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Immune checkpoint inhibitors (ICIs) have brought impressive clinical benefits in a variety of
malignancies over the past years, which dramatically revolutionized the cancer treatment
paradigm. Monotherapy or in combination with chemotherapy of ICIs targeting
programmed death 1/programmed death ligand 1 (PD-L1) has emerged as an
alternative treatment for patients with advanced non-small-cell lung cancer (NSCLC).
However, constrained by primary or acquired resistance, most patients obtain limited
benefits from ICIs and occasionally suffer from severe immune-related adverse events.
Moreover, owing to the complexity of the tumor microenvironment and the technical
limitations, clinical application of PD-L1 and tumor mutation burden as biomarkers shows
many deficiencies. Thus, additional predictive biomarkers are required to further advance
the precision of proper patient selection, avoiding the exposure of potential non-
responders to unnecessary immunotoxicity. Nowadays, an increasing number of
investigations are focusing on peripheral blood as a noninvasive alternative to tissue
biopsy in predicting and monitoring treatment outcomes. Herein, we summarize the
emerging blood-based biomarkers that could predict the clinical response to checkpoint
immunotherapy, specifically in patients with NSCLC.
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INTRODUCTION

Immunotherapy has revolutionized the strategy for the treatment of cancer and it aims to activate
the immune system to identify and destroy cancer cells. Patients with multiple malignancies, such as
melanoma, renal carcinoma, and lung cancer, significantly benefit from immune checkpoint
inhibitors (ICIs) (1). Regardless of their use as first- or second-line treatment, ample evidence
from several clinical trials demonstrated that ICIs are superior to platinum-based chemotherapy in
the treatment of advanced non-small-cell lung cancer (NSCLC) (2–5). Unfortunately, only
approximately 20%–40% of patients with advanced NSCLC obtained durable clinical benefits
from anti-programmed death (ligand) 1 [anti-PD-(L)1] therapies (2–5). In other words, in most
cases, patients have primary or acquired resistance to checkpoint immunotherapy (6, 7).
Additionally, non-responders not only suffer from risk of severe immune-related adverse events,
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but also meaninglessly afford the high cost of anti-PD-(L)1 drug.
Therefore, early identification of potential responders versus
non-responders is of great clinical significance. In recent years,
research studies aim to identify appropriate biomarkers that
could stratify patients into potential responders and non-
responders prior to the initiation of immunotherapy, as well as
monitor clinical response in real time during treatment.

In clinical practice, PD-L1 expression assessed by
immunohistochemistry on tumor samples obtained through
biopsy is the most extensively used predictive biomarker. It is
approved by the Food and Drug Administration as a companion
or complementary diagnostic assay for the administration of
ICIs in patients with NSCLC (8). Across multiple clinical
trials performed in advanced NSCLC patients treated with
anti-PD-(L)1 antibody, high pretreatment PD-L1 expression
corresponded to superior clinical outcomes. However, the
application of tumor PD-L1 expression as a predictive
biomarker remains defective and controversial, as numerous
patients with PD-L1-negative tumors may also respond to
anti-PD-(L)1 therapy. Furthermore, immunohistochemistry
analysis of PD-L1 expression remains technically and
biologically limited, namely due to the existence of intra-
tumoral heterogeneity, different expression levels between
primary and metastatic lesions, and a lack of standardization
in the detection antibodies and scoring systems (9, 10).
Moreover, archival tissue specimens collected in the past may
not reflect current PD-L1 expression levels (11), particularly in
patients receiving chemotherapy, radiotherapy, or anti-
angiogenic therapy after biopsy (12, 13).

Beyond PD-L1 expression, tumor mutation burden (TMB) was
also included into the National Comprehensive Cancer Network
guidelines recently as an emerging predictor of response to ICIs.
TMB is the total number of non-synonymous somatic mutations
per megabase in the coding region of the cancer genome (14). In
previous clinical studies conducted in patients with NSCLC, TMB
showed value in identifying responders to ICIs, with data
supporting that higher TMB values correlated with improved
progression-free survival (PFS), superior overall response rate
(ORR), and better durable clinical benefits. For example, the
Checkmate-227 and Checkmate-568 studies demonstrated that
TMB ≥ 10 muts/Mb could predict clinical benefits of nivolumab
plus ipilimumab in patients with NSCLC, regardless of PD-L1
expression (15, 16). However, the latest data from the Keynote-021
and Keynote-189 studies yielded inconsistent evidence, indicating
that the predictive value of TMB in combined immunotherapy is
uncertain (17–19). Similar with PD-L1 expression, TMB is also
characterized by a few limitations, such as the high cost of whole-
exome sequencing, long result turnaround time, and complicated
analytical process. Moreover, techniques used to evaluate TMB
level are not standardized, and the predictive threshold differ
widely across next-generation sequencing platforms. In addition,
multiple preanalytical and analytical factors, such as sample
collection, fixation methodology, and sequencing depth, may
influence the TMB value (20).

Tissue samples are required to detect the aforementioned
biomarkers, while tumor biopsy is invasive, occasionally
Frontiers in Immunology | www.frontiersin.org 2
infeasible, and cannot be repeatedly performed to monitor early
disease response in most patients. Furthermore, biopsy specimens
are difficult to accurately reflect the overall condition of the tumor
due to the existence of intra-tumoral heterogeneity (21). Hence,
currently approved tissue biomarkers are characterized by these
practical limitations. In contrast, peripheral blood is a non-
invasive, low-risk, and convenient source for repetitive sampling.
Therefore, researchers show increasing interest in developing
blood-based biomarkers for patient selection and treatment
monitoring. Furthermore, peripheral blood could provide a
holistic insight into the host immune status, which is one of the
decisive factors for the efficacy of cancer immunotherapy (22).
Numerous studies have explored the potential blood-based
predictors of response to anti-PD-(L)1 therapy, such as
circulating immune cells, circulating tumor cells (CTCs), and
cytokines. In this systematic review, we summarize the findings
of recent studies utilizing various components of peripheral blood
to predict the efficacy of anti-PD-(L)1 therapy in patients
with NSCLC.
ROUTINE PERIPHERAL BLOOD
BIOMARKERS

Owing to the easy accessibility and low cost, numerous studies
have investigated the predictive value of blood routine
parameters in tumor immunotherapy. In multivariable analysis
of NSCLC patients treated with nivolumab, the baseline absolute
lymphocyte count ≥ 1,000/ml and absolute neutrophil count
(ANC) ≤ 7,500/ml were significantly and independently
correlated with both prolonged PFS [hazard ratio (HR) = 0.55,
p = 0.04 and HR = 3.97, p = 0.001, respectively] and better overall
survival (OS) (HR = 0.36, p = 0.03 and HR = 3.46, p = 0.03,
respectively) (23). However, another study observed that a high
absolute lymphocyte count did not correspond to favorable OS
after anti-PD-1 treatment; meanwhile, an increased ANC only
correlated with shorter OS (HR = 1.86, p = 0.02) (24). These data
suggested that the absolute lymphocyte count or ANC alone
cannot adequately predict clinical outcomes and efficacy of
response to checkpoint immunotherapy in patients with NSCLC.

An elevated neutrophil-to-lymphocyte ratio (NLR) indicates
the chronic inflammation status, which could be used to reflect
the immune status of patients with different malignancies (25).
In this regard, several studies investigated the negative
prognostic value of high NLR in NSCLC patients receiving
immunotherapy. Bagley et al. reported that NLR ≥ 5 at
baseline was significantly correlated with worse OS (HR = 2.07,
p = 0.002) and PFS (HR = 1.43, p = 0.04) (26). Subsequently, data
from Suh et al. also supported that NLR ≥ 5 at 6 weeks post anti-
PD-1 treatment was associated with poor PFS (HR = 15.09, p <
0.001) and OS (HR = 3.82, p = 0.003) (27). Furthermore, Cao
et al. carried out a meta-analysis including 14 retrospective
studies with 1,225 NSCLC patients treated with nivolumab,
further confirming that a baseline NLR ≥ 5 was associated with
inferior PFS (HR = 1.73, p < 0.05) and OS (HR = 1.76, p <
0.05) (28).
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Researchers proposed that the derived NLR [dNLR, ANC/
(white blood cell−ANC)] may be more relevant to clinical
outcomes than the NLR, as the former also takes monocytes
and other granulocyte subpopulations into account. In advanced
NSCLC patients treated with anti-PD-(L)1 therapy, an
association between baseline dNLR > 3 and shorter OS was
revealed (HR = 1.70, p < 0.001). In addition, baseline dNLR
together with lactate dehydrogenase (LDH) constituted a lung
immune prognostic index, which effectively distinguished three
groups of patients with different survival outcomes (median OS:
16.5 vs. 10 vs. 4.8 months; p < 0.01) (29). In another study, the
advanced lung cancer inflammation index (ALI) was calculated
as body mass index × albumin/NLR, and high systemic
inflammation was suspected in patients with a low ALI score.
Multivariate analyses indicated that pretreatment ALI < 18 was
independently related to poor PFS and higher risk of early
progression [odds ratio (OR) = 2.76, p = 0.002] in NSCLC
patients receiving nivolumab (30).

Investigation of the absolute eosinophil count, absolute
monocytic count, platelet-to-lymphocyte ratio, and
lymphocyte-to-monocyte ratio as predictors of response to
ICIs also attracted considerable interest over the past years.
Clinical studies showed that pretreatment absolute eosinophil
count ≥ 150/ml and absolute monocytic count ≥ 630/ml
negatively impact PFS (HR = 0.53, p = 0.02 and HR = 1.50,
p = 0.02, respectively) in NSCLC patients treated with anti-PD-1
agent (23, 24). In addition, platelet-to-lymphocyte ratio ≥ 169 at
6 weeks correlated with longer OS (HR = 1.56, p = 0.002) (27).
Except for the aforementioned parameters, Sekine and colleagues
proposed and validated that an increased lymphocyte-to-
monocyte ratio was significantly associated with higher ORR
(50.0% vs. 20.0%; p = 0.015) and prolonged PFS (not reached vs.
3.1 months; p = 0.0092) (31). Early changes in lymphocyte-to-
monocyte ratio could be further explored as an effective marker
to evaluate whether anti-PD-1 therapy should be continued.

Finally, several exploratory studies provided a clue that
baseline level of serum LDH may contribute to the
identification of patients with NSCLC gaining better survival
benefits from immunotherapy. Researchers evaluated the LDH
level in 94 NSCLC patients treated with ICIs, and discovered that
baseline LDH < 400 was related to improved OS (HR = 0.45, p =
0.01) (32). Further studies involving large-scale prospective
cohorts may facilitate the progress in confirming the function
of elevated LDH in NSCLC and its potential value in
predicting efficacy.
CIRCULATING IMMUNE CELL SUBSETS

Dynamic Changes in T Lymphocytes
Continuous advancements in the application of high-throughput
technologies in multi-parametric flow cytometry, single-cell
sequencing, and mass cytometry (CyTOF) make it possible to
monitor the dynamic changes in different circulating immune
cell subtypes from peripheral blood collected during cancer
immunotherapy. Previous studies have provided evidence that
Frontiers in Immunology | www.frontiersin.org 3
utilizing the positive surface expression of PD-1 enables the
identification of tumor-specific T cells in multiple malignancies,
and PD-1+ CD8+ T cells could also be detected in peripheral
blood (33–35). The proliferation response of circulating PD-1+

CD8+ T cells is more likely to be tumor-specific, as non-tumor-
specific CD8+ T cells do not present an increase in the frequency
of Ki-67+ cells after immunotherapy (36, 37). In this regard,
researchers speculated that the anti-tumor cytotoxicity of T cells
infiltrated in the tumor microenvironment could be reflected by
the reinvigoration status of circulating PD-1+ CD8+ T cells
during anti-PD-(L)1 immunotherapy. Moreover, circulating
PD-1+ CD8+ T cells may be an important determinant of
response to ICIs.

Several research studies have paid more attention to the
predictive value of the proliferation response of circulating PD-
1+ CD8+ T cells. Huang et al. analyzed the clonal overlap between
tumor-infiltrating CD8+ T cells and circulating CD8+ T cells in
melanoma patients receiving PD-1-targeted immunotherapy
with pembrolizumab. The results showed that top-ranked
CD8+ T-cell clones in peripheral blood are also present in
tumor tissues, all of which were CD38+ HLA-DR+ and mostly
Ki-67+ PD-1+ (38). The frequency of Ki-67+ cells among PD-1+

CD8+ T cells 3 weeks post treatment/baseline tumor burden (Ki-
67/TB) ratio was applied to predict the clinical efficacy. They
found that Ki-67/TB ratio > 1.94 was correlated with increased
ORR (p = 0.03), prolonged PFS (p = 0.03), and OS (p = 0.004) in
the discovery cohort. However, data from the validation cohort
did not show strong association between the Ki-67/TB ratio and
survival outcomes (38). Subsequently, Kamphorst et al. observed
that the proliferation of peripheral PD-1+ CD8+ T cells within 4
weeks of anti-PD-(L)1 therapy in patients with NSCLC was
associated with good clinical response (37). These proliferating
CD8+ T cells presented an effector-like phenotype (HLA-DR+

CD38+ BCL-2low) and exhibited increased expression of positive
costimulatory molecule CD28, suggesting a vital role in response
to anti-PD-(L)1 therapy (37). Similarly, results from Kim et al.
supported the idea that early proliferation of peripheral PD-1+

CD8+ T cells could predict response to anti-PD-1 therapy. Fold
changes in the frequency of Ki-67+ cells among PD-1+ CD8+ T
cells 7 days after treatment (Ki-67D7/D0) were used to evaluate the
rate of early proliferation in three independent cohorts. In the
validation NSCLC cohort, a Ki-67D7/D0 ≥ 2.8 was closely
associated with superior durable clinical benefits (p = 0.001), as
well as prolonged PFS (p = 0.002) and OS (p = 0.037) (36).
Moreover, this study also indicated that Ki-67D7/D0 was more
reliable in predicting non-responders, as its negative predictive
value ranged 85%–94%. Taken together, the above independent
studies highlighted the predictive value of circulating Ki-67+ PD-
1+ CD8+ T cells. Hence, monitoring this T-cell subpopulation
during treatment may provide informative data on outcomes.
However, further studies are warranted to confirm their
practicality as predictors of efficacy.

Conversely, Simoni et al. demonstrated that PD-1 was also
expressed on the surface of non-tumor-specific bystander tumor-
infiltrating CD8+ T cells, and CD39 could be a more
straightforward marker for distinguishing tumor-specific
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T cells (39). The expansion of the circulating CD39+ T-cell
subpopulation might be an early sign of cytotoxic anti-tumor-
specific responses and could be exploited for the development of
promising biomarkers. In addition to CD8+ T cells, CD4+ T cells
also play an important role in determining the efficacy of anti-
PD-(L)1 therapy. A recent study, which included NSCLC and
renal cell carcinoma patients receiving nivolumab and
pembrolizumab, indicated that the differential peripheral
change between responders and non-responders was observed
in the TIM-3+ T-cell subset. The increase in the frequency of
TIM-3+ cells either among CD4+ T cells or CD8+ T cells was
independently correlated with lower PFS (12-month PFS: 0% vs.
81.5%; p < 0.001 and 20.8% vs. 85.7%; p = 0.002, respectively)
(40). Noteworthy, this study was limited by its small sample size,
and its main methodological weakness was that blood was
collected only 12 weeks after treatment. Further studies are
necessary to evaluate these blood parameters at earlier
sampling time points.

Baseline Level of T Lymphocytes
Compared with dynamic biomarkers, the advantage of baseline
biomarkers is that they can help predict the response to
immunotherapy before the initiation of treatment. Whereas the
therapeutic response displays features of a critical state transition
involving complex immunological processes; therefore, it is
notoriously difficult to predict the response far in advance (41–
43). Despite these limitations of static biomarkers, researchers
have consistently explored the potential value of baseline
immune cells as predictive biomarkers in patients treated with
anti-PD-(L)1 agent.

Manjarrez-Orduno et al. discovered that melanoma and non-
squamous NSCLC patients with increased transcription of
inflammatory genes in tumor tissues always presented a high
central memory T cell to effector T cell ratio in peripheral blood.
In NSCLC patients treated with nivolumab, a high central
memory/effector T cell ratio showed a strong correlation with
higher tumor PD-L1 expression and prolonged PFS (91 vs.
215 days) (44). The existence of terminally differentiated T
cells might explain this un-expected inverse correlation
between the number of effector T cells and response to ICIs.
These results are concordant with another contemporaneous
research study performed in patients with melanoma, which
demonstrated that peripheral blood mononuclear cells (PBMCs)
obtained from responders exhibited lower frequencies of effector
memory CD4+ T cells and naïve CD8+ T cells, and higher
frequencies of central memory CD8+ T cells (45). Additionally,
Kim and colleagues found that lower frequency of effector
memory (CCR7− CD45RA−) CD8+ T cells and a higher
frequency of severely exhausted population (TIGIT+ cells
among PD-1+ CD8+ T cells) at baseline were associated with
inferior clinical outcomes and increased risk of hyperprogression
disease (HPD) (46). The advantage of this study was the analysis
of HPD data from a large population of patients with NSCLC.
Prospective validation of these biomarkers in the future will
properly guide the selection of patients who will obtain clinical
benefits from anti-PD-(L)1 therapy.
Frontiers in Immunology | www.frontiersin.org 4
Several studies claimed that clinical response to anti-PD-(L)1
therapy requires the existence of functional systemic CD4
immunity. Zuazo et al. reported that NSCLC patients with a
higher proportion of highly differentiated (CD27− CD28−) CD4+

T cells are more prone to superior clinical outcomes (47).
Further analysis revealed that these highly differentiated CD4+

T cells were mainly composed of non-exhausted memory
(CD45RA− CD62L+/−) CD4 cells, which significantly affect
T cell proliferation response during immunotherapy (47).
Subsequently, this research team conducted a prospective study
in 70 NSCLC patients treated with ICIs, indicating that HPD was
closely associated with dysfunctional CD4 immunity and an
increased number of peripheral CD28− CD4+ T cells (48). Julia
et al. also highlighted the importance of functional CD4 T cell
immunity for anti-tumor response, and they observed higher
baseline proportion of central memory CD4+ T cells in
responders (40). Closely consistent with these studies, Kagamu
et al. reported that patients showing response to nivolumab
generally presented a higher frequency of CD62Llow CD4+ T
cells (p < 0.0001) at baseline. In contrast, CCR7− CD4+ T cells did
not show a significant difference between responders and non-
responders (49). Furthermore, CyTOF analysis revealed that the
majority of CD62Llow CD4+ T cells corresponded to double-
negative CD27− CD28− T cells, and was significantly correlated
with the classical Th1 (CXCR3+ CCR4− CCR6−) subpopulation
(p < 0.0001) (49). Regretfully, the sample size of these studies was
relatively small, and the concluded potential biomarkers remain
to be further investigated.

Regulatory T (Treg) cells constitute a special immunosuppressive
subset, which could promote immunosuppression and tolerance in
patients with tumor. It has been speculated that a low percentage of
Treg cells might contribute to the efficacy of ICI therapy. However,
researchers found that the frequency of CD127− CD25+ Treg cells
did not show a significant difference between responders and non-
responders, either at baseline or post-treatment (45). These results
agree well with the observation of Huang et al. that there was no
significant correlation between Ki-67+ proliferating Treg cells and
clinical outcomes (38). Consistent with the initial hypothesis,
Kagamu et al. reported that the baseline proportion of CD25+

FOXP3+ cells among total CD4+ T cells was significantly higher in
non-responders (p = 0.034) (49). Based on the ratio of CD62Llow T
cells to CD25+ FOXP3+ CD4+ T cells, they further developed a
formula for the prediction of non-responders with 85.7% sensitivity
and 100% specificity (49). In contrast, several studies found that
higher Treg cell counts at baseline was associated with better
prognosis in patients receiving anti-PD-(L)1 therapy (50, 51).
Researchers evaluated the frequency of lectin-type oxidized LDL
receptor 1 (LOX-1+) polymorphonuclear myeloid-derived
suppressor cells (PMN-MDSCs) in NSCLC patients treated with
nivolumab. They demonstrated that the ratio of Treg cells to PMN-
MDSCs could predict clinical outcomes in both discovery and
validation cohorts (51). These findings warrant further validation
in large cohort studies, and novel strategies should be devised to
detect the varying immunosuppressive activity of Treg cells in
individual patients. Future exploration of Treg cells as a
predictive biomarker should consider the differences in the
October 2020 | Volume 11 | Article 603157
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immunosuppressive function of Treg cells, rather than focusing
merely on the Treg cell count.

T Cell Receptor Repertoire
Activation of the host immune system against cancer cells
requires the recognition of neoantigen peptides by clonally
proliferating T cell receptors (TCRs) (52). The clonality and
diversity of TCRs can be assessed by deep sequencing of the
complementary-determinant region 3, which depends on the
random variable-(diversity)-joining recombination (53). Studies
in various tumors have investigated whether peripheral TCR
repertoire analysis could serve as a predictive biomarker of
response to immunotherapy (54–58). However, the predictive
value of the peripheral TCR repertoire remains controversial,
likely because the existence of non-tumor-specific TCRs in
PBMCs diluted tumor neoantigen-specific TCRs (59).

Several studies confirmed the observation that exhausted
neoantigen-specific T cells can be reinvigorated by ICIs, and
their subsequent clonal expansion was associated with the anti-
tumor immune response (60, 61). In addition, numerous studies
have indicated that the PD-1+ CD8+ phenotype represents an
exhausted T cell subset, and it could be exploited to monitor
dynamic changes in neoantigen-specific cytotoxic T cells in
multiple malignancies (33–35). Recently, Han et al. collected
PBMCs from NSCLC patients treated with ICIs, and specifically
investigated the TCR repertoire in PD-1+ CD8+ exhausted T
cells. Patients with higher pretreatment TCR diversity and
increased post-treatment TCR clonality in sorted peripheral
PD-1+ CD8+ T cells, were more likely to obtain superior
survival outcomes (62). This study is of great significance as it
marks the first attempt to evaluate the TCR repertoire specifically
in PD-1+ CD8+ exhausted T cells instead of total T cells. In
addition, the independent validation study also enhances the
credibility of these conclusions. Overall, more evidence is needed
before utilizing the TCR repertoire as a predictive biomarker for
immunotherapy in clinical practice.

MDSCs
MDSCs are groups of highly heterogeneous cells derived from
immature myeloid progenitors with potent immunosuppressive
properties (63). According to morphological characteristics and
phenotypic analysis, human MDSCs are usually divided into
PMN-MDSCs and monocytic MDSCs (M-MDSCs). In human
peripheral blood, CD11b+ CD14− CD15+ or CD66b+ are
generally used to characterize PMN-MDSCs, while CD11b+

HLA-DR−/low CD14+ CD15− cells are equivalent to M-MDSCs
(64). It is generally believed that PMN-MDSCs can be separated
from peripheral blood by standard Ficoll density gradient
centrifugation. However, a recent study suggested that PMN-
MDSCs and activated CD15+ neutrophils without suppressive
activity can simultaneously appear in PBMC layer after Ficoll
gradient separation (65). Fortunately, a study reported that LOX-
1 was specifically expressed on immunosuppressive PMN-
MDSCs, but not on neutrophils in peripheral blood (66). Thus,
the combination of gradient centrifugation with LOX-1
expression helps distinguish circulating PMN-MDSCs from
neutrophils in patients with cancer.
Frontiers in Immunology | www.frontiersin.org 5
MDSCs participate in the regulation of anti-tumor immunity
through various immunosuppressive mechanisms, such as
inducing nitric oxide synthase and arginase (67), producing
reactive oxygen species (68), increasing Treg cells (69) and
directly inhibiting the proliferation of T lymphocytes (70). Based
on the immunosuppressive functions of MDSCs, several studies
explored the specific role of MDSCs in predicting clinical efficacy
of PD-1-targeting antibody in patients with NSCLC. A study
performed in such patients reported that, after the first dose of
nivolumab, the proportion of LOX-1+ PMN-MDSCs was
significantly higher in non-responders than responders (51).
Patients with a higher post-treatment Treg cells to LOX-1+

PMN-MDSCs ratio showed superior PFS in both discovery and
validation cohorts (51). Another study analyzed blood immune
parameters in patients with metastatic NSCLC before and during
treatment of nivolumab. They noted that high expression of TIM-3
on lymphoid cells and early accumulation of (Lin− CD33+ CD14+

CD15− HLA-DR−) M-MDSC associate with resistance to PD-1
blockade. Moreover, TIM-3+ lymphoid cells and galectin-9
positive M-MDSC impeded the secretion ability of CD8+ T cells
and reduced the efficacy of PD-1-targeting antibody (71). Passaro
et al. reported that NSCLC patients with high baseline level of
PMN-MDSCs and a low CD8 to PMN-MDSC ratio had
significantly improved response to immunotherapy (p = 0.02) (72).

These findings suggest that MDSCs have potential in
predicting response to anti-PD-(L)1 therapy in patients with
NSCLC. However, the underlying mechanisms and interactions
involved in this process still require further investigation.
Besides, unlike other immunosuppressive cells, various MDSC
subsets lack uniform definitions, and the results are inconsistent
in different studies. Therefore, more prospective studies yielding
solid and definitive evidence are required prior to applying these
findings for the guidance of clinical decision.

Monocytes and Natural Killer Cells
Besides T cells and MDSCs, researchers using high-dimensional
CyTOF and bioinformatics analysis deeply characterized the
peripheral immune cell subsets of melanoma patients treated
with immunotherapy. Krieg et al. described that baseline
classical monocytes (CD14+ CD16− HLA-DRhi) was a promising
immune predictor of response. The results from the independent
validation cohort using conventional flow cytometry also
confirmed that classical monocytes may aid in guiding treatment
decisions (45). However, to date, there are no study investigating
whether circulating monocytes could serve as a predictor of
response in NSCLC patients treated with anti-PD-(L)1 therapy.

Regarding natural killer (NK) cells, several studies explored the
potential relationship between circulating NK cells and response
to ICIs. In NSCLC patients treated with ICIs, Cho et al. discovered
that the overall activity of NK cells and their count were
significantly higher in responders compared with non-
responders (73). However, this preliminary study included only
nine patients; thus, a large-scale study will be needed in the future
to confirm these results. In patients with NSCLC, Mazzaschi et al.
observed that the absolute number of circulating CD56+ NK cells
at baseline resulted in a two-fold higher change in responders
compared with non-responders (p < 0.01). During the
October 2020 | Volume 11 | Article 603157
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administration of nivolumab, the circulating NK cell count
progressively increased in responders, while remained stable or
slightly decreased in non-responders (74). Conversely, Ottonello
et al. recently reported that a relatively high frequency of baseline
NK cells was closely related to poor OS and PFS in NSCLC
patients treated with nivolumab (75). These results indicate that
the specific function of NK cells in immunotherapy and their
potential as biomarkers for predicting response to ICIs require
further investigation.

These findings emphasized to the importance of the
peripheral immune status in predicting response to anti-PD-
(L)1 therapy. Nevertheless, all these divergent investigational
biomarkers require further confirmation by prospectively
designed studies with large cohorts. We summarized the
studies exploring peripheral immune cells as predictive
biomarkers of response to ICIs in patients with NSCLC
(Table 1).
CTCs

CTCs derived from the primary tumor and/or metastatic lesion
are dispersed into the bloodstream via intravasation, reflecting
the genetic and epigenetic variations in tumor tissue. Expression
Frontiers in Immunology | www.frontiersin.org 6
of PD-L1 on CTCs has been extensively demonstrated, and CTCs
have emerged as a readily obtainable source for the evaluation of
tumor evolution (76–79). According to the available data, PD-L1
expression on NSCLC-derived CTCs and the concordance rate of
PD-L1 expression between CTCs and tumor tissue vary
markedly in different studies (78, 80, 81). Nonetheless, multiple
studies have demonstrated the prognostic value of CTCs in
patients with NSCLC, and these studies indicated that dynamic
changes in the number of PD-L1+ CTCs may help monitor
response to treatment (82–85).

Several studies evaluated the expression of PD-L1 on NSCLC-
derived CTCs to investigate its predictive value of selecting patients
for immunotherapy. Firstly, Nicolazzo et al. longitudinally evaluated
the presence of PD-L1+ CTCs in metastatic NSCLC patients treated
with nivolumab. They found that, after 6 months of treatment, all
patients with PD-L1+ CTCs experienced disease progression (76).
Subsequently, Guibert and colleagues evaluated the expression of
PD-L1 on CTCs among 96 patients with NSCLC at the initiation of
treatment and time of progression. CTCs were detected in baseline
blood samples in 93% of patients, and 83% of those expressed PD-
L1 on ≥ 1% of CTCs. In terms of clinical outcomes, responders had
lower baseline CTC counts (p < 0.0001) compared with non-
responders. A high number of CTCs at baseline (> 30/7.5 ml)
was significantly associated with worse clinical outcomes
TABLE 1 | Investigational peripheral immune cell biomarkers of response to ICIs in NSCLC.

Biomarker Cancer
type

No. of
patients

Peripheral findings associated with clinical response Reference

Ki-67+ PD-1+ CD8+ T cells NSCLC 29 Increased proliferative response in PD-1+ CD8+ T cells within 4 weeks of
treatment associated with PR or SD

Kamphorst et al. (37)

Ki-67D7/D0 NSCLC
TET

79
31

Higher fold change of proliferative response in PD-1+ CD8+ T cells at first-
week of treatment associated with DCB and prolonged PFS

Kim et al. (36)

TIM-3+ CD4/CD8+ T cells NSCLC
RCC

18
7

Increased frequency of TIM-3+ cells among CD4+ or CD8+ T cells correlated
with poor PFS

Julia et al. (40)

CM/Eff T cell ratio NSCLC
Melanoma

62
43

Higher CM/Eff T cell ratio associated with increased tumor inflammatory profile
and prolonged PFS

Manjarrez-Orduno
et al. (44)

Effector memory CD8+ T cells
TIGIT+ PD-1+ CD8+ T cells

NSCLC 263 Lower frequency of effector memory cells among CD8+ T cells associated
with HPD, poor PFS and OS
Higher frequency of TIGIT+ cells among PD-1+ CD8+ T cells associated with
HPD, poor PFS and OS

Kim et al. (46)

CD27− CD28− CD4+ T cells NSCLC 51 Higher baseline frequency of highly differentiated CD4+ T cells associated with
prolonged PFS

Zuazo et al. (47)

(%CD62Llow CD4+ T cells)2/(%CD25+

FOXP3+ CD4+ T cells) ratio
NSCLC 126 Higher baseline prediction formula value associated with prolonged PFS and

OS
Kagamu et al. (49)

(%Treg cells)/(%LOX-1+ PMN-MDSCs)
ratio

NSCLC 63 Higher (%Treg cells)/(%LOX-1+ PMN-MDSCs) ratio associated with prolonged
PFS

Kim et al. (51)

TCR diversity in PD-1+ CD8+ T cells NSCLC 40 Higher baseline TCR diversity in PD-1+ CD8+ T cells and increased TCR
clonality after treatment associated with prolonged PFS

Han et al. (62)

Lin− CD33+ CD14+ CD15− HLA-DR−

M-MDSC
NSCLC 61 Higher frequency of M-MDSC associated with poor OS Limagne et al. (71)

Good Immunological asset (PMN-
MDSC ≥ 6 cell/ml, ANC < 5,840/ml,
AEC > 90/ml, NLR < 3)

NSCLC 53 Good Immunological asset associated with prolonged PFS and OS Passaro et al. (72)

NK cells NSCLC 9 Higher frequency and overall activity of NK cells associated with PR or SD Cho et al. (73)
CD56+ NK cells NSCLC 31 Increased number of NK cells associated with prolonged survival outcomes Mazzaschi et al. (74)
NK cells NSCLC 74 Higher frequency of NK cells at baseline associated with shorter OS and PFS Ottonello et al. (75)
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ICI, immune checkpoint inhibitor; NSCLC, non-small-cell lung cancer; PD-1, programmed death 1; PR, partial response; SD, stable disease; TET, thymic epithelial tumor; DCB, durable clinical
benefit; PFS, progression-free survival; RCC, renal cell carcinoma; TIM-3, T-cell immunoglobulin mucin 3; CM, central memory; Eff, Effector; TIGIT, T cell immunoreceptor with Ig and ITIM
domains; HPD, hyperprogression disease; OS, overall survival; Treg, regulatory T; LOX-1, lectin-type oxidized LDL receptor 1; PMN-MDSC, polymorphonuclear myeloid-derived suppressor
cell; TCR, T cell receptor; M-MDSC, monocytic MDSC; ANC, absolute neutrophil count; AEC, absolute eosinophil count; NLR, neutrophil-to-lymphocyte ratio. NK, natural killer.
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(OS: HR = 2.37, p = 0.0088; PFS: HR = 2.44, p = 0.0004). The
presence of pre-treatment PD-L1+ CTCs was not significantly
correlated with survival outcomes. Nevertheless, patients with
higher frequency of baseline PD-L1+ CTCs (≥ 1%) were more
likely to be non-responders (p = 0.04) (78). Similarly, another
research investigated the correlation between PD-L1+ CTCs and
PFS in 17 patients treated with anti-PD-1 therapy. The results
indicated that ≥ 2 PD-L1+ CTCs per ml of blood at baseline was not
a predictor of response to immunotherapy (86). Overall, to date, the
possibility of utilizing PD-L1+ CTCs as a predictive biomarker has
not been solidly demonstrated in patients with NSCLC.

Besides the analysis of PD-L1+ CTCs, a prospective
exploratory cohort study (including 104 NSCLC patients
receiving ICIs) investigated the predictive value of CTCs and
tumor-derived extracellular vesicles. Data showed that the
presence of CTCs prior to or during treatment was an
independent predictor for the lack of durable response, and it
was associated with shorter PFS and OS. Elevated level of tumor-
derived extracellular vesicles were correlated with shorter
survival, but not with the response rate (87).

Limitations of the aforementioned studies include small
research cohorts, non-uniform methodology for the capture of
CTCs, use of different antibodies for the staining of PD-L1, and
lack of clear cut-off criteria for the definition of positive PD-L1
expression. Multicentral studies are needed to ascertain whether
CTCs could serve as a predictive biomarker.
SOLUBLE SERUM-BASED BIOMARKERS
AND CYTOKINES

Soluble PD-L1
Multiple research studies have demonstrated that both PD-1 and
PD-L1 have soluble forms (sPD-1 and sPD-L1) in peripheral
blood, and their increasing levels measured by enzyme-linked
immunosorbent assay may correlate with the response to
immunotherapy (88, 89). Current studies have suggested that
lower levels of sPD-L1 may correlate with longer survival in
several malignancies (90, 91). Zhou et al. reported that high
pretreatment level of sPD-L1 in melanoma patients treated with
ICIs was associated with an increased risk of progressive disease
(92). However, increased post-treatment level of sPD-1 was
associated with favorable clinical responses (92). Consistent with
these results, a prospective study involving 39 NSCLC patients
treated with PD-1-targeting antibodies also found that higher sPD-
L1 level at baseline was related to a shorter OS (93). Furthermore,
among patients treated with nivolumab, the ORRwas higher in the
low sPD-L1 group versus the high sPD-L1 group (59% vs. 25%,
p = 0.0069). In addition, another single-center study including 43
NSCLC patients treated with nivolumab yielded similar results
(94). Thus, baseline sPD-L1 may represent an immunosuppressive
status and indicate poor response to ICIs. However, the underling
mechanisms are not fully elucidated.

Recently, a case-control study proposed composite criteria
(sCombo) corresponding to sPD-1 and sPD-L1 positivity for the
prediction of immune response in individual patients. In the
Frontiers in Immunology | www.frontiersin.org 7
nivolumab group, baseline sCombo positivity was negatively
related to PFS (HR = 2.66, p = 0.02) but not OS. Notably,
increased or stable sPD-1 levels after two cycles of treatment
with nivolumab was correlated with prolonged PFS (HR = 0.49,
p = 0.004) and OS (HR = 0.39, p = 0.002) (95). In conclusion, sPD-
L1 may represent a novel biomarker for guiding patient selection
and predicting clinical outcomes. However, the lack of
standardization of measurement and a consistent threshold is the
major limitation for the application of sPD-L1 to clinical practice.

Granzyme B
Granzyme B is a serine protease secreted by NK cells and cytotoxic
CD8+ T cells, which is involved in mediating target cell apoptosis
(96). Preclinical models showed that granzyme B activity can be
evaluated through dedicated positron emission tomography
imaging, and that tumors with a high signal for granzyme B
uptake showed good response to ICIs (97, 98). Furthermore, a
clinical study evaluated the concentration of soluble granzyme B in
the peripheral blood of NSCLC patients treated with nivolumab.
They reported that responders had significantly higher
concentration of soluble granzyme B than non-responders at
initiation of treatment with nivolumab (p = 0.039) (94). This
may reflect an activated and efficient CD8+ cytotoxic immune
response, known to be associated with better response to ICIs.
During treatment, patients with a stable or decreased concentration
of soluble granzyme B had advantages in ORR, OS, and PFS (94). A
possible explanation is that the increase in the concentration of
granzyme B reflects an expanding, but ineffective T-cell response
leading to T-cell exhaustion.

Indoleamine 2,3-Dioxygenase
Indoleamine 2,3-dioxygenase (IDO) is a key enzyme responsible
for catalyzing the conversion of essential amino acid 1-
tryptophan to the main metabolite kynurenine. Moreover, it
promotes cancer cell survival through enhanced suppression of
immunity (99). Growing preclinical evidence indicates that an
increase in IDO activity is involved in resistance to ICIs, and IDO
activity may serve as a predictor of immunotherapeutic efficacy
(100). The serum kynurenine/tryptophan ratio was measured by
high-performance liquid chromatography-tandem mass
spectrometry to assess baseline IDO activity. The IDO activity
was negatively associated with PFS and OS in advanced NSCLC
patients treated with second-line nivolumab (101). These
preliminary results suggested that the serum kynurenine/
tryptophan ratio may guide the identification of NSCLC
patients with intrinsic resistance to anti-PD-1 agents.

Interleukin-6 and Interleukin-8
Various studies have reported that soluble cytokines influence
the efficacy of ICIs. For example, Sanmamed et al. demonstrated
that early changes in serum interleukin-8 (IL-8) level reflect and
predict response to anti-PD-1 therapy in patients with metastatic
melanoma and NSCLC. They designed a validation cohort of 19
NSCLC patients receiving anti-PD-1 agents, and they found that
responders had significantly decreased levels of serum IL-8 at the
best response moment, whereas non-responders presented
opposite changes. in patients with NSCLC, an early decrease in
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serum IL-8 level was associated with longer OS (p = 0.015) (102).
In addition, this study showed that serum IL-8 level could discern
the appearance of pseudoprogression. Moreover, Kang et al.
reported that serum interleukin-6 level at baseline could be used
to predict the clinical efficacy of anti-PD-(L)1 therapy in patients
with NSCLC. Patients with low interleukin-6 level (< 13.1 pg/ml)
at baseline presented significantly superior PFS (6.3 vs. 1.9
months; p < 0.001) and OS (not reached vs. 7.4 months; p <
0.001) than those with high interleukin-6 level (103). Studies with
larger cohorts are warranted to validate these results.

Exosomes
Exosomes are extracellular vesicles secreted by various cells
(including cancer cells), and contain DNA, RNA, and proteins
(104). A study evaluated the PD-L1 mRNA expression in
circulating exosomes to monitor the response to PD-1-targeting
antibodies in patients with melanoma or NSCLC. The data showed
that, after treatment, PD-L1 mRNA expression in exosomes
significantly decreased in responders, remained unchanged in
those with stable disease, and significantly increased in patieints
with progressive disease (105). This study demonstrated that
dynamic measurement of PD-L1 expression in circulating
exosomes is feasible and might provide useful information
regarding response to treatment with ICIs. Future exploration in
larger cohorts of patients are required, as well as a comparison of
PD-L1 expression in paired tissue and circulating exosomes.

The levels of soluble proteins and cytokines can be easily
determined, providing an automated, highly sensitive, accurate,
and straightforward approach to simultaneously analyzing
multiple samples. Most of the aforementioned studies were
exploratory, and further studies are required to verify the
efficacy of these biomarkers in patients with NSCLC.
CONCLUSION AND FUTURE
PERSPECTIVES

The clinical exploration of peripheral blood biomarkers for
immunotherapy is important and rapidly developing due to its
Frontiers in Immunology | www.frontiersin.org 8
safety and less invasive nature. In this review, we covered various
potential blood-based biomarkers, such as peripheral T
lymphocytes, TCR repertoire, MDSCs, CTCs, and soluble
proteins. Different assays and platforms were used to monitor
peripheral immune status in multiple clinical studies, therefore,
demonstrating the potential of these biomarkers in predicting the
efficacy of ICIs. Nevertheless, most of the available results are
preliminary, so the potential biomarkers in these studies cannot
be implemented into routine clinical practice until they are
validated in further large-scale prospective clinical trials.
Furthermore, more clinical trials should be designed to explore
differences in the application of the potential biomarkers alone or
in combination, and to standardize thresholds for the guidance
of clinical decision making. Despite the inherent challenges,
peripheral blood-based biomarkers remain attractive tools for
personalized clinical management of immunotherapy for
patients with NSCLC.
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