
TYPE Methods

PUBLISHED 23 September 2022

DOI 10.3389/fninf.2022.919779

OPEN ACCESS

EDITED BY

Ivan V. Zaletel,

Faculty of Medicine, University of

Belgrade, Serbia

REVIEWED BY

Vaanathi Sundaresan,

Massachusetts General Hospital and

Harvard Medical School, United States

Francesca Galassi,

University of Rennes 1, France

*CORRESPONDENCE

Parisa Saat

parisa.saat1@ucalgary.ca

RECEIVED 13 April 2022

ACCEPTED 29 August 2022

PUBLISHED 23 September 2022

CITATION

Saat P, Nogovitsyn N, Hassan MY,

Ganaie MA, Souza R and Hemmati H

(2022) A domain adaptation

benchmark for T1-weighted brain

magnetic resonance image

segmentation.

Front. Neuroinform. 16:919779.

doi: 10.3389/fninf.2022.919779

COPYRIGHT

© 2022 Saat, Nogovitsyn, Hassan,

Ganaie, Souza and Hemmati. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

A domain adaptation benchmark
for T1-weighted brain magnetic
resonance image segmentation

Parisa Saat1*, Nikita Nogovitsyn2,3,

Muhammad Yusuf Hassan1,4, Muhammad Athar Ganaie1,5,

Roberto Souza1,6 and Hadi Hemmati1,7

1Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary,

AB, Canada, 2Centre for Depression and Suicide Studies, St. Michael’s Hospital, Toronto, ON,

Canada, 3Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences,

McMaster University, Hamilton, ON, Canada, 4Electrical Engineering, Indian Institute of Technology,

Gandhinagar, Gujarat, India, 5Chemical Engineering, Indian Institute of Technology, Kharagpur, West

Bengal, India, 6Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary,

Calgary, AB, Canada, 7Electrical Engineering and Computer Science, Lassonde School of

Engineering, York University, Toronto, ON, Canada

Accurate brain segmentation is critical for magnetic resonance imaging (MRI)

analysis pipelines. Machine-learning-based brain MR image segmentation

methods are among the state-of-the-art techniques for this task. Nevertheless,

the segmentations produced by machine learning models often degrade in

the presence of expected domain shifts between the test and train sets

data distributions. These domain shifts are expected due to several factors,

such as scanner hardware and software di�erences, technology updates, and

di�erences in MRI acquisition parameters. Domain adaptation (DA) methods

can make machine learning models more resilient to these domain shifts.

This paper proposes a benchmark for investigating DA techniques for brain

MR image segmentation using data collected across sites with scanners

from di�erent vendors (Philips, Siemens, and General Electric). Our work

provides labeled data, publicly available source code for a set of baseline

and DA models, and a benchmark for assessing di�erent brain MR image

segmentation techniques. We applied the proposed benchmark to evaluate

two segmentation tasks: skull-stripping; and white-matter, gray-matter, and

cerebrospinal fluid segmentation, but the benchmark can be extended to

other brain structures. Our main findings during the development of this

benchmark are that there is not a single DA technique that consistently

outperforms others, and hyperparameter tuning and computational times

for these methods still pose a challenge before broader adoption of these

methods in the clinical practice.
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1. Introduction

Magnetic Resonance Imaging (MRI) has demonstrated

its exceptional utility for clinical research in neurology

and psychiatry (Nishimura, 2010). Brain segmentation is a

fundamental method that provides a wide array of information

about the brain structure in neuroimaging. With image

segmentation, researchers can measure the volume of a

particular brain region to characterize, for example, patterns

of healthy brain aging (Valizadeh et al., 2017), the impact

of neurodegenerative diseases (Sander et al., 2019), and yield

clinically meaningful information that may potentially guide

treatment selection for patients with depression (Nogovitsyn

et al., 2020).

Deep learning algorithms are the current state-of-the-art

for brain MRI segmentation (Pereira et al., 2016; Thyreau

et al., 2018; Kuijf et al., 2019; Henschel et al., 2020). These

algorithms hold promise for future applied neuroimaging

because of their unparalleled processing speed and accuracy

(Henschel et al., 2020). Nevertheless, deep learning models

can suffer from generalization problems (Bento et al., 2021).

For example, a brain MRI segmentation model trained with

a particular source dataset can provide accurate segmentation

results for test samples from the same dataset. Still, if used on

a new target dataset, the segmentation algorithm may show

compromised performance with inaccuracies in volumetric

measures (Figure 1). This happens because of data distribution

differences between the source and test data—and is known as

the domain shift problem.

Domain shifts in the data are expected to occur over time.

For example, in the early 2000s, most MRI scanners had 1.5 T

magnetic field strength. Nowadays, in most developed countries,

FIGURE 1

Illustration of the DA problem. Deep learning segmentation models often do not work well when there is a data distribution shift between the

source (Scanner A) and the target (Scanner B) data distributions.

the standard has moved to 3 T. MR images acquired using

3 T scanners have a higher signal-to-noise ratio (SNR) than

images from 1.5 T scanners. Still, it is uncertain whether models

trained using data collected 1.5 T scanners will generalize to

3 T scanners. Other common sources of data variability that

result in domain shifts are the use of different receiver coils,

image acquisition protocols, and reconstruction algorithms

like Parallel Imaging (Deshmane et al., 2012), Compressed

Sensing (Lustig et al., 2008), and other machine learning

methods (Beauferris et al., 2022). Also, MR images produced

by different scanners differ depending on the scanner vendor

because differences in hardware and software impact their

data distribution.

Domain shift is a significant problem that can degrade

the performance of deep-learning-based segmentation models.

Domain adaptation (DA) techniques (Perone et al., 2019) can be

used to adapt models that were trained using a source dataset to

a target dataset. The capacity to adjust brain MRI segmentation

models to new data in the presence of domain shifts is essential,

especially when scientists attempt to translate these models from

research to clinical practice.

DA methods can be classified as supervised and

unsupervised methods. Supervised DA requires a set of

labeled data in the target domain. The most common approach

for supervised DA is fine-tuning a pre-trained model. Specially

in medical image analysis, where often limited labeled data is

available, fine-tuning Convolutional Neural Networks (CNNs)

can show a performance as good as or even better than CNNs

trained from scratch. However, fine-tuning results depends

on the application, the amount of data available, and the

models being used (Tajbakhsh et al., 2016). Several studies have

examined fine-tuning approaches for medical image analysis
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(Van Opbroek et al., 2014; Cheplygina et al., 2017; Ghafoorian

et al., 2017; Xu et al., 2017; Dou et al., 2018; Ataloglou et al.,

2019; Valverde et al., 2019; Shirokikh et al., 2020).

Unsupervised DA corresponds to DA methods that do not

use labeled target data. Unsupervised DA methods attract more

attention in image segmentation research as it does not require

time consuming manual data labeling (Kouw and Loog, 2019).

Several unsupervised domain adaptation techniques have been

proposed over the years (Menze et al., 2014; Kamnitsas et al.,

2017; Shrivastava et al., 2017; Gholami et al., 2018; Li et al., 2019;

Perone et al., 2019; Yan et al., 2019; Ackaouy et al., 2020).

Generative Adversarial models have recently been proposed

for DA purposes. These adversarial models either utilize image

translation from one domain to another as a preprocessing step

before employing a pretrained segmentation model, or they use

a one-step end-to-end model that combines image translation

and segmentation. Some of these methods need paired data, i.e.,

the same image in both domains (Armanious et al., 2020). These

strategies can work in a supervised and unsupervised setting. A

few strategies work without paired data and have supervised and

unsupervised versions (Zhu et al., 2017; Oliveira et al., 2020).

A current issue is that with the current lack of benchmarks

for objective comparisons between methods, there is no

established way of choosing the best among these techniques

(cf., Guan and Liu, 2021). Another concern in evaluating and

comparing existing domain adaptation approaches for medical

image segmentation is that many of these approaches have

only been validated on private datasets or on datasets that

were not specifically designed for domain adaptation purposes.

Addressing this issue is one of the objectives of the CrossMoDA

(Cross-Modality Domain Adaptation) challenge (Dorent et al.,

2022). The 2021 CrossMoDA challenge was held with the aim

of presenting a benchmark of unsupervised domain adaptation

methods for vestibular schwannoma and cochlea segmentation,

which is a problem with limited practical applicability. Also, the

goal of the CrossMoDA challenge was to investigate whether

fewer than normally acquired MRI sequences could yield

equivalent information about the tumor being investigated,

resulting in shorter and cheaperMRI exams. Another interesting

DA benchmark was proposed in Campello et al. (2021), but

applied to cardiac images and not brain segmentation.

In this work, we propose a benchmark that compares

different DA techniques for T1-weighted brain MR image

segmentation. Our benchmark uses the Calgary-Campinas

(CC) dataset (Souza et al., 2018) that has images collected

from three MRI scanner vendors (Philips, Siemens, General

Electric [GE]). Our benchmark currently focuses on two

segmentation tasks: (1) skull-stripping which is to isolate

brain tissue from non-brain tissue, and (2) white-matter

(WM), gray-matter (GM), and cerebrospinal fluid (CSF)

segmentation. These tasks are often the initial processing steps

in many neuroimaging pipelines. Moreover, the benchmark

framework that we propose here can be extended to other

brain structures. The main contributions of our work are

as follows:

• Proposal of a benchmark for objectively evaluating different

DA techniques for brain MR image segmentation.

• A public repository with code scripts for developing

baseline segmentation models and extraction of

quantitative metrics1.

• Addition of data annotation to the CC dataset.

• Creation of a public leaderboard comparing different DA

approaches 2.

2. Data

2.1. T1-weighted MRI data

For the proposed benchmark, we use the Calgary-Campinas-

359 (CC-359) dataset (Souza et al., 2018). The CC-359 is a

multi-vendor, multi-field strength volumetric brainMRI dataset.

The CC-359 has data acquired in scanners from three different

vendors (GE, Philips, and Siemens) at both 1.5 and 3 Tmagnetic

field strengths. We only use 3 T data since 1.5 T scanners

have been replaced with 3T scanners with higher imaging

quality in most facilities, and we want to have a manageable

number of domains for the benchmark. The 3 T portion of

the dataset comprises 180 T1-weighted three-dimensional (3D)

volumes [3D MP-RAGE (Philips, Siemens), and a comparable

T1-weighted spoiled gradient echo sequence (GE)], with 60

subjects per vendor. The volumes are collected from 180 (50.00%

female) presumed healthy subjects with an age range from

29 to 80 years, and 53.4 ± 7.9 years (mean ± std). In this

benchmark, we consider each scanner vendor as a different

domain (i.e., three domains). We chose these three domains

because of varying image distributions across vendor-specific

hardware and software differences, which inherently lead to

domain shifts in the data (Figure 2). To support this claim, we

show in the Supplementary material that a simple convolutional

neural network model achieves 99.44 ± 0.79% (mean ± std)

accuracy when distinguishing between images acquired using

MRI scanners of different vendors. A summary of the dataset

is shown in Table 1.

2.2. Brain masks

The CC-359 dataset provided brain masks for all its brain

volumes. The masks were obtained by using the Simultaneous

Truth and Performance Level Estimation (STAPLE) algorithm

(Warfield et al., 2004) to combine the brain masks obtained

1 https://github.com/ParisaSaat/Brain-MR-Segmentation-Playground

2 https://www.ccdataset.com/brain-mri-segmentation-playground
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FIGURE 2

Illustration of di�erences between the domains, which can be see through (A) a di�erence in data distribution (after scaling data between 0 and

1), and (B) a visual comparison of similar brain regions across domains.

TABLE 1 Dataset summary.

Scanner Age Gender Train Validation Fine-tuning Test

GE 53.6± 5.7 30 M/30 F 38 10 12 12

Philips 50.3± 9.3 30 M/30 F 38 10 12 12

Siemens 56.6± 6.9 30 M/30 F 38 10 12 12

Columns from left to right: scanner, average age (mean ± standard deviation), gender

(number of male/number of female subjects), train, validation, fine-tuning, and test sets

(number of volumes). The 12 subjects used for fine-tuning come from the target domain.

with eight publicly available skull-stripping techniques:

Advanced Normalization Tools (ANTs) (Avants et al., 2011),

Brain Extraction based on non-local Segmentation Technique

(BEaST) (Eskildsen et al., 2012), Brain Extraction Tool (BET)

(Smith, 2002) from FSL (Jenkinson et al., 2012) software, Brain

Surface Extractor (BSE) (Shattuck et al., 2001) from BrainSuite

(Shattuck and Leahya, 2002) software, Hybrid Watershed

Approach (HWA) (Ségonne et al., 2004) from Freesurfer

(Dale et al., 1999) software, Marker Based Watershed Scalper

(MBWSS) (Beare et al., 2013), Optimized Brain Extraction

(OPTIBET) (Lutkenhoff et al., 2014), and Robust Brain

Extraction (ROBEX) (Iglesias et al., 2011). The STAPLE masks

were reviewed by a medical expert to assure the quality of

the segmentation.

2.3. WM, GM, and CSF masks

As part of this benchmark, we included WM, GM, and

CSF masks for all brain volumes of the CC-359 dataset. The

masks were obtained by using the STAPLE algorithm to combine

the segmentation obtained with the Automated Segmentation

Tool (Zhang et al., 2000) from FSL and theUnified Segmentation

method (Ashburner and Friston, 2005) from the software

Statistical Parameter Mapping (Flandin and Friston, 2008). A

medical expert reviewed the STAPLE masks to assure the quality

of the segmentation.

3. Preprocessing and data
augmentation

For consistency, the same preprocessing and data

augmentation strategy for all methods in our benchmark.

In this subsection, we present this strategy.

To account for the different ranges of pixel intensities

across datasets, we preprocess the images using min-max

normalization to assure all images have the same intensity

range. The normalization is done per MRI volume following

the equation:

Vnorm =
V −min(V)

max(V)−min(V)
, (1)

where V represents the 3D volume we are normalizing.

Working with 3D images requires more memory to load the

data and more computational power to train models. Lucena

et al. (2019) reported that the segmentation performance had

marginal improvement when using a tri-planar approach as

opposed to using a single image plane to train the segmentation

model. Due to this observation and the fact that 3D models

can be too computationally intensive for training, we opted for

employing 2D models trained using 2D slices. We used the

sagittal plane for slice extraction since it is the plane where the

best results were obtained by Lucena et al. (2019).
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TABLE 2 Summary of number of slices per domain, per train,

validation, and fine-tuning sets after preprocessing of the volumes.

Scanner Train Validation Fine-tuning

GE 9,392 2,016 2,400

Philips 8,640 1,786 2,160

Siemens 10,752 2,237 2,688

The test metrics are computed per volume so the number of test slices is not relevant and

omitted here.

Empty slices (i.e., with no signal) were removed to reduce the

computational burden during model training. We also applied

data augmentation transformations including random rotation,

shift, scaling, and cropping on 2D slices using a fast open

source library named Albumentation (Buslaev et al., 2020). We

used patches of size 128 × 128 to train the baseline and fine-

tuning models and used the whole images of size 288 × 288

to train the self-ensembling and unlearning models. Table 2

shows the number of training slices in each data domain after

preprocessing was applied.

4. Methods

This section describes the experimental setup and

quantitative metrics to evaluate the different DA models.

We also describe the models included in our benchmark.

4.1. Data split

The proportion of data in each train and test set is based

on the common percentages used in machine learning problems

which are 80% for the train set and 20% for the test set. The

train set itself was split randomly to 80% for the train and 20%

for validation. The proposed data split resulted in 12 volumes

in the test for each domain in the benchmark, which should be

sufficient to detect changes in segmentation performance across

domains. The training, validation, and test files are provided in

the benchmark repository to make experiments reproducible.

We also reserve 20% of volumes in each domain train set for the

supervised DAmethods that require labeled data. A summary of

the data split is shown in Table 1.

4.2. Evaluation metrics

To evaluate the performance of different segmentation

models in the benchmark, we compare the segmentation masks

predicted by each model with the ground truth masks for

skull-stripping and WM, GM, and CSF segmentation. We

calculated two metrics commonly used for benchmarking

segmentation methods (Timmins et al., 2021): the Dice

similarity coefficient (Yeghiazaryan and Voiculescu, 2015)

and the 95th percentile Hausdorff distance (HD) (Taha and

Hanbury, 2015). These metrics were selected from two common

categories for medical image segmentation evaluation: overlap

metrics (Dice coefficient) which measures the total overlap

of ensembles of labels defined on multiple test images, and

a complementary measure of error, the boundary distance,

which is an indicator of non-overlapping segmentation contours

(Crum et al., 2006). Suppose that G is the ground truth

image and S is the segmentation we want to assess, the Dice

coefficient and Hausdorff distance metrics are given by the

following equations:

• Dice coefficient:

Dice =
2 ∗ |S ∩ G|

|S| + |G|
(2)

• Haussdorff distance:

dH(S,G) = max{sup
s∈S

inf
g∈G

d(s, g), sup
g∈G

inf
s∈S

d(s, g)},

where sup represents the supremum, inf the infimum, and d(, )

represents the Euclidean distance.

The Dice coefficient is a metric that measures the overlap

of the predicted mask and the ground truth mask and

varies between 0 (no overlap) to 1 (perfect overlap). The

Hausdorff distance, as its name implies is a distance metric

indicating the maximal distance between two segmentation

masks; thus, smaller values represent better segmentations.

We use the 95th percentile of Hausdorff distance to negate

the impact of the probable outliers. The 95th percentile

Hausdorff distance uses the 95th percentile of the distances

between boundary points. The metrics are computed over

reassembled 3D volumes. For the WM, GM, and CSF

segmentation problem, the Dice and Hausdorff distance are

computed per segmentation class and the average value

is reported.

To understand how effective is each domain adaptation

method in improving the baseline segmentation results, we

ran a statistical test. As the assessment of normality of

the test results by graphical approaches including histograms

and Q-Q plots demonstrated that the distributions are not

normal, we chose a non-parametric statistical test. The

Wilcoxon signed-rank test with α = 0.05 comparing

each DA method for all six domain configurations against

the baseline method for each segmentation task. The test

was computed using the test samples across all domain

configurations to increase the statistical power of the test,

since for each domain configuration there are 12 test

volumes, and combining all six configurations results in 72

test volumes.
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We also report the average percentage of improvement of

the DA methods compared to the baseline results. A negative

value indicates that the results deteriorated when compared to

the baseline models.

4.3. Ranking criteria

The methods submitted to the benchmark are ranked

separately for each segmentation problem. We chose this

approach because we expect to include other brain structures

in the benchmark in the future, and also because future

submissions to the benchmark may target specific segmentation

tasks, thus a ranking per segmentation task is a logical solution.

The rank for each segmentation task is obtained by sorting

the results of the DA methods (descending order considering

Dice score and ascending order considering Hausdorff distance)

for each domain and then calculating how often each method

is the best, second best and so on. This approach accounts for

the difference in the segmentation quality of the different DA

methods across target domains and metrics.

4.4. Benchmark methods

4.4.1. Baseline

For the baseline method, we used the U-Net architecture

proposed in Ronneberger et al. (2015). The main difference

between our implementation and the original U-Net

architecture is that we use group normalization (Wu and

He, 2018) and dropout after each convolutional layer in our

model. Group normalization has been shown to improve model

generalization across domains (Perone et al., 2019), and dropout

is commonly used to mitigate model overfitting.

The baseline method was trained independently using

each domain data for each segmentation problem, resulting

in six trained models (i.e., one model for each domain and

segmentation problem combination). These six models were

tested three times using the source domain and the other two

target domains’ test data. Each baseline model was trained with

early stopping patience set to 5 and using the Adam optimizer

with a learning rate of 5×10−4, which was reduced by half every

five epochs. The model dropout rate was set to 0.5. These model

hyperparameters were determined empirically.

4.4.2. Fine-tuning final layers

One of the most common supervised domain adaptation

methods is fine-tuning a pre-trained model using labeled data

in the target domain. The fine-tuning procedure is commonly

done on a subset of layers of the model, which are often

the final convolutional layers of the model (Ghafoorian et al.,

2017). We fine-tune the final two convolutional layers of each

baseline model using a fine-tuning set for each target domain.

There are three baseline models for each segmentation problem

and two target domains, resulting in a total of 12 fine-tuned

models. We use 20% of target domain data to fine-tune the

last two convolutional layers of the source domain model. This

data ratio and the number of fine-tuned layers are chosen

empirically based on the experiments conducted in previous

work (Shirokikh et al., 2020). The fine-tuning step uses the same

training hyperparameters as the baseline models but with an

initial learning rate four times smaller (1.25× 10−4).

4.4.3. Fine-tuning first layers

A recent work by Shirokikh et al. (2020) showed that low

level featuremaps of the input data can bemore prone to domain

shifts as compared to feature maps in deep layers. Therefore,

fine-tuning the first layers of a model could potentially

outperform fine-tuning the last layers. For our benchmark,

we followed this method-only two initial convolutional layers

of the pre-trained model were fine-tuned and the rest of the

layers were kept intact. We also used the same hyperparameters

proposed by the authors. We did not try fine-tuning the whole

model since it has been shown that under scarce data conditions

fine-tuning the first layers is superior to fine-tuning the entire

model (Shirokikh et al., 2020).

4.4.4. Self-ensembling

We also implemented the self-ensemblingmethod presented

in Perone et al. (2019) as an unsupervised method in our

benchmark. We chose this method because it has shown

promising results for medical image segmentation problems.

In principle, this approach employs two different models

for self-ensembling: the first model uses a consistency loss

between predictions on the same input that has undergone

different data augmentation transformations; the second model

(temporal ensembling), assumes that as the training advances,

averaging the predictions over time on unlabeled samples

will help to approximate the actual labels more accurately.

During training, this pseudo-label is then used as the target.

The consistency loss is minimized along with the cross-

entropy for the labeled samples. The network uses the

exponential moving average to update the generated targets.

Perone et al. (2019) directly combine model weights instead

of predictions and call the method Mean Teacher model.

We implemented this method, and the code is also in

our benchmark code repository. The loss function of this

method contains two terms: a term for consistency loss and

a second term for segmentation loss. The contribution of the

consistency loss in the total loss is controlled by parameter

γ . A combination of source domain train set (labeled data)
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FIGURE 3

Dice coe�cient results (mean ± standard deviation) for the skull-stripping segmentation displayed as heatmaps. The main diagonal values in the

heatmaps (B–E) are from the baseline models since the source and the target domains are the same. The cases where the DA model improved

the results compared to the baseline are underlined and the best score each model achieved is shown in bold. (A) Baseline, (B) fine-tuning last

layers, (C) fine-tuning first layers, (D) self-ensembling, and (E) unlearning.

Frontiers inNeuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2022.919779
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Saat et al. 10.3389/fninf.2022.919779

FIGURE 4

Haussdor� distance results (mean ± standard deviation) for the skull-stripping segmentation displayed as heatmaps. The main diagonal values in

the heatmaps (B–E) are from the baseline models since the source and the target domains are the same. The cases where the DA model

improved the results compared to the baseline are underlined and the best score each model achieved is shown in bold. (A) Baseline, (B)

fine-tuning last layers, (C) fine-tuning first layers, (D) self-ensembling, (E) unlearning.
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FIGURE 5

Representative sample skull-stripping segmentation generated

by the baseline models. Rows indicate the source domain which

the model is trained on and columns indicate the target domain

on which the model is tested. The first row from the bottom

indicates the ground truth mask.

and target domain train set (unlabeled data) serves as the

training data for this method. All samples with their respective

predictions take part in the training through consistency

loss. The labeled data also contribute to segmentation loss

when their respective predictions are compared with ground

truth masks.

4.4.5. Unlearning: Adversarial unlearning of
scanner-variant features

Dinsdale et al. (2021) extended the idea of domain

generalization by removing domain-variant features, initially

proposed in Ganin et al. (2016) for classification problems,

to image segmentation problems. Their unlearning method

uses a binary classifier as the domain discriminator attached

to a U-Net model as the segmentation network. By attaching

a discriminative task like domain classification to the main

task (segmentation) and considering an adversarial loss term,

the model is encouraged to learn discriminative features for

the main task and indiscriminative in regards to the domain
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classification task. This leads to feature representations that

are invariant to where the data was collected while still

doing the main segmentation task with minimal performance

loss. They achieved promising segmentation results for brain

tissue segmentation with T1-weighted brain MRIs acquired by

different scanners. We implemented the unlearning method for

both of our segmentation tasks by training a three-part network

consisting of a domain classifier with parameters θd, a feature

extractor with parameters θrepr , and a segmentation network

with parameters θp which does our main segmentation task

using the features extracted by the feature extractor network.

We used our baseline U-Net model for the feature extractor

and segmentation network. The total loss of the method is

composed of three terms: a term used in the first stage to pre-

train the segmentation task, a term to tune the domain classifier’s

parameters, and a confusion loss term to tune the θrepr in

such a way to remove the domain variant features from the

feature extractor results so it can confuse the domain classifier

in distinguishing from which domain the data come from.

FIGURE 6

Representative sample skull-stripping segmentation generated

by fine-tuning the last layers of the U-Net. Rows indicate the

source domain which the model is trained on and columns

indicate the target domain on which the model is tested. The

first row from the bottom indicates the ground truth mask.

We use the Dice score for the segmentation loss, categorical

cross-entropy for the domain classifier loss, and sum of log

losses for the confusion loss. The contribution of the domain

classifier loss and the confusion loss is controlled by weighting

the corresponding loss terms with parameters α and β which

have negative values to make adversarial training possible. This

method can be implemented both as an unsupervised method

using unlabeled target domain data for training the domain

predictor and using only the source labeled data for learning the

segmentation masks, or as a semi-supervised method by using

some labeled target domain data for training the segmentation

network too. We used the semi-supervised approach proposed

by Dinsdale et al. (2021) in this benchmark.

4.5. Implementation details

The benchmark code is implemented in Python 3.6.8, and

PyTorch 1.9.1 is used as the deep learning framework. We

FIGURE 7

Representative sample skull-stripping segmentation generated

by fine-tuning the first layers of the U-Net. Rows indicate the

source domain which the model is trained on and columns

indicate the target domain on which the model is tested. The

first row from the bottom indicates the ground truth mask.
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trained our models on an NVIDIA Tesla V100 GPU with 16

GB memory. The training times vary based on the method,

segmentation task and domains. For the baseline method, each

epoch takes about 243 s to run. Fine-tuning first layers takes

216 s. For fine-tuning last-layers, it is 227 s, 850 s for the self-

ensembling method, and 450 s for the unlearning method for

skull-stripping segmentation. The same methods for WM, GM,

and CSF fluid segmentation take 304, 203, 180, 923, and 688

s to run per epoch, respectively. To avoid overfitting, we set

an early stopping controller for 25 epochs. All methods are

trained with batch size of 16. The hyperparameters of the fine-

tuning methods and the self-ensembling method are set to the

suggested values proposed in their original publications. We

investigated tuning them, but we did not see improvement in

the DA results.We initially tried employing the hyperparameters

proposed by the authors for the unlearning models, but they

either failed to converge or achieved poor results. For this

reason, we conducted a grid search on the hyperparameters

space (α and β) to optimize the DA capabilities of the models.

FIGURE 8

Representative sample skull-stripping segmentation generated

by the self-ensembling. Rows indicate the source domain which

the model is trained on and columns indicate the target domain

on which the model is tested. The first row from the bottom

indicates the ground truth mask.

The grid search was run for all domains for both segmentation

tasks individually on the interval of [5, 60] with step size of 5.

The best hyperparameters we found were α = 30 and β = 30

for all configurations and segmentation tasks.

4.6. New submissions

Our benchmark, including the implementation of the above

methods and the code to extract the metrics and generate

the ranking of the different methods, is publicly available

on the benchmark repository. Our benchmark accepts new

submissions from independent research groups. A list of

test volumes is provided within the benchmark. Researchers

interested in submitting methods to our benchmark can submit

their predicted segmentation masks for this test data, and

our team will process the results and make an update to

the benchmark leaderboard (https://www.ccdataset.com/brain-

mri-segmentation-playground). Our code repository provides

FIGURE 9

Representative sample skull-stripping segmentation generated

by unlearning. Rows indicate the source domain which the

model is trained on and columns indicate the target domain on

which the model is tested. The first row from the bottom

indicates the ground truth mask.
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FIGURE 10

Dice coe�cient results (mean ± standard deviation) for the WM, GM, and CSF segmentation displayed as heatmaps. The main diagonal values in

the heatmaps (B–E) are from the baseline models since the source and the target domains are the same. The cases where the DA model

improved the results compared to the baseline are underlined and the best score each model achieved is shown in bold. (A) Baseline, (B)

fine-tuning last layers, (C) fine-tuning first layers, (D) self-ensembling, and (E) unlearning.
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FIGURE 11

Haussdor� distance results (mean ± standard deviation) for WM, GM, and CSF segmentation displayed as heatmaps. The main diagonal values in

the heatmaps (B–E) are from the baseline models since the source and the target domains are the same. The cases where the DA model

improved the results compared to the baseline are underlined and the best score each model achieved is shown in bold. (A) Baseline, (B)

fine-tuning last layers, (C) fine-tuning first layers, (D) self-ensembling, and (E) unlearning.
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instructions that allow researchers to reproduce the exact

same experimental setup that we use here, thus making the

comparison of new future submissions objective and fair.

5. Results

The Dice coefficient and Hausdorff distance results for

the skull-stripping segmentation problem are summarized in

Figures 3, 4, respectively. The rows in these figures represent

the domain which the model is trained on, and the columns

represent the test domains. By comparing the results of the

baseline Dice score and DA methods, we see that the DA

methods compensate for the domain shift in most scenarios.

For the Dice coefficient metric, the unlearning Dice metric

slightly decreased when compared to the baseline model when

the source domain data are from GE and the target domain

data are from Siemens. For the Hausdorff distance metric,

the fine-tuning last layers models only improved the results

in two out of the six domain configurations, unlearning

improved in five domain configurations, while fine-tuning

FIGURE 12

Representative sample WM, GM, CSF segmentation generated

by the baseline models. Rows indicate the source domain which

the model is trained on and columns indicate the target domain

on which the model is tested. The first row from the bottom

indicates the ground truth mask.

first layers and self-ensembling improved the results in all

domain configurations.

The ranking of the DA methods and the percentage of

improvement is depicted in Table 3. The ranking for the Dice

coefficient metric shows that fine-tuning the first layers of

U-Net is more often generating better results and is ranked

first among the DA methods in 50% of cases. Self-ensembling

is the best DA method in 33.33% of cases. The unlearning

method was shown to be the best in 16.67% of the cases, while

fine-tuning the last layers was not ranked first in any of the

domain configurations.

For the Hausdorff distance results, we can see that unlearing

has the greatest percentage of improvement (72.96%) followed

by fine-tuning the first layers (34.08%). The self-ensembling

method showed an improvement of 22.36%. Fine-tuning the last

layers had a negative percentage of improvement (−88.23%).

The unlearning method ranked first in 50% of cases among

all DA methods in terms of improving Hausdorff distance,

followed by the self-ensembling methods, which ranked first in

33.33% of the cases, and then the fine-tuning the first layers

of the U-Net, which was ranked first in 16.67% of the cases.

FIGURE 13

Representative sample WM, GM, CSF segmentation generated

by fine-tuning the last layers of the U-Net models. Rows indicate

the source domain which the model is trained on and columns

indicate the target domain on which the model is tested. The

first row from the bottom indicates the ground truth mask.
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FIGURE 14

Representative sample WM, GM, CSF segmentation generated

by fine-tuning the first layers of the U-Net models. For the

scenarios where the train and the test domains are the same, we

display the baseline models’ results. Rows indicate the source

domain which the model is trained on and columns indicate the

target domain on which the model is tested. The first row from

the bottom indicates the ground truth mask.

Fine-tuning the last layers of the U-Net has always ranked as

the last method in improving the Hausdorff distance. Sample

segmentations for the baseline, fine-tuning final layers, fine-

tuning first layers, self-ensembling, and unlearning methods are

summarized in Figures 5–9, respectively. In these figures, we can

see clear segmentation failures for the baseline model trained on

GE data and tested on Philips data that all DA methods, except

for fine-tuning last layers, were able to improve.

The Dice coefficient and Hausdorff distance results for

the WM, GM, CSF segmentation problem are summarized in

Figures 10, 11, respectively. The rows in these figures represent

the domain which the model is trained on, and the columns

represent the test domains. Fine-tuning the first layers of U-

Net showed high performance in improving the segmentation

results of the WM, GM, CSF segmentation in terms of Dice

score by being the best method in 50% of domain configuration

cases. The unlearning method ranked first at 83.33% of

scenarios in terms of improving the Hausdorff distance. Sample

segmentations for the baseline, fine-tuning final layers, fine-

tuning first layers, self-ensembling, and unlearning methods are

summarized in Figures 12–16, respectively. These figures show

FIGURE 15

Representative sample WM, GM, CSF segmentation generated

by the self-ensembling models. For the scenarios where the

train and the test domains are the same, we display the baseline

models’ results. Rows indicate the source domain which the

model is trained on and columns indicate the target domain on

which the model is tested. The first row from the bottom

indicates the ground truth mask.

segmentation failures for some of the DA methods for some

specific target domain sets.

The DA results are summarized in Table 3. Box-plots

highlighting the Dice coefficient and Hausdorff distance results

for the skull-stripping and WM, GM, CSF segmentation

problems for the different domains are depicted in Figure 17.

Cause the distribution of the test results are not normal, we

chose a non-parametric statistical test to assess the effectiveness

of DA methods in resolving the domain shift. The Wilcoxon

signed-rank statistical significance test was computed for each

method per segmentation task and per segmentation metric,

leading to a total of 16 test results. In all cases, the differences

were deemed to be significant (p < 0.05). In 14 cases, p < 0.001,

and in the other two p < 0.005.

6. Discussion

6.1. Benchmark

In the present work we addressed the problem of absence

of objective metrics that can compare performance of different
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FIGURE 16

Representative sample WM, GM, CSF segmentation generated

by the unlearning models. For the scenarios where the train and

the test domains are the same, we display the baseline models’

results. Rows indicate the source domain which the model is

trained on and columns indicate the target domain on which

the model is tested. The first row from the bottom indicates the

ground truth mask.

domain adaptation (DA) techniques. We built a DA benchmark

for MRI brain segmentation using the CC-359 dataset, which

consists of three data domains. The benchmark currently

consists of a baseline model with no DA strategy along with

four DA methods. Three supervised DA methods based on fine-

tuning either the first or last layers of models pre-trained using

source domain data, and another method based on unlearning

domain specific features. One unsupervised DA method that

uses a self-ensembling approach. Our results showed that the

performance of the baseline segmentation model degrades

across domains, and employing DA methods can be used to

improve results. The fine-tuning of the first layers of the baseline

was ranked first in most of the target domain results considering

the Dice score as the evaluation metric, while based on the

Haussdorf distance metric the unlearning method ranks first in

most cases.

Fine-tuning pre-trained models is relatively easy to

implement and fast to run. Fine-tuning also has the advantage

that access to source domain data os not needed.The unlearning

model aims to create scanner-invariant features using an

iterative training scheme based on domain adaptation

techniques, whilst simultaneously completing the desired

segmentation task. The limitation of these methods is the

necessity of having labeled data in the target domain, which

may not always be available. The self-ensembling DA method

does not require labeled data in the target domain, hence is

more desirable for medical applications. However, it is a more

complex model and slower to train compared to fine-tuning

and unlearning.

The purpose of this benchmark was to provide labeled

data, open source code for a set of baseline models, and

a benchmark for comparing different brain MR image

segmentation techniques. However, we experienced various

difficulties along the way. Most methods we have used in the

paper did have their source code but we had to adapt them

to our dataset. The hyperparameter tuning was also difficult

as our dataset has three domains (GE, Philips, Siemensi) and

two tasks [skull-stripping (SS), WM, GM, CSF segmentation],

which results in training and hyperparameter tuning of 12

different models.

The source code for most of the domain adaptation

methods other than the ones mentioned in our work was

unavailable. The majority of the works’ implementation details

are also insufficient, making the process of writing the code

ourselves significantly more time-consuming. Most techniques

also needed hyperparameter calibration, as details are missing

from the respective papers. We tried many alternative ways in

addition to those described in this study, but the results were

poor for the reasons mentioned. We believe that our work will

greatly enhance the transparency and accessibility of scientific

research in the field of neuroscience. For all of the approaches

discussed in the study, we have kept publicly available data as

well as an up-to-date code repository accessible. We also have a

webpage with all of the information and hyperparameter settings

for smoother navigation of our work.

6.2. Skull-stripping

As Table 3 reports, fine-tuning the first layer of the U-Net

method is often ranked first among the other DA methods

(in 50% of scenarios), followed by the self-ensembling method

(in 33.33% of scenarios) and unlearning method (in 16.67% of

scenarios) while fine-tuning the last layers of U-Net never shows

up as the best method. The greatest percentage of improvements

in terms of both average Dice score and average Haussdorf

distance belongs to the unlearning method.

The lower performance of fine-tuning the last layers of U-

Net could be interpreted as evidence to support the assumption

that the first layers of a model contain more domain-specific

information (Shirokikh et al., 2020) and the last layers are

dealing with higher-level features, almost independent of the

data domain. Therefore, fine-tuning the first layers of the U-Net
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FIGURE 17

(A) Dice coe�cient and (B) Haussdor� distance box-plot distributions computed for the di�erent methods across the 6 target domains for the

skull-stripping and WM, GM, and CSF segmentation problems.

eliminates the effect of having features dependent on the source

domain data distribution and can be used to tune pre-trained

models to the target domain distribution.

6.3. WM, GM, CSF segmentation

WM, GM, CSF Segmentation is a multi-class segmentation

problem and more complex than the skull-stripping problem.

Based on the results, fine-tuning the first layers of U-Net is the

best DA method to resolve the domain shift since it is ranked

first (50% of cases) among all three DA methods, based on the

Dice score. Fine-tuning the last layers of U-Net also improves

the baseline performance, but the improvements are not as

effective as fine-tuning the first layers. Self-ensembling also is

the first ranked method in 33.33% of cases. Considering the

Haussdorf distance metric, the unlearning method has the most

improvement percentage and also is mostly ranked first (83.33%

of cases) among all other methods.

7. Conclusions

In this work, we proposed a benchmark for evaluating

different DA methods for brain MRI segmentation. Our

benchmark and the CC-359 dataset used to develop our method

are publicly available. Therefore, our benchmark can be used by

other researchers for the assessment of novel DA methods. The

benchmark consists of baseline, supervised, and unsupervised

DA methods to cover different possible approaches. We showed

that both supervised and unsupervised DAmethods are effective

in addressing the issue of domain shifts. Fine-tuning the first

layers of the U-Net has outperformed the fine-tuning the last

layers, unlearning, and also the self-ensembling method in

both skull-stripping and WM, GM, and CSF segmentation

regarding the improvements of the dice score. Nevertheless,

the unlearning method has achieved the best improvement in

terms of the Haussdorf distance metric. This finding associated

with difficulties in hyperparameter tuning, long training times of

models, such as unlearning, are an obstacle to practical adoption

of these methods and present an interesting research venue that

has been little explored.

Different segmentation tasks and DA methods can be

added to the benchmark to create a comprehensive platform

for evaluating different brain MRI segmentation methods’

performance, and determining, which methods are more robust

in terms of generalizability across different data domains. Future

research works should aim for adding more DA methods to the

benchmark and developing an ensemblemethod that can choose

the best DA method for each data domain.
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