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Abstract

Research on brain oscillations has brought up a picture of coupled oscillators. Some of the most important questions that will be
analyzed are, how many frequencies are there, what are the coupling principles, what their functional meaning is, and whether
body oscillations follow similar coupling principles. It is argued that physiologically, two basic coupling principles govern brain as
well as body oscillations: (i) amplitude (envelope) modulation between any frequencies m and n, where the phase of the slower
frequency m modulates the envelope of the faster frequency n, and (ii) phase coupling between m and n, where the frequency of
n is a harmonic multiple of m. An analysis of the center frequency of traditional frequency bands and their coupling principles sug-
gest a binary hierarchy of frequencies. This principle leads to the foundation of the binary hierarchy brain body oscillation theory.
Its central hypotheses are that the frequencies of body oscillations can be predicted from brain oscillations and that brain and
body oscillations are aligned to each other. The empirical evaluation of the predicted frequencies for body oscillations is dis-
cussed on the basis of findings for heart rate, heart rate variability, breathing frequencies, fluctuations in the BOLD signal, and
other body oscillations. The conclusion is that brain and many body oscillations can be described by a single system, where the
cross talk – reflecting communication – within and between brain and body oscillations is governed by m : n phase to envelope
and phase to phase coupling.

Introduction: Logic of the analysis

The aim of this paper is to analyze the frequency architecture of brain
oscillations and to extend this analysis to body oscillations. The fol-
lowing questions will be addressed: How many oscillations are there,
what are their frequencies, what is their functional (cognitive and phys-
iological) meaning, what is the frequency architecture (if there is any)
and, – last but not least – how are body oscillations related to brain
oscillations? The line of argumentation will be briefly outlined here.
The first argument is that brain oscillations exhibit ‘preferred fre-

quencies’. Different neurons have different preferred frequencies
(Canolty et al., 2010), and different frequencies dominate in differ-
ent brain regions (e.g., Tort et al., 2008). This argument, discussed
in Section Not all frequencies are equal: The hypothesis of distinct
frequency domains, is used to motivate the hypothesis of different
‘frequency domains’ which are associated with different‚ processing
domains with respect to cognitive and physiological functions.
The second argument – which is closely related to the first argu-

ment -– deals with the functional role of phase and the frequency

specificity of oscillations. The EEG/MEG is a complex, compound
signal, consisting of a superposition of many signals stemming from
different sources. When the phase of a task-relevant oscillation is
investigated, the superposition with other oscillations with different
frequencies and from different sources causes serious problems. The
reason is that the phase of a task-relevant oscillation becomes dis-
torted due to the superposition with other frequencies in a com-
pound broad band signal. As a consequence, phase in a compound
signal is meaningless. To avoid this problem, data-driven methods
for defining frequency bands and/or high-frequency resolution meth-
ods applied to source reconstructed EEG/MEG signals can be used
(e.g., Palva et al., 2010; Siebenh€uhner et al., 2016; Vidaurre et al.,
2018). The important point here is that phase – in contrast to for
example, power – is a highly frequency specific and time critical
measure of an oscillation. Numerous studies have shown that phase
plays a crucial role for perception, brain communication, and cogni-
tion (for reviews see e.g., Fries, 2015; Van Rullen, 2016; Palva &
Palva, 2017; for a discussion of findings regarding phase for cross-
frequency coupling, see Section Principles of cross-frequency cou-
pling below). These findings nicely demonstrate the frequency speci-
ficity of oscillations. Or in other words, empirical findings showing
that phase is meaningful also document the existence of oscillations
with distinct frequencies (also termed ‘center frequencies’ in the fol-
lowing). This is an important conclusion, because the frequency
specificity of oscillations is a crucial precondition for evaluating the
question, how many oscillations are there (Section Not all
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frequencies are equal: The hypothesis of distinct frequency
domains), and what will be the properties of the frequency architec-
ture. This latter question refers to the frequency relationship between
oscillations, and is addressed in Section Principles of cross-fre-
quency coupling, which emphasizes the fact that phase plays a cru-
cial role for cross-frequency coupling. The frequency specificity of
oscillations does not mean that the frequency of an oscillation is a
fixed value. Frequency varies in a state and task-specific manner
(for a recent review see e.g., Mierau et al., 2017) even within a very
short time span (see e.g. Nelli et al., 2017), which may be the pri-
mary reason for the existence of frequency bands (see Sections The
bandwidths of frequency domains and frequency separation and Fre-
quency jitter and the 1/f shape of the spectrum below). Finally, it is
very important to note that the frequency specificity of an oscillation
can easily be blurred by averaging over trials, due to frequency
shifts between trials (see Lundqvist et al., 2016).
The third argument refers to the numerical relationship between the

frequencies of oscillations. It is an obvious fact that m : n phase to
phase coupling (between a slow frequency m and a fast frequency n)
is optimal for harmonic (= integer) frequency ratios only. As an exam-
ple, for alpha with 10 Hz, phase coupling with neighboring frequen-
cies is optimal for frequencies with 5 and 20 Hz which represent the
center frequencies for theta and beta respectively. This is the starting
point for suggesting a frequency architecture, which is based on a bin-
ary multiple frequency ratio: If a doubling/halving ratio is established
between all neighboring center frequencies of traditional EEG fre-
quency bands, a binary hierarchy of frequencies is obtained.
Based on these arguments, the binary hierarchy brain body oscil-

lation theory is outlined in Section The binary hierarchy brain body
oscillation theory, and its properties and predictions are evaluated in
the following subsections. The basic assumption is that brain and
body oscillations form a single hierarchy of oscillations and that
center frequencies of body oscillations such as heart rate (HR) and
breathing frequency (BF), but also other body oscillations, can be
predicted from the center frequencies of brain oscillations.
The following Section Coupling between body and brain body

oscillations deals with body oscillations and the question whether
similar coupling principles can be observed between different body
oscillations as well as between body and brain oscillations. It will
be argued that brain and body oscillations obey the same coupling
principles and can be described by a single system. The general con-
clusion is that the brain and the body represent a single oscillatory
system with the same principles of oscillatory cross talk.

Not all frequencies are equal: The hypothesis of distinct
frequency domains

The hypothesis of distinct frequency domains assumes that in a
state- and task-dependent manner, different and distinct oscillations
emerge. In some cases they can be detected as clear peaks in the
power spectrum in other cases only by their event-related reactivity.
Prominent examples for spectral peaks are alpha, emerging for

example, during rest with eyes closed (a phenomenon known as the
pioneering work of Berger, e.g., Berger, 1929), but also during dif-
ferent tasks demands such as attention (for a review see e.g. Foxe &
Snyder, 2011) and memory demands (for reviews see e.g. Klimesch,
1999, 2012). Other examples are frontal midline theta (emerging
e.g. during increased and ongoing attentional demands, see for
example, Gevins et al., 1998; Jensen et al., 2002), sleep spindles
(emerging after sleep onset, for a review, cf. De Gennaro & Ferrara,
2003), and slow oscillations (dominating in deep sleep, e.g. Diekel-
mann & Born, 2010; Staresina et al., 2015).

Task-dependent oscillations were (and still are) traditionally stud-
ied by measuring event-related changes in band power (e.g.,
Pfurtscheller & Aranibar, 1977; Pfurtscheller & Lopes da Silva,
1999; for a comprehensive review see e.g. Lopes da Silva, 2013).
This research documents a variety of interesting properties of differ-
ent frequency bands. As an example, in cognitive tasks, alpha
(within a frequency range of about 8–12 Hz) is the only oscillation
(in healthy humans) which typically responds with a pronounced
event-related decrease in band power, which is termed ‘event related
desynchronization’ or ERD (Pfurtscheller & Aranibar, 1977; for
reviews focusing on cognitive tasks, see Klimesch, 1996; Klimesch,
1999, 2012). Some task demands also elicit an event-related increase
in alpha band power, termed ‘event related synchronization’ or
ERS. There is meanwhile good evidence that alpha ERD reflects
cortical activation, whereas alpha ERS reflects inhibition (Klimesch
et al., 2007a; Jensen & Mazaheri, 2010). It should be noted, how-
ever, that in movement tasks, ERD can also be observed in the beta
band (a frequency range of about 16–25 Hz; e.g., Pfurtscheller &
Lopes da Silva, 1999). But all other frequencies (in the delta, theta,
and gamma band, with frequency ranges of about 2–4 Hz, 4–7 Hz,
and 30–50 Hz respectively) typically respond with an increase in
band power (ERS). Even within the alpha band, there is a clear
functional differentiation between the lower and upper band (with
frequencies between about 8–10 Hz and 10–12 Hz respectively).
The upper alpha band responds reliably and selectively to cognitive
tasks with visual stimuli (e.g., in recent research cf. e.g., Nelli et al.,
2017; Rominger et al. 2018, Staudigl et al., 2017; Wolff et al.
2017), but most importantly, and independent of modality, to
semantic memory demands (for reviews cf. Klimesch, 1996, 1999,
2012). The functional meaning of the lower band is less clear, but
one hypothesis is that it is associated with more general attentional
demands and the processing of acoustic stimuli. As an example, for
a memory task with acoustically presented words, Schack &
Klimesch (2002) found topographically widespread phase coupling
networks during encoding in the lower alpha band only. Krause
et al. (1999) reported that listening to music elicits a distinct reactiv-
ity also in the lower alpha band. They assume that differences
between the lower and upper alpha band reflect different aspects of
auditory information processing (see e.g., Krause, 1999). Another
example for a frequency with a distinct function is the mu rhythm
(a sensory rhythm in the alpha range that is associated with motor
activity). In movement tasks, the typical finding is a decrease in mu
band power (mu ERD) that co-occurs (after a slight delay) with beta
ERS, which is also termed ‘beta rebound’ (for a review see e.g.,
Pfurtscheller & Lopes da Silva, 1999). Theta ERS is closely associ-
ated with WM demands (Klimesch et al., 1994, 2001; Kahana
et al., 1999; Kahana, 2006). The functional meaning of delta is less
clear. Delta ERS may be related to very basic processing aspects,
such as motivation (Knyazev, 2012), and mental concentration (Har-
mony, 2013), which is a typical requirement in the conscious man-
agement of different task demands. More recently, delta oscillations
have been shown to play an important role for language encoding,
because they are envelope coupled to speech (e.g., Giraud & Poep-
pel, 2012). Research on EEG resting state networks also indicates
high frequency specificity (Hillebrand et al., 2012) in all traditional
frequency bands (from delta to low gamma).
Brain stimulation studies, using repetitive transcranial magnetic

stimulation (rTMS) or transcranial alternating current stimulation
(tACS) also document high-frequency specificity associated with
high cognitive specificity. For rTMS at the individually adjusted
upper alpha band, Klimesch et al. (2003) found increased cognitive
(mental rotation) performance relative to sham but no effects for
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beta and the individually adjusted low alpha band rTMS. Similar
findings were obtained by Sauseng et al. (2009), who observed
increased performance after alpha rTMS in the retention period of a
memory task. Wolinski et al. (2018) reported increased WM capac-
ity with tACS at theta frequency with 4 Hz, but reduced capacity
with 7 Hz tACS.
Animal research also has revealed frequency specificity even in

single neurons. In the macaque cortex, Canolty et al. (2010)
observed phase coupling networks which responded selectively to
different frequencies within a range of 0.3–40 Hz. At the single neu-
ron level, preferred frequencies were concentrated at the motor high
beta band (25–40 Hz) but also at frequencies below about 1.5 Hz.
Canolty et al. (2010) assume that different frequencies are useful to
reduce interference between ensembles and that some frequencies
(in this case the high beta band) are associated with a specific func-
tion of a network domain.
In summarizing, preferred frequencies with state and/or task-spe-

cific reactivity are well documented. The hypothesis is that cognitive
processing domains are associated with frequency domains repre-
sented by center frequencies of traditional frequency bands (delta 2–
4 Hz, theta 4–7 or 8 Hz, alpha 8–12 Hz, beta 16–25 Hz, (low)
gamma 30–50 Hz). Frequency domains form a hierarchy with opti-
mally reduced interference and optimal coupling between domains
(see Section The bandwidths of frequency domains and frequency
separation below). The associated cognitive domains are language
(for delta), WM (for theta), LTM which is considered a system that
represents any kind of knowledge (for alpha), motor behavior (for
beta), and perception (for low gamma). Higher frequencies in the
gamma range are most likely not related to a specific cognitive
domain. They may be associated with any type of processes, but
probably more in a bottom–up-like manner (Palva & Palva, 2017).
It is important to note that the hypothesis of distinct frequency
domains does not assume that any EEG/MEG frequency belongs to
a certain domain. This question will be discussed later. In the fol-
lowing section, principles of cross-frequency coupling will be con-
sidered that form the basis of the EEG/MEG frequency architecture.

Principles of cross-frequency coupling

In their review, Jensen & Colgin (2007) list four different principles
of cross-frequency m : n coupling : (i) power to power (the ampli-
tude envelopes of m and n are correlated), (ii) phase to phase (phase
coupling between m and n; also termed cross-frequency phase syn-
chronization), (iii) phase to frequency (phase of m is associated with
a change in frequency of n), and phase to amplitude envelope cou-
pling (phase of m is associated with an increase or decrease in the
amplitude envelope of n). The best documented case of cross-fre-
quency coupling is phase to amplitude envelope coupling, which
simply is termed ‘amplitude or envelope coupling’ in the following.
The second best documented case is phase to phase coupling, sim-
ply termed ‘phase coupling’ in the following. These two cases will
be discussed more closely in the next two sections.

Amplitude (envelope) coupling

The physiological function of brain oscillations is a good example
for the role of phase and m : n envelope coupling. Oscillations as
measured by the local field potential (LFP, i.e., the ‘EEG’ recorded
from microelectrodes within the neural tissue and not from scalp
electrodes as in the traditional EEG) reflect rhythmic changes in
the (relative) level of depolarization in the (dendritic and somatic)
membrane potentials of masses of neurons. The basic principle is

that fluctuations of the LFP, which reflect phases of low vs. high
excitability, modulate the firing probability for action potentials
(AP’s) of excitatory neurons (for reviews see e.g., Buzs�aki, 2006;
Klimesch et al., 2007a). As illustrated in Fig. 1, this can be best
illustrated by an oscillation that is generated by inhibitory interneu-
rons, a principle that is well documented for the hippocampal theta
rhythm (Buzsaki et al., 1983; Maurer et al., 2006; Royer et al.,
2012), which is the dominant oscillation in lower mammals (such
as in rats) with a frequency range of about 3–12 Hz (for reviews
see e.g., Lopes da Silva, 1992; Buzsaki, 2002). The point here is
that even this basic and well-established finding of AP modulation
by LFP phase constitutes – in a formal sense – an example that is
similar to envelope coupling if we consider the number of AP’s
that are triggered by phase as the ‘amplitude’ of the higher fre-
quency which reflects AP frequency. The physiological mechanism
of oscillatory AP modulation relies on a balance between excitatory
and inhibitory neural activity (termed E/I balance; e.g., Atallah &
Scanziani, 2009) as is shown in Fig. 1 by the differential influence
of LFP phase on neurons with different levels of excitation. This
oscillatory modulation of spiking is thought to reflect basic aspects
of encoding and information transfer between neural ensembles
(e.g., Buzsaki & Moser, 2013; Lisman & Jensen, 2013; Jensen
et al., 2014).
A good example for the role of cross-frequency coupling in

encoding processes comes from animal research on hippocampal
place cells in rats. When an animal exhibits exploratory behavior
(moving around in its environment) a dominant oscillation in the
theta frequency range (about 6–12 Hz) and high activity in the
gamma frequency range (about 40–80 Hz) can be observed (e.g.,
Buzsaki, 2002). Pioneering work by O’Keefe and colleagues has
shown that different networks of CA1 hippocampal pyramidal cells
respond to different places (in a maze where the rats search for food
pellets). The activity of these ‘place cells’ is modulated (at least) in
three different ways. They increase their firing rate, when the rat
approaches a certain place field (O’Keefe & Dostrovsky, 1971; for
an early summary see also Burgess & O’Keefe, 1994), as is illus-
trated in Fig. 2a. At the same time the firing rate is modulated by
gamma, allowing action potentials (AP’s) to appear primarily during
the excitatory phase of gamma oscillations (cf. Fig. 2b). In addition,
CA1 place cells are also modulated by theta (cf. Fig. 2c), via rhyth-
mic inhibitory input from inhibitory interneurons oscillating at theta
frequency. This theta modulation is characterized by a shift between
the inhibitory theta phase and the excitatory gamma phase. As a
consequence, on each successive theta cycle, the place cell fires ear-
lier and earlier in theta phase. This phenomenon was termed phase
precession (e.g., O’Keefe & Recce, 1993; Skaggs et al., 1996) and
most likely is due to the interaction of the excitation level of the
place cells with rhythmic inhibition induced by theta phase. Excita-
tion increases, the closer the animal moves to the center of the pace
field. Simultaneously, theta increases its inhibitory influence, the clo-
ser the ‘firing phase’ moves to the trough (e.g., Mehta et al., 2002;
Magee, 2003). This increasing influence of theta-induced inhibition
counteracts the increasing excitation elicited by the movement of the
rat approaching the center of the place cell. The result is a strong
rhythmicity in the theta frequency range. The double modulation by
gamma and theta constitutes a hierarchy of coupling between theta
phase to gamma amplitude (envelope) on one hand and between
gamma phase and AP firing rate on the other hand. This type of
coupling is considered a basic aspect of the neural code for episodic
information in working memory (for reviews, cf., Axmacher et al.,
2010; Fell & Axmacher, 2011; Buzsaki & Moser, 2013; Lisman &
Jensen, 2013; Jensen et al., 2014).
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Lakatos et al. (2005) suggested the ‘oscillatory hierarchy
hypothesis’ which states that the amplitudes of oscillations with
higher frequencies are modulated by the phase of a lower fre-
quency. In an auditory passive listening task with monkeys that
are awake, they found that delta (1–4 Hz) phase modulates theta
(4–10 Hz) amplitude, and theta phase modulates gamma (30–
50 Hz) amplitude. Because this oscillatory hierarchy can entrain to
the frequency of repetitive auditory stimulation, the authors
assumed that the auditory cortex can adapt its temporal activity
pattern in order to optimize the processing of acoustic inputs. This
interpretation is fully substantiated by a variety of more recent
studies on speech envelope entrainment (for a review see Giraud

& Poeppel, 2012). In general, cross-frequency coupling between
the phase of a lower frequency and the amplitude (power envel-
ope) of higher frequencies is well documented not only in animal
research but also in EEG and MEG with human subjects (e.g.,
Vanhatalo et al., 2004; Mormann et al. 2005; for reviews see Jen-
sen & Colgin, 2007; Canolty & Knight, 2010; Hyafil et al., 2015).
It should also be noted that one of the oldest EEG phenomena,
the waxing and waning of alpha (the coming and going of alpha
‘spindles’) obeys a similar principle. It reflects rhythmic amplitude
fluctuations (Pfurtscheller, 1976) in the infra-slow (0.01–0.1 Hz)
frequency range (for a review of slow electrophysiological fluctua-
tions see Palva & Palva, 2012a).
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Fig. 1. Illustration of AP modulation by theta phase. The oscillation (blue) reflects rhythmic activity in the theta frequency range of inhibitory interneurons in
the rat hippocampus. The three horizontal lines with superimposed vertical lines (red) represent AP activity of three different target cells that differ in their exci-
tation level. The horizontal lines are ordered according to the cells’ excitation level (scale on the right side) and can be interpreted as threshold. A target cell
fires when inhibition (induced by the oscillation) decreases (scale on the left side) and crosses the threshold in the direction of decreasing inhibition. When the
oscillation crosses the threshold in the reverse direction (toward increasing inhibition) target cells are silenced. Because the thresholds are different for the three
cells (due to their different excitation levels) their temporal activation patterns are also different. Note that (i) the generation of AP’s is theta phase dependent
(if inhibition overrides excitation, which e.g., is not the case for cell 3 during cycle 1 and 2), (ii) particularly during cycle 3 the trough (relative to the peak)
increases. This exemplifies an asymmetric oscillation which may be induced by the slope of another very slow oscillation.
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Fig. 2. Illustration of phase envelope coupling as a memory coding mechanism. Place cell encoding can be considered an example of multiple envelope ((m1,
m2) : n) coupling, where m1 represents gamma, m2 theta and n firing frequency of place cells. (A) When an animal approaches a place field, the place cell
increases the number of action potentials (APs) the closer the animal is to the center of the place field. (B). The number of AP’s is not increased continuously,
but by increasing AP burst intensity, which is modulated by gamma phase. (C) Gamma oscillations, which drive AP bursting are in turn modulated by theta.
Thus, AP bursting is double modulated by gamma and theta.
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The conclusion is that all of these findings represent different
examples of m : n phase to amplitude coupling. Even the most basic
example of AP modulation by LFP oscillations (as depicted
in Figs 1 and 2) reflects a principle that is similar to amplitude
coupling.

Phase coupling

Amplitude and phase coupling differ with respect to at least the fol-
lowing properties. (i) In a mathematical sense, amplitude coupling
works for any m : n frequency ratio, but phase coupling requires a
harmonic (integer) relationship between m and n. (ii) Amplitude
coupling operates at the temporal precision of the slow frequency
m. For phase coupling, the temporal precision is higher. It is charac-
terized by the excitatory time window (phase) of the higher fre-
quency n. This property and the hypothesis that slow oscillations (in
the delta, theta, alpha, and beta frequency range) play an important
role in cognitive top–down control (Klimesch, 2012; Palva & Palva,
2017) make it likely that m : n phase coupling (for m ≤ beta) is an
important mechanism for the downstream control of neuronal syn-
chronization in anatomically distributed neural circuits (Palva &
Palva, 2012b; Fries, 2015).
For the ongoing EEG, phase to phase coupling is well docu-

mented by a variety of studies (e.g., Tass et al., 1998; Palva et al.,
2005; Nikulin & Brismar, 2006; Sauseng et al., 2008; for a recent
review see Palva & Palva, 2017). One of the basic results is that
during periods of increased cognitive demands, cross-frequency
phase to phase coupling increases (Palva et al., 2005; Sauseng
et al., 2008; Siebenh€uhner et al., 2016). Another basic result stems
from the 1 : 2 ratio between neighboring frequencies. Center fre-
quencies in the delta, theta, alpha, and beta band reveal a doubling/
halving relationship which can in some tasks already be observed in
power spectra. A good example is the co-occurrence of frontal mid-
line theta at about 6 Hz and upper alpha at about 12 Hz which
appears during increased WM demands (e.g., Jensen et al., 2002).
For alpha with 10 Hz and beta with 20 Hz a 1 : 2 relationship has
been reported in several studies (e.g. Carlqvist et al., 2005; Palva
et al., 2005; Nikulin & Brismar, 2006; Palva et al., 2010; Nikulin
et al., 2012; see also Haegens et al., 2011 for an animal study).
The interesting point here is that for any frequency domain, the

next higher neighboring frequency domain is twice as fast. As a
consequence, the ratios of all frequency domains (in ascending
order), relative to the slowest domain, establish a binary hierarchy
(2, 4, 8 . . .). However, as illustrated in Fig. 3a, this does not mean
that other harmonic ratios (3, 5, 6, 7, 9, 10 . . ..) do not occur. The
central argument regarding the binary hierarchy (doubling/halving)
frequency relationship refers to the relationship between neighboring
frequency domains. Not neighboring frequencies can couple at other
harmonic ratios. As illustrated in Fig. 3a, delta with 2.5 Hz and
the not neighboring frequencies of 7.5 and 15 Hz, are harmonically
coupled with ratios of 1 : 3 and 1 : 6 respectively. In contrast,
neither alpha nor beta (with 10 and 20 Hz respectively) can well
couple with 7.5 or 15 Hz, because the frequency relationship is not
harmonic.
The frequency architecture is not only defined by conditions

enabling optimal phase coupling, but also by conditions enabling
optimal phase decoupling to reduce interference between frequen-
cies. Two aspects are important here. One refers to mathematical
analyses which document that the golden mean (g = 1.618. . ...), as
the ‘most irrational number’, enables the best possible frequency
separation between two frequencies m and n (n/m = g; Roopun
et al., 2008; Pletzer et al., 2010). Another aspect is that for

frequency domains, frequency separation is provided (beside other
factors) by non-overlapping frequency bands. It will be argued
below (see the Section The bandwidths of frequency domains and
frequency separation) that only the binary hierarchy enables non-
overlapping frequency bands.
Empirical evidence supports certain aspects of the suggested cou-

pling principles. One of the most sophisticated recent studies with
human subjects (Siebenh€uhner et al., 2016) investigated phase cou-
pling during the retention period of a visual working memory task
from combined MEG/EEG data, which were source-reconstructed
and represented on a flattened cortical surface. Cross-frequency and
1 : 1 within-frequency phase coupling were measured for each pair
of cortical parcels (of the Destrieux atlas) and between all frequency
pairs (in the theta-, alpha-, beta-, and gamma frequency range). As
depicted in Fig. 3b, they found significant 1 : 4 coupling between
high alpha (13 Hz) and gamma (54 Hz). The calculation of task-
related phase coupling (during retention relative to baseline) for all
inter areal connections and frequency bands revealed an increase in
connectivity for phase coupling of (high) theta and (high) alpha for
most of the harmonic ratios (from 1 : 2 up to 1 : 9). Because theta
and alpha were 1 : 2 related (with frequencies at 6.6 and 13.2 Hz;
cf. Fig. 3c) and because each of the two frequencies showed
coupling with higher harmonic frequencies, a binary hierarchy with
6.6 Hz, 13.2, Hz, 26.4 Hz, and 52.8 Hz can be observed. Most
interestingly, Siebenh€uhner et al. (2016) also observed a task-related
decrease in connectivity, which was concentrated at around 8.6 Hz.
Relative to alpha with 13.2 Hz, this frequency exhibits a ratio of
1.54, which is close to the golden mean (1.618). One may speculate
that this frequency decoupling enhances the frequency separation
from alpha.
Binary multiple frequency ratios (1 : 2, 1 : 4, and 1 : 8) are also

reported in other studies. As an example, a 1 : 4 ratio between delta
(2.2 Hz) and low alpha (9 Hz) and a 1 : 3 relationship between
delta and high theta (6.7 Hz) was observed in an acoustic novelty
detection task (Isler et al., 2008) in which cross-frequency coupling
(measured with bicoherence and crossbicoherence) was investigated.
Similar preferred frequencies with a 1 : 4 ratio (between delta and
low alpha) were observed for correct trials in a visual detection task
(at around 2.3 and 9.5 Hz; cf. fig. 1e and fig. S2b in Helfrich et al.
2017). Palva et al. (2005) reported enhanced phase coupling for
alpha with 1 : 2, 1 : 3, and 1 : 4 frequency ratios. Sauseng et al.
(2008) found increased theta : gamma phase coupling in a visual
target detection task (in frequency bands of 4–8 Hz and 30–50 Hz
respectively). This finding is consistent with a 1 : 8 coupling ratio,
when assuming center frequencies between 4.5–6 Hz for theta and
36–48 Hz for gamma.
It is interesting to note that in some studies, phase amplitude cou-

pling can be observed between frequencies that represent binary
multiples. As an example, Axmacher et al. (2010) analyzed cross-
frequency coupling in epilepsy patients from intracranial EEG
recordings in the hippocampus during a visual WM task. They
found increased coupling (during maintenance relative to baseline)
which was largest between 7 Hz theta phase and 28 Hz beta/gamma
amplitude. There also was coupling between delta (1–4 Hz) phase
and beta amplitude (14–20 Hz), which, however, did not increase
during maintenance. These findings show that coupling is preferably
observed at binary multiples (7 Hz : 28 Hz with a ratio of 1 : 4 and
~ 2 : ~16 Hz with ratio of 1 : 8 Hz).
In rodents, theta : gamma phase coupling is well investigated, but

the question here is, whether the hypothesis of distinct frequency
domains is also valid for animals. Rodents (the best investigated ani-
mal species) have a dominant frequency (in the hippocampus) in the
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range of about 7–12 Hz which is termed theta, although in human
subjects, this range represents alpha oscillations. As discussed in
Section Amplitude (envelope) coupling, hippocampal theta plays an
important role for spatial memory. Because rodents spend most of
their time foraging and exploring their environment, which are activ-
ities that rely on memory, it is plausible to assume that hippocampal
theta represents a memory-related frequency domain. But are there
also other, neighboring frequency domains similar to the hierarchy
depicted in Fig. 3a? Findings reported in Belluscio et al. (2012),
which document a complex coupling pattern between theta and dif-
ferent gamma frequencies, may provide an answer. These authors
investigated theta to gamma amplitude and phase coupling in the rat
hippocampus (CA1 region) during maze exploration (RUN condi-
tion) and REM sleep. During RUN, three gamma bands could be

distinguished, slow, middle, and fast gamma (with band pass and
peak frequencies of 30–50 Hz, peak: 40.5 Hz; 50–90 Hz, peak:
60.6 Hz; and 90–150 Hz; peak: 118.9 Hz respectively). The three
gamma bands are associated with different phases of the theta wave.
Middle gamma power was largest around the peak, slow gamma
was largest on the descending phase, whereas fast gamma was most
pronounced around the trough. The interesting point here is a har-
monic 1 : 3 and 1 : 2 relationship of slow and middle gamma (with
peak frequencies of 40.5 and 60.6 Hz respectively) relative to high
gamma (with a peak frequency of 118.9 Hz): slow gamma three
times and middle gamma two times equal high gamma
(40.5 9 3 = 121.5 Hz, and 60.6 9 2 = 121.2 Hz ~ 118.9 Hz). It
should also be noted that slow and middle gamma are frequency
decoupled (60.6 Hz : 40.5 Hz = 1.5) with a ratio of 1.5 that is close

A

C
B

Fig. 3. The oscillatory hierarchy is shaped by the properties of between-frequency phase coupling. (A) Illustration of the suggested binary hierarchy. Center
frequencies of traditional EEG frequencies (y-axis; frequency bands, predicted by the ‘golden mean rule’ are shown as vertical bars) exhibit a 1 : 2 frequency
relationship between neighboring center frequencies (solid red circles). They also couple with other frequencies at any integer (harmonic) ratios (dotted red cir-
cles). Each circle (representing phase coupling between harmonic frequencies) is hypothesized to reflect a specific brain network. This hypothesis is well sub-
stantiated by results, reported in Siebenh€uhner et al. (2016), who analyzed combined EEG–MEG signals, recorded during the retention period of a visual WM
task. The example shown in (B) (from Siebenh€uhner et al., 2016; Fig. 2; reprinted with permission) exhibits three brain networks, an alpha 1 : 1, a gamma
1 : 1, and an alpha : gamma 1 : 4 network that connects the alpha and gamma networks, which are localized in the right medial frontal sulcus (MFS) and left
occipital pole respectively. The example in (C) shows the increase in inter-areal cross-frequency phase connections during retention relative to baseline (Fig. 3
of Siebenh€uhner et al. 2016; reprinted with permission). Note the 1 : 2 ratio between high theta at 6.6 Hz and high alpha at 13.2 Hz (the inscriptions in C are
made by the author and are not included in the original Fig. 3). Because theta and alpha are 1 : 2 related and because each of the two frequencies shows
coupling with higher harmonic frequencies, a binary hierarchy with 6.6, 13.2, 26.4, and 52.8 Hz can be observed.
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to the golden mean (g = 1.618). For the analysis of theta : gamma
phase coupling, a special method was used. Frequency ratios
between each theta cycle (i.e., instantaneous theta frequency = 1/
theta period) and the corresponding peak gamma frequency (esti-
mated from the power spectrum between 30–90 Hz) were calcu-
lated. The findings show a more or less continuous distribution of
theta : gamma ratios between about 1 : 3 up to 1 : 13 with peaks at
around 1 : 5 and 1 : 9 indicating that preferentially five waves of
slow gamma (8.1 Hz 9 5 = 40. 5 Hz) and nine waves of middle
gamma (6.7 9 9 = 60.6 Hz) are nested within one theta cycle. Fast
gamma was not phase coupled to theta. These findings provide clear
evidence for the existence of preferred frequencies and
theta : gamma phase locking. But there is no evidence for the exis-
tence of different frequency domains in a binary frequency architec-
ture. The main reason is that not in a single instance, a 1 : 2
frequency ratio was observed between theta and gamma frequencies.
One may speculate that a binary frequency hierarchy is a special
property of the human frequency architecture.

Transient event-related phase coupling

In contrast to the ongoing EEG, the existence of phase to phase cou-
pling in the event-related EEG/MEG is a hotly debated issue (for a
more recent study cf. Burgess, 2012). The reason is that event-related
potentials (ERPs; or event-related fields, ERFs, in the case of mag-
netic signals) are traditionally used to analyze the event-related EEG/
MEG. The calculation of ERPs/ERFs is based on the more or less
implicit assumption of a fixed latency and polarity-evoked signal that
appears superimposed and without interaction with the ongoing
(‘background’) EEG, which is considered random noise. The ERP/
ERF is obtained by averaging the EEG/MEG response for each time
point over a number of single trials. Averaging aims to reduce the
influence of random fluctuations of the ‘background EEG’, and allows
the true signal s (i.e., the evoked response) to emerge, when the num-
ber of trials increases. But meanwhile there is convincing evidence
that neither the ongoing (background) EEG/MEG is random noise,
nor that the ERP/ERF is a response that does not interact with ongo-
ing activity. On the contrary, strong evidence accumulates, suggesting
that the ERP/ERF is generated by a superposition of transiently
aligned oscillations (see Basar, 1999 for early work on this issue; for
reviews see e.g., Klimesch et al., 2007b; Burgess, 2012). Single-trial
analyses demonstrate that frequencies in the theta and extended alpha
frequency range (of up to 15 Hz) exhibit significant phase locking
during a short-time window (Schack & Klimesch, 2002; Klimesch
et al., 2004; Gruber et al., 2005, 2014; Schack et al., 2005). There is
also evidence that transient cross-frequency phase coupling (in the
extended alpha frequency range (of about 7–14 Hz) predicts P1 and
N1 peak latencies (Gruber et al., 2005). Furthermore, several studies
have shown that ERP components (and the P1 in particular) behave
like a traveling wave (e.g., Klimesch et al., 2007c; Alexander et al.,
2009, 2013; Fellinger et al., 2012), a finding completely inconsistent
with the notion that the ERP/ERF is generated at a particular brain site
by a fixed latency and polarity component. In a simulation study, Bur-
gess (2012) has demonstrated that ERP components can be generated
by a cascade of cross-frequency phase alignments that start with high
frequencies (in the gamma and beta range) thereby generating early
ERP components and proceed down to low frequencies (in the theta
and delta range) generating late components. In a recent study, Van
der Lubbe et al. (2016) also conclude that at least the early ERP com-
ponents such as the P1, N1, and P2 can be described as the sum of
event-related alpha and theta oscillations. These findings support the
hypothesis that ERP/ERF components are generated (at least in part)

by the superposition of transiently phase-coupled oscillations. It
should be noted, that a particular ERP/ERF waveform as recorded in
a particular task, is not expected to comprise all possible oscillations,
but only those, which are task relevant (Klimesch et al., 2007b).
Most ironically, if transient phase coupling between task-relevant

oscillations is a valid hypothesis (what is assumed here), ERP/ERF
research is the best documented example of cross-frequency phase
coupling. The general finding is that the power spectrum of the
‘evoked EEG (i.e., of ERPs/ERFs) is dominated by traditional EEG
frequencies in the delta, theta, alpha, beta, and gamma bands. Which
of these frequencies are most pronounced is largely task and stimu-
lus dependent.
This view is also supported by studies which document that pre-

and/or peristimulus phase influence perception (e.g., Busch et al.,
2009; Mathewson et al., 2009; Fiebelkorn et al., 2011). Fiebelkorn
et al. (2013) have shown that the phases of different and distinct
oscillations with peak frequencies at 1, 7, 9, 16, and 25 Hz are
strongly associated with detection performance in a visual threshold
task. The frequency ratios show two interesting properties. Each of
the higher frequency (7, 9, 16, and 25 Hz) represents a harmonic
multiple relative to 1 Hz. But the higher frequencies do not exhibit
harmonic ratios relative to each other. A possible interpretation is
that the phase of the slow frequency (transiently) drives the phases
of higher frequencies which are (frequency) decoupled relative to
each other.

Interim discussion and conclusions

The basic finding is that in all examples, phase plays a crucial role
for coupling. But phase can establish its impact – physiologically as
well as mathematically – only, if a single oscillation is the dominant
frequency in the analyzed band. The dominant oscillation may exhi-
bit a large jitter in a broad band, as for example, is the case for hip-
pocampal theta. However, in a broad band with different
oscillations, the phases of different frequencies will tend to cancel
each other. Thus, the critical role of phase for cross-frequency cou-
pling can be taken as strong evidence for the existence of distinct
center frequencies. This conclusion, leads to the next argument,
which refers to the numerical relationship between frequencies. For
longer time periods, phase coupling is optimal and stable only for
harmonic frequency ratios. This fact and the observation that neigh-
boring center frequencies of traditional EEG bands exhibit a 1 : 2
ratio suggests a binary hierarchy of frequency domains. The term
frequency domain is used to emphasize that (i) frequencies of tradi-
tional frequency bands are 1 : 2 related and (ii) reflect cognitive pro-
cessing domains. The suggested frequency architecture is depicted
in Fig. 3a. Frequency domains establish a binary hierarchy relative
to each other but are harmonically related to other frequencies at
ratios that do not belong to the subset of binary multiples. Findings
from Siebenh€uhner et al. (2016) as shown in Fig. 3b provide empir-
ical evidence for the frequency architecture as illustrated in Fig. 3a.
Finally, it should be emphasized that the requirement for a har-

monic frequency relationship does not apply to phase coupling in
very short-time windows. A transient and brief phase coupling
between many frequencies can occur during a short-time window
and may underlie the generation of ERP components (see e.g.,
Klimesch et al., 2007b; Burgess, 2012).

The bandwidths of frequency domains and frequency separation

The properties of the suggested frequency hierarchy can be derived
not only from conditions providing optimal coupling. Decoupling
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also plays an important role as the prediction of the bandwidth of
traditional frequency bands shows. Starting point is the simple fact
that the golden mean provides the best possible frequency separa-
tion. As an example, for alpha, the best possible frequency separa-
tion with beta (the neighboring higher frequency domain) is
10 9 1.618 � 16.2 Hz and with theta (the neighboring slower fre-
quency domain) is 10/1.618 � 6.2 Hz. Thus, 16.2 Hz may be con-
sidered the bandwidth limit of beta relative to alpha, whereas
6.2 Hz is the bandwidth limit of theta relative to alpha. On the other
hand, the best possible separation of beta relative to alpha is
20/1.618 = 12.4, and of theta relative to alpha is 5 9 1.618 = 8.1.
The general role for defining frequency band limits (which will be
termed ‘golden mean rule’) is: Upper limit for frequency domain fd
(i) is (fd(i + 1))/g and the lower limit is (fd(i-1))*g. When applying
this rule for the traditional center frequencies (fd(i); i = 1, 2 . . .5),
we receive the following bandwidths, for delta, theta, alpha, beta,
and gamma, 2.0–3.1 Hz, 4.0–6.2 Hz, 8.1–12.4 Hz, 16.2–24.7, and
32.4–49.4 respectively. It should be noted that the doubling/halving
property also holds for the widths of the frequency bands which are
1.1, 2.2, 4.3, 8.5, and 17 Hz respectively (the small deviations are
due to rounding). Center frequencies may shift within a band to
guarantee maximal decoupling or coupling with neighboring fre-
quency domains. As an example, alpha may shift from 10 to 8 Hz,
to obtain separation from theta (8/1.618 = 5 Hz), or may stay at
10 Hz to enable optimal coupling with theta.
Only the binary hierarchy enables non-overlapping frequency

bands. If frequency domains would consist of all harmonics that can
be obtained by multiplying the slowest frequency (e.g., delta with
2.5 Hz) with the integers 1, 2, 3, 4, 5, 6. . ... we would receive the
following frequencies: 2.5, 5, 7.5, 10, 12.5, 15. . .. These frequencies
are too densely spaced to allow the application of the golden mean
rule.
Although bandwidth increases with frequency, the ratio between

fd(i) and bandwidth of fd(i) stays constant for different i’s. As an
example for alpha with 10 Hz, bandwidth is 4.3 Hz, whereas for
low gamma with 40 Hz, bandwidth is 17.2 Hz. The ratio of 10 : 4.3
and of 40 : 17.2 equals in both cases 2.33. This means that all fre-
quency domains in the binary hierarchy are functionally equal in a
sense that their frequency jitter (relative to frequency) remains the
same for all frequency domains. But in absolute terms (i.e., in terms
of time), jitter increases with decreasing frequency. As an example,
the period of alpha is 100 ms but 25 ms for low gamma. Their jitter
(calculated from their bandwidths) is (rounded) 37 and 9 ms respec-
tively. This means that time precision (e.g., for the generation of
AP’s) is higher for high frequencies, but variability in time is larger
for slow frequencies. Because neural encoding requires temporal
variation in AP spacing (Fig. 1) a slower frequency may have a
larger ‘coding capacity’ if it couples with higher frequencies. The
ubiquitous observation of slow frequency phase to high frequency
amplitude coupling may have to do with this fact, because the phase
of a slower frequency has a stronger modulating impact (due to their
larger variation in time) than the phase of a higher frequency.

Frequency jitter and the 1/f shape of the spectrum

One critical objection against the assumption of distinct center fre-
quencies could be that a spectrum with several peaks for each fre-
quency domain should be expected. If so, this would be
incompatible with the well-documented overall 1/f shape of the
power spectrum. This critical issue is closely linked to four ques-
tions, to the number of different frequencies outside the hierarchy of
frequency domains, to the question, when spectral peaks are

expected to emerge, to the physiological meaning of frequency jitter,
and to the sources of different frequencies.
As already emphasized, the assumption is not that frequency

domains are the only frequencies in the hierarchy of brain oscilla-
tions, they couple with other frequencies in a task-related way, as
illustrated in Fig. 3. The emergence of peaks also is task dependent,
which is well documented for theta, alpha, beta, but also state
dependent during sleep as the emergence of spindles and slow
frequencies (below 1 Hz) document.
Recent research suggests that frequency jitter is not just noise, but

can be explained by cycle to cycle fluctuations in (instantaneous)
amplitude and (instantaneous) period (Fig. 4). Research on rat hip-
pocampus gamma oscillations has shown that instantaneous ampli-
tude and period (frequency) change rapidly and vary together
(Whittington et al., 1995; Traub et al., 1996; Atallah & Scanziani,
2009). Most interestingly, Atallah & Scanziani (2009) could demon-
strate that amplitude size predicts period (frequency) in a way that
(within each cycle) an increase in instantaneous amplitude is closely
associated with a lengthening of the immediately following period,
and – vice versa – a decrease in amplitude is associated with a
shortening in the immediately following period. This kind of cycle
to cycle fluctuations is manifested by a significant positive correla-
tion between amplitude and period (Fig. 4c), which was also found
for alpha oscillations in the human EEG (Himmelstoss et al., 2015).
According to Atallah & Scanziani (2009) the underlying physiologi-
cal mechanism is due to (stimulus- and/or task- dependent) changes
in excitation that are immediately and proportionally counterbal-
anced by inhibition. These rapid adjustments in inhibition modulate
gamma oscillations over a wide frequency range on a cycle per
cycle basis. These findings are in good agreement with predictions
of the global wave model of Nunez & Srinivasan (2014) which
assumes that the modulation density of action potentials is a func-
tion of cortical background excitability and inhibitory feedback
strength. Quantification of this model predicts that an increase in
parameter b (reflecting the degree of cortical background excitabil-
ity) is associated with an increase in oscillatory amplitude but a
decrease in frequency.
Finally, it should be emphasized that EEG/MEG signals stem

from different sources in the brain. Frequencies in the delta, theta,
alpha, beta, and gamma range play a primary role for long-range
connectivity (e.g., Sauseng & Klimesch, 2008; Siebenh€uhner et al.,
2016; Palva & Palva, 2017) and most likely have their primary
sources in the cortex (Palva et al., 2005; Siebenh€uhner et al., 2016).
But to what extent cortical and deeper sources contribute to power
spectra calculated from the scalp EEG or the MEG is an open ques-
tion. This means that traditional spectral data cannot unambiguously
be used to detect center frequencies, because of the existence of
overlapping sources.
There are two important conclusions. First, frequency jitter (due

to fluctuations in instantaneous period) is not simply noise but
instead the result of a physiological mechanism that controls the
relationship between excitation and inhibition. Second – and most
importantly – the positive association between instantaneous ampli-
tude and instantaneous period (Fig. 4c), which is a negative associa-
tion between amplitude and frequency (Fig. 4d), is compatible with
– or may even explain – the 1/f distribution between amplitude (or
power) and frequency as illustrated in Fig. 4e.

The binary hierarchy brain body oscillation theory

Starting point for the suggested theory is the already described
observation that center frequencies of traditional EEG bands exhibit
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a doubling/halving relationship. This binary hierarchy describes a
frequency relationship between any frequencies regardless of their
numerical values. It represents an universal scale-free power law.
When, however, a scaling factor (s) is introduced (Klimesch, 2013),
absolute frequency values can be predicted on the basis on for-
mula (1):

fd(i) ¼ s � 2i Hz s ¼ scaling factor; i . . .. . . integer ð1Þ

An estimate for s can be found, when considering delta the first
frequency domain fd(1). If we assume a value of 2.5 Hz for the cen-
ter frequency of delta, we obtain fd(1) = 2.5 = s *21. When solving
for s, we receive a value of 1.25. Substituting this value in formula
(1) gives formula (2):

fd(i) ¼ 1:25 � 2i Hz ð2Þ

When calculating the frequencies for the first seven frequency
domains, starting with fd(i), i = 0, 1. . ..6, we receive:

fdð0Þ; fdð1Þ . . .. . . fdð6Þ ¼ 1:25; 2:5; 5; 10; 20; 40; 80Hz

Three findings are interesting. First, the frequency domains
fd(1). . ... fd(6) describe the center frequencies of delta, theta,
alpha, beta, gamma1 and gamma2 quite faithfully for s = 1.25.
Second, as already mentioned, the golden mean rule also allows a
faithful description of the respective bandwidths. Third, and most
importantly, when asking the question, whether s itself represents a
center frequency, the surprising answer is that 1.25 Hz expressed
as beats per minute (bpm) equals average heart rate (HR) of adult
humans which is about 75 bpm during wakeful rest (e.g., Fleming
et al., 2011; Shaffer et al., 2014). Thus, if we accept this

interpretation, fd(0) represents HR, which can be considered one
of the most important body oscillations.

Predictions of the theory

The predictions of the theory focus on the binary hierarchy between
brain and body oscillations. This means that other harmonic ratios
for coupling between neighboring frequency domains are excluded.
As an example, a 1 : 3 hierarchy would predict frequencies that are
inconsistent with empirical observations. In such a hierarchy, the
neighboring frequencies of delta (with 2.5 Hz) would equal 7.5 and
0.83 Hz. In this example, we would miss theta and alpha (of about
5 and 10 Hz respectively), as well as heart rate of about 1.25 Hz.
The evaluation of the theory refers to three closely interrelated

issues. The most important is the interpretation of fd(0) = HR. A
second issue refers to the prediction of other body oscillations,
which comprise breathing, blood pressure (BP) waves, rhythmic
fluctuations in the blood oxygen level dependent (BOLD) signal,
and gastric waves. The logic for the empirical evaluation is based
on the ‘golden mean rule’, which allows the calculation of fre-
quency bands. Supporting evidence is assumed, if the frequency of
a body oscillation lies within the predicted band of a body oscilla-
tion. Frequency bands are, thus, used in a similar way, as confidence
intervals are. A third issue is the covariation of all oscillations,
brain, body, and brain body oscillations.

Is HR a frequency domain of the binary hierarchy of oscillations?

The measurement of individual alpha frequency (IAF), as the domi-
nant brain oscillation, is the obvious starting point for testing the
prediction that fd(0) represents individual HR. In a recent study,

A
m

pl
itu

de

Period

a1

a6 a3 

a5 

a4 

a2 

A
m

pl
itu

de

Frequency

100 ms

A
m

pl
itu

de
  μ

V
Frequency2.5 5     10 20                                40 Hz

p1 p2 p3               p4 p5 

A
m

pl
itu

de
  μ

V

Frequency2.5  5      10              20                                40  Hz

BA

C D E

Fig. 4. The 1/f shape of the EEG power spectrum (A) may be explained – at least in part – by cycle per cycle amplitude period co-fluctuations of different fre-
quencies. (B) The basic principle is that a large amplitude is associated with a lengthening of the period in the immediately following cycle and a small ampli-
tude by a shortening of the period. As an example, amplitude a2 is large and therefore followed by a long period p2, whereas amplitude a3 is small and
therefore followed by a short period p3. (C) This co-fluctuation is characterized by a positive correlation between amplitude and period. (D) If period is
expressed as (instantaneous) frequency, the correlation between (instantaneous) amplitude and frequency is negative which means that a slowing in frequency is
associated with an increase in amplitude, whereas a speeding up is associated with a decrease in amplitude. (E) If a complex signal is generated by many fluctu-
ating frequencies, its spectrum can be explained (at least in part) by amplitude period co-fluctuations of different frequencies.
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Gutmann et al. (2018) measured HR and IAF in a sample of 97
healthy young subjects during a baseline condition and after exhaus-
tive physical exercise. Calculated from their data (Gutmann et al.,
2018; Supporting Information), mean IAF, and mean HR were
9.87 Hz and 1.18 Hz (= 71.05 bpm) respectively. When substituting
HR = 1.18 Hz for s in formula (1), the predicted frequency for
IAF = 1.18 9 23 = 9.44 Hz, and its bandwidth is 7.64–11.67 Hz.
Thus, the empirically measured IAF with 9.87 Hz lies well within
the predicted frequency band. The same logic can be applied for the
prediction of HR, based on IAF. The predicted HR = IAF/23

= 9.87/8 = 1.23 Hz, and its bandwidth is 1–1.52 Hz. Again, the
measured value of HR = 1.18 lies well within the predicted band.
The conclusion is that HR and IAF can be predicted on the basis of
formula (1). Considering the large sample and the fact that subjects
were controlled for age, height, weight, and body mass index (BMI)
– all variables known to have a strong impact on HR (for a review
cf. Valentini & Parati, 2009) – the reported findings provide strong
evidence for the validity of the suggested binary hierarchy brain
body oscillation theory.

The prediction of center frequencies in the respiratory,
cardiovascular, and stomach gastric system

The frequency range of fd(0) down to fd(�4) with predicted center
frequencies of 1.25, 0.63, 0.31, 0.16, and 0.08 Hz are dominated by
the cardiorespiratory system. We already have associated fd
(0) = 1.25 Hz with HR. The next slower frequency (fd
(�1) = 0.63 Hz) can be associated with muscle activity that sup-
ports breathing. Because different muscles support inhaling and
exhaling, two contraction – relaxation cycles are nested within one
breathing cycle. Figure 5 gives an overview of the predicted body
frequencies and their relation to brain oscillations.
Breathing frequency (BF) comprises three frequency domains, fd

(�2), fd(�3), and fd(�4). The crucial finding here is that BF does
not vary continuously. Spectral analyses (e.g., reported in Perlitz
et al., 2004) show distinct peaks at around 0.30, 0.15, and 0.07 Hz,
which all lie well within the predicted frequency bands (0.253–
0.386 Hz, 0.126–0.193 Hz, and 0.063–0.097 Hz respectively). Perl-
itz, Lambertz and colleagues found evidence for a distinct ‘0.15 Hz’
rhythm, which can be observed in skin blood flow as recorded by
the plethysmogram (Perlitz et al., 2004). This rhythm emerges par-
ticulary during periods of relaxation, reflects fluctuations in vasomo-
tor activity and – most likely – is induced by a neural pacemaker in
the brainstem reticular formation (Lambertz & Langhorst, 1998;
Lambertz et al., 2000). The interesting finding is that respiration
entrains (becomes phase locked) to the 0.15 Hz rhythm at integer
frequency ratios of 1 : 1, 1 : 2, or 2 : 1 (Perlitz et al., 2004). This
means that breathing frequency exhibits a 1 : 1 or doubling/halving
relationship relative to the 0.15 Hz rhythm, with dominant frequen-
cies at 0.15, 0.30, or 0.07 Hz (cf. Table 1 in Perlitz et al., 2004).
These findings, thus, provide solid support for the binary hierarchy
theory.
The slowest peak of BF at around 0.07 Hz is close to a preferred

frequency of BP waves at around 0.1 Hz, which are known as
Mayer waves (cf. Julien et al., 2001; Julien, 2006 for reviews). This
frequency range is also called ‘baroreceptor range’ (e.g., Malliani
et al., 1990), because baroreceptors detect changes in arterial BP
and lead to compensatory changes in HR. Although Mayer waves
exhibit a large variation, this ‘0.1 Hz rhythm’ cannot be associated
with fd(�4), because it lies outside the respective frequency band
(0.063–0.097 Hz). But it is important to emphasize that a faithful
description of slow frequency peaks requires the application of

appropriate methods. If a time series comprises two (or more) time
varying components with similar wavelengths, traditional FFT analy-
sis (which is applied in most studies) will fail to detect these compo-
nents (cf. Kuusela et al., 2003). Applying more refined methods,
including FFT analysis with sliding time windows, Kuusela et al.
(2003) was able to demonstrate that the extended frequency range of
Mayer waves, exhibits two peaks, one at 0.117 Hz (reflecting the tradi-
tional 0.1 Hz peak) and a second, slower at 0.076 Hz, which nicely
coincides with the predicted frequency band (0.063–0.097 Hz) of fd
(�4). The interesting point here is that fd(�4) can be associated with
two body oscillations, slow BF and fast BP waves.
Finally, a more recently described body oscillation is the gastric

basal rhythm, which is continuously and intrinsically generated in
the stomach. It has a frequency of 0.5 Hz that can be recorded with
the Electrogastrogram (EGG; cf. Koch & Stern, 2004; Rebollo
et al., 2017; Richter et al. 2017). Similar to the low frequency
0.1 Hz Mayer wave peak, the frequency of gastric waves with
0.5 Hz fall outside the predicted frequency bands for fd(�4) and fd
(�5) with frequency boundaries of 0.063–0.097 Hz and 0.0316–
0.0483 Hz respectively. Nonetheless, it is worth noting that the
0.5 Hz gastric and 0.1 Hz Mayer waves exhibit a 1 : 2 frequency
relationship.

The prediction of center frequencies in slow fluctuations of the
BOLD signal

In a similar way as the EEG/MEG community, the brain imaging
community was (and still is) primarily focusing on the event-related
response. In this sense, and despite its much lower time resolution,
the BOLD signal can be considered the metabolic counterpart of the
event-related electrophysiological response as measured by the ERP/
ERF. In both approaches, ongoing activity was traditionally treated
as ‘background’ activity or noise. But the detection of the slow wax-
ing and waning (fluctuation) of the BOLD signal (Cooper et al.,
1966; Biswal et al., 1995; Lowe et al., 1998; Damoiseaux et al.,
2006; De Luca et al., 2006; Mantini et al., 2007) enabled the inves-
tigation of resting state networks (RSNs). These are characterized by
spatially coherent fluctuations of different brain regions. It is, thus,
not surprising that in the neuroimaging community, the term ‘resting
state networks’ is used almost synonymously with low-frequency
fluctuations (LFFs; Niazy et al., 2011). It became clear that the well
investigated and typical event-related BOLD response is embedded
in ongoing BOLD fluctuations that are intrinsically generated by the
brain in a state- and task-dependent manner. Thus, in a similar way
as ongoing electrophysiological oscillations, LFFs also reflect state-
and task-dependent and cognitive meaningful activity. As an exam-
ple, the default mode network (DMN; one of the first systematically
analyzed RSNs) presumably is involved in gathering information
about the world around us in an ongoing manner (Raichle et al.,
2001).
The frequency range of LFFs is determined (besides many other

factors) by the temporal properties of the hemodynamic response
itself, but also by the (comparatively slow) sampling characteristics
of fMRI with a typical frequency resolution below about 0.5 Hz that
was increased with advanced technology to about 1.5 Hz (cf. e.g.,
Gohel & Biswal, 2014). Many authors refer to a broad frequency
range of about 0.01–0.1 Hz (e.g., Biswal et al., 1995; Fransson,
2005 and the review by Auer (2008), whereas others include much
higher frequencies of 0.25 Hz (Balsters et al., 2013) or 1.5 Hz
(Gohel & Biswal, 2014). Some authors divide the broad frequency
range of BOLD fluctuations into four subbands (a high, two med-
ium, and a low frequency band: 0.20 Hz–0.15 Hz; 0.15–0.10 Hz;
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0.10–0.05 Hz; 0.05–0.01 Hz; cf. Baria et al., 2011) or in five sub-
bands (0.75–0.5 Hz; 0.5–0.198 Hz; 0.198–0.073 Hz; 0.073–
0.027 Hz; 0.027–0.01 Hz; cf. Gohel & Biswal, 2014). Others (e.g.,
Zuo et al., 2010) refer to a classification that was introduced by
Penttonen & Buzsaki (2003) and Buzs�aki & Draguhn (2004), who
distinguish between five low frequency oscillations between 0.02
and 1.42 Hz.
If oscillatory components are not known, the definition of sub-

bands always is a critical issue. Niazy et al. (2011) were the first to
apply a frequency decomposition method, the empirical mode
decomposition (EMD; Huang et al., 1998, 1999) to analyze the fre-
quency architecture of the BOLD resting signal. This method aims to
find the most dominant oscillatory components in a given time series.
For fMRI data, obtained during rest and including frequencies of up

to about 0.16 Hz, Niazy et al. (2011) found four dominant oscillatory
components, which were termed intrinsic mode functions (IMFs).
They comprise four frequency bands (termed band 1–4 in the follow-
ing) within 0.15 and 0.004 Hz. The predicted center frequencies for
fd(�4), down to fd(�7) of the binary hierarchy lie well within the
extracted frequency bands, fd(�4) = 0.078 Hz lies within band 1
(0.016–0.15 Hz), fd(�5) = 0.039 Hz lies within band 2 (0.02–
0.05 Hz), fd(�6) = 0.0195 lies within band 3 (0.01–0.02 Hz), and fd
(�7) = 0.0097 lies within band 4 (0.004–0.01 Hz). The four bands
of the IMFs show a high overlap with the predicted bands for fd(�4)
to fd(�7), which are in that order: 0.063–0.097 Hz, 0.0316–
0.0483 Hz, 0.0158–0.0241 Hz, and 0.0079–0.0121 Hz. The progres-
sive decline in bandwidth from 0.134 Hz for band 1, to 0.006 Hz for
band 4 also agrees well with the binary hierarchy theory.

Fig. 5. Illustration of frequency domains that are predicted by the binary hierarchy brain body oscillation theory (red circles), shown as linear function (on a
log(2) scale) of frequency in Hz (y-axis). Frequency bands, calculated according to the ‘golden mean rule’ (see text) are depicted as vertical bars (bandwidths
relative to the y-axis are not to scale). Frequencies, lying outside the predicted bands are represented as dashed blue circles and are considered falling outside
the binary hierarchy. Note that dominant brain and body oscillations that emerge in deep sleep are not members of the binary hierarchy. This suggests decou-
pling from frequencies that dominate in the conscious, awake state.
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The most important conclusion that can be drawn from the EMD
analysis is that RSNs are not based on random fluctuations in the
BOLD signal, but instead on oscillatory components. This conclusion
rests on the following basic findings. First, it was found that the
RSNs could be ‘re-constructed’ using GLM analysis with the IMFs
(i.e., the four most dominant oscillatory components) as regressors.
Second, this result was also obtained, when the BOLD signal was
band pass filtered (using the frequency ranges of the IMFs) before
applying the independent component analysis to extract the RSNs.
The RSNs appeared in all four frequency bands, but the best match
with the unfiltered (original) data was in the frequency range of
0.02–0.05 Hz. With respect to the BOLD frequency bands (in the
resting state) similar findings were obtained by Achard et al. (2006)
who calculated frequency dependent correlation matrices in an
attempt to depict the functional connectivity between 90 cortical and
subcortical regions. This analysis resulted in a set of inter-regional
correlation matrices with each matrix describing the functional con-
nectivity in a different frequency band. Six frequency bands were
used (0.45–0.23 Hz, 0.23–011 Hz, 0.11–0.06 Hz, 0.06–0.03 Hz,
0.03–0.01 Hz, and 0.01–0.007 Hz), but functional connectivity was
most salient in the frequency interval of 0.06–0.03 Hz. In an analo-
gous way as for the study by Niazy et al. (2011), each of the six fre-
quency bands reported by Achard et al. (2006) comprises exactly
one of the six predicted center frequencies from fd(�2) down to fd
(�7). This again is support for the binary hierarchy theory.
The functional meaning of LFFs and the IMFs in particular are

not well understood. But it is important to emphasize that slow fre-
quency fluctuations can also be observed in EEG direct current
(DC) recordings (e.g., Monto et al., 2008). Palva & Palva (2012a)
assume that slow EEG and BOLD fluctuations may have a common
physiological source. Important evidence for this view comes from
studies showing that slow EEG and BOLD fluctuations are spec-
trally similar (Zarahn et al., 1997; Monto et al., 2008) and that the
phase of both types of slow fluctuations exhibit m : n coupling with
the EEG envelope. They modulate the amplitudes of fast electro-
physiological activity beyond about 1 Hz (e.g., Laufs et al., 2003;
Mantini et al., 2007; Sadaghiani et al., 2010). In monkey cortex but
also in the human brain, slow amplitude fluctuations in delta-, theta-
, alpha-, and gamma frequency bands are directly correlated with
BOLD fluctuations (Mantini et al., 2007; Scholvinck et al., 2010).
Because alpha oscillations are the dominating frequencies in the

resting EEG, several studies have used simultaneous EEG and fMRI
measurements in order to directly investigate co-fluctuations of alpha
and the BOLD signal. Some of these studies found negative correla-
tions at occipital regions, but positive correlations in the thalamus
(cf. Goldman et al., 2002; Moosmann et al., 2003; Feige et al.,
2005), whereas others did not observe negative posterior correlations
but weak, non-systematic positive thalamic correlations (e.g., Laufs
et al., 2003). These inconsistent findings may be due to large
interindividual differences in cognitive processes during rest but also
to differences between the lower and upper alpha band. As has
already been emphasized in Not all frequencies are equal: The
hypothesis of distinct frequency domains, traditional EEG studies
have shown that the lower and upper alpha band exhibit a strikingly
different event-related reactivity and topography. In a study by Jann
et al. (2009) the lower and upper alpha band were analyzed sepa-
rately and correlated with the BOLD signal. Most interestingly, the
two alpha bands correlated with different RSNs. It was found that
the lower alpha band is associated with the dorsal attention network,
whereas the upper band is related to the DMN. The reactivity and
functional meaning of the DMN and upper alpha are closely related.
Both, the DMN and upper alpha are considered an internally focused

state. Both signals show a similar event-related reactivity, which is char-
acterized by a decrease in activity during task demands and a functional
association with internal processing and self-monitoring. The functional
meaning of upper alpha with respect to long-term memory retrieval was
also interpreted in terms of self-monitoring. It was suggested that alpha
enables controlled knowledge access and semantic orientation which
is the ability to be consciously oriented in time, space, and context
(Klimesch, 2012). This ability may be considered one of the most basic
ongoing cognitive processes which become transiently disrupted during
(demanding) event-related tasks.
In summarizing, the search for slow frequencies in BOLD fluctua-

tions showed clear oscillatory components in the frequency range of
about 0.1 Hz and below (Niazy et al., 2011) which coincide with
the predicted frequency domains fd(�4) to fd(�7). The fact that
higher frequencies in the range of fd(�3) to fd(0) are not reported is
primarily due to the slow sampling characteristics of traditional
fMRI equipment but also to the influence of heart beat and breath-
ing which appear in this frequency range of about 0.1–1.25 Hz and
which are considered artifacts in the BOLD signal.

The covariation of brain and body oscillation

All oscillations belonging to the binary hierarchy are expected to
covary interindividually but also intraindividually in a task-depen-
dent manner. As an example, if in a movement task, alpha (or more
precise the mu rhythm) slows to for example, 8 Hz (see e.g., Gross
et al., 2002) in task-relevant brain areas, the binary hierarchy also is
predicted to slow down. The problem is that – except alpha – fre-
quency domains rarely exhibit peaks in the spectrum, which makes
it difficult to calculate correlations between different frequencies.
Klimesch et al. (1996) and Doppelmayr et al. (1998) used the dif-
ferential event-related reactivity of theta and alpha to test the
hypothesis, whether both frequency domains are correlated between
subjects. In both studies, they were able to demonstrate that the tran-
sition between alpha desynchronization and theta synchronization
occurs within a narrow frequency range that varies significantly as a
function of individual alpha frequency (IAF). In an animal study,
Belluscio et al. found that during theta : gamma phase coupling,
theta and gamma cycles vary together. These studies, thus, provide
evidence for the covariation of brain oscillations.
Evidence for a covariation between brain and body oscillations

comes from the above mentioned study from Gutmann et al. (2018).
They found a significant increase in IAF of about 0.4 Hz after exer-
cise relative to a baseline condition, which is paralleled by an
increase in HR. This finding links two seemingly independent
groups of findings. One one hand it is well documented that physi-
cal exercise has a positive influence on cognitive performance (e.g.,
Hillman et al., 2008), and on the other hand there is evidence that
cognitive performance is positively correlated with IAF (e.g., Kli-
mesch et al., 1990; Jin et al., 2006). Thus, if exercise increases
IAF, cognitive performance should also be enhanced. The interesting
point here is that the time course of increased cognitive performance
and IAF are correlated. Positive effects of exercise on cognitive per-
formance are most pronounced after a delay of 10–20 min (Chang
et al., 2012) in a very similar way as IAF stays elevated in the
study of Gutmann et al. (2018) before it drops to baseline. Evidence
for a covariation between IAF and HR was also reported in a sleep
study by Lechinger et al. (2015). During wakefulness, HR was sig-
nificantly correlated with IAF, but during sleep (except REM) HR
was correlated with spindle frequency. During sleep the correlation
declined with increasing sleep depth, suggesting frequency decou-
pling of brain oscillations from HR during sleep.
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It is important to note that a covariation between frequency
domains is not expected in a 1 : 1 manner. As an example if HR
doubles during heavy exercise relative to baseline (e.g., from 75 to
150 bpm), IAF is not expected also to double in frequency. In the
Gutmann et al. (2018) study, the ratio between IAF to HR immedi-
ately after exercise is 10.4/3.12 = 3.33, which suggests frequency
decoupling of HR from brain oscillations. This is not surprising,
because immediately after exhaustive exercise cognitive performance
is impaired.

Coupling between body and brain body oscillations

In this section, some of the most prominent principles that govern
coupling between body oscillations and between body and brain
oscillations will be discussed. Well investigated examples are heart
rate variability (HRV) and the coupling of muscle activity with brain
oscillations.

Body oscillations: m : n amplitude and phase coupling

The lung and heart are ‘mechanically’ closely coupled organs. The
heart, as a ‘double’ organ, consists of a pair of chambers, the left
and right atrium, and ventricle. It pumps blood (almost) syn-
chronously into two different circuits, the lung and the body circuit.
Deoxygenated blood from the body enters the right atrium, flows in
the right ventricle from where it is pumped to the lungs. Oxygenated
blood flows from the lungs to the left atrium, enters the left ventricle
from where it is pumped through the aorta in the body arterial sys-
tem (for textbooks, see e.g., Birbaumer & Schmidt, 2010).
The close relationship between the lung and the heart is function-

ally reflected by m : n amplitude envelope coupling in a way that
the phase of the slower rhythm (breathing) modulates the ‘ampli-
tude’ (cycle length) of the faster rhythm (heart beat). This relation-
ship can be illustrated by a diagram, in which for each heart beat (at
time t shown at the x-axis) the corresponding cycle length (in ms) is
plotted on the y-axis. Fluctuations in the envelope of cycle lengths
reflect m : n coupling (in this case with breathing) and is known as
heart rate variability (HRV). Cycle length (or length of the period of
instantaneous HR) is also termed interbeat interval and usually mea-
sured by the RR interval that is recorded with the electrocardiogram
(ECG). The ECG, reflects electrical activity of heart muscle activity,
and consists of a typical sequence of components. The largest com-
ponent is associated with ventricular depolarization and is called R-
wave, which is embedded in the QRS wave complex. The sharp
peak of the R-wave represents a convenient trigger to measure the
duration of the interbeat interval (RR interval). The RR interval can
also be expressed in terms of instantaneous HR in Hz = 1000/(RR
interval in ms).
Spectral analyses of fluctuations in the RR interval as measured

from ongoing (continuous) recordings comprise a wide range of dif-
ferent frequencies between 0.4 down to < 0.0033 Hz. Four fre-
quency bands are usually distinguished, a high, low, very low, and
ultra low frequency band (termed HF, LF, VLF, and ULF with fre-
quency ranges of roughly 0.4–0.15 Hz, 0.15–0.04 Hz, 0.04–
0.003 Hz, and 0.003 Hz and slower frequencies respectively). The
HF and LF bands are the most prominent frequency ranges which
usually exhibit peaks at around 0.25 and 0.1 Hz (for reviews see
e.g., Task-Force: Standards of heart rate variability, 1996; Acharya
et al., 2002). These two bands comprise the range of BF and BP
waves (fd(�2), fd(�3), and fd(�4)) as described in the previous
section. The m : n amplitude coupling between breathing and HR
lies in this frequency range with peaks primarily around fd(�2) and

fd(�3). It is known as respiratory sinus arrhythmia (RSA; for a
review see e.g., Berntson et al., 1993) which is a cardiorespiratory
coupling phenomenon characterized by RR interval fluctuations that
are in phase with inhalation and exhalation (Angelone & Coulter,
1964). During inspiration HR accelerates (the RR interval decreases)
and during expiration HR slows down (the RR interval increases).
The amplitude (power) of the HF component depends upon breath-
ing frequency and tidal volume (depth of ventilation; e.g., Hirsch &
Bishop, 1981). It is increased during deep sleep (e.g., Bonnet &
Arand, 1997; Busek et al., 2005) when respiration becomes deeper
and more regular and decreased during REM when respiration is
shallower and more frequent (e.g., Lanfranchi et al., 2007; Cabiddu
et al., 2012). There is also evidence for a positive relationship
between higher HF power and greater total cerebral blood flow dur-
ing rest (Allen et al., 2015).
The LF band (0.15–0.04 Hz) comprises frequencies that stem

from fluctuations in arterial BP (including the 0.1 Hz Mayer waves),
whereas the VLF band (0.04–0.003 Hz) has traditionally been asso-
ciated with thermoregulation and hormonal factors (Shaffer et al.,
2014). More recent animal studies, allowing single neuron record-
ings from the beating heart, have shown that a VLF rhythm with a
period of 90 seconds is an intrinsic rhythm that is generated by the
heart itself (Armour, 2003). Several studies indicate that reduced
VLF power exhibits the strongest association with mortality as com-
pared to HRV power in higher frequency ranges (e.g., Schmidt
et al., 2005). The ULF band with frequencies below 0.003 Hz is
primarily associated with circadian fluctuations.
The important conclusion from this brief review of HRV is that

m : n envelope coupling is an outstanding property of coupling
between body oscillations. The general principle is that the length
(‘size’) of the R-R interval (considered formally the ‘amplitude’ of
the faster oscillation) varies as a (multiple) function of the phases of
(multiple) slower oscillations including respiration, BP waves, ther-
mal, and hormonal fluctuations. But m : n envelope coupling is not
the only principle. In many cases m : n phase coupling can also be
observed. As an example, Bartsch et al. (2010, 2007) observed that
heartbeats tend to cluster at a specific phase of the breathing cycle,
particularly during deep sleep, and related to this finding, m : n
phase synchronization between respiration and heart rate favors a
1 : 4 frequency relationship (four heart beats are phase locked
within one respiration cycle), particularly during deep sleep.
Finally, it should be mentioned that fluctuations in HR can be cat-

egorized in intrinsic and event-related frequency changes. All of the
above reported fluctuations of (instantaneous) HR, are intrinsic
changes that can only be seen in continuous recordings. They reflect
ongoing activity and are the basis for measuring HRV. In contrast,
event-related changes are short lasting and can be observed in
response to a variety of different task demands. They typically con-
sist of an anticipatory deceleration that is followed by a stimulus/
task-related acceleration (e.g., Jennings et al., 1990; Pfurtscheller
et al., 2007). Another source of event-related changes is due to the
timing of a meaningful stimulus relative to the heart beat as the
work of Lacey & Lacey has shown. Stimuli appearing early in a
cardiac cycle tend to prolong that cycle (Lacey & Lacey, 1980).

Heartbeat induced EEG amplitude and phase modulations

A special type of event-related EEG response that reflects body–brain
communication is the heartbeat-evoked potential (HEP). It is an
evoked potential, calculated time locked to the R peak (first reported
in Schandry et al., 1986), which is used in research on interoceptive
awareness. As an example, Pollatos & Schandry (2004) found that a
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late HEP component (between 250 and 350 ms after the R peak) was
significantly higher in good heartbeat perceivers (defined as subjects
capable of silently counting their heartbeat without taking their
pulse). Similar findings, showing an association between cardiac
awareness and HEP amplitudes were reported by Montoya et al.
(1993) and Schandry & Weitkunat (1990). More recently, Park et al.
(2014) have associated a HEP component (which predicts the detec-
tion of a faint visual grating) with visual awareness. Park & Tallon-
Baudry (2014) have extended this interpretation and introduced the
concept of the neural subjective frame, which refers to the constant
updating of internal body states.
Based on these findings, which suggest that proprioceptive infor-

mation plays an important role for conscious experience, Lechinger
et al. (2015) hypothesized that the magnitude of the HEP response
will decrease with sleep depth. As expected, the results showed that
HEP amplitudes and phase locking (in a time window of about
300–400 ms after the R peak) decreased during sleep, but increased
again during REM sleep. Most interestingly, individual HR was sig-
nificantly correlated with IAF (during wakefulness) and spindle fre-
quency (during sleep). Because the correlation was strongest during
wakefulness and declined with increasing sleep depth, this finding
suggests frequency decoupling from HR during sleep.

A special case of m : n phase coupling: Resonance frequency
breathing

Envelope coupling between BP and HR is due to the baroreflex
loop. When BP increases, HR decreases and conversely, when BP
decreases, HR increases. Changes in HR and BP do not occur
simultaneously because of inertia in blood flow. The delay lies in a
range of roughly 5 seconds and determines the resonance frequency
of the hydrodynamics of the vascular system. Because the delay
operates for up- as well as downregulations, resonance frequency
has a period of about 10 seconds (i.e., a frequency of about
0.1 Hz). It should be noted that the baroreflex-induced change in
HR is almost instantaneous, but the subsequent hydrodynamic (‘me-
chanic’) change is delayed by about 5 seconds.
Resonance breathing can be observed, when subjects breath at the

same frequency (at around 6 bpm; i.e., every 10 seconds or 0.1 Hz)
as the BP (Mayer) waves. It was first observed by Vaschillo and
colleagues and is characterized by five facts (Vaschillo et al., 2002;
Lehrer, 2013), (i) The breathing-induced RSA peak in HRV moves
from the HF band to the LF band with a peak at BF (at around
0.1 Hz), where the HRV amplitude reaches a maximum, (ii) RSA
and BF exhibit the same frequency (at around 0.1 Hz) and become
phase locked with zero phase lag, (iii) BP waves are also phase
locked, but in antiphase of 180° relative to RSA and BF, due to the
delay in the baroreflex loop, (iv) HR slows down to about 1 Hz
(60 bpm), and (v) the frequency at which frequency locking occurs,
varies between subjects.
One central aspect of this phenomenon is that three body oscilla-

tions, BF, HRV (i.e., the RSA peak in HRV) and BP become phase
locked (although with different delays) with the same frequency at
around 0.1 Hz. In addition, and most importantly, HR (at around
1 Hz) exhibits a clear 10 : 1 frequency ratio relative to the fre-
quency of BF, BP, and HRV which are phase locked to each other.
This harmonic relationship also invites a phase coupling with HR
(cf. Fig. 1 in Vaschillo et al., 2006).
What is the meaning of this phenomenon? At least three different

aspects can be distinguished, one referring to energy demands,
another to resonance properties, and yet another to emotional
changes. Animal studies show that gas exchange in the lungs is

most efficient at zero degree phase locking between HRV and
breathing (Yasuma & Hayano, 2004). Thus, resonance frequency
breathing represents a state, where blood oxygenation and energy
demands for blood transportation are most efficient. The reduced
energy demands are reflected by the decrease in HR and the anti-
phase BP phase locking. The latter indicates that the length of the
delay in the baroreceptor loop is frequency locked to breathing and
HRV (RSA). Mathematical models also suggest that resonance fre-
quency is critically determined by the properties of feedback loops
between the heart and brain (e.g., Baselli et al., 1994) and its fre-
quency is around 0.1 Hz (Vaschillo et al., 2011). These are also
dependent on body size, or more accurately, on total blood volume.
Thus, it is to be expected that resonance frequency varies between
subjects. This is indeed the case as the work of Vaschillo, Lehrer
and colleagues have shown (cf., e.g., Lehrer, 2013). They found that
taller people had slower resonance frequencies than shorter people
and assumed that greater blood volume is associated with greater
inertia in the blood supply, and a greater delay in the baroreceptor
loop. The psychological aspect is characterized by positive emo-
tions, reduced stress, and is associated with the appearance of very
rhythmic (sinusoidal) waveforms of HRV at around 0.1 Hz.
Biofeedback with the aim to enhance 0.1 Hz HRV is known to
induce relaxation (McCraty et al., 2009; Lehrer & Eddie, 2013;
Lehrer & Gevirtz, 2014; Gross et al., 2016).
As already emphasized, 0.1 Hz waves do not belong to the binary

hierarchy. Thus, the tight coupling between three 0.1 Hz waves
(BF, HRV and BP) and the 1 : 10 ratio with HR, implies a decou-
pling from the binary hierarchy. Because the binary hierarchy is
thought to reflect a system for optimal coupling between brain and
body oscillation, resonance breathing may be considered a situation,
where body oscillations are entrained to the resonance properties of
the cardiorespiratory system, but are only weakly coupled with brain
oscillations.

Gastric waves and body brain coupling

An interesting case of body–brain coupling was reported by Richter
et al. (2017), who simultaneously recorded the EGG and MEG in
resting subjects. Proceeding from the hypothesis that the gastric
basal rhythm may influence resting state brain dynamics, they calcu-
lated phase amplitude coupling between gastric waves and alpha
amplitudes. They found that gastric phase accounts for about 8% of
alpha amplitude fluctuations. Directionality analyses suggest an
ascending influence from the stomach to the brain. Rebollo et al.
(2018) extended this finding in a BOLD study and showed that a
brain network (termed gastric network) is phase synchronized with
the gastric basal rhythm. Within this gastric network, approximately
15% of the BOLD variance is explained by gastric phase.

The motor system and brain body coupling

Muscle activity comprises a wide range of oscillatory components.
It will be argued that muscle frequencies are phase locked to the
phase of EEG frequencies. It will further be shown that limb reso-
nance frequency is an important factor for the motor frequency
architecture.

Muscle oscillations and tremor frequency

Muscle activity usually is monitored by the use of electromyography
(EMG). The EMG primarily reflects properties of motor unit action
potentials (for a detailed discussion see e.g., Hermens et al., 1992).
Frequency analyses show a flat double ramp-like shape of the
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spectrum, with an ascending part up to a broad mean frequency
range of about 40–70 Hz, which is followed by a descending part in
a high frequency range that extends to several 100 Hz. The fact that
the EMG has dominant power in the gamma frequency range plays
an important role for the evaluation of muscle artifacts, when ana-
lyzing EEG/EMG gamma activity (for a review see e.g., Muthuku-
maraswamy, 2013).
Shifts in EMG mean frequency are considered valid indicators of

muscle fatigue. An increase in fatigue is reflected by a downward
shift in the EMG frequency spectrum, which is characterized by a
relative decrease in amplitude in the higher frequency range and a
small increase in the slow frequency range (for a review see Phiny-
omark et al., 2014). In studies on mean EMG frequency, the record-
ing usually is done under different muscle force levels when limbs
are not moved. The shape of the EMG spectrum is influenced by a
variety of factors, primarily by the type of muscle, task, and record-
ing (surface or needle electrodes).
For EMG frequencies in the beta and gamma range (of about 15–

30 Hz and 30–60 Hz respectively), coupling between the motor cor-
tex and muscles is well documented in contraction tasks (e.g., Con-
way et al., 1995; Salenius et al., 1997; Brown et al., 1998; Halliday
et al., 1998; Gross et al., 2000 see e.g., Grosse et al., 2002 for a
review). In the gamma band coherence is found for contraction and
movement tasks. But in the beta band, coherence may be abolished
during movements (e.g., Kilner et al., 1999).
Most importantly, during actual movement, rhythmic busting of

the EMG signal can be observed in slower frequencies from delta
to slow beta. This is another example of an amplitude envelope
modulation (in this case of the EMG) by slower frequencies (e.g.,
in the alpha frequency range, cf. Vallbo & Wessberg, 1993; Wess-
berg & Vallbo, 1995; Mehrkanoon et al., 2014; or in the delta
range, e.g., DeLuca & Erim, 1994; Ruspantini et al., 2012). It is
interesting to note that this frequency range from slow beta down
to delta overlaps with the frequency range of physiological and
pathological tremor. Tremor is defined as a rapid back and forth
movement of a body part. It reflects a mechanical signal that usu-
ally is termed velocity signal (e.g., Vallbo & Wessberg, 1993;
McAuley & Marsden, 2000) but also kinematic or accelometric
signal. As mentioned above, the EMG exhibits a broad frequency
range, but the rhythmic ‘bursting envelope’ of the EMG observed
during slow movements represents tremor frequency as shown in
Fig. 6.
In a study with normal subjects, Gross et al. (2002) have shown

that the ~8 Hz EMG (and velocity) signal is significantly coherent
with the cortical MEG signal in the primary motor and sensory cor-
tex (M1 and S1 respectively). Directionality analyses revealed an
efferent drive from M1 to muscle, but an afferent input from muscle
to S1. These findings are good examples of phase synchronization
in a complex brain network reflecting long-range neural communica-
tion (cf. also Schnitzler & Gross, 2005). Together with the EMG
results these findings suggest that slow movements consist of suc-
cessive micromovements (where an agonist burst is followed by an
antagonist burst; for a review see e.g., McAuley & Marsden, 2000).
Gross et al. (2002) conclude that ~8 Hz oscillations ‘represent the
neural mechanism of intermittent motor control, providing common
timing for synergistic muscles, which ensures constant duration of
micromovements across muscles’. In other words, micromovements
in muscle fibers of different muscles have a similar time constant,
allowing for a ~8 Hz synchronization (phase locking) between them.
These synchronized micromovements are the source of tremor. The
efferent drive from M1 suggests a cortical contribution to the gener-
ation of tremor. Thus, tremor is not an epiphenomenon of peripheral

muscle unit activity, but an integral feature of sensory motor control
in a complex corticomuscular loop.
A variety of studies has shown that tremor in a frequency range

overlapping the alpha band comprises a central (i.e., cortical) com-
ponent (e.g., Raethjen et al., 2002, 2007; Budini et al., 2014). This
has also been shown for pathological tremor (cf. McAuley & Mars-
den, 2000 for a review). Tremor frequency is not only determined
by the frequency of cortical oscillations, but also by peripheral prop-
erties, such as corticomuscular and musculo-cortical delay times
(which are about 15 ms and 20 ms respectively; cf. Govindan et al.,
2005), the spinal stretch reflex loop (operating as an inhibitory feed-
back loop) and the resonance frequency of the limbs. The latter not
only is determined by limb length (in a similar way as pendulum
length determines frequency) but also muscle stiffness, and load.
Thus, a straight forward empirical approach to dissociate the influ-
ence of central (cortical) from peripheral factors on tremor frequency
is to measure tremor under different load conditions. As an example,
Raethjen et al. (2002) found that the frequency of significant 6–
15 Hz corticomuscular coherence did not change under increased
load and, thus demonstrated the importance of a central drive. The
influence from peripheral factors comes for example, from findings
showing that patients with neurological lesions resulting in deaf-
ferentation (which removes the contribution of reflex loops) have
preserved but less sharply tuned 10 Hz frequency range tremor
(Marsden et al., 1967).
The finding of a more or less stable corticomuscular coherence in

a frequency range that overlaps with the alpha band is interesting
because resonance frequency of different body parts varies to a very
large degree. Resonance frequency is that frequency at which – due
to biomechanical factors – body parts have a preferred tendency to
move. As an example, for the unloaded finger, resonance frequency
is around 25–27 Hz (Stiles & Randall, 1967). For the longer body
parts, such as the wrist, elbow, arm, and leg the respective frequen-
cies are at around, 9, 2, 0.98, and 0.85 Hz respectively (Marsden,
1984; Wagenaar & van Emmerik, 2000).
As a working hypothesis, it may be suggested that slow frequen-

cies that modulate the envelope of the EMG have (at least) three
sources, a central micromovement, a peripheral resonance, and a
macromovement control source. The central source is primarily
associated with neural mechanisms of intermittent motor control as
suggested for example, by Gross et al. (2002). The peripheral source
is associated primarily with the resonance frequency of the different
body parts, whereas macromovement control may be associated with
the respective regions in the cortex and basal ganglia.

Body movement oscillations with a 1 : 1 and doubling halving
frequency ratio

The movement of the two legs during walking is the most promi-
nent example of body part oscillations. It can be described in terms
of coupled oscillators (cf. Strogatz & Stewart, 1993) as is illustrated
in Fig. 7. Each leg ‘swings’ in a similar way as a pendulum does
and its preferred frequency is close to its resonance frequency of
about 0.85 Hz. The resonant frequencies of arms and legs are simi-
lar, allowing them to oscillate at the same frequency. It is an inter-
esting observation that at self selected (but also faster) walking
speeds (of about 1.5 m/s and beyond) arms and legs oscillate at the
same frequency and in phase within each body side, but in counter-
phase relative to the opposite body side (e.g., Murray et al., 1967).
Or in other words, ipsilateral limbs swing in phase but are in coun-
terphase to their contralateral limbs (as is described in Fig. 7 for leg
movements). Thus, the movement of arms and legs can be described
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as two pairs of coupled oscillators, operating in synchrony with a
1 : 1 frequency ratio.
At slower walking speeds (of about 0.75 Hz and below) the fre-

quency ratio changes from 1 : 1 to 2 : 1 in a way that arms swing
twice as fast than legs. In addition, the out of phase arm movements
disappear and change to an (roughly) in phase movement (e.g.,
Wagenaar & van Emmerik, 2000; Kubo et al., 2004). For other
body movements, such as thoracic and pelvic rotations, similar
phase transitions have been observed (Wagenaar & Beek, 1992).
Most interestingly, when the arm to leg frequency ratios are ana-
lyzed individually for each subject during the transition from slow
to self paced (or fast) walking speed, the observed frequency ratios
were always either 1 : 1 or 2 : 1 (depending on walking speed) with
minor deviations of about 0.1 Hz only (Donker et al. 2001).

Discussion

The binary hierarchy brain body oscillation theory provides an algo-
rithm that describes the relationship between brain and prominent
body oscillations such as HR, BF, and LFF quite faithfully. But
there are some open questions which should be addressed. One
refers to the possibility that there are different frequency hierarchies,
which emerge in a task- and state-dependent manner. Another ques-
tion refers to the central role of HR as a scaling factor. Yet another
question is the communication with the environment. If the binary
hierarchy is important for the communication within and between
brain and body oscillations, one might speculate that it also may
play a role for the communication with the environment. Most inter-
estingly, as will be shown below, musical sounds are also organized
along a binary hierarchy.

Are there different hierarchies?

It is assumed that the binary hierarchy theory describes the fre-
quency architecture of the conscious human brain (Klimesch, 2013),
in which alpha is the dominant oscillation. As already mentioned,
alpha may play an important role for a ‘default mode processing
state’, which can be described as the ability to be consciously ori-
ented in time, space, and context (Klimesch, 2012). This view is

quite similar to the assumed function of the DMN (Raichle et al.,
2001). Because cognitive, emotional, and motor processing require-
ments vary widely, it might well be the case that there are different
frequency hierarchies, with center frequencies of different systems,
such as sensory-motor or emotional systems. Optimal frequency
separation may be another reason for assuming a hierarchy of center
frequencies fdg(i) that are separated by the golden mean (e.g.,
Pletzer et al., 2010). This idea is expressed by formula (2a):

fdg(i) ¼ 1:25 � gi Hz g ¼ golden mean ð2aÞ

Formula (2a) may play an important role particularly for slower
frequencies, because frequencies of the binary hierarchy (e.g., 2.5,
5, and 10 Hz, for i = 1, 2, 3) and frequencies of the golden mean
hierarchy (e.g., 2.02, 3.27, and 5.30, for i = 1, 2, 3) are closely
interleaved. This means that small frequency shifts determine opti-
mal coupling or decoupling. As an example, if delta shifts down
to 2.02 Hz and theta up to 5.30, both oscillations are optimally
(frequency) decoupled.
It should also be noted that for the rat brain a different oscillatory

hierarchy, which is based on Euler’s number (e = 2.718. . .. . .) was
suggested by Buzsaki and colleagues (Penttonen & Buzsaki, 2003;
and Buzs�aki & Draguhn, 2004). According to these authors, EEG
oscillations form a linear hierarchy on a natural logarithmic scale.
This hierarchy can be expressed by the following formula (3):

fde(i) ¼ ei Hz ð3Þ

Delta as the first frequency in the hierarchy (with i = 1)
has a mean frequency of 2.718 Hz which is defined by fde
(1) = e1 = 2.718 Hz. The frequencies for theta, beta, and gamma
(represented by fde(2), fde(3) and fde(4)) are equal to e2, e3, and e4

with 7.388, 20.079, and 54.576 Hz respectively.
The predictions of the binary and Euler’s hierarchy are not com-

patible for at least two reasons. Formula (3) gives no appropriate
estimate for (human) alpha frequency and it lacks a scaling factor
which means that all frequencies are identical for all individuals
across all species.

Fig. 6. Body oscillations: An example for envelope and phase coupling in the movement system from Gross et al. (2002), reprinted with permission. Copy-
right (2002) National Academy of Sciences, USA. The signal trace in (A) is an example for the velocity (micromovement) signal, recorded (by an ultrasound
localization device) from the tip of the right index finger. This signal reflects physiological tremor with a peak frequency of about 8 Hz. The averaged EMG
traces for the flexor and extensor muscles are shown in (B) and (C) respectively. Maxima in the velocity signal were taken as triggers for averaging. Note phase
coupling between the 8 Hz tremor and the respective 8 Hz envelopes in the EMG traces. Tremor is in phase with the extensor but antiphase with the flexor
muscles.
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It already has been emphasized that two distinct body oscillations,
traditional Mayer waves with a frequency of about 0.1 Hz, and gas-
tric waves with a frequency of about 0.05 Hz fall outside the fre-
quency bands that are predicted by the binary hierarchy. They are
not frequency aligned to the oscillations that establish the binary
hierarchy. Whether Mayer waves and gastric waves are part of a dif-
ferent hierarchy remains an open question.

The frequency architecture in sleep

Sleep EEG is a good example for state-dependent frequency
changes. Alpha slows down and disappears as dominant oscillation
before the onset of sleep. After sleep onset (except REM sleep), two
brain oscillations are dominant, slow oscillations (SO) of about 0.75
or 0.8 Hz (e.g., Diekelmann & Born, 2010; Staresina et al., 2015),
and spindle oscillations with a mean spindle frequency (SF) of about
13 Hz (for a review see e.g., De Gennaro & Ferrara, 2003). With
the exception of SF, the general picture is that of a general slowing
of frequencies, which is also apparent in body oscillations (e.g., HR
drops from about 75 bpm to about 60 bpm = 1 Hz). None of the
frequency ratios between these oscillations (neither SF/HR ~ 13, nor
SF/SO ~ 17, or HR/SO ~ 1.3) represent binary multiples, they rather
suggest phase de-coupling between frequencies. Amplitude coupling,
however, plays an important role during sleep, as Staresina et al.
(2015) have shown for human subjects. They found amplitude cou-
pling between SO, SF, and ripples in hippocampus, which presum-
ably is associated with memory consolidation.

The implications of HR as scaling factor

Cross-species studies in mammals have found a relationship between
HR and body size (cf. Noujaim et al., 2004) that can approximately
be described by the following formula (4):

HR ¼ 235 � BM�0:25 BM ¼ Body mass in kg ð4Þ

Formula (4) states that HR decreases with increasing body size (as
measured by BM). As an example, an elephant with a BM � 3400 kg
has a predicted and measured HR of 31 and 35 bpm respectively,
whereas a mouse with a BM � 0.027 kg has a predicted and mea-
sured HR of 579 and 723 bpm respectively (Human: BM � 66 kg,
predicted and measured HR = 82 and 75 respectively).
Whether this scaling property also applies for humans of different

body size and body mass (BM) is an open question, because norma-
tive data are not (readily?) available for analyses. Indirect supporting
evidence comes from the decline in HR from young children (babies
have a HR of about 120 bpm; cf. Fleming et al., 2011; web appen-
dix) to adulthood, and from studies on total body blood volume
(which is correlated with body size), showing a negative correlation
with HR (Lehrer, 2013).
In their review, Buzsaki et al. (2013), show convincingly that

brain oscillations are quite stable between different mammalian spe-
cies with different body sizes (such as mice, humans, or elephants).
Is this evidence against the presented theory which states a direct
relationship between brain oscillations and body size? Surprisingly,
the answer is no – as the examples listed in Table 1a show –
because of an interesting property of formula (2): If the numerical
relationship between different scaling factors s also exhibits a dou-
bling/halving ratio, then the predicted frequencies are identical. The
examples shown in Table 1(a) were selected in this way. HR for a
mouse is eight times faster than for humans, whereas HR of humans
is four times faster than for elephants. The red ovals mark frequen-
cies which are typical for human delta, theta, alpha, and beta. But
these same frequencies are also predicted for mice and elephants
despite their enormous differences in body size. The important point
here is that according to formula (2), each frequency carries a

Right leg Left leg

Step StepStep

ms0 250 500 750 1,000

Fig. 7. Bipedal locomotion is another example of binary-coupled oscillators. Leg movement during walking can be described in terms of two oscillators that
oscillate (roughly) in counterphase. When full body weight is on one leg (see e.g., the red circle at the peak of the red sinus wave), the other leg does not carry
body weight (see the corresponding trough in the green sinus wave). The red and green sinus waves describe stride frequency (f) which is defined by the leg
angle time series. Step frequency is characterized by the black sinus wave. Stride frequency for slow to medium walking speed is around 0.9 Hz. In the exam-
ple above, stride frequency is 1 Hz, and step frequency is 2 Hz.
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‘name’ (the numerical value of i) which is different for each species
and which defines its distance from fd(0), which represents HR.
This means that rhythms with the same center frequencies will have
different functional meanings. As an example a 10 Hz rhythm for
humans equals fd(3) which reflects alpha, but a 10 Hz rhythm for
mice equals fd(0) which reflects HR. This does not mean that there
is no brain oscillation in mice with 10 Hz, it means that a brain
oscillation with 10 Hz exhibits a 1 : 1 frequency ratio with HR.
What is different, is the ‘dimensional’ distance, the distances of fd
(i)) relative to HR (fd(0)). The possible implication is that the cou-
pling between brain and body oscillations (such as HR and breath-
ing) is different between species.
If the numerical examples for HR of different (theoretical) species

‘a’ and ‘b’ are chosen in a way that they exhibit the largest possible
deviation of a doubling halving relationship in HR relative to humans,
then the predicted frequencies will not be identical between species, as
is illustrated in Table 1b. In this example the values for HR are shifted
exactly halfway between the next higher/lower frequency (e.g., for
species ‘a’ HR equals the mean between the human fd(�1) and fd(0)),
which is the largest possible deviation. Even in this case both species
have a 7.5 Hz rhythm, which is very close to the lower frequency limit
of the human alpha. Nonetheless, even for these species with the lar-
gest possible numerical distance from the human oscillatory hierarchy,
frequencies exist that are close to human alpha (or theta, beta,
etc.).This means that on one hand, frequencies remain comparatively
consistent between species, as emphasized by Buzsaki et al. (2013),
but on the other hand also, that significant deviations between (and
most likely also within) species exist.

Music and the binary hierarchy

Musical sound is organized in ‘modules’ (octaves) comprising 12 tones
with increasing frequency and a fixed frequency ratio (r) between neigh-
boring tones. The pitch of the first tone of the next higher octave has
twice the frequency of that of the first tone of the (neighboring) lower
octave. Or, in other words, the pitch of the 13th tone is twice as high as
the 1st tone. Because of the fixed frequency ratio between the 12 tones,
and the doubling/halving relationship between the 1st and 13th tone,

the numerical value of r equals the 12th root of 2. This relationship
allows one to determine the frequency of all tones of the pitch scale, if a
‘reference’ or ‘basic’ tone is defined. Usually the ‘Kammer A’ (which
is the 50th tone in the scale) is the reference tone with a frequency of
exact 440 Hz. Accordingly, the 1st tone in the scale has a frequency of
27.5 Hz. The frequencies of all tones t(i) of the pitch scale can be
defined by the following formula (5):

t(i) ¼ s � ð12th rootð2ÞÞi Hz s ¼ 27:5Hz i ¼ 1; 2; . . .. . . ð5Þ

The interesting fact here is that the structure of formula (5) is
identical with formula (1), which describes the relationship between
brain body oscillations. Both formulas comprise a scaling factor and
a scale-free doubling/halving power law. The only difference is that
for music, intervals between the doubling/halving frequency
domains are introduced.
The similarity in the frequency architecture may well be the reason

that sound plays a vital role for inducing emotional feelings and emo-
tional communication via music. Choir singing is a good example.
Psychophysiological studies on singing show that song structure,
breathing and HRV are coupled (Vickhoff et al., 2013). The song
structure determines the time windows for breathing (i.e., for inhaling
and exhaling) and, as a consequence, drives HRV. Thus, the hearts of
singers become synchronized, they accelerate and decelerate at the
same time. In addition, in a completely analogous way as speech
envelope coupling, music envelope coupling (e.g., Hennig, 2014;
Meltzer et al., 2015) operates to synchronize brain oscillatory activity
between music listeners. Thus, all of these factors, the frequency
architecture of musical sound, the coupling with HRV and entrain-
ment of brain oscillations to the structure of music operate to synchro-
nize brain and body oscillations particularly for performing musicians.

Conclusions

There are three basic conclusions, (i) brain and body oscillations
form a single hierarchy, (ii) they are individually scaled, and (iii)
they follow a mathematical/physical law. Thus, brain and body
oscillations are aligned to each other, their frequencies do not vary
randomly or arbitrarily.

Table 1. (a) Doubling/halving frequency relationship between species. (b) Maximal deviation from a doubling/halving frequency relationship between species

fd(-4) fd(-3) fd(-2) fd(-1) fd(0) fd(1) fd(2) fd(3) fd(4) fd(5) fd(6)
Mouse 0.625 1.25 2.5 5 10 20 40 80 160 320 640 Hz
Human 0.078 0.156 0.313 0.625 1.25 2.5 5 10 20 40 80 Hz
Elephant 0.0195 0.039 0.078 0.156 0.313 0.625 1.25 2.5 5 10 20 Hz

fd(-4) fd(-3) fd(-2) fd(-1) fd(0) fd(1) fd(2) fd(3) fd(4) fd(5) fd(6)
Species ‘a’ 0.0586 0.1172 0.2344 0.4688 0.9375 1.875 3.75 7.5 15 30 60 Hz

Human 0.078 0.156 0.313 0.625 1.25 2.5 5 10 20 40 80 Hz
Species ‘b’ 0.1172 0.2344 0.4688 0.9375 1.875 3.75 7.5 15 30 60 120 Hz

(a)

(b)

Red numbers in bold refer to HR.
The red ovals in Table a mark frequencies which are typical for human delta, theta, alpha and beta.
The red ovals in Table b mark at least one frequency that belongs to alpha.
(a) HR with 10 Hz = 600 bpm; HR with 1.25 Hz = 75 bpm; HR with 0.313 = 18.78 bpm.
(b) HR with 0.9375 Hz = 56.25 bpm; HR with 1.25 Hz = 75 bpm; HR with 1.875 Hz = 112.5 bpm.
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Representing a single hierarchy, brain and body oscillations show
identical coupling principles. This also holds true for principles that
govern coupling between brain and body oscillations. The most ubiqui-
tous principle is phase amplitude coupling, which is the best docu-
mented coupling principle not only for brain oscillations but also for
body oscillations. It is important to note that HRV – a well investigated
phenomenon – has not yet been recognized (or described) as an exam-
ple of amplitude coupling. But the rhythmic fluctuations in HRV, most
strongly influenced from the respiratory system, represent a clear case
of amplitude coupling, where the phase of a slower frequency (e.g., of
BF) modulates the instantaneous period of HR. The binary hierarchy
theory (formula (2)) represents a strict definition of a single hierarchy to
which brain and body oscillations belong. This means that if a single
frequency is known (such as e.g., HR or alpha), all other frequencies
are also known. The same conclusion can be drawn for musical sounds.
If a single frequency of a musical sound is known (determined) then all
others are ‘known’ (via formula (5)). This property allows the predic-
tion (knowledge) of all frequencies of the oscillatory hierarchy.
The brains and bodies of different individuals are different. As an

example, resonance properties of limbs (which depend on their size),
the hydrodynamics of the cardiovascular system (which depend on a
variety of different factors, such as total blood volume and body
mass) and of the brain (such as network size, and extent of myelina-
tion) are factors that ‘scale’ the frequencies. This means that each
individual has its own frequency structure that depends on a variety
of biological and neurophysiological properties.
Probably the most thrilling conclusion is that brain and body

oscillations obey (at least in part) mathematical and physical rules.
This means that our body functions – including thinking – not only
depend on biological ‘laws’, they also depend on laws that are
rooted in mathematics/physics.
Biological systems exhibit large fluctuations. They are considered

to provide a ‘noisy environment’. Is this evidence against the above
described conclusions? Probably not, because frequencies constantly
shift. Variations in instantaneous frequency (see Section Frequency
jitter and the 1/f shape of the spectrum) or HRV are good examples.
But this variability does not reflect noise, it reflects coupling princi-
ples between frequencies, which can be understood to reflect com-
munication between brain and body oscillations. The oscillatory
hierarchy may be considered a ‘default’ frequency architecture, to
which frequencies preferentially shift in a task-dependent manner.
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