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Abstract: Diabetes associated with post-menopause is related to a worse condition of kidney disease.
Taking into consideration that this disorder may be regulated by estrogenic mediators, we evaluated
the renal protective effect of isoflavone. We investigated the role of the PPARγ in the pathogenesis
of the disease. For this study, we used diabetic female rats in a postmenopausal model through
ovariectomy. The animals were treated with isoflavone or 17β-estradiol. A dosage was administered
to bring on blood glycemia, and through immunohistochemistry, we evaluated the immunoreactivity
of PPARγ in the endometrium and renal tissue. We analyzed the immunoreactivity of renal injury
molecule KIM-1 and the collagen and glycogen densities in the kidney. Through bioinformatics
analysis, we observed PPARγ and COL1A1 gene expression under the influence of different glucose
doses. In particular, we observed that isoflavone and 17β-estradiol regulate blood glycemia. Renal
injury was inhibited by isoflavone, observed by a reduction in KIM-1, along with glycogen accumula-
tion. These benefits of isoflavone may be associated with PPARγ overexpression in the kidneys and
endometrium of diabetic ovariectomized rats.

Keywords: isoflavone; kidney; PPARγ; diabetes; postmenopausal

1. Introduction

Type 1 diabetes (T1D) has high rates of morbidity and mortality and an increasing
incidence. From the moment of diagnosis, the management of diabetes mellitus (DM)
places an enormous burden on the patient, with severe limitations, changes in lifestyle,
and organ dysfunction [1]. Diabetic nephropathy (DN) is one of the leading causes of
kidney disease worldwide, and being in the post-menopause stages of life contributes to
a worse prognosis [2–4], as postmenopausal sex hormone levels affect the renal/vascular
physiology [5].

Estrogen prevents the development and progression of kidney disease and improves
postmenopausal symptoms, especially in diabetes, the main risk factor for chronic kidney
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disease. In addition, women with lower endogenous exposure to estrogen have a higher
risk of kidney disease [6]. Isoflavone is known for its estrogenic role [7]. The beneficial effect
of isoflavone has been demonstrated in an animal model of diabetes [8] and in humans [9].
The ingestion of soy protein, total isoflavones, daidzein, and genistein is associated with
lower risks of DM2 in a dose-dependent manner in women, though this effect is not evident
in men [9]. These observations may be population-dependent, as in a cross-section of
North American subjects, isoflavone was shown to be effective for men and women with
DM2 [10]. Nevertheless, few studies have demonstrated the effect of isoflavone on T1D,
especially in renal injury [11,12].

Peroxisome proliferator-activated receptor gamma (PPARγ) has been closely associ-
ated with diabetes, menopause, and kidney disease. Due to its role in glucose regulation,
PPARγ agonists are suggested to ameliorate the problems of diabetes [13]. Our group
demonstrated that isoflavone positively regulates PPARγ. In addition, work from the lab
demonstrated beneficial effects on diabetic conditions and in obese animals [12–14]. We
previously demonstrated that isoflavone protects from kidney injury in obese animals via
PPAR-γ [14], prevents bone loss in ovariectomized diabetic animals [15], and can attenuate
the effects of vulvovaginal atrophy in women [16]. Taking into account the protective
function of PPAR-γ in kidney injury [17–20], the objective of this work was to evaluate
the effect of ovariectomy and the consequent gonadal failure on the development of DM1-
induced kidney injury, as well as the contribution of soy isoflavone via PPAR-γ in this
experimental animal model. Our hypothesis is that gonadal failure potentiates renal injury
induced by chronic hyperglycemia and that isoflavone treatment attenuates this condition
by PPAR-γ induction.

Our data revealed that isoflavone protects the kidney against gonadal failure associ-
ated with DM1 damage. Increased protein and gene expression of PPAR-γ was evidenced
under the influence of isoflavone. In addition, we demonstrate for the first time that PPAR-
γ reduction occurs dose-dependent on glucose. On the other hand, we have not clearly
demonstrated the consequences of ovariectomy in the renal injury development, and other
findings are necessary to confirm this hypothesis.

2. Materials and Methods
2.1. Animals, Experimental Design, and Treatments

Our study sample consisted of 60 adult, virgin female rats (Rattus norvegicus Albinus),
three months of age, weighing between 180 and 210 g. The in vivo experimental protocol
was approved by the Ethics Committee (Research Ethics Committee 001676/09) of the Fed-
eral University of São Paulo. The animals were donated by the Center for the Development
of Experimental Models of the Federal University of São Paulo (CEDEME). All animals
were kept in plastic cages with controlled light (12/12 h light/dark cycles) and temperature
(22–24 ◦C), received water and food ad libitum, and were fed a specific proportion of
soy-free food (Formula Labina Especial for rodents), developed by Agribrands-Purina, São
Paulo, Brazil.

After a one-week adaptation period, the rats were anesthetized with an intraperitoneal
injection of 10% ketamine (0.08 mL/100 g/p.p; RompunVR, São Paulo, Brazil) and 2% xy-
lazine (0.04 mL; KetalarVR, São Paulo, Brazil). They then underwent bilateral ovariectomy
immediately after surgery. One day after bilateral ovariectomy, type 1 diabetes in animals
was induced by a single-dose intraperitoneal injection of freshly prepared 60 mg/kg strep-
tozotocin (STZ—Sigma-Aldrich, St. Louis, MO, USA) dissolved in a 0.1 mol/L citrate buffer
(pH = 4.8). Hyperglycemia was confirmed 48 h after the STZ injection by measuring the
tail vein blood glucose levels using a blood glucose monitoring kit (Accu Check ACTIVE
Roche®). Only animals with mean plasma glucose levels > 250 mg/dL were accepted as
having diabetes mellitus [21].

Treatment with soy isoflavone and 17β-estradiol was performed for 30 days after
T1D induction. Was used the concentrated extract of soy isoflavones NovasoyVR (Archer
Daniels Midland, Decatur, IL, USA) containing 40% of total isoflavones in the ratio of
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1.3:1:0.3 genistein: daidzein: glycitein, respectively, 7–12% protein, 4% ash, and 6% moisture,
and the remaining 41% consists of the other soy phytocomponents. In addition, we used
17β-estradiol (Sigma-Aldrich). Administration of soy isoflavones or 17β-estradiol was
initiated 30 d after the ovariectomy. Soy isoflavones (150 mg/kg) were administered by
gavage, and 17β-estradiol (10 mg/kg) was administered subcutaneously.

After 30 days of experimentation, all animals were anesthetized with xylazine (RompunVR,
SP, Brazil) 15 mg/kg associated with ketamine (KetalarVR, SP, Brazil) 30 mg/kg, in-
traperitoneally. A portion of the endometrium and kidney was immediately immersed
in liquid nitrogen e and then stored in the −80 ◦C freezer for qPCR assay. Another
portion of the endometrium and kidney were immersed in paraformaldehyde 4% for
histological processing.

2.2. Periodic Acid–Schiff Staining and Immunohistochemistry

Paraffin sections were subjected to alcohol and xylene gradient solutions, antigen
retrieval, protein block, and incubation with primary antibodies against PPAR-γ polyclonal
antibody (1:200, Abcam, MA, USA) and kidney injury molecule 1 (KIM-1) (1:500, rabbit
IgG, Sino Biological, Beijing, China) overnight at 4 ◦C. After this time, the sections were
incubated with streptavidin-peroxidase for 30 min (Dako, CA, USA). Periodic acid–Schiff
staining was carried out according to the manufacturer’s instructions. The obtained mi-
croscope images were calculated using Leica DFC 310 FX image analysis software (Leica
do Brasil Importação e Comércio Ltd., São Paulo, Brazil) and are expressed as the percent-
age/stained area.

2.3. Collagen Fiber Density

To evaluate the birefringence pattern of collagen fibers in the kidney, two sections per
animal (100 mm distance between sections) were selected and studied using the picrosirius
red method [21,22]. PS-stained kidney sections were also analyzed under polarized light
to differentiate collagen fibers type I (yellow and red). For that, randomly selecting four
non-overlapping areas in each slide were considered at 40× magnification using an Axiolab
2.0 optical microscope (Zeiss, Germany). The quantification of the area occupied by the
collagen fibers was performed using the Image J software. Densitometry analysis data
were obtained as arbitrary units between 0 and 255. A mean of values from the two
sections/animals was obtained to calculate the mean of each group [23].

2.4. Gene Expression Analysis by Reverse-Transcription Quantitative PCR (RT-qPCR)

According to the manufacturer’s instructions, total RNA from the endometrium and
kidney was isolated using TRIzol Reagent (Thermo Fisher Scientific Inc., Waltham, MA,
USA). Total RNA was treated with DNase (RQ1 RNase-Free DNase, Promega, Madison,
WI, USA) to prevent genomic deoxyribonucleic acid contamination, and the RNA pellet
was resuspended in RNase-free water. For mRNA expression analysis, the total RNA (1 µg)
of the endometrium and kidney samples was reverse transcribed using SuperScript III
RT (Thermo Fisher Scientific Inc., Waltham, MA, USA) according to the manufacturer’s
protocol. The PCR product was amplified from cDNA using QuantiFast SYBR Green PCR
kit (Qiagen) and specific primers for rats (Table 1); β-actin was used as endogenous control.
Amplification and detection were performed using the real-time PCR system ABI 7500 (Ap-
pliedBiosystem, Waltham, MA, USA). mRNA data are reported as normalized expression,
calculated based on the 2−∆∆C

T method. All reactions were performed in triplicate.

Table 1. The sequence of primer pairs for RT-qPCR.

Gene Forward Reverse

PPAR-γ GGAGCCTAAGTTTGAGTTTGCTGTG TGCAGCAGGTTGTCTTGGATG

β-actin GGAGATTACTGCCCTGGCTCCTA GACTCATCGTACTCCTGCTTGCTG
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2.5. Bioinformatic Analysis

A study containing publicly available transcriptome data was selected from the Gene
Expression Omnibus (GEOR) repository: (GSE168072 https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE168072, accessed on 3 May 2022). Primary human renal tubular ep-
ithelial (hRTE) cells. The cells were grown using serum-free conditions. The growth formu-
lation consisted of a 1:1 mixture of Dulbecco’s modified Eagles’ medium and Ham’s F-12
growth medium supplemented with selenium (5 ng/mL), insulin (5 µg/mL), transferrin
(5 µg/mL), hydrocortisone (36 ng/mL), triiodothyronine (4 pg/mL), and epidermal growth
factor (10 ng/mL). The cells were fed a fresh growth medium every 3 days, and at confluence,
the cells were sub-cultured using trypsin–ethylenediaminetetraacetic acid (0.05%, 0.02%). For
use in experimental protocols, cells were subcultured at a 1:2 ratio, allowed to reach conflu-
ence (7 days following subculture), and fed with 5.5, 7.5, 11, or 16 mM glucose for 7 days,
followed by sub-culturing the cells for 3 passages (P3) in media containing 5.5, 7.5, 11, or
16 mM glucose. Typically, the cells were passaged, 1:2 for three passages before the initiation of
the experiment [24]. The datasets were analyzed individually using license-free algorithms
from the GEO2R tool (available at http://www.ncbi.nlm.nih.gov/geo/geo2r/, accessed 3 May
2022), which allows users to compare different groups of samples in a GEO series to examine
differentially expressed genes according to experimental conditions. GEO2R was applied to
detect PPAR-γ and Collagen type I alpha 1 chain (COL1A1) genes among different experimental
conditions. The p-values of gene expression after Log2 transformation were used to calculate
the Z-score (individual value—population average/population standard deviation).

2.6. Statistical Analysis

Statistical analyses were performed with the GraphPad Prism (v9.1) software. The
Kolmogorov–Smirnov or Shapiro–Wilk test was used to determine the normality of the data.
The data of the experimental groups were compared using a one-way analysis of variance
(ANOVA), followed by the application of the Kruskal–Wallis test for nonparametric samples.
p-values less than 0.05 were considered statistically significant.

3. Results
3.1. Glucose Modulation by Isoflavone

Firstly, we confirmed our diabetes model (Figure 1). We observed the glycemic level,
where DM1 and DM1 + OVX animals compared with the control group (**** p < 0.0001)
and only OVX (** p < 0.01), respectively, showed hyperglycemia. Relevant to this work, we
observed isoflavone-mediated glucose modulation; we demonstrated that isoflavone but
not 17β-estradiol can reduce glycemia in DM1 and DM1 + OVX groups (* p < 0.05).
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** p < 0.01; **** p < 0.0001).
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3.2. Expression of PPAR-γ in Isoflavone-Induced Endometrium

Through immunohistochemistry analysis, we assessed the immunoreactivity of PPAR-
γ (Figure 2a–f). Through densimetry of the PPAR-γ immunoreactivity (Figure 2g), we
observed that isoflavone is a potent inducer of PPAR-γ even under the influence of
DM1 + OVX when compared with the control (* p < 0.05), OVX (*** p < 0.001), and un-
treated DM1 + OVX (**** p < 0.0001) groups. In addition, a higher immunoreactivity of
PPAR-γ was observed in the DM1 + OVX group treated with 17β-estradiol compared to
the untreated DM1 + OVX group (*** p < 0.001). However, in the evaluation of PPAR-γ
gene expression, we observed that only the DM1 + OVX group treated with isoflavone
could positively modulate PPAR-γ mRNA compared to the untreated DM1 + OVX group
(* p < 0.05) (Figure 2h).
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Figure 2. Isoflavone induces PPAR-γ in the endometrium. Immunoreactivity of PPAR-γ by im-
munohistochemistry (a–f). Control (a), OVX (b), DM1 (c), untreated DM1 + OVX (d), DM1 + OVX
treated with isoflavone (e), and DM1 + OVX treated with 17β-estradiol (f). Densitometry analysis is
represented in arbitrary units (g). Scale bar = 50 µm. Expression of PPAR-γ mRNA with β-actin gene
as endogenous control. (h). Values represent mean ± SEM (n = 6). Kruskal–Wallis test was performed,
followed by Dunn’s multiple comparison test (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

3.3. Expression of PPAR-γ Renal Tissue

Similar to the endometrium, we observed modulation of PPAR-γ in our experimental
groups (Figure 3). By immunohistochemical analysis, we observed that the DM1 + OVX
group treated with isoflavone presented a higher immunoreactivity of PPAR-γ when com-
pared with the OVX group (* p < 0.05), untreated DM1 + OVX group (* p < 0.05), and
DM1 + OVX group treated with 17β-estradiol (* p < 0.05) (Figure 3g). Gene expression eval-
uation revealed that the DM1 + OVX group treated with isoflavone or 17β-estradiol overex-
pressed PPAR-γ when compared with the untreated DM1 + OVX group (**** p < 0.0001)
(Figure 3h). In addition, we demonstrated, in transcriptome analysis of human renal distal
tubule cells, that there is a dose-dependence of the glucose concentration on the PPAR-γ
expression. From 7.5 mM glucose (p *** < 0.001), there is a reduction in PPAR-γ expression;
this decline occurs in a concentration-dependent manner at 11 mM (p *** < 0.001) and
16 mM (**** p < 0.0001) glucose concentrations compared to the control (Figure 3i).

3.4. Assessment of Renal Injury

To analyze the possible protective role of isoflavone through the positive regulation
of PPAR-γ, we evaluated the marker KIM-1 to assess renal injury (Figure 4). Firstly, we
observed that the DM1 group exhibited greater renal injury, observed by increased KIM-1
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immunoreactivity compared to the control group (**** p < 0.0001) and even when compared
to the OVX group (** p < 0.01) (Figure 4g). We demonstrated that treatment with isoflavone,
but not 17β-estradiol, in the DM1 + OVX group could reduce the renal injury marker KIM-1
when compared with the untreated DM1 + OVX group (** p < 0.01) (Figure 4g).
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Figure 3. Isoflavone induces PPAR-γ in the kidneys. Immunoreactivity of PPAR-γ by immunohisto-
chemistry (a–f). Control (a), OVX (b), DM1 (c), untreated DM1 + OVX (d), DM1 + OVX treated with
isoflavone (e), and DM1 + OVX treated with 17β-estradiol (f). Densitometry analysis is represented in
arbitrary units (g). Scale bar = 50 µm. mRNA expression of PPAR-γ, with B-actin gene as endogenous
control. (h). Transcriptome analysis (i), Values represent mean ± SEM (n = 6). Kruskal–Wallis test
was performed, followed by Dunn’s multiple comparison test for non-normal distribution of data,
and one-way ANOVA followed by Dunnett’s multiple comparison test for a normal distribution of
data (* p < 0.05; *** p < 0.001; **** p < 0.0001).
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Figure 4. Isoflavone protects diabetic renal tissue of ovariectomized animals. Immunoreactivity of
KIM-1 by immunohistochemistry (a–f). Control (a), OVX (b), DM1 (c), untreated DM1 + OVX (d),
DM1 + OVX treated with isoflavone (e), and DM1 + OVX treated with 17β-estradiol (f). Densitometry
analysis is represented in arbitrary units (g). Scale bar = 50 µm. Values represent mean ± SEM (n = 6).
Kruskal–Wallis test was performed, followed by Dunn’s multiple comparison test for non-normal
distribution of data. ** p < 0.01; **** p < 0.0001.
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3.5. Evaluation of Type-I Collagen in Renal Tissue

To evaluate the ability of isoflavone to modulate the extracellular matrix of the
actual tissue, in particular, type I collagen, through the birefringence technique to ob-
serve the collagen in the extracellular matrix, we observed that DM1 + OVX induction
increases the amount of collagen in the renal tissue when compared with the control group
(**** p < 0.0001) and OVX alone (*** p < 0.001) (Figure 5). Treatment with isoflavone and
17β-estradiol in the DM1 + OVX group maintained a collagen profile similar to the control
group (Figure 5). To corroborate these observations, we performed a transcriptome analysis,
where we demonstrated that a high glucose concentration (16 mM) promotes COL1A1
expression when compared to the control (5 mM) (* p < 0.05) (Figure 5h).
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Figure 5. Isoflavone does not reduce collagen in renal tissue. Control (a), OVX (b), DM1 (c), untreated
DM1 + OVX (d), DM1 + OVX treated with isoflavone (e), and DM1 + OVX treated with 17β-estradiol
(f). Densitometry analysis is represented in arbitrary units (g). Scale bar = 50 µm. Transcriptome
analysis (h). Values represent mean ± SEM (n = 6). Kruskal–Wallis test was performed, followed by
Dunn’s multiple comparison test for non-normal distribution of data (* p < 0.05; *** p < 0.001 and
**** p < 0.0001).

3.6. Renal Glycogen Analysis

To determine the possible role of isoflavone in glycogen modulation, we evaluated
the PSA in real tissue (Figure 6). We evidenced that the DM1 and DM1 + OVX groups had
increased renal tissue glycogen storage when compared with the control group (* p < 0.05
and **** p < 0.0001, respectively). In addition, increased glycogen storage was found in the
untreated OVX group when compared with the untreated DM1 + OVX group (*** p < 0.001)
(Figure 6g). However, treatment with isoflavone and 17β-estradiol in the DM1 + OVX
group could not significantly reduce the amount of glycogen.
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Figure 6. Isoflavone does not decrease glycogen storage in the actual tissue. Control (a), OVX (b),
DM1 (c), DM1 + OVX untreated (d), DM1 + OVX treated with isoflavone (e), and DM1 + OVX treated
with 17β-estradiol (f). Densitometry analysis is represented in arbitrary units (g). Scale bar = 50 µm.
Values represent mean ± SEM (n = 6). Kruskal–Wallis test was performed, followed by Dunn’s
multiple comparison test for non-normal distribution of data (* p < 0.05; *** p < 0.001; **** p < 0.0001).

4. Discussion

In this work, in a model of diabetes followed by ovariectomy, we demonstrated the
role of isoflavone in protecting from renal injury via PPAR-γ. In our model, isoflavone-
treated animals were protected from renal injury, observed by a reduction in the renal injury
marker KIM-1 in the renal tissue. We postulate that this isoflavone-mediated protection
of kidney injury occurs via PPAR-γ, where we observed that—mainly in the model of
diabetes concomitant to ovariectomy—the endometrium as much as the kidney presents a
reduction in PPAR-γ, observed at the proteinic and gene levels. Isoflavone treatment for this
condition can positively modulate PPAR-γ at the protein and gene levels, demonstrating
this possible relationship.

The relationship of isoflavone with diabetes and menopause has been reviewed by
numerous authors [25–27]. Induction of diabetes and ovariectomy exacerbates blood
glucose [28]. In systematic reviews, there is a disparity of ideas on this. It has been reported
that isoflavone can reduce the risk of type II diabetes mellitus [29,30], but, in another
systematic review, isoflavone did not significantly interfere with glucose metabolism. In
further work, it has been evidenced that extracted isoflavones and those from soy protein
improve the lipid profile and may prevent cardiovascular events in diabetic individuals [31].

Isoflavone and 17β-estradiol negatively regulate blood glucose [7,24]. This similar
effect of isoflavone or 17β-estradiol occurs due to estrogenic characteristics [7]. Investiga-
tions of our group have demonstrated the beneficial effect of isoflavone in ovariectomized
diabetic animals [13,14]. Above all, in this current report, we demonstrate that isoflavone
shows a similar effect to 17β-estradiol, leading to blood glucose homeostasis, but interest-
ingly, the isoflavone was more effective in inducing protein synthesis of PPAR-Y in renal
tissue of diabetic animals than estrogen, and this promoted lower expression of KIM-1 in
this condition. Thus, our data suggest that isoflavone was more effective in inhibiting the
renal injury induced by hyperglycemia than the estrogen itself in our model. Therefore,
these findings will be better explored in future studies.

In animals, PPAR-γ−/− demonstrates cross-links of glucose and lipid metabolism
between adipose tissue, muscle, and liver, suggesting that PPARγ is important for main-
taining normal insulin sensitivity and whole-body glucose and lipid homeostasis [32].
Isoflavone is a potent agonist of PPARα/γ and exerts anti-inflammatory activity, which
may contribute to the prevention of metabolic syndrome [33]. We have previously shown
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in a model of renal injury by a hyper-lipidic diet that isoflavone prevents renal injury via
PPAR-γ [14].

In this work, we demonstrated that protein loss and gene expression of PPAR-γ in
endometrium but not in the kidney of ovariectomized diabetic animals may be related to
greater kidney injury due to a greater susceptibility to glucose. Furthermore, we demon-
strated through transcriptome analysis in human proximal renal tubule cells that the
reduction in PPAR-γ expression may be glucose-concentration-dependent. Higher con-
centrations of glucose (i.e., 16 mM) cause an expressive decline in PPAR-γ expression.
We observed overexpression of KIM-1 in diabetic and ovariectomized diabetic animals,
but isoflavone could reduce this marker of renal damage significantly only in the ovariec-
tomized diabetic group.

The fibrosis present in human diabetic nephropathy reduces renal function dramati-
cally [34]. In diabetic animals induced by STZ, an accumulation of collagen and overex-
pression of pro-fibrotic genes are observed [35]. In our model, we observed that, especially
in the ovariectomized diabetic group, this accumulation of collagen occurs when compared
to the control group and ovariectomized-only group. Through transcriptome analysis, we
demonstrated the overexpression of type I collagen, in particular, through the overexpres-
sion of the COL1A1 gene. In our in vivo model, treatment with isoflavone or 17β-estradiol
could maintain the collagen profile, which was unchanged when compared to the control.
Calycosin, a type of isoflavone, could also reduce pro-fibrotic factors in a high-fat diet/STZ-
induced T2DM model [36], an effect that was also observed in pulmonary fibrosis [37].

Diabetes induced by SZT and a high-fat diet increases PAS accumulation [38,39] This
glycogen accumulation, observed by PAS, also occurs in humans with diabetic nephropa-
thy [34,40]. Our data were in agreement with these observations, where we demonstrated
that mainly diabetic-ovariectomized but also diabetic-only animals accumulate glycogen in
the renal tissue in an exacerbated manner. Similarly to collagen accumulation, isoflavone
and 17β-estradiol treatment maintained tissue glycogen similar to the control, even under
diabetes induction.

5. Conclusions

Through our observations, we can conclude that isoflavone protects against kidney
damage induced by gonadal failure and DM1 through PPAR-γ expression. In addition, we
can conclude that glucose is a potent negative regulator of PPAR-γ. Isoflavone stimulates
PPAR-γ protein and gene expression. Thus, we postulate that the benefits observed by
isoflavone treatment may occur via PPAR-γ.

Further investigations of the downstream pathway of this receptor may allow new
perspectives to be developed on therapeutic approaches for diabetic nephropathy, especially
for postmenopausal women, which will benefit individuals affected by diabetes.
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