Information, Sect. D. Briefly, we use Gaussian random fields to divide each 1.5 mm × 1.5 mm square into two 
compartments representing stroma and tumour cell nests. The relative widths of tumour cell nests and stromal 
structures within the artificial tumour geometries are defined by a characteristic tumour cell nest length scale 
l. An artificial geometry is accepted only if at least 25% of its area is covered by each compartment (tumour or 
stroma). The number of points in each compartment of the synthetic ROI is controlled to maintain a specified 
overall cell density d cells per mm2 (the impact of varying l and d on point patterns is explored in Sect. G of the 
Supplementary Information). The relative density of simulated immune cells in the tumour cell nest ( dt ) and the 
stroma ( ds ), is controlled by a parameter ρ = dt

ds
 which further restricts point placement: low values of ρ generate 

patterns for which the majority of points are excluded from the tumour cell nest, while values close to 1 generate 
patterns for which points are uniformly distributed across both regions. Candidate points are sampled randomly 
from the ROI, and accepted if they do not invalidate these criteria. Points are also rejected if they fall within an 
exclusion radius of 20 μM of any other point, representing approximately one cell diameter.

The macrophage density across the cohort of head and neck ROIs is approximately normally distributed with 
mean 333 cells per mm2 and standard deviation 170 cells per mm2. We therefore sample values of d from this 
distribution when generating synthetic data for testing and validation. We reject distributions having d < 150 
cells per mm2 to ensure reasonable cell densities when calculating spatial statistics (lower densities are discussed 
in the Supplementary Information, Sect. E). We construct a training dataset by generating at least 1200 point 
clouds for values of ρ in the interval [0, 0.5] (increments = 0.02), and l sampled uniformly from the interval 
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[0.1 mm; 0.75 mm]. A separate validation dataset, comprising a further 3680 point clouds, was generated using 
the same method but with ρ sampled uniformly and at random from the interval [0, 0.5].

Spatial statistics.  We consider three spatial statistics: the pair correlation function (PCF), the spherical 
contact distribution (SCD) and the J-function. Figure 1 shows typical results when these statistics are applied to 
a ROI from the head and neck cancer dataset.

Pair correlation function, g(r).  The PCF (or radial distribution function)38–40 compares the average density of 
points against complete spatial randomness (CSR) across length scales. It has previously been used to estimate 
the length scales of emergent patterns in point clouds representing the locations of distinct cell types41. To gen-
erate the PCF, an annulus of width dr and radius r is placed around each point (Fig. 1c). The number of points 
within each annulus is calculated and normalised with respect to the expected number of points that would fall 
inside the annulus under CSR. This calculation is repeated for each point, and then the average value is recorded 
as a measure of whether points are more or less frequently observed at distance r from a point than expected 
under CSR. This is repeated for a range of r to generate the PCF, g(r). Figure 1d shows the PCF obtained from 
the point pattern in Fig. 1b. Further details, including handling of boundary conditions and edge effects, can be 
found in the Supplementary information, Sect. C. The PCF identifies clustering at distance r: g(r) > 1 indicates 
that pairs of points separated by distance r occur frequently, while g(r) < 1 indicates that pairs of points are less 
likely to be separated by distance r than under CSR. In the case of CSR generated through a Poisson process, 
g(r) ≡ 140. In the context of CD68+ macrophages, g(r) < 1 indicates that macrophages are rarely observed 
separated by radius r (occurring only at very small distances, r ≈ 0 in Fig. 1d. We interpret this as a minimum 
distance that cell centres must be separated by, corresponding approximately to the radius of a macrophage). 
g(r) > 1 indicates that macrophages are likely to be separated by distance r. This occurs for r < 0.2 mm in 
Fig. 1d, showing short-range clustering of macrophages.

Spherical contact distribution.  The SCD (or empty-space function)42,43 is closely related to the nearest-neigh-
bour distribution. Figure 1e–g show how the two functions are constructed. The nearest-neighbour distribution 

Figure 1.   (a) 1.5 mm × 1.5 mm ROI from the head and neck dataset in which the macrophages (CD68+) 
are stained brown and the tumour nests pale blue. (b) Point cloud of macrophage locations extracted from 
the image in (a). (c) Schematic showing calculation of the PCF, g(r). An annulus of width dr and radius r is 
placed around each point, and the density of points which fall within the annulus is calculated. This density is 
normalised by the expected density of points within the annulus under complete spatial randomness (CSR) 
to give g(r). (d) The PCF, g(r), for the point cloud in (b). (e) Schematic illustrating distances used to calculate 
the nearest neighbour (NN) distribution and spherical contact distribution (SCD); circles = cell centres; 
crosses = randomly chosen locations. The NN distribution describes the smallest distance between points 
in the point pattern (circle to circle: i, ii, radius shown as solid line) while the SCD describes distances from 
randomly chosen locations to points (cross to circle, iii, iv, v, radius shown as dashed line). (f) Nearest neighbour 
distribution (NN) and SCD for the point pattern in (b). (g) Cumulative distribution functions (CDFs) associated 
with the histograms in (f). The function G(r) is the NN distribution CDF, and F(r) is the CDF of the SCD. (h) 
The J-function for the point cloud in (b), calculated from the CDFs in (g). Fmax approximates the size of the 
largest void in the point pattern; it is the largest radius observed in the SCD [see location v in panel (e), where 
the dashed radius is Fmax for these points]. The J-function describes differences in the distribution of points 
from complete spatial randomness. For a given r, smaller values of J(r) suggest clustering, in that more cells will 
be found in a circle of radius r centred at a cell than in a randomly placed circle. Jmin describes how densely the 
cells are clustered across all possible length scales.
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[shown in Fig. 1f for the point pattern in Fig. 1b] is obtained by measuring the distance from each point to its 
nearest neighbour. The SCD is calculated in a similar way, but reference points are selected randomly from the 
ROI rather than from the point cloud. For each randomly chosen point, the distance to its nearest neighbour in 
the point cloud is added to the distribution. Each observation of radius r in the SCD corresponds to a circle of 
radius r containing no points. Examples of these circular voids can be seen in Fig. 1e, surrounding points iii, iv 
and v. In the context of CD68+ macrophages, observations at radius r in the SCD therefore indicate the absence 
of macrophages in a circle of radius r somewhere in the region.

J‑function, J(r).  The J-function is a non-parametric test for identifying clustering and dispersion in point 
patterns42. The J-function compares the cumulative density functions (CDFs) of the SCD, F(r), and the nearest-
neighbour distribution function, G(r), [shown in Fig. 1g for the point pattern in Fig. 1b], where

and

so that 0 ≤ F(r) ≤ 1 and 0 ≤ G(r) ≤ 1 . When calculating F(r) we choose the same number of reference points 
as there are points in the pattern to ensure that the denominators of Eqs. (1) and (2) are equal. The J-function 
is defined as:

Under CSR G(r) ≈ F(r) , and hence J(r) ≈ 1 . If J(r) > 1 then more points are found in a circle of radius r 
placed randomly in the domain than in a circle centred at one of the points, indicating dispersal of points within 
the point cloud. If J(r) < 1 then a disc of radius r centred on a point contains more points than a randomly 
placed disc, and we conclude that the points are clustered42. Figure 1h shows J(r) for the point pattern in Fig. 1b.

In the context of CD68+ macrophages, J(r) > 1 indicates dispersal of macrophages; this is observed at small 
values of r in Fig. 1h. As with the PCF in Fig. 1d, this indicates that macrophage cell centres are rarely separated 
by distances of less than 0.02 mm (i.e., the approximate radius of a macrophage.) J(r) < 1 indicates clustering 
of macrophages, which we see at length scales up to approximately 0.2 mm, again correlating with the PCF.

Summary statistics.  We record three features of the spatial statistics: the peak of the PCF, gmax ; the value 
r at which F(r) = 1 , Fmax ; and, the minimum value of the J-function, Jmin . These features have the following 
interpretations:

•	 gmax := max(g) . g(r) describes the expected density of points at distance r from another point, compared to 
CSR. Hence gmax describes the maximum intensity of point clustering over all radii r.

•	 Fmax := min(r) such that F(r) = 1 . Fmax approximates the radius of the largest circular void in the point 
distribution. As macrophages start to infiltrate into these ‘immune deserts’ in greater numbers, the voids in 
the point pattern should reduce in size, and Fmax will also decrease.

•	 Jmin := min(J) . As J(0) = 1 and J ≥ 0 , we have 0 ≤ Jmin ≤ 1 . Smaller values of Jmin indicate that a larger 
number of macrophages are closer to other macrophages than to randomly selected points (i.e., denser cell 
clustering).

Maximum likelihood estimation.  We conduct maximum likelihood estimation (MLE) based on obser-
vations of gmax , Fmax and Jmin in order to predict ρ for a given synthetic point pattern. While the likelihood can 
be estimated directly from the empirical distributions, we instead approximate distributions of gmax , Fmax and 
Jmin using a normal distribution for each ρ . The mean and standard deviation (SD) of these distributions is well 
approximated using exponential functions of ρ (shown in Fig. 3b–d). This approximation ensures that the maxi-
mum likelihood predictions vary monotonically with gmax , Fmax or Jmin . This approximation is discussed in the 
Supplementary Information, Sect. H. As we assume that for each ρ the distributions of gmax , Fmax and Jmin are 
normal, the log likelihood, ln(L) , can be calculated directly as:

when only one spatial statistic is used, where µ and σ are the mean and SD of the distribution of the statistic, and x 
is the value of the statistic. When observations from k different statistics are combined, Eq. (4) generalises to give:

where x is the vector of observations, µ is the vector of the means of the distributions and � is the covariance 
matrix. While µ and σ are functions of ρ (Supplementary Information, Sect. H), � must be estimated from the 
empirical data.

(1)F(r) =
Number of randomly chosen reference points within distance r of a target point

Number of randomly chosen reference points
,

(2)G(r) =
Number of points within distance r of another point

Number of points
,

(3)J(r) =
1− G(r)

1− F(r)
.

(4)ln L = −0.5

(

ln (2πσ 2)+
(x − µ)2

σ 2

)

(5)ln L = −0.5
(

ln |�| + (x − µ)T�−1(x − µ)+ k ln (2π)
)
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For each ρ we generate a k-dimensional grid containing ln L at evenly spaced values of the spatial statistics. 
These grids are stacked to form a k + 1 dimensional lookup table. For an observation of k spatial statistics, the 
closest grid points are taken and the profile likelihood is identified from the remaining dimension. The MLE for 
ρ , which we denote η , is then estimated. A 95% confidence interval around η can be found by identifying where 
the profile log likelihood is above the threshold η − 0.5 ln (χ2(0.95, 1)) , where χ2(0.95, 1) is the 0.95 quantile of 
the chi-squared distribution with 1 degree of freedom44,45.

Results
Application of spatial statistics to histological samples.  We analysed 549 1.5 mm × 1.5 mm regions 
of interest (ROIs), taken from 16 human head and neck tumour slides stained to show macrophage locations 
(CD68+). 100 ROIs were randomly selected for manual evaluation by a pathologist as containing “very low”, 
“low”, “moderate” or “high” CD68+ macrophage infiltration into tumour cell nests, with 11 subsequently 
excluded from analysis for containing artefacts such as weak staining or damaged tissue. The pathologist graded 
CD68+ macrophage infiltration into tumour nests, irrespective of the overall immune cell infiltration within 
the ROI and without controlling for tumour nest size. CD68+ macrophage point clouds extracted from the 
remaining 89 ROIs were analysed using the PCF, SCD and J-function. Representative ROIs and point clouds are 
presented in Fig. 2a, while Fig. 2b,c show the PCFs and J-functions.

The shapes of the PCF and J-function are similar for different ROIs, but properties of the curves change with 
increasing infiltration (Fig. 2b,c). For each ROI, the PCF is initially low ( g(r) < 1 when r < 20µm ), in keeping 
with volume-exclusion of cell centroids meaning that macrophages are unlikely to be observed within approxi-
mately one cell diameter of one another. This is typically followed by a peak ( g(r) > 1 ), suggesting short-range 
clustering.

As r increases the PCF decays towards 1 (grey dotted line), showing decreasing colocalisation between 
macrophages at larger length scales. The maximum value of the PCF ( gmax , indicated by ‘*’ and dashed lines) 
decreases with increased macrophage infiltration and decays more rapidly to its asymptotic value. These trends 
show that increased infiltration implies a more homogeneous distribution of macrophages across a ROI.

The J-function reveals similar behaviour (see Fig. 2c). After an initial peak associated with exclusion of points 
at r < 20µm , the J-function drops below 1 to a minimum value Jmin (indicated by ‘+’ and horizontal dashed 
lines in Fig. 2) and then rises again. Jmin increases with increasing macrophage infiltration. This suggests that 
CD68+ cells in ROIs with higher infiltration are less densely clustered than in those with low infiltration. The 
J-function is defined only where F(r) < 1 ; we define this radius as Fmax (labelled with ‘*’ and vertical dashed 
lines in Fig. 2c). As r approaches Fmax , the J-function becomes infinite (see Fig. 2c), suggesting that the distance 
between a macrophage and its nearest neighbour is never larger than the radius of immune deserts in the IHC 
ROIs. ROIs with low infiltration contain large areas with no macrophages, and therefore have higher values of 
Fmax , than those with high infiltration.

Figure 2d shows that these trends persist across the 89 manually scored ROIs. The CD68+ macrophage 
density does not correlate with the manual scores. Both gmax and Fmax are negatively correlated with manual 
scores of increased CD68+ cell heterogeneity, whilst Jmin is positively correlated. There are insufficient scored 
samples to identify statistically significant differences between all of the categories, but these trends suggest that 
high gmax , high Fmax , and low Jmin are characteristic of ROIs with low macrophage infiltration. Figure 2e places 
these statistics into the context of those from the full, unscored dataset. Similarly scored ROIs exhibit similar 
combinations of spatial statistics, indicating that, with more labelled data, these descriptors could inform a clas-
sifier that predicts the manual scores. In practice, manually scoring ROIs is time consuming. Further, it may be 
impractical to obtain sufficient labelled data to train a classifier. We explain below how, in such circumstances, 
synthetic point patterns may be used as a surrogate for developing such a classifier.

Comparison of synthetic data with head and neck ROIs.  Figure 3a compares the head and neck 
ROIs with synthetically generated training data. The distributions of cell density d, gmax , Fmax and Jmin are in 
good agreement with those calculated from the IHC data. The combinations of spatial statistics observed in 
the head and neck ROIs are a subset of those in the synthetic data, suggesting that the distribution in a given 
ROI could be approximated by synthetic data with an appropriately chosen ρ . We note that the distributions of 
spatial statistics in the head and neck data are most similar to synthetic data generated with low ρ , suggesting 
that macrophages tend not to be distributed by CSR. Increasing ρ generates point patterns with spatial statistics 
similar to those from highly infiltrated ROIs (see Fig. 2). Figure 3a therefore suggests that ρ could be used as 
a label to describe infiltration in synthetic point patterns. Under this assumption, the synthetic training data 
could be used to identify relationships between spatial statistics and manual scores of IHC ROIs. Combinations 
of spatial statistics used to infer ρ for synthetic ROIs could also be used to stratify the IHC samples based on 
macrophage infiltration.

Figure 3b–d shows how varying ρ affects gmax , Fmax and Jmin in the synthetic training dataset. For fixed ρ 
observations of gmax , Fmax and Jmin are approximately normally distributed, and the mean and standard deviation 
(SD) of these distributions are well approximated by exponential functions of ρ (dashed lines in Fig. 3b–d; see 
Supplementary Information, Sect. H). This suggests that the mean and SD of the distributions of gmax , Fmax and 
Jmin can be estimated for any value of ρ ≤ 0.5 , including values not present in training data.

Inference of ρ for synthetic regions.  To test whether ρ can be inferred from observations of gmax , Fmax 
and Jmin , we predict ρ for 3680 point patterns in the synthetic testing dataset, where ρ is distributed uniformly at 
random across the interval [0,0.5]. We use maximum likelihood estimation based on observations of gmax , Fmax 
and Jmin to infer the value of ρ used to generate each point pattern. We denote the maximum likelihood estimate 
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Figure 2.   (a) 1.5 mm × 1.5 mm ROIs from human head and neck tumours assessed as having (i) very low, (ii) low, (iii) 
moderate, and (iv) high macrophage infiltration into tumour cell nests, with extracted point clouds. (b) PCFs for the point 
clouds in (a). As macrophage infiltration increases, the peak of the PCF ( gmax , marked ‘*’) tends towards 1. (c) J-functions for 
the point clouds in (a). As macrophage infiltration increases, the minimum of the J-function ( Jmin , marked ‘+’) tends towards 
1, while the domain of definition of the J-function ( Fmax , marked ‘*’) becomes smaller. (d) Distribution of d, gmax , Fmax 
and Jmin according to manual scoring of 89 ROIs. p values are the result of t-tests on adjacent boxplots. Macrophage density 
remains consistent across all scoring categories, but gmax and Fmax become smaller with increasing infiltration. Jmin appears 
to increase with macrophage infiltration. The differences in Fmax between low/moderate infiltration, and in Jmin between very 
low/low and moderate/high infiltration, are not significant for this dataset. ∗ : p < 0.05 , ∗∗ : p < 0.01 , ∗ ∗ ∗ : p < 0.001 . 
e Distributions (diagonal) and pairwise combinations (off-diagonal) of d, gmax , Fmax and Jmin observed in the head and neck 
dataset. The 89 labelled ROIs are coloured according to manual scoring, and the full unscored dataset of 549 ROIs is shown in 
black.
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(MLE) ηX , where X ⊆ [g , F, J] and g, F and J indicate the use of gmax , Fmax and Jmin respectively, giving seven 
possible combinations of spatial statistics to consider. This notation refers to particular instances of MLE predic-
tion, and we will use η with no subscript to refer to MLE predicted from any combination of spatial statistics.

Figure 4 shows the MLEs of η for different combinations of gmax , Fmax and Jmin for the same point patterns. 
Each marker corresponds to a different point pattern, and is coloured according to the width of the 95% con-
fidence interval around η . Predictions in Fig. 4a are based on observations of a single spatial statistic, those 
in Fig. 4b show predictions of pairwise combinations of the statistics, and Fig. 4c shows predictions made by 
combining observations of all three statistics. The distance of the predictions to the line ρ = ηX can be evalu-
ated using R2 . Predictions made based on individual spatial statistics, ηg , ηF and ηJ , are not strongly predictive 
[ R2 = 0.5387,R2 = 0.4698,R2 = 0.3033 respectively, Fig. 4a]. ηg generally overestimates ρ , but is the most accu-
rate of the single spatial statistics. ηF displays banding caused by rounding of observations of spatial statistics 
(see Supplementary Information, Sect. H). Estimates of η close to 0 have small confidence intervals. The width of 
confidence intervals is also narrow close to η = 0.5 as the range of possible η is restricted to the interval [0,0.5].

Predictions are improved by combining observations of the spatial statistics (Fig. 4b): the predicted 
values of ρ are more accurate and the confidence intervals associated with the predictions are smaller and 
more consistent over a range of values of ρ . For example, while ηJ is the least accurate predictor of the sin-
gle spatial statistics ( R2 = 0.3033 ), combining observations of Jmin and gmax or Fmax causes the 95% confi-
dence intervals associated with high values of η to become narrower. The most accurate classifier combin-
ing two statistics is ηg ,F , implying that combining the highest performing spatial statistics may result in a 
better performing classifier. We note that ηF,J performs worse than ηF and that as such care must be taken 
when combining observations of spatial statistics to ensure that the resulting classifier is improved. Com-
bining observations of all three statistics in ηg ,F,J yields the highest R2 value ( R2 = 0.8124 ), and confidence 
intervals which are more consistent across the whole range of ηg ,F,J than for other η (mean widths of 95% CI: 

Figure 3.   (a) Distributions (diagonal) and pairwise correlations (off-diagonal) for d, gmax , Fmax and Jmin . 
Statistics drawn from the IHC ROIs are shown in black. Other points represent synthetic ROIs in the training 
dataset and are coloured according to ρ . Distributions of cell density are similar for the head and neck data and 
all ranges of ρ in synthetic data. The statistics extracted from the head and neck data more closely resemble 
those of synthetic data with low ρ than high. (b–d) The effect of increasing the degree of infiltration, ρ , on (b) 
gmax , (c) Fmax and (d) Jmin in the synthetic training dataset. Points are the mean of at least 1200 repetitions of 
randomly generated point clouds. Vertical lines show the standard deviation, and dashed lines show the best 
fit of the means to an exponential function: (b) gmax = 1.34e−4.52ρ + 1.10 , (c) Fmax = 0.18e−9.16ρ + 0.09 , (d) 
Jmin = −2.04e−0.74ρ + 2.06.
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ηg = 0.256, ηF = 0.330, ηJ = 0.260, ηg ,F = 0.185, ηg ,J = 0.197, ηF,J = 0.268, ηg ,F,J = 0.171 ). Further, observa-
tions far from the line ηg ,F,J = ρ typically have wider confidence intervals than more accurately predicted values.

Automated labelling of histological regions.  The seven metrics ηX were applied to the 89 manually 
assessed head and neck ROIs. Figure 5a–c shows the resulting distributions of ηg , ηg ,F and ηg ,F,J , partitioned 
by manual score of CD68+ macrophage infiltration. Each classifier identifies statistically significant differ-
ences between the manual scoring categories. We note that the pathologist assigns discrete scores to each image 
whereas η is a continuous quantity. Consequently patterns which lie at class boundaries may be difficult to score. 
This may explain some of the overlap in predictions of η between classes. Other extreme predictions are more 
clearly outliers; the ROIs corresponding to these images are examined in the Supplementary Information, Sect. J.

We note that the ability of ηg ,F,J to distinguish between manual scores is not significantly greater than the 
ability of ηg ,F or ηg . However, in line with Fig. 4, the confidence intervals associated with η become narrower as 
observations of additional statistics are combined.

Figure 4.   Comparison of ρ against η , for 3680 synthetic point patterns. Points are coloured according to 
the width of the 95% confidence interval associated with the prediction. Conducting maximum likelihood 
estimation (MLE) based on observations of multiple statistics can increase prediction accuracy and tighten 
confidence intervals. R2 values measure deviation from the line ρ = η . (a) ρ based on observations of one 
spatial statistic. (b) ρ based on observations of two spatial statistics. (c) ρ based on observations of three spatial 
statistics.
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Figure 5d–f shows 95% confidence intervals around η for the three classifiers, coloured according to their 
manual score and ordered in increasing value of η . While Fig. 5a–c may suggest that ηg or ηg ,F most successfully 
distinguish between different manual categorisations, Fig. 5d indicates that predictions made by ηg tend to have 
wide confidence intervals. Combining statistics can reduce the width of the confidence intervals, as for ηg ,F , but 
as shown in Fig. 4, may also increase their width. Incorporating observations of Jmin into ηg ,F,J eliminates low 
values of η from the confidence intervals, suggesting that there may be benefits from the inclusion of spatial 
statistics which do not appear promising in their own right.

A similar analysis for the locations of CD8+ cells within the head and neck cancer dataset can be found in 
the Supplementary Information, Sect. K.

Discussion
Although pathologists’ training allows them to accurately assess immune cell distributions within tumours, 
it is infeasible manually to assess large numbers of images in a high throughput manner. Additionally, human 
assessment is qualitative or, at best, semi-quantitative in nature. Therefore, such a task requires the adoption 
of carefully calibrated digital image analysis and statistical approaches. Once accurate cell locations have been 
identified, application of spatial statistics can provide quantitative information about their spatial structure. 
Whilst individual spatial statistics may identify features such as clustering, it is less clear how these features relate 
to human descriptions of the complex patterns of immune cell distributions.

In this study, we investigated whether spatial statistics, individually or in combination, agreed with pathologi-
cal assessment of macrophage distributions within images of human head and neck cancer slides. We identified 
three summary features ( gmax , Fmax and Jmin ) which vary predictably with the distribution of macrophages. 
Although each metric correlates with increasing infiltration, there is substantial overlap in the ranges of these 
metrics and the semi-quantitative categories assigned by the pathologist. We conclude that while observation 
of a single metric is insufficient to discriminate between semi-quantitative categories assigned by a pathologist, 
it may be possible to discriminate between them by combining multiple statistics. In statistics and machine 
learning, including additional parameters in a model may cause overfitting, particularly when the same dataset 
is used for both testing and validation. While techniques exist to penalise models for overfitting based upon 
the number of parameters they consider46,47, in this manuscript the evaluation of the models is performed on 
an independent test set, which prevents selection bias and means that model complexity need not be explicitly 
accounted for when determining predictive accuracy. Introducing observations of additional statistics provides a 
more complete description of the point data, rather than causing overfitting due to increased model complexity.

Since manual assessment of histology images is time-consuming, it is difficult to leverage enough data to 
enable machine learning approaches. We therefore created synthetic datasets, designed to resemble those encoun-
tered in human samples but for which point dispersal is quantified by the parameter ρ . We used synthetic train-
ing data to determine the probability that a point pattern generated with a specific value of ρ would give rise to 
particular values of gmax , Fmax and Jmin . These probabilities allow estimation of ρ from a given point pattern via 
MLE, based on observations of one or more of gmax , Fmax and Jmin . In this approach, self-weighting ensures that 
a given metric contributes more to the likelihood function in images where its probability distribution is more 

Figure 5.   (a–c) Predicted values of ηg , ηg ,F and ηg ,F,J for the 89 manually scored head and neck ROIs. p-values 
determined using a two-sided t test and shown for adjacent boxplots only. (d–f): 95% confidence intervals 
(lines) for manually scored head and neck ROIs, for ηg , ηg ,F and ηg ,F,J (points). In each subplot, ROIs are ordered 
according to increasing η , and coloured according to the manual score.
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informative. Predictions based on individual spatial statistics were not strongly predictive, but were improved 
when two spatial statistics were used, and were best when observations of all three statistics were combined. 
Using multiple statistics also reduced the width of the associated confidence intervals. The ability of MLE to 
provide an estimate of error for each prediction could also be used to flag images with wide confidence intervals 
for pathologist review. Furthermore, these descriptors can also flag for human review images with low numbers 
of cells and/or large regions devoid of immune cells, a common finding in images affected by missing tissue 
or other histological artefacts (see Supplementary Information, Sect. I). Finally, when applied to the original 
histology images, several MLE predictions, based on different combinations of the three spatial statistics, could 
distinguish between pathologist assigned categories and the associated confidence intervals became narrower 
when the statistics were combined. Although the ability of ηg ,F,J to distinguish between manual scores is not 
significantly increased compared to ηg and ηg ,F , there is less uncertainty in evaluating ηg ,F,J as estimations are 
more precise and have narrower confidence intervals. Importantly, we do not claim that gmax , Fmax and Jmin are 
the optimal statistics to observe in order to best predict pathologist scores. Instead, the value of this work is as a 
proof-of-concept approach in which multiple statistical descriptions of a point pattern are combined to produce 
a single numerical description which coincides with qualitative evaluation of the point pattern.

Our training data can be expressed as a high-dimensional list of features, and therefore used to train classifiers 
using machine learning techniques. An advantage of using MLE over these techniques is that it is straightforward 
to estimate confidence intervals around η . Further, as spatial statistics describe features such as clustering or 
dispersion, metrics derived from their combinations can be understood in terms of the point cloud structure. 
Interpretation of decisions made by our approach is therefore simple compared with black-box algorithms such 
as neural networks where key features are often poorly understood.

The method introduced in this paper is generic in the sense that it is not tied to the particular spatial statistics 
employed; it can easily be extended to incorporate different spatial statistics. Possible alternatives, which have 
been applied to digital pathology data, include the Morisita-Horn index of colocalisation23,24,48, Getis-Ord hot-
spot analysis26,49 and combinations of morphological characteristics22. Other statistics designed to characterise 
immune infiltration in histological data include the intratumour lymphocyte ratio27, which measures the ratio of 
the number of intratumour lymphocytes and the number of tumour cells, and the Immunoscore28–30. Including 
observations of these statistics may improve predictions of pathologists’ categories, and could be tested by gen-
erating synthetic validation data following our method. Importantly, adding additional statistics does not always 
lead to a more accurate prediction. Care must therefore be taken when selecting spatial statistical descriptors 
to ensure improvement. This is most likely to be obtained by using a range of statistics which identify different 
features of point clouds, so choosing statistics based on their function rather than making arbitrary decisions 
is likely to yield the best descriptors. Future work using our method will identify an optimised set of statistics 
which better describe immune infiltration.

Our method is not reliant on the process used to generate synthetic data; alternative processes which gener-
ate point clouds resembling immune cell distributions could be used. This flexibility means that our approach 
for combining spatial statistical observations could be applied more widely, given an appropriate method for 
generating synthetic training data. Examples of histological investigations where this may be useful include 
quantifying colocalisation of different immune cell subtypes, or describing relationships between immune cells 
and the tumour vasculature.

Data availability
Code providing a working example of our image analysis scripts can be found at https​://githu​b.com/JABul​l1066​
/Image​Analy​sisSc​ripts​. Code and data relating to combining spatial statistics and reproducing results in this 
manuscript can be found at https​://githu​b.com/JABul​l1066​/Combi​ningS​patia​lStat​istic​s.
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