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Abstract

We introduce a new cell population score called SpecEnr (specific enrichment) and

describe a method that discovers robust and accurate candidate biomarkers from

flow cytometry data. Our approach identifies a new class of candidate biomarkers we

define as driver cell populations, whose abundance is associated with a sample class

(e.g., disease), but not as a result of a change in a related population. We show that

the driver cell populations we find are also easily interpretable using a lattice-based

visualization tool. Our method is implemented in the R package flowGraph, freely

available on GitHub (github.com/aya49/flowGraph) and on BioConductor.
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1 | INTRODUCTION

A major goal in flow cytometry (FCM) analysis is the identification of

candidate biomarkers. The most common candidates are differential

cell populations (DCPs). These are cell populations whose proportional

abundances (i.e., the relative quantity of cells in a cell population) dif-

fer significantly between samples of separate classes (e.g., disease

vs. healthy). Commonly used metrics for proportional abundance are

cells per μl of blood and proportion (i.e., the ratio between the count

of cells in a population and some parent population).

We propose the concept of maximal differential cell populations

(MDCPs). MDCPs are DCPs whose change in proportional abundance

is significantly associated with only its sample class, as opposed to

being the result of a proportional abundance change in a related DCP.
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For example, if there is a significant decrease in the proportion of

helper T-cells in samples from sick individuals compared to those from

healthy individuals, then helper T-cells is a DCP. If the proportional

abundance of all types of T-cells decrease at a similar rate, then we

can hypothesize that the disease decreases the proportional abun-

dance of all T-cells. It follows that T-cells and all of its child

populations, including helper T-cells, are DCPs but only T-cells is a

MDCP. MDCPs are preferable candidate biomarkers because their

proportional abundance change is only driven by their association

with a sample class. We refer to such cell populations as driver cell

populations. To our knowledge, while there are many methods that

find biomarker candidates by identifying DCPs, there are no methods

that do so by isolating only the MDCPs among those DCPs.

Most methods identify DCPs either as a byproduct of another

procedure [1–5] (e.g., CytoDX [6] main goal is to classify FCM sam-

ples, but it also tries to find DCPs as a postprocessing step) or com-

pare prespecified cell populations by evaluating whether there is a

large difference in their proportional abundance across samples using

some statistical significance test [7–9]. A summary of related methods

can be found in References [10, 11]. Though there are methods that

attempt to find MDCPs by expanding their DCP candidates to cell

populations that are dependent on each other, the statistical tests

they use assume independence between cell populations. For exam-

ple, Cydar [12] uses the spatial false discovery rate, and diffcyt [13]

uses statistical tests traditionally used for differential analysis in bulk

RNAseq data sets where the transcripts/genes are assumed to be

independent of each other. Such statistical tests would only be able

find DCPs despite the large MDCP candidate pool because they do

not account for the relationships between cell populations.

To address these shortcomings, we identify MDCPs by comparing

the SpecEnr of cell populations across samples. SpecEnr is a novel cell

population score, a numerical metric, that is derived from the propor-

tional abundance metric, proportion, and accounts for the relationship

between cell populations.

In this article, we:

1. Define and formulate the problem of finding driver cell populations

by identifying MDCPs.

2. Introduce a cell population score SpecEnr (specific enrichment)

that accounts for dependencies between parent and child cell

populations.

3. Describe a method that harnesses SpecEnr properties to find

robust, accurate, and easily interpretable driver cell populations.

We hypothesize that identifying MDCPs will aid the understand-

ing of disease etiology.

2 | METHODS AND MATERIALS

2.1 | Preprocessing

To calculate SpecEnr, we take as input, a vector of cell population pro-

portions for each FCM sample generated using any suitable manual or

automated approach. Given a FCM sample containing a cell � measure-

ment matrix and threshold gates obtained via gating, we use flowType

[8] to identify all possible cell populations and enumerate their cell

counts. Next, we normalize cell counts by dividing the cell count of

each cell population over the total number of cells in the sample.

Users can also choose to identify cell populations via methods

other than flowType. The input requirement for calculating the

SpecEnr of a cell population is its and all of its parent and grandparent

proportions. For example, if the user chooses to identify cell

populations via clustering, we can treat each cluster as a unique gate;

this way, a cell population's parent cell populations would include all

possible pairwise combinations of it and all other cell populations. Its

grandparent cell populations would be all possible mergers of it and

any two other cell populations.

2.2 | Cell hierarchy

To visualize the relationship between cell populations, we use the cell

population hierarchy. A cell population hierarchy or cell hierarchy for

short, is a directed acyclic graph where nodes represent cell

populations and edges represent the relationship between cell

populations (Figure 1). We define a cell population as a set of cells

with similar fluorescent intensity (FI) values for a set of 0≤ℓ≤ L mea-

surements (e.g., markers, SSC, FSC). For simplicity, we define a mea-

surement condition as a combination of a measurement and a

positive+ or negative� expression indicator. For example, A+B+ con-

tains two measurement conditions (A+ and B-) and represents a cell

population whose cells have FI greater and less than the given thresh-

olds for measurements A and B respectively. We define the ℓ0th layer

of the cell hierarchy as the set of all nodes whose label contains

exactly ℓ unique measurement conditions. It then follows that a cell

hierarchy has Lþ1 possible layers. The 0'th layer contains the root cell

population comprising all cells.

In the cell hierarchy, each edge points from a parent cell popula-

tion to its child sub-population defined by the addition of one

F IGURE 1 An example of a cell population hierarchy
representation of a flow cytometry (FCM) sample and its cell
populations defined by measurements A, B, and C
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measurement condition. For example, if there are three measurements

{A, B, C}, then there are edges from the node representing the cell

population labeled A+ to the nodes labeled A+B+, A+B�, A+C+, and

A+C�.

We denote the actual proportion P of any node v1:ℓ in layer ℓ by

P v1:ℓ
� �

such that 1 :ℓ (1,2,…,ℓ) are the indices of the measurement

conditions its label contains.

We show in Section S2 that we can derive our methods' scores for

all cell populations just from those cell populations whose labels only

contain positive conditions. Following this reasoning, and to simplify our

notation, in the following sections, we assume that the measurement

conditions used to label our cell populations are all positive. This implies

that the measurements used must be unique, as they always should

be. For example, cell population A+B+C+ has three positive measure-

ment conditions and can therefore be denoted as v1:3; subsequently,

we can denote its parents A+C+ and A+B+ as v 1:3f gn2 and v 1:3f gn3 by

excluding the second and third measurement conditions.

2.3 | Cell population score: SpecEnr

The assumptions we will introduce for SpecEnr are based on well-

established concepts in probability theory [14]. Measurement condi-

tions are random events, and the proportion of each cell population is

the probability of jointly occurring random events.

To obtain SpecEnr, we compare the actual proportion of a cell

population with its expected proportion: the proportion we expect a

cell population to have given the proportion of its ancestors. By doing

so, we can evaluate its proportion changes independent of the effects

incurred by its ancestors.

2.3.1 | Expected proportion

The SpenEnr null hypothesis imagines that each cell population has at

least two measurement conditions that are independent given the

others. Specifically, under the null hypothesis, for a cell population

v1:ℓ with proportion P v1:ℓ
� �

, the following holds. Without loss of gen-

erality, let us assume that P v1
� �

(e.g., A+) and P v2
� �

(e.g., B+) are inde-

pendent given P v3:ℓ
� �

(e.g., C+).

P v1jv2:ℓ� �¼P v1jv3:ℓ� � ð1Þ

P v1:ℓ
� �¼P v2:ℓ

� �P v1,v3:ℓ
� �
P v3:ℓð Þ ð2Þ

where P v1jv3:ℓ� �
indicates the conditional proportion of v1 given v3:ℓ.

Generalizing this assumption to any p,q pair, p�1 :ℓ and

q�1 :ℓnp, we get

P v1:ℓ
� �¼P v1:ℓnp

� � P v1:ℓnq
� �

P v1:ℓn p,qf gð Þ ð3Þ

While this assumption may be applied to most cell populations,

there are edge cases. Our assumption requires P v1:ℓn p,qf g� �
to exist.

Therefore, expected proportion is only calculated for cell populations

in layers ℓ≥2. For the root node, we initialize its expected proportion

to 1. For the nodes in layer one, we initialize their expected pro-

portions to 0.5. By initializing their expected proportion to 0.5, we

maintain the sum-to-1 rule in probability where, for exam-

ple, P Aþ� �þP A�ð Þ¼1.

To identify DCPs, we compare their expected and actual proportion.

In Equation (3), we assumed all measurement condition pairs, with indices

q,pf g, P vpð Þ and P vqð Þ to be independent give P v1:ℓn p,qf g� �
. Now let us

assume that this does not hold for A+B+C+'s parent cell population A+

C+. While A+ and C+ are dependent on each other, B+ is independent

of both A+ and C+. In this case, the assumption we made in Equa-

tion (2) only holds for cell population A+B+C+ when q� 1,2f g and

p¼3. We do not want to flag A+B+C+ as maximally differential as its

proportion change is completely dependent on cell populations A+C+

and B+. Therefore, we relax our assumption in Equation (3) to: there

must be some index pair p,qf g such that P vpð Þ is independent of P vqð Þ
given P v1:ℓn p,qf g� �

. Then P v1:ℓ
� �

can be calculated as follows.

P v1:ℓ
� �¼P v1:ℓnp

� � P v1:ℓnq
� �

P v1:ℓn p,qf gð Þ ð4Þ

p¼ arg max
p � 1:ℓ

P v1:ℓnp
� �

q¼ arg min
q � 1:ℓnp

P v1:ℓnq
� �

P v1:ℓn p,qf gð Þ

Otherwise, if there is no p,q pair such that P vpð Þ is independent of

P vqð Þ, then Equation (4) does not hold and P vð Þ’s abundance change

cannot be attributed to any of its ancestors' abundance change.

Additional details on proof of correctness for our assumption is in

Section S1.

2.3.2 | SpecEnr

In this section, we explain how we calculate our proposed SpecEnr

score. Given the expected proportion of cell population v calculated

using Equation (4), SpecEnr is the natural log of v's actual proportion

over its expected proportion calculated using Equation (4) which we

denote here as E vð Þ.

SpecEnr vð Þ¼ ln
P vð Þ
E vð Þ ð5Þ

p¼ arg max
p � 1:ℓ

P v1:ℓnp
� �

q¼ arg min
q � 1:ℓnp

P v1:ℓnq
� �

P v1:ℓn p,qf gð Þ

SpecEnr accounts for the dependency of a cell population on its

ancestors. For example, if a cell population has a SpecEnr value of

0, then its proportional abundance is completely dependent on that of
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its ancestors. Otherwise, it contains measurement conditions that are

all dependent on each other, where P vpð Þ is dependent on P vqð Þ for all
p,qf g�1 :ℓ (i.e., Equation 3 does not hold for any p,q).

The asymptotic runtime and actual runtime to calculate SpecEnr

are provided in the Sections S2 and S7.

2.3.3 | Maximal differential cell population

A MDCP is a cell population that has significantly different abundance

across sample groups. In this respect, a MDCP is similar to a DCP.

However, in addition to this, MDCP have an additional property

where its abundance difference cannot solely be attributed to the

abundance difference in its ancestor cell populations. Therefore, a

MDCP's abundance change is unique and can help users confirm or

reject hypotheses in biological experiments.

SpecEnr is an example of log-probability ratios, which are com-

monly used in Bayesian hypothesis testing [15]. Following a similar

framework, a cell population is not a MDCP if its SpecEnr values

across classes are not significantly different. Conversely, in order for a

cell population to be a MDCP v1:ℓ, it must satisfy two conditions.

1. A MDCP SpecEnr must be significantly different between samples

according to a filtered adjusted t test we describe in the next

section.

2. A MDCP must also be maximal, in that it must not have any direct

descendants who meet the above condition.

The second condition is required because our first is also satisfied by

direct ancestors of a MDCP as its ancestor cell populations are

defined by a subset of measurement conditions defining the MDCP.

Relating our definition back to the difference between MDCP

and DCP: if there exists one MDCP in our data set (e.g., A+B+), then

the DCPs would be the MDCPs' ancestors (e.g., A+ and B+) and

descendants (e.g., A+B+C+ and A+B+C-), and all cell populations that

share at least one measurement condition with the MDCP (e.g., B+C+

and A+C-). This further demonstrates the difficulty of identifying

MDCPs among DCPs; as all DCPs would be a candidate MDCP.

2.4 | Testing whether the cell population SpecEnr
values across sample classes are significantly different

To test if a cell population satisfies our first condition for MDCPs

(i.e., its SpecEnr is significantly different across samples), we apply the

t test on SpecEnr values for each cell population across two sets of

samples (e.g., a control group and an experiment group). We show

that the raw SpecEnr t test p values are statistically sound in

Section S5.

Given that we are testing multiple hypotheses, we adjust the

p values ρv for each cell population v using layer-stratified Bonferroni

correction [16] to obtain our final adjusted p values ρ0v . We do so by

multiplying our p values with the number of cell populations in the

layer on which cell population v resides mℓ and the total number of

layers Lþ1 (including the layer 0; see Section S3 for additional

details). We use a q value (i.e., the adjusted p value) threshold < 0:05

to determine if a cell population q value is significant and potentially

maximally differential.

2.4.1 | Avoiding falsely significant q values with
filters

In some cases, the p value obtained by evaluating SpecEnr may be

falsely significant when dealing with small or noisy data sets. As a cell

populations' proportion gets close to 0, the actual versus expected

proportion ratio used to calculate SpecEnr becomes inflated. As well,

if we are conducting significance tests on cell populations with

SpecEnr values of 0 (i.e., actual and expected proportions are the

same) model-based significance tests (e.g., t test) are highly influenced

by outliers and rank-based significant tests (e.g., Wilcoxon) are

influenced by random ordering of 0's. To ensure our SpecEnr p values

are valid, we mark cell populations as insignificant if any of the follow-

ing apply.

1. They do not have a mean count of a user-specified threshold of

events (we use >50 for our data sets) to prevent inflated ratios,

2. They do not have significantly different actual versus expected

proportions for at least one of the sample classes, and

3. They have actual and expected proportions that are significantly

different across both sample classes.

In our experiments, we use a standard significance threshold of

< 0:05 for all t test p values on filter related significance tests. We

show an example of these filters in the Section S4.

For brevity, we call the p and q values obtained using SpecEnr

and proportion, SpecEnr p and q values, and proportion p and

q values, respectively.

2.5 | Experimental data

To confirm that flowGraph is able to identify known MDCPs we pre-

pared synthetic negative and positive control data sets and used two

previously published biological data sets.

2.5.1 | Synthetic data

• neg1 (Negative control): For each cell, we assigned it to be posi-

tive+ for each measurement with a 50% probability.

� Samples: 10 control versus 10 experiment (300,000 cells/

sample).

� Measurements: A, B, C, and D.

• pos1 (Positive control 1): Same as neg1, except in the experiment

samples, cell population A+ is increased by 50%. More specifically,
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in each R�L matrix, we duplicated a random sample of half the

cells in A+.

• pos2 (Positive control 2): Same as pos1, except instead of A+, A+

B+C+ is increased by 50%.

• pos3 (Positive control 3): Same as pos1, except instead of A+, a

random sample of half of all cells that belong to at least one of A+

B+ and D+ are duplicated (i.e., increased by 50%), indirectly causing

a unique increase in cell population A+B+D+. Note that cells that

belong to both A+B+ and D+ are duplicated once instead of twice

to ensure both cell populations increase by 50%.

2.5.2 | Real data sets

• flowcap (FlowCAP-II AML data set): This data set is from the

FlowCAP-II [10], AML challenge, panel 6. It is known that AML

samples have a larger CD34+ population [10].

� Samples: 316 healthy versus 43 AML positive subjects' blood or

bone marrow tissue samples (60,000 cells/sample).

� Measurements: HLA-DR, CD117, CD45, CD34, and CD38.

• pregnancy (Immune clock of pregnancy data set): While the previ-

ous two data sets are FCM data sets, this is a CyTOF data set.

Nevertheless, our method can be used on either type of data set.

So far, there has been no experiments that identified ground truth

driver cell populations for the pregnancy data set [17]. However,

the original authors were able to train classifiers on the same

patients using FCM and multi-omics data [18]. Therefore, we

hypothesize that we will be able to find MDCPs in this data set

that are associated with the sample classes listed below.

� Samples: 28 late-term pregnancy versus 28 six-week postpar-

tum human maternal whole-blood samples (300,000 cells/sam-

ple); Samples are taken from each of the 18 and 10 women of

the training and validation cohort during late-term pregnancy

and 6 weeks postpartum.

� Measurements: CD123, CD14, CD16, CD3, CD4, CD45, CD45RA,

CD56, CD66, CD7, CD8, Tbet, and TCRgd.

� To account for possible batch effects associated with the sub-

jects who provided the FCM samples, we used the paired t test

where samples were paired with respect to subject.

3 | RESULTS

3.1 | SpecEnr p values are robust

We hypothesized that theoretically similar data sets yield similar

unadjusted p values across all cell populations. To test this, we split up

the samples in data set pos1 in half and compare the samples across

these two halves or “theoretically similar data sets.” When we com-

pared the unadjusted SpecEnr p values across these theoretically simi-

lar data sets using the Spearman correlation, we obtained a perfect

score of 1. We saw the same result with metrics recall, precision, and

F measure over the first set. These results indicate that significant cell

populations in the first set also show up as significant in the second

set. We also show that unadjusted SpecEnr p values are statistically

sound with the following experimental results [19]. Using SpecEnr, we

were able to generate a random uniform distribution of unadjusted

p values on our negative control data set neg1. It follows that 5% of

the SpecEnr p values were below our 0:05 threshold (See Section S5

for added detail).

3.2 | SpecEnr q values help identify accurate driver
cell populations in synthetic data sets

flowGraph accurately identified that pos1 and pos2 driver cell

populations were A+ and A+B+C+ (Figure 2). While both SpecEnr and

proportion q values flagged these cell populations, when we observed

SpecEnr q values, the descendants of these driver cell populations

were not flagged as significant. This was also true when multiple

driver cell populations were present in lower layers of the cell hierar-

chy. In pos3, where both A+B+ and D+ were increased to cause a

unique change in A+B+D+; we saw that SpecEnr q values were only

significant for these three cell populations and their ancestors. Results

from our positive control data sets were also similar when the same

cell populations decreased instead of increased in proportional abun-

dance (Section S6).

3.3 | SpecEnr q values flag known and novel driver
cell populations in real data sets

For the flowcap data set, SpecEnr directs users down a branch of the

cell hierarchy from physical properties SS+ and FS– to FS–SS+CD117+

45+ and HLA+CD117�CD45+CD34+. While HLA and CD117 are vari-

ably expressed on cells in FCM samples from subjects with AML [20,

21], CD34 and CD45 are expressed on blast cells [22, 23]. This is

important as the abundance of blast cells aid in diagnosis of AML [10].

In the pregnancy data set, the top most significant cell

populations displayed by our statistical significance test showed an

up-regulation in cell populations containing CD3, CD45, and CD45RA

(e.g., CD3+CD45RA+CD56�Tbet�). SpecEnr q values also indicate that

cell populations containing measurements CD8 and CD16 are signifi-

cantly down-regulated. Meanwhile, proportion q values flag all DCPs

in the cell hierarchy as significant.

4 | DISCUSSION

In this article, we introduced a new cell population score, SpecEnr,

and a method, flowGraph, that integrates SpecEnr to identify MDCPs.

We showed that the results of flowGraph are statistically sound, accu-

rate, and easily interpretable.

In the FlowCAP-II challenge, the AML data set was used to evalu-

ate how well methods are able to classify samples belonging to

healthy and AML positive subjects. Among the competing methods,
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those that used cell population proportions for classification were

DREAM–D, flowPeakssvm, Kmeanssvm, flowType, FeaLect, PBSC,

BCB/SPADE, SWIFT [10] . All of these methods assume that cell

count and proportion may be used to differentiate between the two

classes of samples. However, cell count and proportion do not

account for relations between cell populations, making it difficult to

F IGURE 2 Cell hierarchy
plots for synthetic data sets
pos1-3 and real data sets flowcap
and pregnancy show that SpecEnr
q values accurately identify
maximal differential cell
populations (MDCPs) while
proportion q values flag all
differential cell populations

(DCPs) but do not highlight which
of the DCPs are MDCPs [Color
figure can be viewed at
wileyonlinelibrary.com]
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isolate the MDCPs among the DCPs (Figure 2). To account for these

relationship, one can manually analyze the ratio of the count of cells

in a population over all of its direct parent populations. However,

given L measurements, there are 3L � 2L3 such relationships not includ-

ing the relationship between a cell population and its indirect ances-

tors [8]. In contrast to comparing 3L cell population scores, directly

comparing cell population relations becomes computationally

impractical.

SpecEnr mitigates both problems as it is a cell population score

that accounts for relations between cell populations. q values

obtained from computed SpecEnr scores isolated only the few ground

truth driver cell populations (MDCP, e.g., SS�CD34+). Our results not

only reveal known driver cell population CD34+ but also provide visu-

alizations signifying that their change was caused by a change in its

descendants exposing novel driver cell populations.

We also observed this contrast in behavior between SpecEnr and

proportion q values in the pregnancy data set. We hypothesized that

flowGraph would be able to find MDCPs because [17] were able to

use L1, L2, and cell signal pathway regularized regression to classify

samples taken from women at different stages of pregnancy. The orig-

inal authors also assumed that there exists MDCPs in the pregnancy

data set [6]. However, because these methods find candidate bio-

markers as a byproduct of a sample classification method, there was

no way of verifying whether the candidate biomarkers they inferred

are simply DCPs or are also MDCPs. FlowGraph answers this question

by providing users a way to differentiate between the two while veri-

fying our hypothesis validating the existence of MDCPs in the preg-

nancy data set.

4.1 | Future work

Since SpecEnr is calculated using proportions, it is prone to the same

issue that occur when using proportions directly. That is, changes in

proportion of cell populations must sum to 0. For example, in pos1,

A+ abundance doubled, so its proportion increased from 0.5 to 0.66;

but A� proportion decreased from 0.5 to 0.33. More generally, if a cell

population is differential, it will induce a change in the proportion of

all cell populations that are labeled using the same set of measure-

ments as it; because these cell populations are mutually exclusive.

Another example of this are the A þ,�f gB þ,�f gC þ,�f g
n o

cell populations

from pos2. If the driver cell population resides in layers > 1, then it is

easily identifiable as the cell population with the largest magnitude of

change. In the future, we would like to improve on our method such

that we only flag the driver cell populations and not the cell

populations it affects in the context of proportions.

Finally, we showed that an adjusted and filtered t test on SpecEnr

will yield a significant q value on driver cell populations and their

ancestors. While this makes driver cell populations intuitive to find on

a cell hierarchy plot, ideally, we should only flag the driver cell

populations as significant and not their ancestors. By preventing

excessive flagging of ancestor populations, we enable more expressive

and detailed insights in results interpretation.
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