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Reliably quantifying the evolving 
worldwide dynamic state 
of the COVID‑19 outbreak 
from death records, clinical 
parametrization, and demographic 
data
Jose M. G. Vilar1,2* & Leonor Saiz3*

The dynamic characterization of the COVID-19 outbreak is critical to implement effective actions for 
its control and eradication but the information available at a global scale is not sufficiently reliable to 
be used directly. Here, we develop a quantitative approach to reliably quantify its temporal evolution 
and controllability through the integration of multiple data sources, including death records, clinical 
parametrization of the disease, and demographic data, and we explicitly apply it to countries 
worldwide, covering 97.4% of the human population, and to states within the United States (US). The 
validation of the approach shows that it can accurately reproduce the available prevalence data and 
that it can precisely infer the timing of nonpharmaceutical interventions. The results of the analysis 
identified general patterns of recession, stabilization, and resurgence. The diversity of dynamic 
behaviors of the outbreak across countries is paralleled by those of states and territories in the US, 
converging to remarkably similar global states in both cases. Our results offer precise insights into the 
dynamics of the outbreak and an efficient avenue for the estimation of the prevalence rates over time.

The global spread of the COVID-19 outbreak has had a major global impact. As of January 21, 2021, there have 
been 2.50 million reported deaths and 122.1 million confirmed cases1. Massive travel restrictions, imposed 
quarantines, lockdowns, and other nonpharmaceutical interventions (NPIs) around the world have been able 
to slow down the progression of the outbreak, but their gradual lifting has already led to its deadly resurgence 
in multiple areas2. Currently, it is still unclear how best to proceed to balance the economic, societal, ethical, 
and health trade-offs present. The most widespread quantification, based on the basic reproduction number, is 
insufficient to address the different trade-offs3. It indicates whether the outbreak is growing up or dying out, but 
it misses crucial information, including the timescales of the processes, the latent potential for a resurgence of 
the outbreak, and the possibility of actively controlling and tracing the infectious population.

Obtaining a detailed dynamic characterization of the outbreak, however, has proved to be particularly chal-
lenging and has been achieved only over small controlled populations. This characterization involved testing 
for the causative virus SARS-CoV-2, identifying contacts and the infection time, and following up the clinical 
evolution4–7. These analyses have led to a precise mathematical characterization of the clinical evolution of the 
disease, including the distributions of times from infection to symptom onset, from symptom onset to death, 
and from primary to secondary infections.

The available epidemiological information, however, has not been sufficiently reliable to be used directly 
and the detailed characterization is not feasible at a global scale. Methods based on compartmental models8 or 
Bayesian approaches9 have relied on location-specific information that is not readily available at a global scale. 
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These methods have typically pivoted toward using either the number of reported COVID-19 cases over time 
or the reported death counts over time.

Focusing on the number of cases is challenging because they represent only an undetermined fraction of the 
actual infections and this fraction depends on the testing capacity, which was remarkably low in the early stages 
of the pandemic, and on how the testing capacity evolves over time. In addition, there are a large fraction of 
asymptomatic infections, some of which are uncovered through contact tracing approaches while others remain 
undetected8. Moreover, it is not straightforward to determine when a positive testing person was infected, which 
depends on the location-specific testing procedures as well. Therefore, the connection between reported cases 
and the actual number of infections depends on the testing policies of each location, how they are implemented, 
and how they change over time.

An alternative approach is to use daily death counts. In this case, there is detailed statistical information on 
the disease progression over time through its different stages from infection to potential death, as well as on the 
age-stratified death ratios. The main drawbacks of this approach are on the mathematical side because it requires 
the solution of an inverse problem (finding the infectious population that would lead to the observed death 
curves) and on the fact that death counts are typically much lower than the number of infections, which make 
them prone to the inherent random fluctuations of the death process. These challenges are usually overcome by 
restricting the analyses to locations with large numbers of deaths and by imposing constraints on the reproduc-
tion number based on the information available about NPIs9.

Here, we provide a general quantitative approach for reliably quantifying the temporal evolution of the 
COVID-19 outbreak infectious and infected population utilizing multiple data sources, including daily death 
records, clinical parametrization of the disease, and location-specific demographic data. Explicitly, we use the 
customary infection-age structured mathematical description4,10–12, which relies on the detailed statistical char-
acterization of the disease progression over time, to develop an approach to obtain explicit estimates of the 
number of infectious and infected individuals in terms of the epidemiological death curves. We find that there 
is a general time delay between the infectious population and the daily deaths and a different time delay between 
the infected population and the cumulative number of deaths, which depend on the clinical parameters of the 
disease. The major location-specific contribution, besides the death counts, is the age structure of the population, 
which determines the infection fatality rate (IFR) and therefore the proportionality factors between infectious 
population and daily deaths and between infected population and cumulative deaths. We validated the approach 
with prevalence data of the infectious (PCR-RT testing) and infected (antibody testing) populations at a global 
scale and for states within the US, as well as with the timings of the peak infectiousness against the dates of the 
major country-wide lockdowns in Europe. To further quantify the temporal evolution and controllability of the 
COVID-19 outbreak we also obtained the temporal evolution of the growth rate of the infectious population. 
We consider explicitly countries in the world and states and territories within the United States (US) with at 
least 30 COVID-19 reported deaths as of January 21, 2021, which covers 97.4% of the world and 99.9% of the 
US population.

Results
Optimal dynamical constraints.  The approach considers the dynamics of the infectious population, 
nI (t) , at time t  described through the expression

which establishes the definition of the (per capita) growth rate kG(t) . As this expression results from the defini-
tion of the per capita growth rate, kG(t) ≡ 1

nI (t)
dnI (t)
dt  , it is completely general and independent of the underlying 

dynamics of the infection.
The underlying infection dynamics dictates the relationship of kG(t) and nI (t) with the different epidemiologi-

cal quantities. Based on an infection-age structured mathematical description10,11 (See “Methods: Infection-age 
structured dynamics”), we have developed an approach to uncover the optimal dynamic constraints for these 
relationships in terms of delays and scaling factors (See “Methods: Dynamical constraints”).

We find that nI (t) is optimally related to the rate of increase of the expected cumulative deaths, nD , at a later 
time t + τD according to

where IFR is the infection fatality rate and τG is the average generation time. Note that the first deriva-
tive of the expected cumulative number of deaths is obtained from the expected number of daily deaths as 
dnD(t)
dt = nD(t)− nD(t − 1) (See “Methods: Dynamical constraints implementation with discrete time”) and 

that expected deaths are obtained from raw death counts reported by the Johns Hopkins University Center for 
Systems Science and Engineering1 (See “Methods: Expected deaths”).

The preceding equation for nI (t) explicitly takes into account that, on average, an infectious individual within 

nI (t) has been infected at time t − τ 2G+σ 2
G

2τG
 and potentially dies with probability IFR at a time τI + τOD after infec-

tion. Here, σ 2
G is the variance of the generation time, and τI and τOD are the incubation and symptom onset-to-

death average times, respectively. The values of these characteristic times have been estimated in days as τG = 6.5 , 
σG = 4.2 , τI = 6.4 , and τOD = 17.8 from precise follow up of specific groups of patients5,13,14, which leads to 

τD = τI + τOD −
τ 2G+σ 2

G
2τG

= 19.6 (See “Methods: Dynamical constraints” and “Methods: Clinical parameters ”). 

(1)dnI (t)
dt = kG(t)nI (t),

(2)nI (t) =
τG
IFR

dnD(t+τD)
dt ,
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Therefore, the value of τD can be interpreted as the average number of days from infection to death ( τI + τOD ) 
minus the average number of days that an individual remains infectious after infection ( τ

2
G+σ 2

G
2τG

).
A general assumption of the approach is that the IFR for each age group remains the same for all locations5 

and that the overall IFR for each location is obtained as the average over its specific population’s age distribution 
(See “Methods: Infection fatality rate (IFR)”).

The growth rate is obtained directly from Eqs. (1) and (2) as

which is related to the time-varying reproduction number, Rt , through the Euler–Lotka equation (See “Methods: 
Reproduction number”).

The expected cumulative number of infected individuals at a time t  , nT (t) , follows from

which is obtained also from the dynamical constraints (See “Methods: Dynamical constraints”).
To compare with prevalence studies, we used the dynamical constraints (See “Methods: Dynamical con-

straints”) to obtain the relationship of the expected number of seropositive individuals, nSP(t) , with the infected 
population,

where τSP is the average seroconversion time after infection. We also obtained the relationship of the expected 
number of positive reverse transcription polymerase chain reaction (RT-PCR) testing individuals, nTP(t) , with 
the infectious population,

where τTP is the average time for testing positive after infection and �tTP is the average number of days of positive 
testing. The values of these additional characteristic times have been estimated in days as τSP = 13.4 , τTP = 14.4 , 
and �tTP = 20 from clinical studies14–17 (See “Methods: Clinical parameters”).

Implementation.  Equations (1–4) completely characterize the dynamics of the outbreak from the expected 
cumulative deaths, the age structure of the population, and the general clinical parameters of the infection. 
We used a workflow (Fig.  1A) that incorporates explicitly the death counts compiled by the Johns Hopkins 
University Center for Systems Science and Engineering1, the age structure reported by the United Nations for 
countries18 and the US Census for states and territories19, previously estimated aged-stratified IFR5, and other 
previously estimated clinical parameters5,13–17. The expected number of daily deaths was inferred using density 
estimation from the death curves after preprocessing to minimize reporting artifacts (See “Methods: Inference 
and extrapolation”). Equations (5) and (6) were used to set the appropriate scale and delay to compare with 
seroprevalence studies.

Validation against prevalence data and NPIs.  To validate the approach, we contrasted the estimated 
infectious and infected populations with the results from available antibody seroprevalence and RT-PCR testing 
studies for countries in the world and locations in the US with at least 30 reported deaths (Fig. 1B). The observed 
and estimated values agree with each other within the 95% credibility intervals (CrI), with a 1.56-fold accuracy 
over almost a 1,000-fold variation and a correlation coefficient ( ρ ) on a logarithmic scale of ρ = 0.94.

We combined into a separate analysis (Fig. 1C) the data of two additional comprehensive antibody seropreva-
lence studies within the US, which included 4920 and 3821 states with non-zero prevalence values. For the states 
present in the two studies, we considered their average values. The estimated values agree with the observed 
prevalence with 1.61-fold accuracy and ρ = 0.80. The agreement for the combined data is better than for the data 
of each of the studies independently (1.65-fold accuracy and ρ = 0.73 for one study20 and 1.74-fold accuracy 
and ρ = 0.77 for the other study21) and better than the agreement of both studies with each other ( ρ = 0.55 for 
the 38 states common to both studies), indicating that the estimations of the approach fall within the observed 
variability of the prevalence studies. Indeed, the approach is effectively unbiased collectively, with the (geometric) 
average of the estimations being just a factor 1.12 (globally) and 1.13 (US) larger than that of the observations.

Overall, the validation of the approach shows that it can reproduce the available prevalence studies over a 
factor 615.0 between minimum and maximum values for countries and states with 72.0% (globally) and 77.6% 
(US) of the estimates within a factor 2 of the observed values, and with 100.0% (globally) and 93.9% (US) within 
a factor 3. There are no countries and only three states with values outside the factor 3 boundary. In the cases of 
Rhode Island and New Hampshire, the estimated infectious population is larger than the ones reported by one 
study21, which is consistent with the observed age-specific seroprevalence biased to older populations. In the 
case of Oregon, the estimated infectious population is smaller than the ones reported20,21, which is consistent 
with the observed age-specific seroprevalence biased to younger populations21. In the case of Oregon, in addi-
tion, only 338 of the 1123 excess deaths during the outbreak before the collection of the specimens for analysis 
were attributed to COVID-1922.

We also validated the ability of the approach to capture the effects of NPIs (Fig. 1D). The inferred timings 
of the peak infectiousness (maximum infectious population) are concordant with the dates of the major early 
country-wide lockdowns in Europe9, with an overall average deviation of 0.0 days between lockdown and peak 

(3)kG(t) =
d
dt ln

dnD(t+τD)
dt ,

(4)nT (t) =
1
IFR nD(t + τI + τOD),

(5)nT (t) = nSP(t + τSP),

(6)nI (t) =
τG

�tTP
nTP

(

t + τTP −
τ 2G+σ 2

G
2τG

)

,
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dates and a mean absolute deviation of 2.4 days. This concordance also indicates that there is only a small vari-
ability in the average timing between infection and death among those countries.

Outbreak progression motifs.  We analyzed explicitly the time evolution of the growth rate, the infec-
tious population, the cumulative number of infections, and the relationship between growth rate and infectious 
population for all countries and states with at least 30 deaths (Supplementary Fig. S1 and Table 1).

The characterization of the dynamics in terms of the growth rate and infectious population (Supplementary 
Fig. S1) shows that there are prototypical types of behavior, or motifs (highlighted with representative examples 
in Fig. 2). Locations either contained (Fig. 2A–C) or amplified (Fig. 2E,F) the outbreak in its initial stages. In 
the case of initial containment, the growth rate switched rapidly to negative values. Subsequently, the behavior 
branched into contained sporadic resurgences below the initial maximum infectiousness (Fig. 2A), uncontrolled 
resurgence of the infectious population over the initial maximum infectiousness (Fig. 2B), and sustained decrease 

Figure 1.   The approach consistently estimates prevalence and the timing of NPIs. The approach (A) has been 
validated with prevalence data of the infectious (PCR-RT testing) and infected (antibody testing) populations 
at a global scale (B) and for states within the US (C). The continuous black lines (B,C) represent the perfect 
prediction (identity function denoted by id(·) ) with the parallel dotted/dashed lines indicating the fold accuracy. 
Global data were obtained from sources described in Supplementary Table S1. Several locations have estimates 
for multiple date ranges. State data correspond to two studies with specimen samples taken primarily on the first 
two weeks of July20 and of August, 202021. The inferred timings of the peak infectiousness are plotted against 
the dates of the major country-wide lockdowns in Europe9 (D). The continuous orange line represents perfect 
concordance and the parallel dotted/dashed lines indicate the mean absolute error.
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of the outbreak (Fig. 2C). The specific behavior depended on the success of the measures implemented, e.g. tar-
geted control and moderate lockdowns, and their subsequent relaxation23. In the case of initial amplification, the 
dynamics proceeded in diverse ways, including an increasing infectious population converging to zero growth 
(Fig. 2D), a fast-evolving infectious population switching from positive to negative growth (Fig. 2E), and fast 
convergence to subsequent sustained residual growth (Fig. 2F). In general, the locations that reached a substan-
tial negative growth rate are those that implemented long-term strict lockdowns, whereas zero or small positive 
growth rates correspond to intermediate measures with partial restrictions23. In many cases, lifting restrictions 
has led to fast switching from negative to positive sustained growth, as illustrated by United Kingdom, and Italy 
(Fig. 2E), indicating the inability of these locations to contain the outbreak even at low values of the infectious 
population.

Global dynamics.  At a global scale, the outbreak is characterized by two early local maxima of the overall 
worldwide infectious population on January 25, 2020 and March 26, 2020, coincidental with the regression of the 
outbreak in China, initially, and in Europe, afterward, reaching the highest local maximum of 7.35 million active 
infections (Fig. 3A,B) on July 17, 2020 with a subsequent increasing trend since September 22, 2020. In the US, 
there has been a local maximum of the infectious population on March 28, 2020 with 1.42 million active infec-
tions, a smaller local maximum on July 14, 2020, and a subsequent increasing trend since September 15, 2020 
(Fig. 3D,E). The estimated infected population is 375.0 million, growing at a rate of 15.70 million new infections 
per week, for the World (Fig. 3C) and 52.0 million, growing at a rate of 2.62 million new infections per week, for 
the US (Fig. 3F), which is a factor 3.1 for countries in the World and 2.1 for locations in the US higher than the 
corresponding reported cases1.

State of the outbreak across locations and its controllability.  At a local scale, the per capita infec-
tious population of countries and states has only exceptionally crossed the 1% value (27 out of 154 countries and 
14 out of 53 states) (Fig. 4). The infected populations have surpassed the 10% of the total population only for 44 
countries and 43 states (Fig. 4), with 8 countries and 11 states reaching the 20% value. These results confirm that 
relying on herd immunity is not a realistic option. Controlling the outbreak by actively tracing and quarantin-
ing newly and potentially infected individuals has been successfully implemented, until early October, 2020, in 
South Korea, with the use of large resources and with occasional outbreaks that required short-term extended 
human-interaction restrictions, and almost successfully in Japan, with voluntary business closures and other 
restrictions23. These countries always remained below 7 actively infectious cases per 100,000 individuals (0.007% 
of their population) until early October, 2020, with average values of 2.2 (South Korea) and 2.6 (Japan) from 
March 1 to October 1, 2020. Only 0 of the states and 22 of the countries analyzed have had a per capita number 
of infectious individuals below the average value of South Korea since May 1, 2020, which indicates that 54.1% 
of the World (72.6% excluding China) and 97.9% of the US human population reside in countries or states that 
have not allowed targeted controllability of the outbreak with the resources used by South Korea. This inability 

Table 1.   Key estimates of the outbreak.

World United States

Highest local maximum of the infectious population 7.35 million on July 17, 2020 1.42 million on March 28, 2020

Current infectious population 14.46 million on January 21, 2021 2.42 million on January 21, 2021

Infected population 375.0 million as of January 21, 2021 52.0 million as of January 21, 2021

Underreporting factor 3.1 (only 122.1 million cases reported) 2.1 (only 24.6 million cases reported)

New infections per week 15.70 million 2.62 million

Growth rate: 10% quantile − 0.015/days
(45.7-day half-life)

− 0.020/days
(34.5-day half-life)

Growth rate: median 0.000/days 0.000/days

Growth rate: 90% quantile 0.026/days
(27.1-day doubling time)

0.011/days
(64.5-day doubling time)

Population considered (locations with at least 30 deaths) 97.4% 99.9%

Number of locations considered 154 53

Number of locations with more than 10% of the popula-
tion infected 44 43

Number of locations with more than 20% of the popula-
tion infected 8 11

Number of locations with less than 7 actively infectious 
individuals per 100,000 population 22 0

Number of locations that reached 1,000 actively infectious 
individuals per 100,000 population 27 14

Correlation coefficient between infectious/infected popu-
lation estimates and observations 0.94 0.80

Infectious/infected population estimates within a factor 2 
of the observations 72.0% 77.6%

Infectious/infected population estimates within a factor 3 
of the observations 100.0% 93.9%
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to control the outbreak as soon as restrictions are lifted, even at low values of the infectious population but above 
the South Korea average value, is illustrated by United Kingdom and Italy (Fig. 2E).

From local to global dynamics.  The collective properties of the individual local dynamics, as quantified 
by the distribution of growth rates across countries and states over time (Fig. 5), shows a progressive double 
stabilization of the outbreak. The double stabilization means that growth rates have mainly moved from large 
initial values towards zero values both at local scales and at a global scale. At local scales, growth rates for most 

Figure 2.   Trajectories in the growth rate-infectious population space followed prototypical types of behavior 
in the first-middle stages of the outbreak. Each day is indicated by a symbol increasing in size with time. The 
largest symbol corresponds to October 1, 2020. Complete trajectories, up to December 30, 2020, are indicated 
by the colored lines. The right axes indicate the growth rate in the scale of the reproduction number as 
Rt = 1+ kG(t)τG (See “Methods: Reproduction number”). In all cases in the figure, the trajectory starts with 
positive growth rate ( Rt > 1 ) at the smallest symbol and moves rightwards increasing the infectious population 
until the growth rate becomes negative ( Rt < 1 ), at which point the infectious population starts to decrease and 
the trajectory moves leftwards. After the growth rate changes to negative values, the trajectories exhibit multiple 
types of differentiated behavior that can be classified in several groups depending on the extent of the initial and 
subsequent growth. If the growth rate reverts to positive values, the trajectory would move rightwards again. 
Common types of behavior include initial containment (A–C) with subsequent minor increases (A), amplified 
resurgence (B), and a sustained regression (C) of the outbreak; and initial amplification (D–F) with slow 
convergence to zero growth (D), convergence to negative growth (E), and fast convergence to initial sustained 
residual positive growth (F). The prefix "US " has been added to the name of the locations in the US. Confidence 
intervals for the growth rates and infectious population are provided in Supplementary Fig. S1.
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countries, whether positive or negative, decreased in absolute value, leading to a slowdown of the dynamics. 
At a global scale, positive and negative values have converged towards statistically compensating each other, 

Figure 3.   Characterization of the temporal evolution of the COVID-19 outbreak. Trajectory in the growth 
rate-infectious population space (A,D) and infectious (B,E) and infected (C,F) populations over time of the 
aggregate values for countries in the world (A–C) and locations in the US (D–F). In the trajectories (A,D), each 
day is indicated by a symbol increasing in size with time, ending with the largest symbol on December 30, 2020. 
The blue line at the end indicates the extrapolation to current time (January 21, 2021). The right axes indicate 
the growth rate in the scale of the reproduction number as Rt = 1+ kG(t)τG (See “Methods: Reproduction 
number”). Each colored region in the area plots represents the contribution of a country (B,C) or a state (E,F) 
to the overall infectious and infected populations. Countries and states are arranged in alphabetical order 
from bottom to top. The vertical dashed lines (B,C,E,F) indicate the transition from inference to extrapolation. 
Individual data for all the countries and states are provided in Supplementary Fig. S1.
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Figure 4.   Per capita state of the outbreak. The percentage of infectious and infected populations on the last 
day estimated (January 21, 2021) and of the minimum and maximum infectious population reached are shown 
for countries in the world (A) and locations in the US (B). The minimum was computed for values after May 
1, 2020. Countries and US locations have been sorted according to their per capita infectious population. The 
vertical dashed line (A) indicates the time-averaged infectious population of South Korea from March 1 to 
October 1, 2020.
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decreasing further the overall net growth of the infectious population. Specifically, the latest estimates of the 
growth rates on December 30, 2020 for countries in the world have a median value of 0.000/days, with 80% of 
the countries within the narrow range of values from − 0.015/days to 0.026/days, which implies a very slow local 
dynamics with half-lives and doubling times of 45.7 and 27.1 days, respectively. Similarly, the median value of 
the growth rates for locations in the US is 0.000/days, with 80% of locations ranging from − 0.020/days (34.5 days 
half-life) to 0.011/days (64.5 days doubling time).

Discussion
The dynamical constraints we have obtained through a detailed infection-age mathematical description of the 
outbreak allowed us to find the optimal time delays and scaling factors to connect the evolution of the reported 
death counts over time with those of the infectious and infected populations. Overall, integrating these con-
straints through a workflow with essential preprocessing steps showed that the approach can consistently infer 
the precise timing of NPIs and estimate prevalence data across countries in the world and locations in the US. 
A prominent feature of the approach is its ability to provide reliable results even for low death counts, which 
overcomes the major limitations of choosing between unreliable infection case data (highly dependent on testing 
rates) or noisy death counts as input to the inference problem9.

The approach assumes a general age-stratified IFR . In general, these quantities are expected to depend poten-
tially on specific features of the population and the medical care facilities available. The available studies show a 
minimal variability among different countries and other locations that reported on prevalence24. It also assumes 
an age-uniform exposure (attack rate), which is consistent with data for other respiratory diseases5 and holds 
to a large extent when there is information available for COVID-1920,25,26. We have also assumed a constant 
generation interval typical of non-confinement locations, which has been observed to shorten in some cases by 
NPIs27. Prevalence studies can also depend on the diminishing antibody levels after infection15,28, collecting and 
processing specimens for analysis29, and potential biases towards specific population groups20. In addition, there 
might be a degree of under-reporting of COVID-19 deaths, as suggested by excess mortality not attributable to 
other causes than COVID-1922. Our results show that all of these potential deviations on the assumptions, on the 
data, and on prevalence studies collectively have only a restricted impact on the approach, with 72.0% (globally) 
and 77.6% (US) of the estimates within a factor 2 of the observed values and 100.0% (globally) and 93.9% (US), 
within a factor 3. This accuracy of the estimations is highly remarkable in the context of the observed prevalence 
spread over a factor 615.0 between minimum and maximum values, from 0.02 to 12.30%.

The analysis in terms of the growth rate–infectious population trajectories has revealed universal types of 
behavior of the outbreak for countries around the world and locations within the US. This information can be 
used to anticipate the response to enacting, modifying, or lifting NPIs. The most marked example is the response 
to strict lockdowns across countries in Europe (e.g. United Kingdom, Italy, Belgium, Spain, France, Germany, 
Austria, Netherlands, and Switzerland) and Northeast states in the US (e.g. New York, New Jersey, Massachusetts, 
Pennsylvania, and District of Columbia). They followed the same type of behavior (fast decrease of the growth 
rate from high to sustained negative values) until major restrictions were lifted in the European countries23, 
turning the growth rate of their infectious populations into highly sustained positive values. Our results show 
that those European countries had small actively infectious populations but not as small as required for targeted 
controllability. They also show that most Northeast states in the US are in a similar resurgence path but at much 

Figure 5.   The temporal evolution of the distribution of growth rates shows a double stabilization of the 
outbreak. The temporal evolution of the median (red line), first decile (green line), and tenth decile (blue line) 
of the growth rates are plotted over the gray-coded histogram for countries in the world (A) and states and 
territories of the US (B). The median converges towards zero values and the deciles move closer to each other 
in a fluctuating manner for countries in the World and locations in the US. The double stabilization means that 
growth rates have mainly moved towards zero values both at local scales and at a global scale. At local scales, 
growth rates for most countries and states, whether positive or negative, decreased in absolute value, leading to a 
slowdown of the dynamics. At World and US global scales, positive and negative values for each of the locations 
have converged towards statistically compensating each other, decreasing further the overall net growth of the 
infectious population.
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earlier stages, with many of their NPIs still in place and with markedly smaller growth rates, which makes their 
reaching as deadly a resurgence as in Europe still avoidable.

At a global scale, the outbreak has reached a net growth rate fluctuating near zero values but with a high 
infectious population. A similar state has also been reached in the US. This type of fluctuating states, with long 
stagnant overall infectious population periods and median growth rate close to zero, is expected of bounded 
unsynchronized fluctuating populations30, such as those from uncoordinated locations aiming at just preventing 
an unrestricted expansion of the outbreak rather than at its eradication. This widespread feature is present for 
both countries in the world and locations within the US. Considering the NPIs implemented23, our results show 
that there have been locations with interventions to move the growth rate towards zero values and that there have 
been locations switching on and off severe measures to decrease temporarily the active infectious population. 
Despite not growing substantially since reaching its highest local maximum of 7.35 million active infections on 
July 17, 2020, the high value of the global infectious population attained is currently leading to 15.70 million 
new infections per week that replace the same ballpark number of individuals that stop being infectious. This 
high turnover makes the control of any potential resurgence extremely costly.

At a local scale, our results show a highly variable temporal evolution of the infectious populations, both over 
time for each location and across locations. Having an up-to-date estimate of the infectiousness of populations 
would allow policymakers to better implement travel planning among locations. The approach has proven to 
accurately track the effects of local NPIs. We also expect it to play a fundamental role in evaluating the progress 
of vaccination efforts, especially considering the challenges present, such as waning immunity levels and patho-
gen evolution31.

Methods
Infection‑age structured dynamics.  For the description of the dynamics, we follow the customary infec-
tion-age structured approach (for details see for instance Refs.4,10–12). Explicitly, we consider the infection-age 
structured dynamics of the number of individuals uI (t, τ) at time t  who were infected at time t − τ given by

with boundary condition

Here, τ is the time elapsed after infection, referred to as infection age, and j(t) =
∫∞

0
kI (t, τ)uI (t, τ)dτ is the 

incidence, with kI (t, τ) being the rate of secondary transmissions per single primary case.
The solution is obtained through the method of characteristics32 as

for t ≥ τ and uI (t, τ) = 0 for t < τ . The resulting renewal equation, j(t) =
∫∞

0
kI (t, τ)j(t − τ)dτ , is used as 

the basis for the definitions of the reproduction number Rt =
∫∞

0
kI (t, τ)dτ and the probability density of the 

generation time fGT (τ ) = kI (t,τ)
Rt

.
The infectious population is given by

which considers that an individual remains potentially infectious after a time τ from infection with probability

Therefore, in terms of the incidence [substituting Eq. (9) in Eq. (10)], we have

Additionally, we consider the expected cumulative number of infections, nT (t) , expressed in terms of the 
overall accumulated incidence as

and the dynamics of the expected cumulative deaths, nD(t),

which takes into account that deaths occur with probability given by the infection fatality rate, IFR , at times 
after infection given by the convolution of the probability density functions of the incubation, fI , and symptom 
onset-to-death, fOD , times.

Similarly, the variation of the expected number of seropositive individuals at a time t  , nSP(t) , is expressed as

where fSP is the probability density function of the seroconversion time after infection, and the expected number 
of individuals with positive RT-PCR testing nPT (t) , as

(7)∂
∂t uI (t, τ)+

∂
∂τ
uI (t, τ) = 0

(8)uI (t, 0) = j(t).

(9)uI (t, τ) = j(t − τ)

(10)nI (t) =
∫∞

0 PI (τ )uI (t, τ)dτ ,

(11)PI (τ ) =
∫∞

τ
fGT (l)dl.

(12)nI (t) =
∫∞

0 PI (τ )j(t − τ)dτ .

(13)nT (t) =
∫ t
0j(s)ds,

(14)d
dt nD(t) = IFR

∫ t
0fOD(t − l)

∫ l
0fI (l − s)j(s)dsdl,

(15)d
dt nSP(t) =

∫ t
0fSP(t − s)j(s)ds,
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where PTP(τ ) is the probability that an infected individual would test positive at a time τ after infection.

Dynamical constraints.  To obtain a closed set of equations for the different epidemiological quantities, 
we developed an approach to optimally simplify the convolutions. Explicitly, for the expressions involving an 
integral 

∫∞

0
A(τ )j(t − τ)dτ of a function A with the incidence j , we perform a series expansion of the incidence 

around the infection-age time τA,

with the value of τA chosen as

The specific value of τA leads directly to a first-order approximation,

because 
∫∞

0 A(τ )(τA − τ)dτ = 0 by the definition of τA.
Using this approach, we obtain

from Eq. (12), where τG =
∫∞

0
τ fGT (τ )dτ and σ 2

G =
∫∞

0
(τ − τG)

2fGT (τ )dτ are the average and variance of the 
generation time, respectively, and

from Eq. (14), where τI =
∫∞

0
τ fI (τ )dτ and τOD =

∫∞

0
τ fOD(τ )dτ are the incubation and symptom onset-to-death 

average times, respectively. These expressions lead straightforwardly to

and

up to O
(

j
′ ′
)

 . Note that we have used 
∫∞

0
2τPI (τ )dτ =

∫∞

0
d
(

τ 2PI (τ )
)

−
∫∞

0
τ 2dPI (τ ) =

∫∞

0
τ 2fGT (τ )dτ and 

∫∞

0
PI (τ )dτ =

∫∞

0
d(τPI (τ ))−

∫∞

0
τdPI (τ ) =

∫∞

0
τ fGT (τ )dτ.

These expressions are used to estimate the infectious population nI (t) from the daily deaths, ddt nD , at time 

t + τI + τOD −
τ 2G+σ 2

G
2τG

 and the cumulative infected population nT (t) from the cumulative deaths, nD , at time 

t + τI + τOD , leading to

Similarly, we obtain

where τSP is the average seroconversion time after infection and �tTP is the average number of days an individual 
tests positive, which up to O

(

j′′
)

 leads to

Combining Eqs. ( 28 ) and ( 29 ) with Eqs. ( 24 ) and ( 25 ) leads to

(16)nTP(t) =
∫∞

0 PTP(τ )uI (t, τ)dτ ,

(17)j(t − τ) = j(t − τA)+ j′(t − τA)(τA − τ)+ O
(

j′′
)

,

(18)τA =

∫∞
0 τA(τ )dτ
∫∞
0 A(τ )dτ

.

(19)
∫∞

0 A(τ )j(t − τ)dτ = j(t − τA)
∫∞

0 A(τ )dτ + O
(

j′′
)

,

(20)nI (t) = j
(

t −
τ 2G+σ 2

G
2τG

)

τG + O
(

j′′
)

(21)d
dt nD(t) = IFRj(t − τI − τOD)+ O

(

j′′
)

(22)d
dt nD(t) =

IFR
τG

nI

(

t +
τ 2G+σ 2

G
2τG

− τI − τOD

)

(23)nD(t) = IFRnT (t − τI − τOD),

(24)nI (t) =
τG
IFR

d
dt nD

(

t + τI + τOD −
τ 2G+σ 2

G
2τG

)

,

(25)nT (t) =
1
IFR

nD(t + τI + τOD).

(26)d
dt nSP(t) = j(t − τSP)+ O

(

j′′
)

(27)nTP(t) = j(t − τTP)�tTP + O
(

j′′
)

,

(28)nSP(t) = nT (t − τSP),

(29)d
dt nD(t) =

IFR
�tTP

nTP(t + τTP − τI − τOD).

(30)nI (t) =
τG

�tTP
nTP

(

t + τTP −
τ 2G+σ 2

G
2τG

)

,
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which is used to validate the values of the estimated infectious population nI (t) from RT-PCR testing results, 
nTP , at time t + τTP −

τ 2G+σ 2
G

2τG
 and the cumulative infected population nT (t) from seropositivity testing, nSP , at 

time t + τSP.

Expected deaths.  The raw cumulative death counts over time, nW (t) , are obtained from the Johns Hopkins 
University Center for Systems Science and Engineering1 for countries and for US locations.

The daily death counts �nW (t) = nW (t)− nW (t − 1) are considered to contain reporting artifacts if 
they are negative or if they are unrealistically large. This last condition is defined explicitly as larger than 4 
times its previous 14-day average value plus 10 deaths, �nW (t) > 10+ 4× 1

14 (nW (t)− nW (t − 14)) , from 
a non-sparse reporting schedule with at least 2 consecutive non-zero values before and after the time t  , 
�nW (t)  = 1

5 (nW (t + 2)− nW (t − 3)).
Reporting artifacts identified at time t  are considered to be the result of previous miscounting. The excess 

or lack of deaths are imputed proportionally to previous death counts. Explicitly, death counts are updated as

with nW (t − 1)estimated = nW (t)− 1
7 (nW (t − 1)− nW (t − 8)) for all i ≥ 0 . In this way, �nW (t) is assigned its 

previous seven-day average value.
The expected daily deaths, �nD(t) , are obtained through a density estimation multiscale functional, 

fde , as �nD(t) = fde(�nW (t)) , which leads to the estimation of the expected cumulative deaths at time t  as 
nD(t) = nW (t0)+

∑t
s=t0+1�nD(s) . Specifically,

with

where ma14(·) is a centered moving average with window size of 14 days and rgσ (·) is a centered rolling average 
through a Gaussian window with standard deviation σ . The specific value of the window size has been chosen 
to mitigate weekly reporting effects. The values of the standard deviations of the Gaussian windows have been 
selected to achieve a smooth representation of the expected death estimation for each country as shown in the 
bottom panels of Supplementary Fig. S1.

Reporting delays.  We consider an average delay of two days between reporting a death and its occurrence. 
This value is obtained by comparing the daily death counts reported for Spain1 and their actual values33 from 
February 15 to March 31, 2020. The values of the root-mean-squared deviation between reported and actual 
deaths shifted by 0, 1, 2, 3, and 4 days are 77.9, 58.4, 38.5, 58.7, and 88.6 deaths respectively.

Infection fatality rate ( IFR).  The infection fatality rate is computed assuming homogeneous attack rate as

where IFRa is the previously estimated IFR for the age group a5 and ga is the population in the age group a as 
reported by the United Nations for countries18 and the US Census for states19.

Clinical parameters.  We obtained the values of the average τG and standard deviation σG of the generation 
time from Ref.13, of the averages of the incubation τI and symptom onset-to-death τOD times from Refs.5,14, and 
of the average number of days �tTP of positive testing by an infected individual from Refs.15,17. The average time 
at which an individual tested positive after infection τTP was computed as τTP = τI − 2+�tTP/2 , where we 
have assumed that on average an individual started to test positive 2 days before symptom onset. The average 
seroconversion time after infection τSP was estimated as τI plus the 7 days of 50% seroconversion after symptom 
onset reported in Ref.16.

Dynamical constraints implementation with discrete time.  We implemented the dynamical con-
straints to compute the infectious and infected population as outlined in the main text and as detailed in the pre-
vious section of this document, using days as time units. Time delays were rounded to days to assign daily values.

(31)nT (t) = nSP(t + τSP),

(32)nW (t − 1− i) ← nW (t − 1− i)
nW (t−1)estimated

nW (t−1)

(33)fde(�nW (t)) = (1− r1)dd0 + r1((1− r2)dd1 + r2dd2)

(34)r1 = e−0.3dd1 ,

(35)r2 = e−3dd2 ,

(36)dd0 = ma14(ma14(�nW (t))),

(37)dd1 = rg12(ma14(�nW (t))),

(38)dd2 = rg48(ma14(�nW (t))),

(39)IFR = 1
∑

aga

∑

aIFRaga,
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The first derivative of the cumulative number of deaths is computed as

with �nD(t) = nD(t)− nD(t − 1).
The growth rate was computed explicitly from the discrete time series as the centered 7-day difference

The 7-day value was chosen to mitigate reporting artifacts.

Confidence and credibility intervals.  Confidence intervals associated with death counts were computed 
using bootstrapping with 10,000 realizations34. These confidence intervals were combined with the credibility 
intervals of the IFR in infectious and infected populations assuming independence and additivity on a logarith-
mic scale.

Fold accuracy.  The fold accuracy, FA , is explicitly computed as

where |·| is the absolute value function, xobsi  is the ith observation, xesti  is its corresponding estimation, and N is 
the total number of observations.

Inference and extrapolation.  Because of the delay between infections and deaths, inference for the val-
ues of the growth rate and infectious populations ends on December 30, 2020 and for the values of the infected 
populations ends on December 26, 2020. Extrapolation to the current time (January 21, 2021) is carried out 
assuming the last growth rate computed.

Reproduction number.  The quantities Rt and kG(t) are related to each other through the Euler–Lotka 
equation, R−1

t =
∫∞

0 fGT (τ )e
−kG(t)τdτ , which considers j(t − τ) ≃ e−kG(t)τ j(t) in the renewal equation 

j(t) =
∫∞

0
kI (t, τ)j(t − τ)dτ . Generation times can generally be described through a gamma distribution 

fGT (τ ) =
βα

Ŵ(α)
τα−1e−βτ with α = τ 2G/σ

2
G and β = τG/σ

2
G , which leads to Rt = (1+ kG(t)/β)

α for kG(t) > −β 

and Rt = 0 for kG(t) ≤ −β . In the case of the exponentially distributed limit ( α ≃ 1 ) or small values of kG(t)/β , 
it simplifies to Rt = 1+ kG(t)τG for kG(t) > −1/τG and Rt = 0 for kG(t) ≤ −1/τG . Global prevalence data were 
obtained from multiple data sources35–42, as described in Supplementary Table S1.
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