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Abstract: Small-compound databases contain a large amount of information for metabolites and
metabolic pathways. However, the plethora of such databases and the redundancy of their infor-
mation lead to major issues with analysis and standardization. A lack of preventive establishment
of means of data access at the infant stages of a project might lead to mislabelled compounds, re-
duced statistical power, and large delays in delivery of results. We developed MetaFetcheR, an
open-source R package that links metabolite data from several small-compound databases, resolves
inconsistencies, and covers a variety of use-cases of data fetching. We showed that the performance of
MetaFetcheR was superior to existing approaches and databases by benchmarking the performance

check for
updates of the algorithm in three independent case studies based on two published datasets.
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Metabolomics allows the study of small-molecule substrates and compounds that are
involved in metabolic processes. A small compound (<1500 Da) is a low-molecular-weight
organic compound that is involved in or may regulate biological processes. Examples
of small compounds include various sugars, lipids, and amino acids. Various complex
diseases have been strongly linked to metabolic disorders, such as type 2 diabetes and can-
cer, making metabolomics a highly relevant field for single- and multi-omics studies [1-3].
Pathway enrichment analysis is a widespread analysis approach for metabolomics that
requires metabolites to map a predefined set of unique identifiers [4]. In this setup there
are several issues that arise when accessing, pre-processing, and analysing metabolite data.
For instance, the overlapping and non-overlapping information for metabolites is scattered
published maps and institutional affil-  ACTOSS several small-compound databases, leading to major analysis and standardization
{ations. issues [5-7]. Additional challenges occur with databases that deliver data, which contain

multiple entries for one metabolite or incomplete data. Finally, foreign reference identi-

fiers may be missing, making it difficult, sometimes impossible, to find the link between
two records of the same metabolite in different databases, while in other cases, the small
fraction of reference identifiers that are present might lead to incorrect compounds. The
aforementioned issues delay the delivery of results and more importantly, might lead to
inconsistent or biased results.

Xia and colleagues developed MetaboAnalyst, which is a versatile computational tool
conditions of the Creative Commons 0T metabolomics. This tool contains a module aimed at mapping names to identifiers
Attribution (CC BY) license (https://  Of metabolites from the human metabolome database (HMDB), the chemical entities of
creativecommons.org/licenses /by / biological interest (ChEBI), the Kyoto encyclopedia of genes and genomes (KEGG), Pub-
40/). Chem, and METLIN [5,7-11]. However, the lack of a shared nomenclature for metabolite
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names commonly leads to numerous mismatches or no-matches. Additionally, Wishart
and colleagues mapped compounds of HMDB to identifiers of other databases that suffer
from inconsistent matches [5]. Moreover, the aforementioned tools map metabolite names
to entries in HMDB that may lead to loss of information in case of a mismatch or absence
of the metabolite from this specific database.

MetaFetcheR is a unified package targeted towards the metabolomics community,
and it is able to resolve multiple inconsistencies and incompleteness in data fetching. The
algorithm exhaustively resolves such inconsistent cases and leads to improved mapping of
small compounds to identifiers. This is showcased in two case studies using two published
datasets by Diamanti et al. and Priolo et al. [1,12] and three existing mappers MS_targeted,
MetaboAnalystR along with the webtool MetaboAnalyst 5.0, and Chemical Translation
Service (CTS) [1,13-15].

2. Results

MetaFetcheR is an R package that uses the sparse input of primary database identifiers
as a reference point to retrieve identifiers from other databases. The output of MetaFetcheR
can be directly incorporated in analysis pipelines. The package unifies data from five open-
access and widely used small-compound databases that include HMDB, ChEBI, PubChem,
KEGG, and Lipidomics gateway (LIPID MAPS) [16]. Each database has a standardized
representation of the identifiers of compounds. The two most widely used representations
that are also supported by MetaFetcheR include the simplified molecular input line entry
system (SMILES) [17] and the IUPAC international chemical identifier (InChlI) [18,19] that
describe chemical structures using ASCII characters.

The foundation of the underlying algorithm relies on constructing a local Post-
greSQL database that acts as a cache memory of information. Initially, database dump
files provided by HMDB, ChEBI, and LIPID MAPS are downloaded. Subsequently,
the bulk insertion function of MetaFetcheR is invoked to construct a local database
(Supplementary Materials Figure S1). In the interest of storage space and time, we chose
MetaFetcheR to cache data through HTTP calls on the fly from KEGG and PubChem.
Cached instances from KEGG and PubChem are stored in the PostgreSQL database for
later use in order to avoid unnecessary HTTP calls and timeouts due to excessive calls. A
schematic of the local database is illustrated in Figure 1 under the label “Data Repositories”.

The algorithm takes as input a sparse table of known identifiers of a collection of
small compounds from the five databases (HMDB, ChEBI, KEGG, LIPID MAPS, Pub-
Chem) [5,7,9,16,20] and works on mapping them to identifiers of other databases by filling
in the empty fields. This is orchestrated via a queue-based algorithm. Database identifiers
are stored in the columns while rows represent metabolites of interest whose identifiers
require mapping (Supplementary Materials Table S11) (Figure 1-Input table). For each
row in the input table, the algorithm appends the known identifiers one by one to a queue
(Figure 1-MetaFetcheR main Flow-step 1). The algorithm fetches the db_id, where db is
the database and id the identifier, from the top of the queue and queries the respective
database for the record with this db_id as a primary identifier (Figure 1-MetaFetcheR main
flow-step 2). The algorithm then fills all remaining identifiers for this metabolite with the
returned results of the query (Figure 1-MetaFetcheR main flow-step 3). The query return
might be empty, in which case, the algorithm issues a new mapping attempt and queries
the database again with the db_id as a secondary identifier, which several databases have
(Figure 1-MetaFetcheR main flow-step 2). When the queue is empty and the algorithm
has filled in most of the empty fields with the newly discovered identifiers (Figure 1-
MetaFetcheR main flow-step 3), it reiterates to check whether there are any remaining
empty fields (Figure 1-Check Point). In the case of an empty field, a reverse query is issued
with one of the identifiers that were resolved during the first pass (Figure 1-MetaFetcheR
exceptional flow). The reverse query uses the discovered identifiers to query the respective
database in an attempt to fill in the missing field (Figure 1-MetaFetcheR exceptional flow).
The algorithm reiterates until all identifiers have been filled in or cannot be further resolved
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(Figure 2-MetaFetcheR main flow). At the same time, it tracks already discovered records
to avoid re-adding them to the queue. Linked identifiers are updated in the local database
to avoid future queries and remapping. Moreover, the algorithm stores multiple mapped
identifiers of the same compound from the same database that marks ambiguous situations.
This allows the user to choose among the discovered identifiers those that are the most
fit for downstream analysis. Additionally, it tracks all the identifiers that were used for
mapping but returned no result along with the identifiers that were used as secondary_ids
and returns the result to the user (Supplementary Materials Figure S2).

The ability of the algorithm to exhaustively reiterate to resolve cases along with
storing multiple discovered database identifiers for the same compound is one of the traits
that allows MetaFetcheR to stand out. The algorithm optimizes speed performance by
keeping track of formerly discovered records to avoid unnecessary iterations. The size of
the database after installation of HMDB, ChEBI, and LIPID MAPS was 189 MB, and after
retrieving records for 100 metabolites from PubChem and KEGG, the total size increased
by 0.94 MB for the former and 0.20 MB for the latter.

Input Table
e Data Repositories \ qu%r]y e MetaFetcheR main flow \ /~ MetaFetcheR exceptional ™\
wi flow
3 35 3 d_de as
LIPID primary_id Query DBs Extract I
HMDB | |ChEBI MAPS with IDs in . ) ) xtract newly
db_id1 db_id2 db_id3 discovered
Queue Ds
query .
with —
db_id as i Merge g o o : 'k
secondary id iscovere ueue IDs nvoke
v IDs Queue MetaFetcheR
PubChem KEGG main flow
API API \ /
( Check Point N
Remaining
undiscovered Yes
IDs?
l J
No

Figure 1. A simplified graphic illustration of the MetaFetcheR algorithm. Data repositories represent the local database

built during installation of the package and the http calls to the application programming interfaces (APIs) for PubChem

and KEGG. MetaFetcheR main flow represents the main flow of the algorithm, which constitutes three main steps. Queue

represents the working queue data structure the algorithm utilizes to add all the primary and secondary known IDs from

the input table and consequently preform the search queries with the IDs present in the queue. Check point is the step when

the algorithm has emptied the queue after a round of search to check if the input table still has empty fields, in which case,

it utilizes the steps in MetaFetcheR exceptional flow. A detailed version is available in Supplementary Materials Figure S2.
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Comparison of the mapping performance of MetaFetcheR to MetaboAnalystR and MetaboAnalyst 5.0 webtool.

(A) Comparison of the mapping performance for MetaFetcheR and MetaboAnalystR on Diamanti et al.’s [1] dataset,
(B) Comparison of the mapping performance for MetaFetcheR and MetaboAnalystR on Priolo et al.’s [12] dataset,
(C) Comparison of the mapping performance for MetaFetcheR and MetaboAnalyst 5.0 webtool on Diamanti et al.’s [1]
dataset, (D) Comparison of the mapping performance for MetaFetcheR and MetaboAnalyst 5.0 webtool on Priolo et al.’s [12]
dataset. Empty in the MetaFetcheR and MetaboAnalyst or MetaboAnalystWeb panels illustrates the number of identifiers
that could not be mapped using the respective tool. Non-empty in the MetaFetcheR and MetaboAnalyst or MetaboAnalyst-

Web panels presents the number of identifiers that were successfully mapped using the respective tool. Matching panel

shows the number of mapped identifiers that agreed between tools. Non-matching panel shows the number of mapped

identifiers that were not in agreement between tools. The number of identifiers is shown on the x-axis.

Usage Scenarios and Benchmarking

MetaFetcheR resolves problematic situations that arise when mapping identifiers of
metabolites (Supplementary Materials Figure S3). We benchmarked the matching perfor-
mance of MetaFetcheR against three existing mappers in three case studies. We compared
the performance of MetaFetcheR to the MetaboAnalystR R package version 3.0.3 using two
datasets from Diamanti et al. and Priolo et al. [1,12]. The average mapping rate of MetaFetcheR
was ~81% (non-empty fields), while MetaboAnalystR achieved an ~48% average mapping rate
on Diamanti et al.’s [1] dataset (Figure 2A-Supplementary Materials Table S1). For the dataset
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from Priolo et al. [12], MetaFetcheR achieved ~95% average non-empty fields rate, while
MetaboAnalystR resulted in an ~73% average mapping rate (Figure 2B-Supplementary
Materials Table S2). Furthermore, we compared the mapping performance of MetaFetcheR
to the one of MetaboAnalyst 5.0 web tool and for both datasets, MetaFetacheR performed
better (Figure 2B,C, Supplementary Materials Tables S3 and S4). Specifically, the Metabo-
Analyst web tool achieved average ~54% mapping rate on Diamanti et al.’s [1] dataset
(Figure 2C, Supplementary Materials Table S3) and ~78% average mapping rate for the
dataset from Priolo et al. [12] (Figure 2D, Supplementary Materials Table S4). A similar
performance to MetaboAnalyst was observed in the test utilizing CTS and MS_targeted
(Figure 3); however, the setting of the experiment was different than that with MetaboAna-
lystR since the latter can only perform mapping using metabolite names as an input but
not metabolite identifiers, while CTS can map using multiple types of metabolite identifiers
as input. The mapping rate of MetaFetcheR was on average ~(70%, 68%) (non-empty
fields), while CTS achieved ~(38%, 61%) average mapping rate on Diamanti et al.’s [1] and
Priolo et al.’s [12] datasets, respectively (Supplementary Materials Figures S4 and S5). For
MS_targeted, the average mapping rate was ~34% compared to MetaFetcheR’s ~71% on
Diamanti et al.’s [1] dataset (Supplementary Materials Figure S6). More details about the
mapping rate of the three tools compared to MetaFetcheR can be found in Supplementary
Note—Results of benchmarking mapping performance of MetaFetcheR. In terms of the
running time MetaFetcheR outperformed CTS on both datasets. However, MetaboAnalystR
had slightly better running times (Table 1).

Diamanti et al. dataset Priolo et al. dataset

80+
(0]
© 60-
Y
)]
%_ = MetaFetcheR

MetaboAnalyst

o
© 401 B CTs
= B MS_Targeted
®
o
g 20-
>
<

case1

case2 case3 case2 case3
case studies

Figure 3. Comparison of the mapping performance for the three tools with the mapping performance of MetaFetcheR.

The comparison utilizes the data from the three case studies performed on the two datasets from Diamanti et al. [1] and

Priolo et al. [12].

In addition to its competitiveness in mapping the identifiers of metabolites, MetaFetcheR
also provides insights into the quality of small-compound databases. A test was run by
selecting 1000 random identifiers from one of the five databases as input to MetaFetcheR
and then we investigated the quality of the collection of retrieved identifiers. The test was
performed 100 times for each database (Supplementary Materials Tables S5-59). The quality
of the databases was assessed using three different metrics: (i) percentage of consistency,
(ii) percentage of ambiguity, and (iii) percentage of unresolved cases. Consistency rep-
resents the percentage of one-to-one associated cases across all identifiers. Ambiguity is
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the percentage of original metabolite identifiers linked to multiple identifiers from other
databases. Unresolved cases represent the percentage of cases that the original metabo-
lite identifiers failed to link or were absent in all other databases. KEGG showed the
highest consistency percentage (~65%) and the lowest fraction of unresolved cases (~23%)
compared to HMDB, which had highest fraction of unresolved cases (~71%) (Figure 4).

Table 1. Comparison of the running time for MetaFetcheR, MetaboAnalystR, and CTS.

Number of Input

Tool Metabolites Input Type Dataset Running Time
Metaboanalvstr 434 Metabolites names Diamanti et al. [1] 1 min
4 228 Metabolites names Priolo et al. [12] 30s
HMDB, ChEBI, LIPID MAPS, . . .
434 KEGG, PubChem identifiers ~ iomanti etal [1] 5 min
HMDB, ChEBI, LIPID MAPS, . .
Metafetcher 228 KEGG, PubChem identifiers Priolo etal. [12] 2 min
328 HMDB identifiers Diamanti et al. [1] 1 min
219 KEGG identifiers Diamanti et al. [1] 1 min
68 LIPID MAPS identifiers Diamanti et al. [1] 20s
228 KEGG identifiers Priolo et al. [12] 2 min
328 HMDB identifiers Diamanti et al. [1] 4 min
CTS 219 KEGG identifiers Diamanti et al. [1] 10 min
68 LIPID MAPS identifiers Diamanti et al. [1] 4 min
228 KEGG identifiers Priolo et al. [12] 18 min
A B
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Figure 4. The results for the test that was run on each database to investigate data quality. (A) Box plot for the fraction
of successfully mapped identifiers that had one-to-one mappings to the rest of the database metabolite identifiers after
running the test 100 times for each database. (B) Box plot for the fraction of successfully mapped identifiers that had at
least one one-to-many mappings to the rest of the database metabolite identifiers after running the test 100 times for each
database. (C) Box plot for the extent of unmapped identifiers to the rest of the database metabolite identifiers after running
the test 100 times for each database.
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3. Discussion

In this study, we presented MetaFetcheR, an R package for mapping metabolite identi-
fiers across five small-compound databases. Using two published datasets by Diamanti
et al. and Priolo et al. [1,12], MetaFetcheR was shown to outperform other existing tools,
such as MS_targeted, MetaboAnalyst (both R package and webtool v5.0), and CTS, that
provide similar mapping functionalities. Additionally, MetaFetcheR showed a reasonable
running time compared to similar tools even given its exhaustive reiteration. For instance,
MetaboAnalystR and MetaboAnalyst 5.0 web tool were slightly faster, which indicates
that the better mapping performance of MetaFetcheR compared to MetaboAnalystR and
MetaboAnalyst 5.0 web tool was slightly compromised by the running time. MetaFetcheR
will be continuously updated to include additional databases. Features that include search-
ing by metabolite name and automatic updates of the local database will be provided in
future builds. A limitation of our current solution is that the user might be required to
manually curate the output dataset in order to resolve the inconsistencies of the databases.

4. Materials and Methods

MetaFetcheR package was developed using R version 3.5. All the database queries for
installation and mapping tasks are performed using PostgreSQL version 12. PostgreSQL is
a free and open-source database and is released under the PostgreSQL License, which is a
liberal Open-Source license.

MetaFetcheR is available at https://github.com/komorowskilab/MetaFetcheR/
(accessed on 17 October 2021). Details about installing the package, the prerequisites,
and the main functions for running MetaFetcheR are available at https:/ /komorowskilab.
github.io/metafetcher/ (accessed on 14 October 2021).

The SQL dumps were downloaded to install the local database for testing on 7 May 2020.

In order to allow reproducibility of the results, we placed all the scripts used to
generate the results and figures in https://github.com/komorowskilab/MetaFetcheR _
Experiments (accessed on 22 October 2021).

4.1. Performance Measures

Mapping Rategp_jq represents the coverage of each type of database identifier after
running tool X.

db_id represents the type of identifier (HMDB, ChEBI, LIPID MAPS, KEGG, or Pub-
Chem). The number of non-empty fieldsgy,;q (X) represents the number of non-empty fields
for the db_id identifier type after running tool X. The total number of records represents
the total number of metabolites records in the input table:

Number of non-empty fields , ;4(X)

Mapping Ratedb—id(x) - Total number of records M)
Mapping Rate. (X) + Mapping Rate. (X) + - - - Mapping Rate. (X
Average Mapping Rate; 1 (X) = pping Rate; (X) pping : i (X) pping Rate; (X) @

The average mapping rate is the summation of all mapping rates of tool X on all
identifier types (i, ip,..., i) divided by the number of identifier types (k):

Number of empty fieldsy, ;4(X)

Percentage of unmappeddb_id (X) = Total number of records )

where percentage of unmappedgp iq (X) represents the percentage of empty fields for each
identifier type after running tool X. db_id represents the type of identifier (HMDB, ChEBI,
LIPID MAPS, KEGG or PubChem). The number of empty fieldsqy jq (X) represents the
number of empty fields for the db_id identifier type after running tool X. The total number
of records represents the total number of metabolites records in the input table:
Number of matching feilds g, ;;(MetaFetcheR, Y)

non-empty fields b, id (Y) )

Matching percentagey, ;4 (MetaFetcheR, Y) =


https://github.com/komorowskilab/MetaFetcheR/
https://komorowskilab.github.io/metafetcher/
https://komorowskilab.github.io/metafetcher/
https://github.com/komorowskilab/MetaFetcheR_Experiments
https://github.com/komorowskilab/MetaFetcheR_Experiments
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where matching percentageq, ;q (MetaFetcheR, Y) represents the percentage of match-
ing identifiers between both tools MetaFetcheR and Y after running them for the identifier
type db_id. db_id represents the type of identifier (HMDB, ChEBI, LIPID MAPS, KEGG, or
PubChem). The number of matching fieldsgy, ig (MetaFetcheR, Y) represents the number
of matching identifiers between both tools MetaFetcheR and Y after running them for the
identifier type db_id. Non-empty fieldsgy, ;4 (Y) represents the number of non-empty fields
for db_id identifier type after running tool Y.

4.2. Benchmarking Mapping Performance of MetaFetcheR

The performance of MetaFetcheR was benchmarked based on three case studies using
two datasets and three existing tools, with the first dataset by Diamanti et al. [1] and the
second one by Priolo et al. [12]. The three tools are MS_targeted, MetaboAnalystR along
with MetaboAnalyst 5.0 web tool, and Chemical Translation Service (CTS) [1,13-15].

42.1. Casel

We compared the performance of the algorithm for mapping metabolite identifiers to
the identifiers mapped by MS_targeted on Diamanti et al.’s [1] dataset. MS_targeted is a
command-line tool that was used earlier for mapping metabolites’ identifiers. The compari-
son was based on the rate of mapped and unmapped metabolite identifiers from both tools.
Subsequently, the results from MS_targeted were manually curated and the concordance
between MetaFetcheR and the manual curation of MS_targeted results was assessed.

42.2. Case?2

We compared the MetaFetcheR mapping performance to that of the compound ID
conversion function of MetaboAnalystR [13] and MetaboAnalyst 5.0 webtool using data
from [1,12]. MetaboAnalystR accept input in the form of metabolites’ names, which is
problematic since there is no commonly accepted nomenclature across small-compound
databases. Both MetaboAnalystR and MetaboAnalyst5.0 cannot map to LIPID MAPS
identifiers. Based on these limitations, the comparison of the mapping performance with
MetaboAnalystR was restricted solely to the metabolites that were mappable and was
limited for both tools to HMDB, ChEBI, KEGG, and PubChem identifiers. The list of
metabolites that could not be mapped is shown in Supplementary Materials Table S10. The
comparison of the mapping performance was based on the rate of mapped and unmapped
metabolite identifiers when using metabolite names as input for both MetaboAnalyst tools.
Unlike MetaboAnalystR, MetaboAnalyst 5.0 accepts metabolite identifiers as input. In
addition to the previous comparison, we also compared the number of metabolite identifiers
that MetaboAnalyst 5.0 webtool mapped when the input was the available HMDB, KEGG,
and LIPID MAPS identifiers in Diamanti et al.’s [1] dataset, and the available KEGG
identifiers in Priolo et al.’s [12] dataset.

4.2.3. Case 3

We compared the MetaFetcheR mapping performance to that of CTS using data
from [1,12]. CTS accepts lists of metabolites’ names or metabolite identifiers of the same
kind as input. Additionally, CTS does not support PubChem identifiers. To achieve a
fair comparison, we ran CTS and MetaFetcheR three times with the available HMDB,
KEGG, and LIPID MAPS identifiers in Diamanti et al.’s [1] dataset and the available KEGG
identifiers in Priolo et al.’s [12] dataset. For instance, the input table to MetaFetcheR in
case of using the available HMDB identifiers in Diamanti et al.’s [1] dataset had a complete
HMDB_id column and the rest of the identifiers” columns were empty whereas the input
to CTS was the same list of HMDB identifiers. ChEBI identifiers were discarded from the
comparison using Diamanti et al. [1] since there were only two available entries.

Figure 1, Supplementary Materials Figures S1 and S3 were created using www.
lucidchart.com (accessed on 14 October 2021) resources. Supplementary Materials Figure 52
was created using www.cacoo.com (accessed on 14 October 2021) resources.
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