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Abstract: Milk fat and protein contents are among key elements of milk quality, and they are
attracting more attention in response to consumers′ demand for high-quality dairy products. To
investigate the potential regulatory roles of DNA methylation underlying milk component yield,
whole genome bisulfite sequencing was employed to profile the global DNA methylation patterns of
mammary gland tissues from 17 Canada Holstein cows with various milk fat and protein contents. A
total of 706, 2420 and 1645 differentially methylated CpG sites (DMCs) were found between high vs.
low milk fat (HMF vs. LMF), high vs. low milk protein (HMP vs. LMP), and high vs. low milk fat
and protein (HMFP vs. LMFP) groups, respectively (q value < 0.1). Twenty-seven, 56 and 67 genes
harboring DMCs in gene regions (denoted DMC genes) were identified for HMF vs. LMF, HMP
vs. LMP and HMFP vs. LMFP, respectively. DMC genes from HMP vs. LMP and HMFP vs. LMFP
comparisons were significantly overrepresented in GO terms related to aerobic electron transport
chain and/or mitochondrial ATP (adenosine triphosphate) synthesis coupled electron transport. A
total of 83 (HMF vs. LMF), 708 (HMP vs. LMP) and 408 (HMFP vs. LMFP) DMCs were co-located
with 87, 147 and 158 quantitative trait loci (QTL) for milk component and yield traits, respectively. In
conclusion, the identified methylation changes are potentially involved in the regulation of milk fat
and protein yields, as well as the variation in reported co-located QTLs.

Keywords: DNA methylation; whole genome bisulfite sequencing; mammary gland tissue;
Holstein cattle; milk fat content; milk protein content; rRNA; QTL

1. Introduction

Genetic selection for milk production up to the end of the last century principally
focused on increasing milk yield, but with the dawn of the 21st century, the focus has
broadened to include milk quality, health, welfare, fitness and environmental sustainability
traits [1]. In addition to consumer preferences, attention on improving milk component
yield, especially milk fat/fatty acids and protein yields, has been precipitated by its in-
fluence on the nutritional, physical and flavor properties of milk products. Over the past
decades, implementation of genetic selection led to increased genetic gain for milk fat
and protein content [2–6]. In recent times, implementation of genomic selection has rev-
olutionized dairy cow breeding with increased gains realized in all traits being targeted
for selection, including fat and protein yields [7]. Genomic selection, however, relies on
sequence variations such as single nucleotide polymorphisms (SNP) that do not account
for all the phenotypic variance in traits, thereby opening up the possibility that other pro-
cesses such as epigenetic mechanisms also contribute to phenotypic variation in livestock
traits [8,9].
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Epigenetic mechanisms including DNA methylation alteration have been identified
as important regulatory mechanisms of mammary gland development and health [10–13].
Associations between DNA methylation alterations and milk production in cattle have
been reported [13–15] leading to the prediction of DNA methylation as an insightful
molecular mechanism underlying the phenotypic changes of milk production traits [9,15].
Specifically, genome-wide DNA methylation changes were reported between dairy cattle
with different milk yields, revealing potential association between DNA methylation
and milk yield [16,17]. Recently, negative association between global DNA methylation
rates and milk protein yield were identified in lactating dairy cows, revealing that DNA
methylation may play a role in milk protein production [16]. Moreover, unusual DNA
methylation around the STAT5-binding enhancer in the αS1-casein promoter negatively
regulated αS1-casein synthesis in milk during lactation [18–20]. Furthermore, increased
DNA methylation of some lipid-related genes, such as ACACA, SCD, FASN, and PPARG,
regulated their gene expression and thereby affected fatty acid synthesis and milk fat
content of goat milk [21,22].

Despite recent research attention to explore the potential influence of DNA methyla-
tion on cattle production and health traits, the contribution of DNA methylation to milk
production, especially the content of milk fat and protein, is still poorly understood. There-
fore, this study profiled the genome-wide DNA methylation patterns of mammary gland
tissues from Holstein cattle with various milk fat and protein content as well as examined
potential association between DNA methylation alterations and milk composition.

2. Materials and Methods
2.1. Experimental Animals and Sample Collection

Experimental cows were from the dairy herd of the Sherbrooke Research and Devel-
opment Centre (SRDC) of Agriculture and Agri-Food Canada. Animals were managed
according to routine farm management practices. A composite milk sample (30 mL) was
collected once monthly from all lactating cows (N = 96) over a period of 12 months and the
components quantified to identify cows producing milk with very high or very low fat and
protein contents for four consecutive months.

2.2. Milk Component Analysis

Milk component analysis including test day milk fat and protein yields was deter-
mined with MilkoScan FT 6000 Series mid-range infrared Fourier Transform Infra-Red
(FTIR) based spectrometers by Lactanet (lactanet.ca; Ste-Anne de Bellevue, QC, Canada).
Test day milk fat and protein yields were determined by multiplying the respective per-
centages with the total test day milk production.

Cows with consistently highest milk fat (HMF, MF > 4.80%, N = 7) or protein (HMP,
MP > 3.60%, N = 5) content over a four-month period consecutively were selected. Sim-
ilarly, cows with consistently lowest milk fat (LMF, MF ≤ 3.7%, N = 5) or protein (LMP,
MP ≤ 3.15%, N = 7) contents over the same period were selected. Among them, some cows
were qualified in more than one group, including three cows producing milk with both high
fat and high protein contents (HMFP, MF > 4.80% and MP > 3.6%) as well as three cows
producing milk with low fat and low protein contents (LMFP, MF≤ 3.7% and MP ≤ 3.15%).
The parities of cows ranged from 1 to 7 and day in milk ranged from 48 to 352 (Table 1).
Mammary gland tissue samples or biopsies were aseptically collected from the 17 cows
through surgery by a professional veterinarian and following standard procedures at the
SRDC dairy barn. Mammary gland tissues were cut into small pieces, immediately snap
frozen in liquid nitrogen and stored at −80 ◦C until used.

Animal use procedures were approved in accordance with the guidelines of the
Canadian Council on Animal Care, and ethical approval to conduct the study was pro-
vided by the Animal Care and Ethics Committee of Agriculture and Agri-Food Canada
(approval #571).
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Table 1. Test day milk fat and protein composition (mean of four consecutive months values) of experimental animals.

Animal ID Phenotype/Analysis Group 1 Parity DIM 2 Fat (%) 2 Protein (%) 2

High milk fat (HMF) Group

241 HMF-HMP 3 262 5.55 ± 0.38 4.1 ± 0.22
194 HMF-HMP 4 216 5.20 ± 0.18 3.83 ± 0.22
184 HMF 5 264 5.09 ± 0.29 3.40 ± 0.14
215 HMF 4 89 5.05 ± 0.07 2.98 ± 0.21
524 HMF 3 145 4.93 ± 0.66 3.28 ± 0.35
222 HMF 4 230 4.90 ± 0.655 3.39 ± 0.096
700 HMF-HMP 1 318 4.83 ± 1.18 3.83 ± 0.29

Low milk fat (LMF) group

618 LMF-LMP 2 155 3.40 ± 0.22 3.15 ± 0.13
729 LMF-LMP 1 99 3.55 ± 0.37 2.93 ± 0.22
243 LMF-LMP 3 205 3.64 ± 0.15 3.11± 0.13
634 LMF 2 58 3.70 ± 0.31 3.3 ± 0.377
107 LMF 7 203 3.70 ± 2.05 3.28 ± 0.28

High milk protein (HMP)group

241 HMF-HMP 3 262 5.55 ± 0.38 4.1 ± 0.22
194 HMF-HMP 4 216 5.20 ± 0.18 3.83 ± 0.22
700 HMF-HMP 1 318 4.83 ± 1.18 3.83 ± 0.29

9002 HMP 3 48 4.58 ± 0.49 3.70 ± 0.848
710 HMP 1 352 4.38 ± 0.096 3.63 ± 0.08

Low milk protein (LMP) group

720 LMP 1 111 4.7 ± 0.65 2.9 ± 0.32
729 LMF-LMP 1 99 3.55 ± 0.37 2.93 ± 0.22
215 HMF-LMP 4 89 5.05 ± 0.07 2.98 ± 0.21
510 LMP 3 192 4.58 ± 0.63 3.00 ± 0.19
485 LMP 4 132 4.33 ± 0.32 3.00 ± 0.43
243 LMF-LMP 3 205 3.64 ± 0.15 3.11 ± 0.13
618 LMF-LMP 2 155 3.40 ± 0.22 3.15 ± 0.13

High milk fat and protein (HMFP) group

241 HMF-HMP 3 262 5.55 ± 0.38 4.1 ± 0.22
194 HMF-HMP 4 216 5.20 ± 0.18 3.83 ± 0.22
700 HMF-HMP 1 318 4.83 ± 1.18 3.83 ± 0.29

Low milk fat and protein (LMFP) group

618 LMF-LMP 2 155 3.40 ± 0.22 3.15 ± 0.13
729 LMF-LMP 1 99 3.55 ± 0.37 2.93 ± 0.22
243 LMF-LMP 3 205 3.64 ± 0.15 3.11 ± 0.13

1 HMP: high milk protein (>3.60%); LMP: low milk protein (≤3.15%); HMF: high milk fat > 4.80%); LMF: low milk fat (≤3.70%). Some
cows belonged to more than one group. The bold font shows the group and the corresponding milk fat or protein contents on which the
analysis is based. 2 DIM: days in milk. 2 fat % and protein %: mean ± SD.

2.3. DNA Isolation, WGBS Library Construction and Sequencing

Genomic DNA was isolated from mammary gland tissues using DNeasy® Blood
& Tissue kit (Qiagen Inc., Toronto, ON, Canada) following manufacturer’s instructions.
The Qubit dsDNA high-sensitivity (HS) assay (Invitrogen by ThermoFisher Scientific,
Mississauga, ON, Canada) was used to quantify DNA. Genomic DNA was sheared into
short fragments (about 200–500 bp), and size selected using SPRIselect beads (Beckman
Coulter, Mississauga, ON, Canada). Fragmented DNA was bisulfite converted using EZ
DNA Methylation Lightning Kit (Zymo Research, Tustin, CA, USA) according to the manu-
facturer’s recommendations. Five hundred ng bisulfite converted DNA per sample was
used for library preparation with the Accel-NGS Methyl-Seq DNA library kit (Swift Bio-
sciences, Ann Arbor, MI, USA) following manufacturer′s instructions. Then, dual-indexed
adapters were added followed by 6 cycles of polymerase chain reaction. After check-
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ing the size and absence of primer dimers with Bioanalyzer 2100 DNA High Sensitivity
chip (Agilent Technologies, Santa Clara, CA, USA), the libraries were quantified by qPCR
using Kapa Library Quantification Illumina/ABI Prism Kit protocol (KAPA Biosystems,
Wilmington, MA, USA). Qualified libraries were then pooled in equimolar quantities and
loaded with 15% Illumina PhiX control DNA library on a NovaSeq6000 instrument (Illu-
mina, San Diego, CA, USA) to generate paired-end reads (150 bp). Library preparation
and whole genome bisulfate sequencing (WGBS) were performed by The Centre for Ap-
plied Genomics, The Hospital for Sick Children, Toronto, Canada (http://www.tcag.ca/,
accessed on 22 November 2020).

2.4. Identification of Methyl-Cytosine

FastQC v0.11.9 [23] was used to generate initial quality report of the raw WGBS reads,
followed by trimming of adapters and low-quality sequences (reads with Phred quality
score less than 30 and reads with N content greater than 8% removed) with Trim Galore
(v0.6.4_dev) [24]. The cleaned pair reads of each sample were merged and mapped to the
bovine reference genome (ARS-UCD1.2) using BWA v0.7.17-r1188 [25] and Samtools v1.9
under Bismark (v0.22.3). Duplicate reads were removed with Picard MarkDuplicates (v1.5)
program. Methylation information was extracted with Bismark methylation extractor. The
analysis workflow was coordinated with the nf-core/methylseq pipeline (v1.5) [26]. In
order to decrease the possible impact of severe bias towards non-methylation at the end of
reads caused by end repairing, the first 2 bp at the paired-end reads were removed.

2.5. Global Comparison of Methylated Sites between Different Groups

The methylation sites with coverage depth ≥ 10 × among all samples were used for
global comparison. Detection of differentially methylated sites (DMCs) was accomplished
with the R package, methykit v 3.12, based on three comparisons: HMF vs. LMF, HMP vs.
LMP, and HMFP vs. LMFP. Parity and days in milk (DIM) were included as factors for batch
effect control during analysis. Significant DMCs were defined as having a q value < 0.1
after Bonferroni correction for false discovery rate [27].

Hypermethylation and hypomethylation were defined as DMCs having more than
20% difference in methylation levels between groups. The genome structure annotation
files containing information about genes and genomic elements, including promoter, exon,
intron, 3′UTR, 5′UTR, downstream and intergenic regions were downloaded from the
NCBI database (https://www.ncbi.nlm.nih.gov/genome/?term = ARS-UCD1.2, accessed
on 22 November 2020) [28]. Promoters were defined as the two kb region upstream of the
transcription start site (TSS) of genes while the downstream was defined as the two kb
region downstream of the transcription termination site (TTS).

2.6. DMCs and Quantitative Trait Loci (QTL) Co-Location Analysis

DMCs identified as significant were used for co-localization analysis with QTLs related
to bovine milk production. QTL data were downloaded from the cattle QTLdb (https://www.
animalgenome.org/cgi-bin/QTLdb/BT/index, accessed on 11 December 2020).

2.7. Statistical Overrepresentation Analysis for DMC Genes

Genes harboring DMCs, here referred to as DMC genes were submitted for statistical
overrepresentation in gene ontology (GO) terms and Reactome pathways using PANTHER
(Protein Analysis Through Evolutionary Relationships, http://pantherdb.org/, accessed on
3 March 2021) [29]. The p values from the statistical overrepresentation tests were adjusted
by Bonferroni correction for false discovery rate [27]. GO terms, including biological process
(BP), molecular function (MF) and cellular component (CC), and Reactome pathways were
considered to have a significant over- and underrepresentation at adjusted p value < 0.05.

http://www.tcag.ca/
https://www.ncbi.nlm.nih.gov/genome/?term
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
http://pantherdb.org/
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3. Results
3.1. Genome-Wide DNA Methylation Landscape of Mammary Gland Tissue

The genome-wide DNA methylation analysis by WGBS generated about 192,255,638
clean reads per sample with aligned rate ranging from 48.98% to 53.61% (Table S1). Only
the uniquely aligned reads (92.84% of total aligned reads on average) were kept for the
identification of methylated sites, including CpG (cytosine-phosphate-guanosine or 5′-C-
phosphate-G-3′), CHG (5′-C-phosphate-H-G-3′, H represents A, T, or C [adenine, thymine
or cytosine, respectively]) and CHH (5′-C-phosphate-H-H-3′) (Figure S1, Table S1). The
number of identified cytosine (C) sites in the CpG sense were the least (4.76% of all
identified C) compared with cytosine sites in the CHG (21.93%) or CHH (73.31%) sense
(Figure S1). However, methylated sites were highest in the CpG sense (71.81%) compared
with 1.3% and 2.18% in the CHG and CHH sense, respectively.

Methylated sites with at least 10× coverage were selected for the construction of
genome-wide DNA methylation landscape, such as distribution in genic features and
methylation levels (Figure 1A, Table S2a). CpG, CHG, and CHH methylated sites showed
similar tendencies with higher abundance in intergenic (~55%) and intronic (~39%) re-
gions (Figure 1C, Table S2b–d). Higher methylation levels were recorded for CpG sites
than CHG and CHH sites (Figure S2). The number of methylated sites identified in genic
regions was highly diverse between samples (Figure 1C). The methylation sites identified
in all the samples were 87,096 CpG, 284,900 CHG and 818,760 CHH sites. Among them,
approximately 90% of CpG (92.11%), CHG (90.88%) and CHH (89.61%) sites were in the
intergenic regions (Figure 1B). Considering genic regions, CpG sites were more abundant
in the promoter regions (2.35%) than CHG (1.46%) and CHH (1.47%) sites, meanwhile
CHG (6.49%) and CHH (7.86%) sites were more abundant in introns than CpG (4.11%) sites
(Figure 1B, Table S2e). Moreover, CpG sites had higher methylation levels and densities, as
compared to CHG and CHH sites with low methylation levels and densities (Figure 1D,E,
Figures S2 and S3, Table S2f). The 5‘UTR region had the highest CpG methylation level
(62.33 ± 12.44%), followed by the 3′UTR and introns, while the promoter and downstream
regions had relatively lower CpG methylation levels (Table S2f). Furthermore, the methy-
lation level of CpG sites in introns and exons were relatively stable (59.32 ± 10.40%),
while CpG methylation levels in the promoter (51.28 ± 20.36%) and downstream regions
(47.43 ± 20.46%) fluctuated slightly around 50% (Figure 1F, Table S2f).



Genes 2021, 12, 1727 6 of 23

Figure 1. The genome-wide DNA methylation profiles of mammary gland tissues: (A) the number of methylated sites
with ≥10 × coverage for each sample. (B) Distribution of methylated sites identified in all the samples in genic regions,
including intergenic, promoter, intron and exon regions. (C) Distribution of methylated sites with ≥ 10 × coverage in genic
regions for each sample. (D) Methylation level distribution of CpG, CHG and CHH sites; ordinate represents the count
of methylated sites while abscissa represents the methylation level (percentage). (E) Density distribution of methylated
sites. The ordinate represents coverage depth, the background color represents the normalized density while the abscissa
represents the methylation level. D and E are based on one randomly selected sample (MG_729) as an example. The other
samples showed similar patterns and are shown in Figures S2 and S3. (F) The fluctuating trends of methylation levels in
genic regions, including the promoter (2 kb), 5′UTR, exon, intron, 3′UTR and downstream (2 kb) regions. The fluctuating
line represents the methylation level (ordinate) of relative position in the corresponding genic regions (abscissa), and the
background color represents the normalized density.
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3.2. Differential Methylation between High and Low Milk Fat Producing Cows

The comparison of methylation levels between methylated sites in mammary gland
tissues of HMF and LMF group revealed 706 significant DMCs (q value < 0.1), including
379 and 327 DMCs having higher and lower methylation levels in HMF group compared
with LMF group, respectively (Table S3a, Figure 2A). The annotation of DMCs to genic
regions revealed that majority of DMCs (about 50%) were in intergenic regions, followed
by promoter, intron and exon regions (Figure 2B). The DMCs were not only distributed
in chromosomes (Chr) but also in unplaced genomic scaffolds. Chr2 had the most DMCs
(N = 116), followed by Leftover_ScbfJmS_792 (N = 37) and Chr27 (N = 36) (Table S4a).
On most Chr (e.g., Chr 2, 6, 9, 13, 14, 18, 20, 21, 23, 27, 29, X and mitochondria), many
DMCs were concentrated in the same region. The clusters were similarly distributed
amongst the three comparisons (Figure 2C–E). A total of 27 DMC genes harboring DMCs
in their promoters and gene bodies, including four DMC genes harboring ≥ 3 DMCs are
listed in Table 2 and Table S5a. LOC112442278, a basic proline-rich protein-like located in
Chr2, harbored the most DMCs (N = 112) including 96 DMCs with increased methylation
levels in HMF group. MIR2887-1 located downstream to LOC112442278 harbored four
DMCs (Table 2, Figure S4). Following LOC112444653, a 5.8S ribosomal RNA gene located
in Chr27 harbored 13 DMCs including 12 DMCs with increased methylation levels in
mammary gland tissues of HMF group compared to LMF group (Table 2). In addition,
phosphodiesterase 5A (PDE5A) harbored six DMCs. Overall, more hypomethylated DMC
sites (31) were found compared to hypermethylated DMC sites (20) considering sites with
more than 20% difference between HMF and LMF (Table S6a).
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Figure 2. Differentially methylated CpG sites (DMC) in studied tissues. (A) General count of differentially methylated
cytosines (DMCs) identified between mammary gland tissues producing milk with high and low fat contents (HMF vs.
LMF), high or low milk protein and fat contents (HMFP vs. LMFP), as well as high and low milk protein contents (HMP vs.
LMP). DMCs whose methylation levels were higher or increased by ≥ 20% in the high milk fat and/or protein groups than
the low milk fat and/or protein groups were defined as hypermethylated sites. While DMCs having lower or decreased
methylation levels of ≥ 20% in the high milk fat and/or protein groups were defined as hypomethylated sites. (B) The
distribution of DMCs identified from the three comparisons in genic regions. (C–E) Manhattan plots showing genome-wide
distribution of DMCs identified from HMF vs. LMF, HMP vs. LMP and HMFP vs. LMFP, respectively. Dots above the
pink line represent DMCs at q value < 0.1. Many DMCs were clustered on several regions of chromosomes with similar
distribution patterns in the three comparisons. The pink arrow shows one example of a DMC cluster on chromosome 2.
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Table 2. DMC genes with at least three differentially methylated CpG (DMC) sites.

Comparison 1 Gene Name Gene Description Chr 2 DMCs with Increased Methylation Level DMCs with Decreased Methylation Level

HMF vs. LMF

LOC112442278 Basic proline-rich protein-like chr2 96 6
LOC112444653 5.8S ribosomal RNA chr27 12 1

PDE5A Phosphodiesterase 5A chr6 3 3
MIR2887-1 MicroRNA mir-2887-1 chr2 1 3

HMP vs. LMP

LOC112442278 Basic proline-rich protein-like chr2 328 0
LOC112444653 5.8S ribosomal RNA chr27 211 0

MIR2887-1 MicroRNA mir-2887-1 chr2 84 0
RN18S1 18S ribosomal RNA chr27 60 0

MIR2887-2 MicroRNA mir-2887-2 chr27 14 0
LOC112443250 5S ribosomal RNA chr21 9 1

PDE5A Phosphodiesterase 5A chr6 3 1

HMFP vs. LMFP

LOC112442278 Basic proline-rich protein-like chr2 168 6
LOC112444653 5.8S ribosomal RNA chr27 108 0

RN18S1 18S ribosomal RNA chr27 35 0
MIR2887-1 MicroRNA mir-2887-1 chr2 30 0

ENSBTAG00000052622.1 Novel gene (protein coding) chr14 1 9
PDE5A Phosphodiesterase 5A chr6 2 3

MIR2887-2 MicroRNA mir-2887-2 chr27 5 0
FBXO16 F-box protein 16 chr8 1 3
DEFB7 Befensin β 7 chr27 0 3
COX1 Cytochrome c oxidase subunit I chrM 2 1

ENSBTAG00000043565.1 Novel gene (Mt tRNA) chrM 2 1
1 HMF vs. LMF: comparison between mammary gland tissues from cows producing milk with high and low fat contents. HMP vs. LMP: comparison between mammary gland tissues from cows producing
milk with high and low protein contents. HMFP vs. LMFP: comparison between mammary gland tissues from cows producing milk with both high fat/high protein and low fat/low protein contents.
2 chr: chromosome.



Genes 2021, 12, 1727 10 of 23

3.3. Differential Methylation between High and Low Milk Protein Producing Cows

In total, 2420 DMCs were identified between mammary gland tissues of cows pro-
ducing milk with high and low protein contents (q value < 0.1) (Table S3b). There were
1842 DMCs with increased methylation levels and 578 DMCs with decreased methyla-
tion levels in HMP group compared with LMP group (Table S3b) (Figure 2A). The most
DMCs were annotated to intergenic regions (51.54%) followed by the promoter regions of
genes (28.06%) (Figure 2B). Moreover, more DMCs were located in Chr27 (N = 535), fol-
lowed by Leftover_ScbfJmS_792 (N = 371) and Chr2 (N = 347) (Table S4b, Figure 2D).
DMCs in a region of Leftover_ScbfJmS_792 with generally low methylation levels is
located between three new uncharacterized genes (LOC112445759, LOC112445760 and
LOC112445761) (Figure 3A). Fifty-six genes, including 23 novel genes, harbored at least
one DMC (Table S5b). Seven DMC genes (each harbored three or more DMCs) between
HMP and LMP producing cows are listed in Table 2. LOC112442278 harbored the most
DMCs (N = 328) followed by LOC112444653 (211 DMCs), RN18S1 (60 DMCs) and two
miRNAs- MIR2887-1 with 84 DMCs and MIR2887-2 with14 DMCs; and all having higher
methylation levels in HMP group. Overall, more hypomethylated DMC sites (35) were
found compared to hypermethylated DMCs (18) considering sites with more than 20%
difference between HMP and LMP (Table S6b).

3.4. Differential Methylation between Cows Producing Milk with High Fat/Protein and Low
Fat/Protein Contents

A total of 1645 CpG sites were differentially methylated between HMFP and LMFP
groups (q value < 0.1) (Figure 2A, Table S3c). Majority of DMCs (56.59%) were annotated to
intergenic regions, followed by promoter regions (21.17%) and introns (15.18%) (Figure 2B).
Most of the DMCs were distributed on Chr27, Chr2 and Leftover_ScbfJmS_792, containing
302, 191 and 143 DMCs, respectively (Figure 2E, Table S4c). Sixty-seven genes, includ-
ing 26 novel genes, were identified with at least one DMC (Table S5c). LOC112442278,
LOC112444653, RN18S1 and MIR2887-1 had more DMCs than other genes. LOC112442278
harbored the most DMCs, including 168 DMCs with increased methylation levels and
six DMCs with decreased methylation levels in HMFP group compared with LMFP group
(Table 2). MIR2887-1, located in the downstream region of LOC112442278 (Figure 3B),
harbored 30 DMCs and had increased methylation levels. LOC112444653, a 5.8S riboso-
mal RNA identified in Chr27, harbored 108 DMCs and with higher methylation levels
in HMFP group compared with LMFP group. MIR2887-2 located at the downstream of
LOC112444653, harbored five DMCs with high methylation levels (Figure 3C). In addi-
tion, RN18S1, a ribosome RNA gene, located in the upstream of LOC112444653 harbored
35 DMCs with higher methylation level in HMFP group. Overall, there were also more hy-
pomethylated DMC sites (186) compared to hypermethylated DMCs sites (122) considering
sites with more than 20% difference between HMFP and LMFP (Table S6c).

3.5. Overrepresented Gene Ontology Terms and Pathways by DMC Genes

The statistical overrepresentation test results of the three comparisons are listed in
Table 3. For HMF vs. LMF, no GO term was significantly overrepresented by DMC
genes and no reactome pathway was significantly over- or underrepresented by DMC
genes from all three comparisons. Five GO-BP terms were significantly overrepresented
by DMC genes from HMP vs. LMP, including four with aerobic electron transport re-
lated functions (aerobic electron transport chain (GO:0019646, adjusted p value = 0.0355),
aerobic respiration (GO:0009060, adjusted p value = 0.0335), oxidative phosphorylation
(GO:0006119, adjusted p value = 0.0085), and ATP (adenosine triphosphate) metabolic
process (GO:0046034, adjusted p value = 0.0068)). Another significantly overrepresented
GO-BP term was mitochondrial ATP synthesis coupled electron transport (GO:0042775,
adjusted p value = 0.0355). In addition, electron transfer activity (GO:0009055, adjusted
p value = 0.0046) and respirasome (GO:0070469, adjusted p value = 0.0062) were the only
significantly overrepresented GO-MF and GO-CC terms, respectively.
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Figure 3. The DNA methylation states of selected regions. (A) CpG methylation comparison between mammary gland
tissues producing milk with high and low protein contents (HMP vs. LMP) in Leftover_ScbfJmS_972 (50–100 kb). (B) methy-
lation comparison between HMFP vs. LMFP in Chromosome 2 (12,1570–12,1575 kb). In A and B, the upper part shows
the position of genes, and the lower part shows the methylation status of DMCs, including the methylation level and the
methylation difference between the two groups. (C) A view of chromosome 27 (6217–6227 kb) showing the location of a
QTL related to milk protein yield (upper), genes (middle) and the methylation status of DMCs identified from HMP vs.
LMP comparison (lower).
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Table 3. Significantly overrepresented gene ontology (GO) terms by DMC genes.

Comparison 1 GO Identification GO Term Name GO Category 2 Fold Enrichment + 3 Adjust p Value

HMP vs. LMP

GO:0019646 Aerobic electron transport chain BP 37.81 + 0.0355
GO:0009060 Aerobic respiration BP 20.97 + 0.0335
GO:0006119 Oxidative phosphorylation BP 28.02 + 0.0085
GO:0046034 ATP metabolic process BP 18.53 + 0.0066
GO:0042775 Mitochondrial ATP synthesis coupled electron transport BP 35.18 + 0.0466
GO:0009055 Electron transfer activity MF 25.33 + 0.0046
GO:0070469 Respirasome CC 20.56 + 0.0062

HMFP vs. LMFP

GO:0042773 ATP synthesis coupled electron transport BP 34.88 + 0.0032
GO:0006119 Oxidative phosphorylation BP 28.15 + 0.0007
GO:0022904 Respiratory electron transport chain BP 26.25 + 0.0124
GO:0009060 Aerobic respiration BP 21.07 + 0.0036
GO:0022900 Electron transport chain BP 18.71 + 0.0070
GO:0046034 ATP metabolic process BP 18.1 + 0.0010
GO:0045333 Cellular respiration BP 17.58 + 0.0100
GO:0015980 Energy derivation by oxidation of organic compounds BP 13.65 + 0.0411
GO:0009055 Electron transfer activity MF 25.45 + 0.0004
GO:0098803 Respiratory chain complex CC 23.56 + 0.0003
GO:0070469 Respirasome CC 24.1 + 0.0000
GO:0005746 Mitochondrial respirasome CC 20.55 + 0.0066
GO:1990204 Oxidoreductase complex CC 17.56 + 0.0138
GO:0098800 Inner mitochondrial membrane protein complex CC 13.88 + 0.0415

1 HMF vs. LMF: comparison between mammary gland tissues from cows producing milk with high and low fat contents. HMP vs. LMP: comparison between mammary gland tissues from cows producing
milk with high and low protein contents. HMFP vs. LMFP: comparison between mammary gland tissues from cows producing milk with both high fat/high protein and low fat/low protein contents. DMC:
differentially methylated cytosine (CpG) sites. 2 BP: biological process; MF: molecular function; CC: cellular component; + 3: overrepresentation, i.e., more present in high vs. low.
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Besides, a total of eight GO-BP, one GO-MF and five GO-CC terms were overrepre-
sented by DMC genes from HMFP vs. LMFP. All nine GO-BP terms were related to ATP
synthesis, transport and metabolic process, such as the most significantly overrepresented
oxidative phosphorylation (GO:0006119, adjusted p value = 0.0007) and energy derivation
by oxidation of organic compounds (GO:0015980, adjusted p value = 0.0010) terms. Same
as with HMP vs. LMP, electron transfer activity (GO:0009055, adjusted p value = 0.0004)
was the only significantly overrepresented GO-MF term for HMFP vs. LMFP. The top
three significantly overrepresented GO-CC terms were related to respirasome, includ-
ing respirasome (GO:0070469, adjusted p value = 0.0000), respiratory chain complex
(GO:0098803, adjusted p value = 0.0003) and mitochondrial respirasome (GO:0005746,
adjusted p value = 0.0066).

3.6. Overlapping or Co-Located DMCs with QTLs Related to Milk Production Traits

A total of 242 milk production related QTLs were found to overlap with at least
one DMC. Specifically, 87, 147 and 158 QTLs overlapped with DMCs from HMF vs. LMF
(N = 83), HMP vs. LMP (N = 708) and HMFP vs. LMFP (N = 408), respectively, comparisons
(Figure 4A, Table S7). Approximately half of the co-located QTLs (N = 122) are related
to milk-composition-protein, followed by milk yield (N = 68), fatty acid content (N = 44)
and milk-composition-other (N = 8) (Figure 4B). Forty-nine QTLs overlapped with DMCs
from all three comparisons, and 10 QTLs overlapped with more than three DMCs from
each comparison (three QTLs in Chr27, six QTLs in Chr6 and one QTL in Chr3) (Table 4).
Moreover, a cluster of DMCs in Chr27 overlapped with QTLs related to milk-composition-
protein (Figure 4C). The three QTLs on Chr27 (QTL-2611, QTL-10104 and QTL-2592) were
co-located with a higher number of DMC sites than other QTLs (Table 4). For example,
QTL-10104, a QTL for milk protein yield in Chr27, overlapped with the most DMCs,
including 36 from HMF vs. LMF, 534 from HMP vs. LMP and 299 from HMFP vs. LMFP.
Following, QTL-2611 (milk protein yield) and QTL-2592 (milk yield), located at the same
position in Chr27 and also overlapped with QTL-10104, are co-located with 35 DMCs from
HMF vs. LMF, 533 DMCs from HMP vs. LMP and 297 DMCs from HMFP vs. LMFP. In
addition, three QTLS, QTL-12232 (stearic aldehyde content), QTL-12233 (docosahexaenoic
acid content) and QTL-12234 (omega-6 to omega-3 fatty acid ratio) located at the same
position in Chr6 overlapped with 11 DMCs from HMF vs. LMF, 11 DMCs from HMP vs.
LMP and 10 DMCs from HMFP vs. LMFP (Figure 4D).

To further understand the potential functions of DMC genes, we identified DMC genes
that were overlapped or co-located with QTLs. A total of 7, 20 and 17 genes were identified
that harbored DMCs and also located in the same regions as QTLs from HMF vs. LMF, HMP
vs. LMP and HMFP vs. LMFP, respectively (Table S8). Six DMC genes harbored ≥ 3 DMCs
from at least one comparison (Table 5), including two ribosomal RNA genes (RN18S1 and
LOC112444653), phosphodiesterase 5A (PDE5S), F-box protein 16 (FBXO16), defensin β

7 (DEFB7) and one uncharacterized gene (LOC101907803). RN18S1 harbored one DMC
located at position 6224783 of Chr27, whose methylation level was significantly different
in all three comparisons. It also harbored additional 59 DMCs from HMP vs. LMP and
34 DMCs from HMFP vs. LMFP that were also differentially methylated when comparing
HMP with LMP. Similarly, LOC112444653 harbored one DMC (Chr27:622688) that was
differently methylated in all three comparisons, and another 15 DMCs that were common
to the comparisons HMP vs. LMP and HMFP vs. LMFP. Furthermore, DMCs in RN18S1
and LOC112444653 overlapped with QTL-10104 for milk protein yield (Figure 3C). Besides,
PDE5A harbored six DMCs (HMF vs. LMF), four DMCs (HMP vs. LMP) and five DMCs
(HMFP vs. LMFP) with one DMC (Chr6:5790277) common to all three comparisons. These
DMCs were overlapped with QTLs for fatty-acid-content (QTL-12232, QTL-12233 and QTL-
12234) and milk-composition-protein (QTL-10148 for milk protein yield and QTL-10208 for
milk protein percentage).
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Figure 4. QTLs overlapped or co-located with DMCs. (A) Venn diagram showing the number of QTLs uniquely and
commonly overlapped with DMCs identified from HMF vs. LMF, HMP vs. LMP and HMFP vs. LMFP comparisons.
MP: milk protein, MF: milk fat, MFP: milk fat and protein. (B) The number of QTLs co-located with DMCs from HMF
vs. LMF, HMP vs. LMP and HMFP vs. LMFP comparisons. (C) A view of a region of chromosome 27 with a cluster of
DMCs identified from the three comparisons. (D) A view of a region of chromosome 6 with a cluster of DMCs identified
from the three comparisons. The upper parts of C and D show QTL locations catalogued in the animal genome database
(www.animalgenome.org, accessed on 11 December 2020) and filtered to include only loci marked as “significant” and the
lower parts are annotated CpG sites (blue dots).

www.animalgenome.org
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Table 4. Quantitative trait loci (QTLs) co-located with more than three differentially methylated CpG sites per comparison.

QTL ID QTL Symbol 1 QTL Trait Name Chr 2 Start Position End Position QTL Trait Class DMC
(HMF vs. LMF) 3

DMC
(HMP vs. LMP) 4

DMC
(HMFP vs. LMFP) 5

10104 PY Milk protein yield chr27 1099081 32912109 milk-composition-protein 36 534 299
2611 PY Milk protein yield chr27 5484642 21801052 milk-composition-protein 35 533 297
2592 MY Milk yield chr27 5484642 21801052 milk-yield 35 533 297
12232 ALD-C18:0 Stearic aldehyde content chr6 612894 9283340 fatty-acid-content 11 11 10
12233 FA-C22:6 Docosahexaenoic acid content chr6 612894 9283340 fatty-acid-content 11 11 10
12234 N6N3R Omega-6 to omega-3 fatty acid ratio chr6 612894 9283340 fatty-acid-content 11 11 10
10208 PP Milk protein percentage chr6 5023293 18528012 milk-composition-protein 11 11 10
6065 PY Milk protein yield chr6 767213 13254392 milk-composition-protein 11 11 10
10148 PY Milk protein yield chr6 5747732 5928842 milk-composition-protein 6 4 5
2443 PP Milk protein percentage chr3 12993207 44877667 milk-composition-protein 3 3 4
1 PY: Protein yield; MY: Milk yield; ALD: Aldehyde; FA: Fatty acid; PP: Protein percentage. 2 chr: chromosome. 3 DMC: differentially methylated cytosine (CpG) site. HMF vs. LMF: comparison between
mammary gland tissues from cows producing milk with high and low fat contents. 4 HMP vs. LMP: comparison between mammary gland tissues from cows producing milk with high and low protein contents.
5 HMFP vs. LMFP: comparison between mammary gland tissues from cows producing milk with both high fat/high protein and low fat/ low protein contents.
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Table 5. Genes harboring three or more differentially methylated cytosine (CpG) sites and co-located with QTLs.

Gene ID Gene Name Chr 1
DMCs 2

QTL Trait Class QTL Trait QTL ID Gene Function
HMF vs. LMF LMP vs. HMP HMFP vs. LMFP

RN18S1 18S ribosomal RNA Chr27 1 60 35
Milk-composition-

protein
Milk protein yield 10104; 2611 Structural

constituent of
ribosomeMilk yield 2592

LOC112444653 5.8S ribosomal RNA Chr27 1 17 16
Milk-composition-

protein
Milk protein yield 10104; 2611 Structural

constituent of
ribosomeMilk yield 2592

PDE5A Phosphodiesterase 5A Chr6 6 4 5

fatty-acid-content

Stearic aldehyde
content 12232 Implicated in

3′,5′-cyclic-GMP
phosphodiesterase

activity;
Involved in cGMP

binding;
Involved in

cyclic-nucleotide
phosphodiesterase

activity; Involved in
metal ion binding

Docosahexaenoic
acid content 12233

Omega-6 to omega-3
fatty acid ratio 12234

Milk-composition-
protein

Milk protein yield 10148; 6065

Milk protein
percentage 10208

FBXO16 F-box protein 16 Chr8 1 1 4 Milk-yield Milking speed 3438 Involved in protein
binding

DEFB7 defensin β 7 Chr27 0 1 3
Milk-composition-

protein
Milk protein yield 10104; 2611 Involved in positive

chemotaxisMilk yield 2592

ENSBTAG00000052622.1
Novel gene (protein

coding) Chr14 0 1 9
Milk-composition-

protein;
milk-yield

Milk protein
percentage 2604; 3413

NoneMilk protein yield 10099, 10100,
10101

Milk yield 3608
1 chr: chromosome. 2 DMC: differentially methylated cytosine (CpG) sites. HMF vs. LMF: comparison between mammary gland tissues from cows producing milk with high and low fat contents. HMP vs. LMP:
comparison between mammary gland tissues from cows producing milk with high and low protein contents. HMFP vs. LMFP: comparison between mammary gland tissues from cows producing milk with both
high fat/high protein and low fat/low protein contents.
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4. Discussion

During the last century, milk yield was the focus point of genetic selection in dairy
cattle which today has led to doubling of the average milk produced by a Holstein cow
compared to the 1950s [7,30,31]. Recently, milk composition, especially protein and fat
contents, is attracting increased attention due to consumer demands for healthier milk
products. With the knowledge that epigenetic factors are important regulatory mech-
anisms of mammary gland productivity (reviewed by [15]), quantifying the associated
epigenetic variations will provide additional information underlying phenotype diversity
and will complement genomic information to drive-up improve gain in genetic selection
for enhanced milk components [8,31]. In this study, we focused on quantifying the DNA
methylation alterations in mammary gland tissues where milk components are synthesized
and/or collated and secreted. Understanding the DNA methylation variations across
tissues, which is crucial for cell differentiation, is important for investigating the potential
regulatory roles of epigenetic factors in complex traits, such as diseases and milk pro-
duction [15,32]. Therefore, compared with other tissues, for example peripheral blood,
quantifying DNA methylation marks in mammary gland is more direct and convincing
to understand its roles in milk production. It should be noted that the mammary gland is
a complex organ and that total DNA isolated from this complex tissue was used in this
study therefore, it is possible that the DNA methylation patterns could be coming from
different cell types. More research is therefore needed to characterize the DNA methy-
lation patterns of the diverse cell populations constituting mammary gland tissue and
their roles in milk fat and/or protein production. Such an approach will provide further
in-depth and comprehensive understanding of DNA methylation roles in milk fat and/or
protein production.

The cattle methylome has been reported in different tissues, such as muscle, mammary
gland, and peripheral blood, revealing consistent features that are shared with other
mammals [32–35]. The methylation landscape of mammary gland tissue in this study also
found some consistent features. For example, more methylated sites, including CpG, CHG
and CHH, were identified in introns than exons, which may be due to the longer lengths
of introns than exons, as previously noted by Dechow and Liu [17]. The downstream
region had lower methylation level, which is similar to observations in human, rat and
sheep [36–38]. In addition, lower methylation level and higher density of methylation
sites in the promoter region than in exons and introns observed in this study (Figure 1F),
confirms observations in other species [33,39]. This is because more than two-thirds of
promoter regions contain CpG islands, which are rich in CpG sites, but which are also rarely
methylated [40]. DNA methylation in promoter regions has shown important interactions
with transcriptional activities, such as the inhibition of the binding of transcription factors,
and thereby affect gene expression in response to internal or external environmental
changes [41,42].

The genome-wide DNA methylation patterns of mammary glands producing milk
with various fat/protein contents were compared to identify DMCs that may influence
the synthesis of milk protein or fat. Approximately half of the DMCs out of 706, 2420, and
1645 DMCs identified from the comparisons of HMF vs. LMF, HMP vs. LMP, and HMFP
vs. LMFP, respectively, are located in intergenic regions, while only about 20% are located
in promoter regions, thereby corroborating previous reports in dairy and goat mammary
gland tissues [36,43]. This report also corroborates data on single nucleotide polymorphism
(SNP) mapping in cattle and humans [44–46]. The HMF vs. LMF comparison revealed the
least DNA methylation difference compared with HMP vs. LMP, and HMFP vs. LMFP
comparisons while HMP vs. LMP comparison revealed the most DMCs. DMC genes
from HMP vs. LMP comparison were significantly overrepresented in GO terms for
electron transfer activity, ATP synthesis and metabolic process. Similarly, DMC genes
from HMFP vs. LMFP comparison showed significant overrepresentation of GO terms
for ATP synthesis coupled electron transport, while no GO terms were enriched by genes
from HMF vs. LMF. The energy level in cow’s diet has been found to affect the yield
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of protein in milk [47,48]. During lactation, the protein and energy needs of cows are
increased about five times to support increased mRNA translation activities and milk
protein synthesis [49]. Our data suggest that DNA methylation may affect milk protein
production by regulating energy availability, such as biological processes related to ATP
synthesis and metabolism. In addition to the increased energy requirements for protein
synthesis during milk production, the process of milk protein and fat synthesis may have
possible competition for energy in the mammary gland [50]. The mitochondrial functions
include ATP production, metal homeostasis, regulation of cellular metabolism, and cellular
respiration. The main modifications that regulate gene expression (gene activation or
silencing) within the mitochondria include DNA methylation (5 mC and 6 mA methylation,
where 5 mC is 5-methyl cytosine and 6 mA is 6-methyl adenine), noncoding RNAs, and
post-translational modifications of nucleoid proteins [51]. Because mitochondria are key
organelles in the cell that carry out many important functions necessary for cell survival,
and given its important role of energy supply regulation in the mammary gland, it is thus
not surprising that epigenetic modifications of mitochondrial functions were affected in
this study.

DMC genes with the most DMCs from the three comparisons were all ribosome
RNA genes (rRNA), such as LOC112444653 and RN18S1 (Table 2). The DNA methylation
alterations in rRNAs is less well-studied, and its potential roles in milk production is still
unclear. However, studies in human and other model animals revealed some potential
roles of DNA methylation in rRNAs, such as in silencing of the nucleolar chromatin and
suppression of rRNA gene expression, amongst others [52]. For example, it was found that
lack of suppression maintained by CpG methylation promotes cryptic RNA polymerase II
transcription and disruption of rRNA processing, which partially explains the negative
effects of losing CpG methylation frequently found in most disease conditions [53–55].
The DMCs in the rRNA genes had increased methylation levels, including LOC112444653
with 12, 211 and 108 DMCs from the HMF vs. LMF, HMP vs. LMP and HMFP vs.
LMFP comparisons, respectively, and having increased methylation levels in the HMF,
HMP and HMFP groups. Hypermethylation in rRNA has been correlated with aging
and Alzheimer’s disease, suggesting the potential involvement of rRNA methylation
in the regulation of gene expression and the various phenotypes that occur during a
lifetime [56–58]. Besides, rRNA is the most abundant mRNA transcript in cells, whose
transcriptional processing is crucial for keeping energy homeostasis and which could be
affected by diverse environmental factors, such as nutrition and stress factors [59]. Because
ribosome is a key component in protein synthesis, the altered expression of rRNA may
influence the translation of mRNAs into proteins and consequently the content of milk
proteins. Therefore, the DNA methylation alterations of rRNA genes could be a possible
layer of regulation of rRNA synthesis, and in turn, altered ribosomal biogenesis and protein
synthesis during milk production.

MIR2287 also harbored a high number of DMCs (Table 2). MIR2287 has been previ-
ously reported in bovine skeletal muscle satellite cells [60], but its potential regulatory roles
are currently unknown. MiRNA, another epigenetic factor that regulates gene expression,
may interact with DNA methylation in its functions [61]. DNA methylation in miRNA
can inhibit the expression of miRNAs, while miRNAs can directly target DNA methyl-
transferases causing inhibition of DNA methylation and influencing global methylation
pattern [62]. The interaction between DNA methylation and miRNA has been observed
in mammary glands of dairy cows with the potential involvement in mammary gland
development and lactation [63]. Therefore, the DNA methylation alterations in MIR2287
identified in this study suggest its possible effects on regulating the expression of its tar-
get genes, and possibly milk fat/protein synthesis and secretion. Immediately upstream
of miR-2287-1 is LOC112442278, a basic proline-rich protein-like, that also harbored 96,
328 and 168 DMCs with increased methylation levels in HMF, HMP and HMFP groups
respectively. Similarly, MIR2287-2 is located upstream of two rRNAs (LOC112444653
and RN18S1), and the methylation levels of their DMCs were all increased in mammary
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glands producing higher contents of milk fat/protein, suggesting their potential roles in
milk fat and protein synthesis. Associations between DNA methylation alterations and
genetic mutations, such as SNPs, have been observed in diverse tissues of mammals [64,65].
Moreover, the overlap between altered CpG sites and QTLs generated using SNP data
suggest one possible mechanism that genetic polymorphism impacts gene expression by
the altered epigenetic patterns [66,67], thereby supporting potential regulatory roles of
epigenetic alterations in milk fat/protein production.

Some DMCs reported in this study clustered in the same genomic region and chro-
mosome (Figure 2C–E) in the same manner observed with SNP data in genome wide
association studies for milk production traits [46,68,69] suggesting potential interaction
between SNP and DNA methylation to influence milk production traits in cattle. Moreover,
DMC and QTL co-location analysis placed some identified DMCs in the same genomic
regions with reported QTLs for several milk production traits (Figure 4C,D, Table 5).
Eleven DMCs in Chr6 from HMF vs. LMF comparison were co-located with three QTLs
(QTL-12232, QTL-12233 and QTL-12234) for fatty acid content, suggesting the possible
involvement of these DMCs in regulating milk fat synthesis. Ten QTLs for milk protein
were found to harbor more than 10 DMCs from HMP vs. LMP comparison, represented
by QTL-10104 and QTL-2611 co-located with 534 and 533 DMCs, respectively. This sug-
gests that DNA methylation may play regulatory roles during milk protein production.
Noteworthy is QTL-10104 for milk protein that is located on a region (1.1–32.9 Mbp) of
chromosome 27 with the most DMCs from all three comparisons, indicating possible inter-
actions between genetic polymorphisms and DNA methylation alterations during milk fat
and/or protein production. QTL-2611 (milk protein yield) and QTL-2592 (milk yield) are
also located within this region of chromosome 27, suggesting the potential involvement of
DMCs in this region in the regulation of milk protein content and milk yield. Moreover,
the rRNA genes (RN18S1 and LOC112444653) harboring the most DMCs overlapped with
these three QTLs, further supporting the notion that, potential interaction between DNA
methylation changes, rRNA expression and SNPs (QTLs) may be a possible regulatory
mechanism underlying milk protein production. Another example worthy of attention is
PDE5A, previously reported as involved in the regulation of milk production [70], harbored
more than three DMCs from each of the three comparisons and overlapped with six QTLs
in this study. The QTLs included three QTLs for milk protein (QTL-10148, QTL-10208 and
QTL-6065) and another three for milk fatty acid content, such as stearic aldehyde content
(QTL-12232), docosahexaenoic acid content (QTL-12233), and omega-6 to omega-3 fatty
acid ratio (QTL-12234). This reveals the possibility that, DNA methylation alterations in
this gene may interact with SNPs (QTLs) to affect milk fat and protein production. Our
data is supported by reported associations between SNP and differential DNA methylation
in humans [64,65], and indication that DNA methylation alteration due to SNPs cause
variable expression of related genes and differential phenotype expression.

5. Conclusions

Differential DNA methylation patterns were detected in mammary gland tissues from
Canadian Holstein cows producing milk with various fat and protein contents. Some
identified DMCs were co-located with QTLs for milk production traits, including QTLs
for milk protein and milk fat, suggesting potential involvement of DNA methylation
alterations in the genetic variation underlying milk fat and protein yields, and mammary
gland biological processes. Considering cell type differences in mammary gland tissue and
the small number of samples analyzed, more studies and a higher sample size are needed
for more in-depth and comprehensive understanding of DNA methylation involvement in
milk fat and protein production.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12111727/s1, Figure S1: Identified methylation sites (including CpG, CHG and CHH
sites) based on all the uniquely aligned reads. The inside pie represents the proportion of the three
types of methylation sites (CpG, CHG and CHH) among all the identified putative methylation
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sites. The outer circle represents the status of methylation sites (percentage of methylated or not
methylated sites) of each type of methylation site to all the identified methylation sites. Figure S2:
The methylation level distribution of methylated sites with ≥ 10 × coverage according to type of
methylation and sample. Figure S3: The density distribution of methylation sites according to type
of methylation and sample. Figure S4: Methylation comparison between mammary gland tissues
producing milk with high milk fat compared with mammary gland tissues producing milk with low
milk fat content (HMF vs. LMF) in Chromosome 2 (12,1570–12,1575 kb). Table S1: Generated reads
and mapping statistics of WGBS data for each sample. Table S2: Methylation sites with≥ 10 coverage
depth per samples and their annotation to genic regions. Table S3: Differentially methylated CpG
sites identified from the three comparisons. Table S4: Distribution of differentially methylated sites in
chromosomes and scaffolds. Table S5: Genes harboring differentially methylated CpG sites. Table S6:
hyper- and hypo-methylated sites with more than 20% difference in CpG methylation. Table S7:
QTLs co-located with differentially methylated CpG sites. Table S8: Genes harboring differentially
methylated CpG sites and co-located with QTLs.
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