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Abstract: Glioblastoma (GBM) is aggressive malignant tumor residing within the central nervous
system. Although the standard treatment options, consisting of surgical resection followed by combined
radiochemotherapy, have long been established for patients with GBM, the prognosis is still poor.
Despite recent advances in diagnosis, surgical techniques, and therapeutic approaches, the increased
patient survival after such interventions is still sub-optimal. The unique characteristics of GBM,
including highly infiltrative nature, hard-to-access location (mainly due to the existence of the blood
brain barrier), frequent and rapid recurrence, and multiple drug resistance mechanisms, pose challenges
to the development of an effective treatment. To overcome current limitations on GBM therapy and
devise ideal therapeutic strategies, efforts should focus on an improved molecular understanding
of GBM pathogenesis. In this review, we summarize the molecular basis for the development and
progression of GBM as well as some emerging therapeutic approaches.
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1. Introduction

Glioblastoma (GBM), often referred to as a grade IV astrocytoma, is an aggressive malignant
tumor that occurs in the brain or spinal cord. While the incidence rate is relatively low (approximately
5 per 100,000 persons) when compared with other types of cancers [1], GBM is notorious for its poor
prognosis with a median survival ranging from 12 to 18 months after the initial diagnosis [2]. Despite
recent advances in diagnosis, surgical techniques, and therapeutic approaches, overall survival was not
dramatically improved, with a one-year survival rate of 40.8% and a five-year survival rate of 6.8% [3].
Major challenges for GBM treatment are as follow. First, complete elimination of tumor tissue with
surgery is very difficult due to its highly infiltrative nature [4]. Second, owing to the unique location
of GBM, drugs should penetrate the blood brain barrier (BBB) to reach the tumor site. However,
as a highly selective semipermeable barrier, the BBB prevents most of the clinically approved drugs
entering the brain [5,6]. Third, despite aggressive resection and subsequent radiochemotherapy, almost
all GBMs recur within the first year even at a distant cerebral locations [7]. Fourth, GBM actively
operates several resistance mechanisms against conventional therapies, and subpopulation of tumor
cells (named GBM stem cells) contribute to this drug resistance [8].

Based on integrated multi-dimensional genomic analysis, GBMs can be classified into four subtypes:
proneural, neural, classical, and mesenchymal (Figure 1). The proneural subtype features an abnormally
high level of platelet-derived growth factor receptor A (PDGFRA) and mutations in the IDH1 gene.
The neural class exclusively expresses neuron markers such as NEFL, GABRA1, SYT1, and SLC12A5.
The main feature of the classical subtype is a high-level EGFR gene amplification and the mesenchymal
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class presents a lower NF1 expression. Furthermore, each subtype shows different clinical characteristics
and treatment efficacy [9]. To overcome the current limitation on GBM treatment and develop ideal
personalized therapies, improved molecular understanding of GBM pathogenesis is essential. In this
review, we summarize the current knowledge of molecular pathogenesis and the current/emerging
therapeutic approaches for GBM.

Molecules 2020, 25, x 2 of 21 

 

and SLC12A5. The main feature of the classical subtype is a high-level EGFR gene amplification and 
the mesenchymal class presents a lower NF1 expression. Furthermore, each subtype shows different 
clinical characteristics and treatment efficacy [9]. To overcome the current limitation on GBM 
treatment and develop ideal personalized therapies, improved molecular understanding of GBM 
pathogenesis is essential. In this review, we summarize the current knowledge of molecular 
pathogenesis and the current/emerging therapeutic approaches for GBM. 

 
Figure 1. Relative gene expressions in four subtypes of GBM. Relative mRNA expressions (left) and 
mean difference p values between each subtype (right) of EGFR (A), IDH1 (B), SLC12A5 (C), PDGFRA 
(D), and NF1 (E). These data were derived from GBM-BioDP software [10]. C—classical; M—
mesenchymal; P—proneural; N—neural. 

2. Molecular Pathogenesis of GBM 

2.1. EGFR and EGFRvIII 

The ErbB family of transmembrane proteins contains four receptor tyrosine kinases, the 
epidermal growth factor receptor EGFR (ERBB1), HER2 (ERBB2), HER3 (ERBB3), and HER4 (ERBB4) 
[11]. Of note, EGFR gene mutation, rearrangement, and amplification, as well as altered RNA 
splicing, were observed in 57.4% of primary GBM [12]. Although it was previously reported that 
HER2-specific T cells from GBM patients showed a potent anti-tumoral activity against HER2-
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difference p values between each subtype (right) of EGFR (A), IDH1 (B), SLC12A5 (C), PDGFRA (D),
and NF1 (E). These data were derived from GBM-BioDP software [10]. C—classical; M—mesenchymal;
P—proneural; N—neural.

2. Molecular Pathogenesis of GBM

2.1. EGFR and EGFRvIII

The ErbB family of transmembrane proteins contains four receptor tyrosine kinases, the epidermal
growth factor receptor EGFR (ERBB1), HER2 (ERBB2), HER3 (ERBB3), and HER4 (ERBB4) [11]. Of note,
EGFR gene mutation, rearrangement, and amplification, as well as altered RNA splicing, were observed
in 57.4% of primary GBM [12]. Although it was previously reported that HER2-specific T cells from GBM
patients showed a potent anti-tumoral activity against HER2-positive GBM cells [13], the expression
level of HER2 in GBM is still controversial. Whereas Liu et al. demonstrated that the HER2 mRNA
expression was detected in 81.4% of GBM primary cells [14], other studies showed that the HER2
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protein or the amplification of the HER2 gene were absent or rarely detected in GBM [15,16]. Therefore,
the contribution of HER2 to GBM tumorigenesis needs to be further determined.

EGFR plays fundamental roles in several physiological conditions such as the developmental
process, differentiation, cell proliferation, and cell cycle control [17]. Upon activation, EGFR recruits
the SH2-containing adaptor protein GRB2 in a preformed complex with SOS, which facilitates RAS
activation (RAS-GTP) and the subsequent triggering of the RAF-MAPK/ERK kinase (MEK)-ERK1/2
signaling cascade [18,19]. Activated ERK proteins are then translocated into the nucleus where they
invigorate specific transcription factors involved in cell proliferation [20]. Moreover, EGFR also activates
Class I phosphoinositide-3 kinases (PI3K) by antagonizing the action of p85, a regulatory subunit of Class
I PI3K [21]. The PI3K activation leads to the generation of PIP3, which in turn induces a conformational
change in AKT. This conformational change allows PDK1 to activate AKT and the mammalian target
of rapamycin complex 2 (mTORC2) [22]. This PI3K-PDK1-AKT-mTOR pathway contributes to cell
growth, survival, and proliferation (Figure 2) [23]. Additionally, EGFR directly phosphorylates and
stimulates STAT3 function in regulating cell stemness, migration, and transformation [24]. Active
EGFR is also able to activate the PLC-PKC axis that is crucial for angiogenesis and cell proliferation,
infiltration, and survival [25].
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Amplification or activating mutations of EGFR lead to an abnormal upregulation of several
downstream signaling pathways. In GBM, the most common oncogenic mutation of EGFR, termed
EGFRvIII, is characterized by the deletion of exons 2 to 7, resulting in an in-frame loss of 267 amino acids
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in the extracellular domain of the EGFR protein [29]. The EGFR was the first receptor to be proposed as a
target for cancer therapy. Indeed, phase I and II clinical studies showed that a peptide vaccine targeting
EGFRvIII efficiently eliminated EGFRvIII-expressing GBM cells and extended both progression-free
and overall patient survival [30]. However, unfortunately, a survival benefit was not confirmed in
patients with newly diagnosed GBM from a recent randomized, double-blind, international phase
III clinical trial [31], suggesting that therapeutic alternatives or new combinatorial approaches are
still required.

2.2. IDH1/2 Mutation

Isocitrate dehydrogenase (IDH) enzymes, which contain three isoforms, play key roles in several
major cellular metabolic processes, such as the tricarboxylic acid (TCA) cycle, glutamine metabolism,
lipogenesis, and redox regulation [32]. Wild-type IDH1 and 2 localize in the cytoplasm and mitochondria,
respectively, and catalyze the decarboxylation of isocitrate to alpha-ketoglutarate (α-KG) with reduction
of NADP+ to NADPH [33]. NADPH is necessary to decrease the level of reactive oxygen species (ROS)
in the cell and synthesize deoxynucleotides triphosphates (dNTPs) during DNA damage repair [34].
In contrast to the wild-type protein, the mutant IDH activity promotes NADPH oxidation to NADP+,
which results in decreased levels of NADPH and increased ROS levels [35].

IDH1/2 mutations occur in 53% to 83% of grade II/III astrocytomas and oligodendrogliomas and
in 54% of secondary glioblastoma, but only in 6.3% of primary glioblastomas (Figure 3A) [36].
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It was shown that patients suffering from primary and secondary GBMs that contained IDH
mutations had a significantly longer overall survival when compared with patients without these
mutations (Figure 3B) [38]. Gain-of-function (GOF) mutations in IDH1 (R132H) and IDH2 (R172H) increase
2-hydroxyglutarate (2-HG) levels due to a defective function of αKG-dependent dioxygenases [39,40].
In fact, 2-HG acts as competitive inhibitor of αKG due to its high similarity to the binding position of
αKG [41]. 2-HG also promotes the activity of the Egl nine homolog prolyl-hydroxylases by hypoxia
inducible factors [42]. Similarly, increased 2-HG levels caused by IDH1 mutations activate HIF1α-inducible
genes, such as the vascular endothelial growth factor (VEGF) and GLUT-1 [43,44]. IDH1/2 mutations were
discovered to occur concomitantly to mutations in TP53, ATRX, and TERT promoter, to codeletions of
1p/19q, and to molecular alterations in PTEN and EGFR [45,46]. Furthermore, IDH1 mutations decrease
the expression of the astrocyte marker GFAP and increase the expression of the neural stem cell (NSC)
marker NESTIN [47]. IDH mutations result in hypermethylation of a subset of CTCF (CCCTC-binding
factor) binding sites leading to a significant alteration in the three-dimensional structure of DNA [48].
This GOF mutant IDH also enhances PDGFRA expression, especially in CpG islands [49].

Based on the aforementioned prognostic role of IDH mutations, the World Health Organization
(WHO) recently suggested new classification of GBM into (1) IDH-wildtype or IDH negative GBM
(about 90 % of cases) that preferentially arises in patients over 55 years of age and shows mostly poor
prognosis; (2) IDH-mutant or IDH positive GBM (about 10% of cases) that predominates in younger
patients and shows better prognosis [50,51].

2.3. TP53 Mutation

As the “guardian of the genome” and “cellular gatekeeper”, the tumor suppressor TP53 modulates
anti-proliferative cellular responses by regulating key effector genes [52–54]. Upon a cellular stress,
such as replicative or oxidative stress, the p53 protein is stabilized and accumulated inside the cells.
Upon DNA damage, the ATM/ATR pathway-induced p53 activation leads to the G1 arrest mainly
through the transactivation of p21Waf1/Cip1 [55]. In addition, p53 was also shown to result in the G2/M
arrest through disturbing the cyclin B1/CDC2 complex in response to DNA damage [56]. The p53-p21
axis is also critical for the cell senescence program. In fact, when p14ARF detects senescence signals,
it binds to MDM2 and blocks the MDM2-dependent degradation of p53. In turn, the upregulation
of p21Waf1/Cip1 leads to dephosphorylation and activation of the RB protein, which subsequently
suppresses E2F, a potent inducer of cell proliferation [57]. In animal models, it was already reported
that the reactivation of p53 results in complete tumor regression, primarily through the induction of
the cellular senescence program [58]. p53 is highly implicated in the apoptosis program in both a
transcription-dependent and -independent manner. Under apoptotic stimuli, p53 transcriptionally
regulates a subset of genes involved in apoptosis, including BAX, FAS, BBC3 (also known as PUMA),
and BIRC5 (encoding SURVIVIN), to coordinate the apoptotic program [59]. Moreover, p53 has
extranuclear activities during apoptosis. For example, in response to various cell death-inducing
signals, p53 is rapidly relocated to the mitochondria and associates with the outer mitochondrial
membrane [60]. Once it is relocated, p53 facilitates mitochondrial outer membrane permeabilization,
thereby liberating pro-apoptotic factors from the mitochondrial intermembrane space [61]. Additionally,
p53 also controls autophagy by transcriptionally upregulating DRAM (damage-regulated autophagy
modulator), an effector of macroautophagy and an essential factor for p53-mediated cell death [62].

Mutation or deletion of TP53 was observed in 27.9% of primary GBM (Figure 3A) [12]. When
combined with other genetic factors that affect the abundance or activity of the p53 protein, including
amplification of MDM genes and/or deletion of CDKN2A, the p53 pathway is considered dysregulated
in 85.3% of GBMs. Previous studies already showed that the malignant progression of astrocytoma
toward end-stage GBM is accompanied by sequential genetic and epigenetic alterations including the
amplification/mutation of the EGFR gene and the hypermethylation of the chromosomal region around
the TP53 gene [63]. Restoration of p53 function in GBM cells was shown to secrete inhibitors of capillary
endothelial cell migration, suggesting that p53 has an anti-angiogenic role in GBM. Interestingly,
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however, recent findings have demonstrated that the p53 GOF mutant may possess neomorphic
roles, contrary to wild-type p53. GOF mutations in TP53 contribute to tumor malignancies in GBM
by promoting cell proliferation [64], neo-angiogenesis [65], and aberrant activation of inflammatory
responses [66].

2.4. PTEN Mutation

The tumor suppressor PTEN has an important role as a lipid and protein phosphatase, regulating
cell proliferation, adhesion, and invasion, and DNA damage repair [67]. PTEN dephosphorylates the
PIP3 to create PIP2, and thereby inhibits the PI3K/AKT pathway [68,69]. The PI3K/AKT pathway is
dysregulated in GBM and supports cell proliferation by promoting the presence of anti-apoptotic signals
in the cell [70]. PTEN induces high level of H3F3B (H3.3) by inhibiting DAXX (death domain-associated
protein) and thus suppresses the expression of oncogenic genes [71]. The PTEN nuclear localization
regulates the tumor suppressor TP53 by a PI3K/AKT-independent mechanism, which leads to the control
of cyclin D1 expression and to an increase in the ubiquitin-dependent degradation of tumor-promoting
proteins, such as PLK1 and AURK [72,73]. In contrast, the absence of nuclear PTEN is associated with
the overexpression of FBXO22 and with proliferation in various cancer types [74].

The loss of PTEN or mutations in the PTEN gene are observed in 5% to 40% of GBMs and were
shown to affect the cell size or number (Figure 3A) [75]. The PTEN mutant leads to upregulation of
ARL4C, which is related to filopodium formation that in turn improves metastasis abilities of GBM
cells [76]. Chen et al. found that deficiency or mutation of PTEN increased lysyl oxidase (LOX) expression
to support macrophage infiltration via SRC/AKT-YAP1 pathway, which leads to the progression and
survival of GBM [77]. Additionally, PTEN loss results in the blockage of T-cell infiltration and autophagy
activation through the induction of expression of immunosuppressive cytokines, such as IL10, TGFβ,
and PGE2 [78]. PTEN also plays a role in inflammatory responses, where its loss or mutation lead to
upregulation of IL2 and STAT5 phosphorylation and to downregulation of STAT3 phosphorylation [79].

2.5. NF1 Mutation

The NF1 gene, located on chromosome 17, functions as a key negative regulator of the RAS
pathway. Genetic alterations on the NF1 gene have often been reported in numerous cancer types [80],
and mutation or deletion of NF1 was observed in 10% of GBM cases (Figure 3A) [12]. The NF1 gene
encodes neurofibromin, a functional GTPase-activating protein (GAP) that downregulates RAS (including
HRAS, NRAS, and KRAS) activity by facilitating the hydrolysis of RAS-GTP [81]. Abnormal activation
of RAS catalyzes the epithelial–mesenchymal transition (EMT) by upregulating EMT-linked transcription
factors including SNAIL, SLUG, TWIST, ZEB1, and ZEB2 [82].

Although NF1 was known as the third most prevalent disrupted gene in GBM [83], the role of the
NF1 protein in gliomagenesis was not yet well defined. Of note, NF1 loss or mutations, including splice
site mutations, missense mutations, nonsense mutations, and frameshift indels, have been more frequently
found in aggressive mesenchymal GBM than in other subtypes [84]. Llaguno et al. showed that loss of NF1
in lineage-restricted central nervous system progenitor cells could induce malignant transformation [85].
NF1 was also reported to suppress glioma metastasis and invasion through its leucine-rich domain [86].
More recently, Wang et al. demonstrated that NF1 inactivation induces the infiltration of tumor-associated
macrophages/microglia, suggesting a new role for NF1 in tumor microenvironment regulation [87].

2.6. TERT Promoter Mutation

To maintain chromosomal integrity and genome stability, eukaryotic cells have the protective
nucleoprotein complexes, called telomeres, at chromosomal ends. Telomeric DNA contains double-
stranded hexameric repeat sequences ending in terminal 3′ G-rich single-stranded overhangs [88].
Telomeres shortening occurs in each round of cell division and limits the cell division by inducing
replicative senescence or apoptosis [89]. Telomerase is a specialized DNA polymerase with reverse
transcriptase activity, capable of maintaining the length of telomeres and promoting cellular immortalization.
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The telomerase complex consists of two subunits: a telomerase RNA component (TERC) and a functional
catalytic protein subunit called TERT (telomerase reverse transcriptase) [90]. TERC is ubiquitously expressed
in most cell types and even in telomerase-deficient cells, and it serves as a template for telomere extension [91].
In contrast, TERT expression is highly regulated, which is absent or present in low levels in somatic cells
but upregulated in several types of cancer cells [92]. Telomerase inhibition with short telomeres has been
regarded as a potent barrier to oncogenesis [93].

Cancer cells often overcome cellular senescence by telomerase activation. Furthermore, in cancer
cells, TERT upregulation can be achieved by TERT amplifications, TERT promoter mutations, and TERT
promoter methylation [94,95]. In gliomas, the prevalence of mutations on the TERT promoter is remarkably
high in primary GBMs (approximately 80%) (Figure 3A) [96], and recent evidence suggested the presence
of TERT promoter mutations as an unfavorable prognostic factor in GBM [97]. Recurrent non-coding
point mutations within the TERT promoter are predominantly observed at two nucleotide positions: −124
and −146 bp upstream from the ATG, denoted C228T and C250T, respectively [98].

3. Current Therapies for Glioblastoma

3.1. Surgery

The standard treatment for GBMs is maximal surgical resection, followed by radiation and
chemotherapy [99]. The primary objective of surgery is to obtain tissue specimen for pathological
diagnosis and eliminate as much of the tumor as possible without damaging the surrounding
normal brain tissue. In addition, surgical treatment can improve conditions for following therapeutic
approaches [100].

For operative candidate selection, medical conditions of the patient should be taken into account.
Given that age has been regarded as the most essential prognostic factor, ages of patients need to
be considered for selection of therapeutic options. Surgery may cause more side effects in aged
patients and the efficacy of surgery in the elderly patients still remains controversial [101]. However,
considering that the elderly may receive less intensive radio- and chemo-therapies, elderly patients
with GBM seemed to profit from surgery as younger patients. Tumor size and location also needs to
be considered. Due to the infiltrative feature of glioma, GBMs are frequently found near or within
eloquent cortex [102]. A recent study demonstrated that malignancies residing in an eloquent area are
major hindrances to surgical resection due to the high risk of postoperative neurological deficits [103].
Indeed, it was previously reported that postoperative neurological deficits did not occur in patients
when the resection margins were over 2 cm of the eloquent cortex [104]. However, lower resection
margins led to postoperative neurological impairments more frequently.

The most important predictor of postoperative outcome is the extent of resection (EOR). Lacroix et al.
analyzed the balance between EOR and survival advantage and found that significantly improved
survival was associated with an EOR of 98% or more [105]. While the median survival was 13 months
for an EOR of 98% or more, survival disbenefit at an EOR of less than 98% was 4.2 months. Another
following study also confirmed the positive correlation between EOR and median overall survival [106].

3.2. Radiation

After surgical management, when the wound is healed, concurrent radiochemotherapy is applied.
The primary objective of radiotherapy is the clearance of residual tumor cells that have infiltrated the
surrounding noncancerous tissue. In the standard course of radiation therapy, multiple irradiations of
defined dose called “fractions” are administrated to the tumor site and margin. As a result of the phase
III trial, the median survival for patients who received radiotherapy (focal radiation in daily fractions
of 1.8 Gy given 5 days per week, for a total dose of 50 Gy) was 29.1 weeks, as compared with 16.9 weeks
for the patients who did not take radiotherapy [107]. Considering the adverse effect of radiotherapy,
shorter course of irradiation (40 Gy in 15 fractions over 3 weeks), also called hypofractionation, were
clinically tested especially in the elderly patients. The result showed that there was no difference in
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survival between 6-week and 3-week courses, suggesting that hypofractionated radiotherapy could be
a reasonable treatment approach for the aged patients [108].

3.3. Temozolomide

After surgical resection, concomitant treatment with radiotherapy plus temozolomide is internationally
approved, first-line standard approach for GBM. Compared to radiotherapy alone, additional usage of
temozolomide provided 2.5 months of the median survival benefit and increased the two-year survival
rate from 10.4% to 26.5% [109]. Temozolomide is an orally administered alkylating agent that induces
base mismatches followed by the DNA double strand breakage, eventually leading to cell death [110].
Recently, temozolomide was additionally known to promote cellular senescence and inhibit DNA
repair system in GBM cells [111]. Notably, temozolomide can penetrate the BBB and reaches the tumor
site with approximately 20% of brain to plasma AUC ratio [112]. Without hepatic metabolic activation,
temozolomide is spontaneously hydrolyzed at physiologic pH to active form [113].

Although temozolomide significantly improved overall survival, it also suffers from some limitations.
Due to its short half-life of 1.9 h in plasma [114], prolonged systemic administration at high dose is required,
but side effects follow. High concentration of temozolomide is toxic, particularly to hematopoietic cells,
resulting in several hematologic events including neutropenia and thrombocytopenia [115]. To remedy
this drawback, nanocarriers and temozolomide-conjugated compounds are now actively developed [116].
These approaches may reduce the administrative dose of temozolomide by enhancing brain permeability
and/or increasing the stability in plasma and/or upregulating the binding affinity to receptors expressed
in GBM. For example, Fang et al. devised a chitosan-based nanoparticle to improve the therapeutic
efficacy of temozolomide. When bound to this nanoparticle, temozolomide exhibited sustained stability
at physiological pH by almost seven-fold greater than unbound temozolomide. The authors also utilized
chlorotoxin as a supportive platform to upgrade target specificity against GBM and inhibit tumor invasion.
This nanoparticle conjugated with temozolomide and chlorotoxin was proven to penetrate an intact BBB
in mice model, showing great promise for advances in the treatment of GBM [117].

Another important issue regarding temozolomide is drug resistance. The most studied main
culprit responsible for the resistance to temozolomide is O6-methylguanine-DNA methyl transferase
(MGMT). MGMT is a DNA repair protein, which rapidly reverses DNA lesion O6-methylguanine to
guanine, thereby suppressing the lethal cross-linking [118]. Therefore, the expression level of MGMT
has been a reasonable predictor of the resistance of tumors to alkylating agents. Additionally, in glioma
cells, tumor cells with low MGMT activity showed higher sensitivity to temozolomide and reduced
clonogenic survival after exposure to temozolomide [119,120]. While the MGMT gene mutation was
not frequently reported, MGMT expression can be regulated in various ways (Figure 4A).
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MGMT related to GBM treatment. (B) The gene-gene interaction network of CTLA4. These data were
derived from GeneMANIA database [121].

At DNA level, CpG methylation within the MGMT promoter contributes to the gene expression
modulation. Hegi et al. reported that MGMT promoter methylation was observed in approximately 50%
of GBM, and suggested the hypermethylation on the MGMT promoter as treatment-independent favorable
prognostic factor [122]. Consistently, Esteller et al. reported that MGMT promoter hypermethylation
increased overall survival and the time to progression of disease [118]. In addition to promoter methylation,
histone modification status and distal enhancer also control transcription of the MGMT gene. Recently,
Chen et al. identified that the enhancer, located at 560 kb away from the MGMT promoter, positively
regulates the transcription of MGMT even when the promoter is highly methylated. The enhancer activity
is typically regulated by histone modifications of surrounding nucleosomes, and indeed, H3K4me1 and
H3K27ac that mark active enhancers are enriched at the enhancer of MGMT in temozolomide-resistant
GBM cells in which MGMT is expressed abundantly [123]. On the contrary, however, emerging evidence
suggests that MGMT expression level does not solely reflect the temozolomide resistance. Despite a
deficiency of MGMT expression, temozolomide shows little or no effect in some GBM cases [124].
In pediatric GBM, the ATM-mediated base excision repair pathway confers therapeutic resistance to
temozolomide, irrelevant to MGMT expression [125]. In addition, HOXA9/HOXA10 expression regulated
by PI3K contributes to temozolomide resistance independently of MGMT level, leading to shorter
survival rate [126].



Molecules 2020, 25, 4641 10 of 20

Autophagy is also relevant in GBM responsiveness to temozolomide. Autophagy is a self-degradative
process where unnecessary or dysfunctional sub-cellular organelles are engulfed by autophagosomes,
followed by the fusion with lysosomes [127]. Autophagy shows critical roles in the maintenance of cell
homeostasis and genomic integrity, and it also has a protective function on cells against stress [128].
Previously, it was shown that temozolomide induces autophagy and pharmacological inhibition of
autophagy enhances the anti-tumor activity of temozolomide [129]. However, interestingly, enforced
upregulation of autophagy can also suppress the development of GBM. Recently, EMC6 was identified as
novel positive regulator of autophagy, and GBM cell showed higher sensitivity to temozolomide and
reduced growth potential when EMC6 is overexpressed [130].

3.4. Bevacizumab

Owing to the infiltrative nature of GBM, examination of the surrounding GBM commonly identifies
the existence of infiltrative tumor cells [131]. Given that infiltration and growth of tumors are facilitated
by angiogenesis, the communication between cancer cells and blood vessels is important [132].
Surprisingly, it was previously reported that GBM stem cells have a potential of transdifferentiating
into endothelial cells or pericytes to support new blood vessel generation, highlighting the significance
of angiogenesis [133,134].

Tumor angiogenesis is modulated by several diffusible factors that are produced and released
by tumor cells [135]. Inter alia, vascular endothelial growth factor (VEGF) plays as a key angiogenic
inducer, and it has been implicated in tumor pathogenesis and angiogenesis [136]. In this context,
about 50 years ago, Folkman already proposed that inhibition of angiogenesis could be an effective
therapeutic approach for cancer treatment, and clinical trials with anti-VEGF antibodies and other
VEGF inhibitors have been performed [132]. As expected, therapeutic exploitation targeting VEGF or
VEGF receptor showed substantial clinical improvement in several types of malignancies [137].

Bevacizumab is a humanized anti-VEGF monoclonal antibody, and it was first approved for anti-
angiogenic therapy for the management of advanced colon cancer in 2004. Bevacizumab was additionally
granted FDA approval in multiple cancers including non-small cell lung cancer, metastatic breast cancer,
metastatic renal cell carcinoma, and GBM [138]. For GBM treatment, however, while bevacizumab has
been shown to provide a progression-free survival benefit in patients with newly diagnosed or recurrent
GBM [131,139,140], the overall survival was not highly improved with bevacizumab. Currently, combination
therapy of bevacizumab with other drugs are actively under evaluation. Although phase I/II study of
bevacizumab with BKM120, an oral PI3K inhibitor, was performed, the efficacy of this regimen was
unsatisfactory [141]. Phase II trial of bevacizumab with dasatinib, an ATP-competitive tyrosine kinase
inhibitor, also failed to show significantly improved outcome [142]. Recently, Hata et al. showed a promising
result that the overall survival of GBM patients was significantly enhanced when bevacizumab was utilized
complementary to temozolomide [143].

3.5. Immunotherapy

Targeting checkpoints of immune cell activation has shown recent success in the treatment against
several types of malignancies [144]. An immune checkpoint has critical roles to maintain immune
homeostasis and prevent abnormal activation/autoimmunity. However, some cancer cells maliciously
stimulate immune checkpoints, leading to the blockade of anti-tumor T cell responses [145]. Therefore,
immune checkpoint inhibitors remove inhibitory signals of T-cell activation, and in turn, invigorate the
immune system of cancer patients to extinct tumor cells. So far, two inhibitory checkpoints, cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1), are the most
promising targets. To date, six drugs blocking the PD-1/PD-L1 pathway and one drug suppressing the
CTLA-4 pathway were already approved by the U.S. Food and Drug Administration (FDA) for the
treatment of specific cancers (Figure 4B) [144].

Similar to other types of cancers, GBM was reported to disturb the immune system. Notably,
the expression of PD-L1 was shown to be highly upregulated in GBM after the loss of PTEN and
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activation of PI3K signaling [146]. Nonetheless, targeting the PD-1/PD-L1 pathway was not effective
for GBM clearance, most likely due to a low immunogenic response of GBM and immunosuppressive
microenvironment surrounding tumor [147]. Indeed, as a result of phase III clinical trial, nivolumab,
PD-1 inhibitor, did not show survival benefits [148]. The combination of nivolumab with ipilimumab,
a monoclonal antibody targeting CTLA-4, also failed to improve efficacy outcomes [149]. To make a
breakthrough, several clinical trials are in progress to evaluate combination therapy of PD-1/PD-L1
inhibitor with radiotherapy or antibodies against CTLA-4, TIM-3 LAG-3, IDO, or OX-40.

4. New Drug Candidates against Glioblastoma

Novel immunotherapies for GBM are now ongoing. Previously, Cytomegalovirus (CMV) has
been reported to have active roles in the pathogenesis of several tumors, and interestingly, CMV
protein pp65 was proven to be present in a high percentage of GBM but not in surrounding normal
brain (Figure 5) [150]. Based on these reports, clinical trials investigating the use of CMV-specific
dendritic cell (DC) have been progressively conducted. Prins et al. reported a patient case where
extremely robust CD8+ T-cell response to the pp65 was developed immediately after a single injection
of autologous tumor lysate-pulsed DC [151]. The following trial demonstrated that pre-conditioning
DCs with tetanus/diphtheria toxoid significantly enhanced DC migration to draining lymph nodes and
eventually provided survival benefit [152,153]. Reproducibility in these clinical data was confirmed by
long term follow-up with larger sample size [154].
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Strategies to overcome the drug resistance are now actively considered. Lun et al. found that
disulfiram plus copper supplement showed the cytotoxicity against patient-derived tumor-initiating
cells that confer resistance to DNA-damaging therapies (temozolomide and radiation). Disulfiram plus
copper upregulated temozolomide activity by attenuating DNA repair pathways in vitro. Disulfiram
plus copper, also in vivo, suppressed tumor growth and prolonged survival in newly diagnosed,
recurrent, and temozolomide-resistant GBM intracranial mice models [155]. More recently, Teng et al.
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found that hydroxyurea augmented the response of GBM cells and patient-derived stemlike cells
against temozolomide. The FDA-approved drug hydroxyurea made newly diagnosed and recurrent
GBM to sensitize to temozolomide, and provided survival benefit [156]. In addition, the inhibition of
the gap junction protein connexin 43 [157] or dual inhibition of NAD+ biosynthesis and base excision
repair [158] has also been considered to overcome temozolomide resistance.

Currently, personalized neoantigen vaccines are actively developed. Neoantigens are derived from
tumor-specific somatic mutations that are not identified in normal human genome. Because neoantigens
are specifically expressed in tumor tissues and they are specific to each individual patient or tumor,
they are not subject to central tolerance and have a low risk of side effects [159]. Given that neoantigen
vaccines show a potent anti-tumor activity by inducing both CD4+ and CD8+ T cell responses [160],
clinical trials utilizing neoantigen vaccines have been conducted [161]. Recent evidence suggests
that neoantigen vaccines showed clinical benefit for patients with GBM [162,163]. Although further
optimization and clinical studies are required, neoantigen vaccines represent a new promising approach
of precision medicine [164].

5. Future Directions

GBM is still thought of as an incurable disease. The first-line standard treatments for GBM has
failed to provide dramatic survival benefit, and immunotherapies, holding great promise for several
types of cancers, have not come up to expectation yet in GBM clearance. However, many researchers
did not surrender to aggressive brain tumor, and scientific findings on GBM have been accumulated.
Genomic profiling of GBM tissues has disclosed new potential molecular targets that are abnormally
expressed in tumors, and development of novel immunotherapies, neoantigen vaccine, and strategies
to overcome the drug resistance is now ongoing. These efforts will eventually surmount the current
difficulties on GBM treatment and make ideal personalized therapies possible.
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