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Abstract: A minimalistic optical sensing device for the indoor localization is proposed to estimate
the relative position between the sensor and active markers using amplitude modulated infrared
light. The innovative insect-based sensor can measure azimuth and elevation angles with respect
to two small and cheap active infrared light emitting diodes (LEDs) flickering at two different
frequencies. In comparison to a previous lensless visual sensor that we proposed for proximal
localization (less than 30 cm), we implemented: (i) a minimalistic sensor in terms of small size (10 cm3),
light weight (6 g) and low power consumption (0.4 W); (ii) an Arduino-compatible demodulator for
fast analog signal processing requiring low computational resources; and (iii) an indoor positioning
system for a mobile robotic application. Our results confirmed that the proposed sensor was able to
estimate the position at a distance of 2 m with an accuracy as small as 2-cm at a sampling frequency
of 100 Hz. Our sensor can be also suitable to be implemented in a position feedback loop for indoor
robotic applications in GPS-denied environment.
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1. Introduction

In the absence of global positioning system (GPS), an indoor positioning system must be used to
provide a local position of the autonomous robot in a constrained environment with dust, smoke and
various lighting conditions (darkness, half-light, and flickering light).

There are numerous existing technical solutions for the indoor localization using: (i) infrastructure
such as ultrasonic signals [1], ultra wideband technology [2] and fingerprinting approaches with
wireless sensors networks [3]; and (ii) onboard sensors such as monocular cameras, stereo imaging
and Light Detection and Ranging (LIDAR). For industrial applications inside warehouses in [4],
automated guided vehicles (AGVs) localize themselves by triangulation based on reflector landmarks
detected by laser scanners. In [5], visual odometry for localization aims at estimating the pose
of a vehicle through examination of the changes that motion induces on the images acquired by
onboard cameras. In [6], in conjunction with signals produced from inertial sensors and wheel
encoders, a map of the magnetic field was used to precisely localize an indoor robot without any
additional infrastructure. Moreover, the inertial sensors such as accelerometers, rate gyros combined
magnetometers can be used to estimate the angular position, velocity or acceleration of a mobile robot.
However, the effect of noise on the integrated signals strongly affects the position estimation and leads
to difficulties in getting the information with a high precision over a large amount of time. In [7],
in the context of visible light communication, an indoor positioning system using multiple optical
receivers composed of photodiodes (PD) provides coordinates and orientation of the mobile receiver
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with an achievable position error less than 0.1 m. In [8], a linear positioning system based on infrared
(IR) beacon aims at localizing indoors pedestrians using a trigonometrical survey. The IR beacon is
attached to the shopping bag. The receiver installed in the ceiling at the height of 2.3 m is a PD array
and measures the angle of incidence of the beacon ray. Therefore, the indoor position of the IR beacon
is calculated and an identifier signal is sent to a computer for processing via wireless communication.
In [9], using visible light communication, a novel indoor localization system is presented, where LED
beacons determine the position of the target sensor, including a camera, an inclinometer, and a
magnetometer. The localization is performed using geometric- and consensus-based techniques
adapted to a high number of beacons and outliers. The tests presented show that the accuracy of the
system is in the low decimeter range.

This paper proposes the development of a very different kind of indoor localization technique.
A novel local positioning system is developed based on a bio-inspired optical and minimalistic
sensor in terms of mass, size, cost and computational resources using photodiodes and flickering
IR LEDs. As presented in [10], the comparison between charge couple device (CCD) image sensors,
complementary metal oxide semiconductor (CMOS) image sensors and PDs pointed out the advantages
of PDs in terms of speed, sensitivity, energy consumption and system complexity. Moreover, PD is easy
to fabricate and has low production costs. As proposed in [11], LEDs offer advantageous properties
such as reliability, lower power consumption, long lifetime and can be used as a communication device.
For optical communications in free space under fog and smoke conditions, Ijaz et al. showed that
near infrared light sources are the most robust wavelengths to link failure [12]. In [13], a lensless
sensor was prototyped to estimate the position of active IR LEDs for proximal localization (up to
30 cm). To increase the operating range (≥1.5 m) the paper addresses a brand new design for indoor
localization in 2D. Using PD and IR LEDs, our indoor positioning system embeds an innovative optical
sensor robust to lighting conditions.

Section 2 introduces the computer-aided design of the sensor in 3D. The fabrication of a new tiny
optical sensing device with a custom-made signal processing board shielded to an Arduino board is
presented in Section 3. Section 4 gives a short description of the bio-inspired optical sensor modeling
and the principle underlying the signal processing algorithm. In Section 5, indoor localization is
performed for the estimation of position in 2D. The localization of a mobile robot in 2D was also tested
with the new sensor device implemented in the feedback control loop for trajectory tracking purpose.
Section 6 concludes the paper.

2. Sensor Design

The optical sensor device, called HyperCube, designed and developed in this study, is equipped
with three photodiodes (Figure 1). Each photodiode is mounted on the face of a tetrahedron.
As depicted in Figure 1A,B, the optical axis of each photodiode is separated by an inter-receptor
angle ∆φ = 60◦, which defines the spatial acuity of the visual system [14].

1 cm

A) B)

=60° =60°

Figure 1. Computer-Aided Design of the optical sensor called HyperCube. Each side of the sensor
consists of one photodiode soldered to a small printed circuit board (Phl , Phr, Phm respectively): (A) top
view; and (B) side view.
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3. Fabrication

The prototype of the sensor was obtained by 3D printing as shown on Figure 2A. It is equipped
with three photodiodes made by Vishay Semiconductors with the reference BPV22F. Each photodiode
has a maximum absorption at the wavelength of 950 nm which corresponds to the maximum emissive
power of the infrared LEDs SF4249. As presented in Figure 2B, a custom-made electronic board for the
frequency modulation of the flickering IR LEDs can produce two separate signals at 11 kHz and 17 kHz,
respectively. The same electronic board composed of two analog demodulation circuits performs
the acquisition and demodulation. Shielded on the Arduino board, the latter performs the visual
signal processing and provides an estimation of the HyperCube’s angular position (i.e., azimuth and
elevation angles) with respect to the infrared LEDs.

Figure 2. Description of the HyperCube hardware: (A) each photodiode is connected to an analog
amplifier for the conversion of the photodiode current into an output voltage; and (B) the signal
provided by the photodiodes is processed by a demodulation board shielded on an Arduino board.

4. Modeling

Each photodiode features an angular sensitivity which is defined by the angle of acceptance
denoted ∆ρ, i.e., the full width at half maximum of the angular sensitivity. A bell-shaped sensitivity
function models the angular sensitivity of each photodiode. It was inspired by the Gaussian angular
sensitivity function of flies’ photoreceptors as described in [15].

4.1. Angular Sensitivity of the Photosensors

As presented in Figure 3, the angular sensitivity of each photodiode in solid line is compared to the
cosine-like angular sensitivity in dotted line. One can show that the cosine-like angular sensitivity of
the model fits well to the experimental data and finally fits better than a Gaussian function. Moreover,
the angle of acceptance ∆ρ is equal to 120◦ and ∆φ between Phl and Phr is equal to 60◦.

Figure 3. Sensor characterization and comparison between the theoretical (dotted lines) and measured
angular sensitivities (continuous lines) of the photodiodes plotted here in polar coordinates.
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4.2. Principle of the Sensor

Two demodulated photodiode output signals are processed by an Arduino microcontroller.
The analog demodulation steps were achieved by our custom-made shield board connected to the
Arduino (see Figure 4). As shown in Figure 4A,B, the digital processing computes the relative difference
over the sum of two adjacent demodulated photosensor output signals in order to assess the angular
measurements (azimuth and elevation) [16]. The demodulation steps consist of using classical lock-in
detection to demodulate the signal. However, the lock-in amplifier required a modulation signal which
is provided here by a Phase-lock-loop circuit due to the fact that there is no physical link between the
source (LED) and the receiver (photodiode).
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Figure 4. Sketch diagram of the signal processing algorithm. (A). Top view: The sensor measures the
azimuth ϕ. The left part shows the IR LED modulated at a frequency noted Fdemod (11 kHz or 17 kHz).
In this view, HyperCube is composed of two photosensors Phl and Phr with their respective cosine-like
angular sensitivities (see Figure 3B). (B). Side View: The same signal processing is applied on the signal

provided by the photosensor Phm of HyperCube and a virtual photosensor where Svirt =
Sphl

+Sphr
2 .

As depicted in Figure 4, the digital processing operated in the microcontroller returns an output

signal Sϕ for the azimuth ϕ with Sϕ =
Sphr−Sphl
Sphr+Sphl

and an output signal Sψ for the elevation ψ with

Sψ =
Sphm−Sphvirt
Sphm+Sphvirt

where Svirt =
Sphl

+Sphr
2 . According to the visual sensor model mentioned in [13],

Sϕ ∝ −tan (ϕ) and Sψ ∝ −tan (ψ). Therefore, the relative position (X̂, Ŷ) of the sensor with respect to
the IR LED can be estimated with X̂ = −tan (ϕ) Ẑ and Ŷ ∝ −tan (ψ) Ẑ, where Ẑ is the a priori known
fixed height as shown on Figure 5.
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Figure 5. The principle of the indoor positioning solution at a fixed height consists of two steps: (i) the
calibration procedure aims at finding the parameters which minimize the quadratic error metrics
between the reference position given by the Vicon system and the data provided by the sensor; and
(ii) given the calibration parameters, the sole use of the sensor device connected to the shielded
demodulation board allows to estimate the positions X and Y at a fixed height.

5. Experimental Results

5.1. Position Estimation in 2D

A calibration, which consists of adjusting the sensor outputs Sϕ and Sψ to the ratios X/Z and
Y/Z, is processed using the Vicon system.

minimize
1
n ∑

√
(Xre f − X̂)2 + (Yre f − Ŷ)2

subject to −
Xre f

Ẑ
= aϕ1.S2

ϕ + aϕ2.Sϕ + aϕ3.S2
ψ + aϕ4.Sψ + bϕ

−
Yre f

Ẑ
= aψ1.S2

ϕ + aψ2.Sϕ + aψ3.S2
ψ + aψ4.Sψ + bψ

(1)

The coefficients aϕi and aψi are determined using Matlab R©. The optimization Criterion (1) is to
minimize the mean square error between the reference values and the actual data values provided by
the sensor. The Matlab R© function fminunc is used to compute the coefficients. The localization was
tested indoors for several lighting conditions. The optical sensing device was moving in X and Y at a
fixed height as presented in Figure 5. After the calibration, the indoor localization is performed with
the sole use of the optical sensor device connected to the demodulation board and the Arduino board.

Figure 6A gives a description of the experimental setup. One can see the location of the modulated
infrared emitter and the coverage of the system. In this experiment, HyperCube is fixed to a XY table
and moved by hand. One can note from the indoor localization results (Figure 6B) that the position
estimation at the fixed height of 150 cm is accurate. The precision obtained features a standard
deviation about 1 cm for X and inferior to 2 cm for Y measurements. Experiments over a longer
distance are presented in the next section.
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Figure 6. 2D localization of HyperCube moved by hand using a XY table with respect to a fixed IR
LED flickering at 17 kHz placed ahead of the sensor at a distance of 150 cm. The position estimation
is based on the parameters obtained in the calibration procedure: (A) experimental setup; and (B)
experimental results. The standard deviation for X estimation is only 1 cm and the standard deviation
for Y estimation is 1.65 cm.

5.2. Localization of a Mobile Robot in 2D

In this section, we present the results obtained using HyperCube for indoor localizatin in 2D of a
mobile robot. A new custom-made electronic board for the frequency modulation of the flickering IR
LEDs is built. It can produce two separate signals at 5 kHz and 11 kHz. The mobile robot is equipped
with a new custom-made electronic board composed of two analog demodulation circuits in charge of
acquisition and demodulation. The experimental setup is presented in Figure 7. The ground height is
H = 2 m and the localization coverage area is 2 m × 2 m.

Figure 7. Picture of the experimental setup inside the motion capture system. The aim is to
localize in 2D the mobile robot using HyperCube. The ground thruth is given by the Vicon cameras.
The mecanum wheeled omni-directional robot is equipped with HyperCube, the localization coverage
area is 2 m × 2 m. Two IR LEDs flickering at 5 kHz and 11 kHz were fixed on a horizontal bar placed
above the robot at a height of 2 m.

5.2.1. Kinematics and Dynamics Modeling of the Mobile Robot

Complete kinematics and dynamics modeling of the omni-directional robot with mecanum
wheels are detailed in [17,18]. Figure 8 shows the disposition of the wheels related to the frames
Σ0, Σiω, (i = 1, 2, 3, 4). We define: Viω (i = 1, 2, 3, 4) the velocity vector corresponding to the wheels
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revolutions where Viω = Rw ×ωi. Rw is the radius of the wheel and ωi is the revolution velocity of
the wheel. Vir (i = 1, 2, 3, 4) is the tangential velocity vector of the free roller touching the floor and
V0 = [ẋm ẏm ψ̇m]

T is the velocity vector in the local frame (Xm, Ym, Zm).

1

4

2

3

Figure 8. Disposition of the mecanum wheels and the frames.

The state vector X = [x y ψ]T is composed of the positions x, y and the heading ψ in the global
frame (XG, YG, ZG). Kinematics equation describing the relationship between Vω and V0 is given by:

Vω = J0 · V0 (2)

J0 =


1 −1 −(l + L)
1 1 (l + L)
1 1 −(l + L)
1 −1 (l + L)

 ∈ R4×3 is a transformation matrix and Vω = [V1ω V2ω V3ω V4ω ]
T is the

wheel velocity vector corresponding to the angular velocity. Oppositely, the mobile robot velocity can
be derived from the wheel velocity using a pseudo inverse matrix as in (3):

V0 = J0
+ ·Vω (3)

where J0
+ =

(
J0

T · J0

)−1
J0

T . As a result, each element of V0 is given by the following equations:

ẋm =
Rw

4
(ω1 + ω2 + ω3 + ω4) (4)

ẏm =
Rw

4
(−ω1 + ω2 + ω3 −ω4) (5)

ψ̇m =
Rw

4(L + l)
(−ω1 + ω2 −ω3 + ω4) (6)

The velocity Ẋ in the global frame (XG, YG, ZG) is expressed in (7): ẋ
ẏ
ψ̇

 =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ·
 ẋm

ẏm

ψ̇m

 (7)

As presented in [18,19], the vehicle dynamics is given by (8):
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[
θ̇

θ̈

]
=

[
04×4 I4×4

04×4 −M−1 Dθ

] [
θ

θ̇

]
+

[
04×4

M−1

]
τ (8)

θ = [θ1 θ2 θ3 θ4]
T is the vector of the angular position of each wheel. τ = [τ1 τ2 τ3 τ4]

T is the control
input vector composed of the torque applied to each wheel with:

M =


A + B + Iw −B B A− B
−B A + B + Iw A− B B
B A− B A + B + Iw −B

A− B B −B A + B + Iw

, A = mRw
2

8 , B = IzRw
2

16(L+l)2 and Dθ is the

coefficient of the wheel’s viscous friction. Iz is the vehicle moment of inertia around the Z axis. Iw is
the wheel’s moment of inertia around the center of revolution.

5.2.2. Design of Position Control

The standard robot motion control have been designed using a sliding mode dynamic
controller to track a desired trajectory as detailed in [19]. Let us consider the state vector
X = [x11, x12, x21, x22, x31, x32]

T = [
∫

x, x,
∫

y, y,
∫

ψ, ψ]
T and the control input vector

u = [u1 u2 u3]
T = [ẋm ẏm ψ̇m]

T . From (7), the state space representation of the system is given by:

ẋ11 = x12

ẋ12 = u1 cos(x32)− u2 sin(x32)

ẋ21 = x22

ẋ12 = u1 sin(x32) + u2 cos(x32)

ẋ31 = x32

ẋ32 = u3 (9)

The control input vector r = [r1 r2 r3]
T is defined to compensate for the nonlinear terms in (9)

u1 = cos(x32)r1 + sin(x32)r2

u2 = − sin(x32)r1 + cos(x32)r2

u3 = r3 (10)

Using (10) in the state space representation (9), a system of equations is written as following:

∑1 =

{
ẋ11 = x12

ẋ12 = r1
(11a)

∑2 =

{
ẋ21 = x22

ẋ12 = r2
(11b)

∑3 =

{
ẋ31 = x32

ẋ32 = r3
(11c)

The Equation (11a,b) stand for the equations of translation and the Equation (11c) describes the
movement of rotation. As defined in [19], the positions of reference ξ1d and ξ2d in the inertial frame
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are introduced. The orientation reference in the same frame is also noted ξ3d. Therefore, the following
subsystem of equations is written:

∑e
i =


żi1 = zi2

żi2 = ri − ξ̇id ∀i ∈ {1, 2, 3}
φ̇id = ξid

(12a)

with zi1 = xi1 − φid, zi2 = xi2 − ξid ∀i ∈ {1, 2, 3}. The saturation function denoted σM : R → R is
defined as:

σM(S) =

{
S i f |S| < M

sign(S)× M otherwise
(13a)

The sliding surfaces Si1 and Si2 are defined for each axis X and Y such that:

Si1 = ai1ai2zi1 − ai2zi2

Si2 = ai1zi2 (14)

where the coefficients ai1 and ai2 are chosen to ensure the attractiveness of the sliding surfaces.
Therefore, we propose the candidate Lyapunov functions Vi1 and Vi2 for each sliding surface:

Vi1 = S2
i1

Vi2 = S2
i2 (15)

As explained in [19], the exponential stability of the system is ensured and the control input signal
ri can be written as:

ri = σi3(ξ̇id − σMi2(ai1zi2 + σMi1(ai2zi2 + ai1ai2zi1))) ∀i ∈ {1, 2, 3}. (16)

Using (10) and the expression provided by (16), the control input signals u1, u2 and u3 are bounded
such as:

|u1| = max(M13, M23, 0.707(M13 + M23))

|u2| = max(M13, M23, 0.707(M13 + M23))

|u3| = M33 (17)

Therefore, the angular speed of each wheel ωi of the mobile robot is bounded such as the following:

|ω1| =
1

Rw
((L + l)M33)

|ω2| =
1

Rw
(2 ·max(M13, M23, 0.707(M13 + M23)) + (L + l)M33)

|ω3| =
1

Rw
(2 ·max(M13, M23, 0.707(M13 + M23)) + (L + l)M33)

|ω4| =
1

Rw
((L + l)M33) (18)

where Mij, ∀i, j ∈ {1, 2, 3} is the saturation parameter as defined in (13a). Figure 9 presents the block
diagram of the system. The position and heading of the mobile robot are controlled in closed loop. It is
worth noting that:
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• The nonlinear control block computes each angular reference speed ω∗i for the wheel i. The control
law minimizes the error between the reference position X∗ and the position estimate X̂.

• The angular speed of each wheel is controlled in closed loop using a local proportional integral
controller (PI).

• The estimated position and heading of the mobile robot collected in the vector X̂ = (x̂, ŷ, φ̂) are
provided by HyperCube or the Vicon motion capture system .

Bounded
control

Linearization Kinematic
model

NonPlinearPcontrol

[1;3] [1;3]

MobileProbot

[1;4]
Wheels

HYPERCUBE

VICON

System

switch

Velocity
Control

Figure 9. Block diagram of the robot autopilot. The position and heading are controlled in closed-loop.
The mobile robot is equipped with HyperCube

5.2.3. Implementation of the Indoor Localization for the Mobile Robot

To evaluate the performances of the indoor localization, the setup detailed in Figure 10 is
composed of the following:

• The Vicon motion capture system featuring sub-millimetric accuracy. It provides the localization
estimation of the mobile robot. The motion capture data are used for comparison purposes.

• The ground station connected to the Vicon system runs Matlab/Simulink R© and QUARC R©

software programs. The nonlinear control law of the mobile robot presented in Section 5.2.2 is
designed with Matlab/Simulink R© and compiled. The program is transferred via WIFI radio
link to the Gumstix microcontroller embedded on the mobile robot. The control algorithm runs
onboard the robot.

The mobile robot aims at tracking a desired trajectory using HyperCube in a feedback control
loop. An Arduino 380 board controls in closed-loop the angular velocity of each wheel. An Arduino
Mega 2560 board is connected to the custom-made demodulation board of HyperCube which provides
analog signals. The analog processing of the photodiode’s output signal is depicted in Figure 4.
The Gumstix board uses the estimation of the robot position X̂ = (x̂, ŷ, φ̂) for control purpose.

GUMSTIX
PositionR5

MobileRrobot

Heading

Hypercube

4Rwheels
ofRtheRrobot

RSR=0=

RSR=0=

LEDR5kHz LEDRYYkHz

WIFI InfraredRemission
VICONRSYSTEM

GroundRStation

Fs=5NNHz

Fs=YNNHz

Fs=YNNHz

Fs=YNNHz
Control

toRHypercube

Figure 10. Sketch diagram of the implementation of the indoor localization system for mobile robots.
The Arduino Mega 2560 gets the analog signals provided by the demodulation board (Arduino shield,
see Figure 2) and the output voltage of each photodiode Phi of HyperCube. The Arduino 380 board is
devoted to control the angular velocity of each wheel.
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Figure 11A gives a schematic of the hardware embedded on the mobile robot for indoor
localization using HyperCube. Figure 11B shows the hardware implementation and HyperCube
mounted onboard the mecanum wheeled omni-directional robot. Four reflective markers make the
mobile robot visible by the Vicon system.
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Figure 11. Top view of the mobile robot: (A) schematic of the embedded hardware; and (B) picture of
the mobile robot used for the experiments.

5.2.4. Application to the 2D Localization

The aim of this section is twofold: (i) using HyperCube in open loop, reconstruct the trajectory
(x, y) of the mobile robot in the coverage area presented in Figure 7; and (ii) using HyperCube in
closed loop, track a desired trajectory. For that purpose, the following experiments are performed.

5.2.5. Validation of the Nonlinear Control Law for Trajectory Tracking

The Vicon cameras provide to the nonlinear controller detailed in Section 5.2.2 the accurate
localization and orientation of the robot in real-time. The mobile robot moves on a circular path of
diameter 1 m. In the same time, the desired orientation ψ is a sinus. The results are given in Figure 12
where Figure 12A–C shows in red the positions (x, y) and the heading ψ versus time of the mobile
robot compared to the reference in green. Figure 12D plots y versus x. Using accurate estimations of
position and heading, the mobile robot follows the desired trajectory with precision without overshoot.
This result validates the good performances of the sliding mode nonlinear control law.

Figure 12. Cont.
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Figure 12. (A–C) plots of the position and orientation of the mobile robot. The accurate measurements
provided here only by means of the Vicon system provide to the sliding mode nonlinear controller the
measured robot’s positions (x,y) and heading. The path is compared to the desired trajectory.

5.2.6. Trajectory Reconstruction Using HyperCube

While keeping the circular path of diameter 1 m as reference, the desired orientation ψ is regulated
at zero. The mecanum wheeled omni-directional robot maintains its orientation along the path. In this
experiment, the trajectory is reconstructed using the measurements provided by HyperCube and
only one IR LED that flickers at 11 kHz. However, the estimated positions provided by HyperCube
were not used to control in closed-loop the robot. Figure 13 shows the results of the reconstruction.
In Figure 13A,B, the position estimations in X and Y are plotted versus time and compared to the
ground truth provided by the Vicon system. Figure 13C presents the heading ψ which is maintained
at zero. There is no curve for HyperCube since HyperCube is not used to estimate the heading.
Figure 13D depicts the XY graph. Satisfactory trajectory reconstruction can be verified by comparing
the actual path of the mobile robot to the estimated one given by HyperCube.

Figure 13. Plots of the position and orientation of the mobile robot. The accurate measurements
provided by the Vicon system feed the sliding mode nonlinear controller. The trajectory is reconstructed
using HyperCube and the IR LED that flickers at 11 kHz. The closed-loop control of the robot’s positions
and heading is only based here on the measurements provided by the Vicon system.
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One can see in Figure 14A,B the plots of the autocorrelation functions of the residuals. The noise
for each axis has nearly white characteristics.

Figure 14. Plots of the autocorrelation functions of the residuals for each axis X and Y.

Moreover, given H = 2 m, the precision obtained reaches a standard deviation as small as 1.86 cm
for X and 1.37 cm for Y (see Figure 15). Looking accross the precision of the reconstruction, the mobile
robot was then controlled by means of HyperCube.

=1.86 cmX =1.37 cmY

Figure 15. Histograms of the localization error in 2D using HyperCube. The standard deviations for
the X and Y axis are σX = 1.86 cm and σY = 1.37 cm for H = 2 m. Only one IR LED that flickers at
11 kHz is used.

5.2.7. Robot Closed-Loop Control Based on HyperCube

In this section, the goal was to use the measurements provided by HyperCube to control in
closed-loop the linear positions (x, y) of the robot. The current version of the sensor can only
estimate the positions but not the rotations. For a robotic application using aerial robots for instance,
HyperCube could be associated to a stabilizing gimbal system to reduce the effects of the variations of
roll and picth angles which could affect the measurements. In the present application, the orientation
ψ is given by the Vicon cameras. If we denote xsensor and ysensor the coordinates of the mobile robot
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in the local frame, the estimates of position x̂ and ŷ in the global frame are obtained by applying the
rotation matrix as following: x̂

ŷ
ψ̂

 =

cos(ψ̂) − sin(ψ̂) 0
sin(ψ̂) cos(ψ̂) 0

0 0 1


 xsensor

ysensor

ψvicon

 (19)

where ψvicon is the estimation of the orientation given by the Vicon cameras. Figure 16 shows the
results while the sensor is used in closed loop. The orientation ψ is estimated with the motion
capture system. Figure 16A,B superimposes the positions x and y measured by HyperCube (blue
curve) and by the Vicon system (red curve). Figure 16C presents the regulation of the heading versus
time. Since the orientation is given by the Vicon cameras and not by HyperCube, there is no curve
related to HyperCube in Figure 16C. Once equipped with HyperCube, the experimental results show
that HyperCube can be suitable to make the mobile robot follow faithfully the reference trajectory.
Therefore, the performance of the HyperCube sensor have been validated indoors by using only one
flickering IR LED. A limitation of this solution is the need of the orientation ψ provided by the Vicon
system. However, for this kind of application, onboard sensors such as a low-cost inertial measurement
unit (IMU) for instance in [20], magnetometer as proposed in [21] or odometry could be used to get
the heading in real time.

Figure 16. Plots of the position and orientation of the mobile robot while the measurements provided
by HyperCube are used in closed loop and the heading is given by the Vicon cameras. Only one IR
LED that flickers at 11 kHz is used and H = 2 m.

6. Conclusions

In this paper, we proposed a novel positioning system for indoor application which can
measure the angular position of a moving optical sensor, HyperCube. The latter was coupled
to an Arduino-compatible demodulator through a custom-made shield board. Based on infrared
light emission, the proposed solution for indoor localization spotlights the following features:
(i) a minimalistic sensor in terms of small size (10 cm3), light weight (6 g) and low power consumption
(0.4 W for the sensor and the analog demodulation board); (ii) a fast analog signal processing and a
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digital processing implemented on an Arduino microcontroller (difference over the sum); and (iii) an
online accurate position estimation in 2D.

We have shown that the proposed sensor was able to estimate the position in 2D at a distance
of 1.5 m from the LEDs with an accuracy as small as 1-cm at a sampling frequency of 100 Hz using
only one IR LED flickering at 17 kHz. We also proposed a robotic application which consisted in
localizing a moving mecanum wheeled omnidirectional robot indoors. For a trajectory reconstruction
purpose, the precision of the position estimation reached good performances with a standard deviation
as small as 1.86 cm for X and 1.37 cm for Y with only one flickering IR LED placed at 2 m above the
robot. To show the performance of HyperCube, the sensor was implemented in the position feedback
control loop to make the mobile robot able to track a reference trajectory (a circle of 1 m in diameter).
It turned out that the mobile robot followed the desired path faithfully, validating that the indoor local
positioning system using flickering IR LEDs is a reliable and an efficient solution.

To further improve the performance of the proposed system, the sensor measurements provided
by HyperCube will be fused with other sensors such as IMU to improve the position estimation.
The height could also be estimated using two IR LEDs at two different frequencies. Moreover, one
could investigate the estimation of the heading ψ using several IR LEDs at the same time.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/11/2518/s1,
Video S1: Robot closed-loop control based on HyperCube.
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AGV Automated Guided Vehicle
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IMU Inertial Measurement Unit
IR Infrared
LED Light Emitting Diode
LIDAR LIght Detection And Ranging
PD Photodiode
WIFI Wireless Fidelity
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