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The surveillance of host body tissues by immune cells is central for mediating their

defense function. In vivo imaging technologies have been used to quantitatively

characterize target cell scanning and migration of lymphocytes within lymph nodes

(LNs). The translation of these quantitative insights into a predictive understanding of

immune system functioning in response to various perturbations critically depends on

computational tools linking the individual immune cell properties with the emergent

behavior of the immune system. By choosing the Newtonian second law for the governing

equations, we developed a broadly applicable mathematical model linking individual and

coordinated T-cell behaviors. The spatial cell dynamics is described by a superposition

of autonomous locomotion, intercellular interaction, and viscous damping processes.

The model is calibrated using in vivo data on T-cell motility metrics in LNs such as the

translational speeds, turning angle speeds, andmeandering indices. Themodel is applied

to predict the impact of T-cell motility on protection against HIV infection, i.e., to estimate

the threshold frequency of HIV-specific cytotoxic T cells (CTLs) that is required to detect

productively infected cells before the release of viral particles starts. With this, it provides

guidance for HIV vaccine studies allowing for the migration of cells in fibrotic LNs.

Keywords: lymphoid tissue, cell motility, HIV infection, cytotoxic T cell scanning, multicellular dynamics,

dissipative particle dynamics, stochastic differential equation

INTRODUCTION

The surveillance of host body tissues by cells of the immune system is central for mediating
defense functions against invading pathogens and tumor cells (1, 2). The initial recognition of
foreign antigens that leads to the induction of adaptive immune responses takes place in lymph
nodes (LNs), which, by virtue of their location and structure, facilitate the interactions between
immune cells (3). Themotility of pathogen spread and immune cells represents relevant parameters
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controlling the fate of the pathogen–host interaction. In vivo
imaging technologies have been used to quantitatively
characterize target cell scanning and migration dynamics
of lymphocytes within LNs (4, 5). The translation of these
quantitative insights into a predictive understanding of immune
system functioning in response to various perturbations critically
depends on the availability of computational tools linking the
individual immune cell properties with the systems response as a
whole (6).

Multiscale models of the immune system provide the in
silico tool to embed immune processes into their spatial context
(7–9). A core module of the models is the mathematical
framework used to describe individual cell migration in complex
multicellular environments. One can distinguish two general
types of modeling approaches, cellular automata-based models
(CAMs), and physical models (PMs). CAMs consider a regular
grid with cells that change their state in time and space according
to some rules (functions of the system state). The respective
computational algorithms can take the form of random walks
(10) or cellular Potts models (11). Although CAMs incorporate
experimentally defined characteristics of cell motion and, thus,
simulate cell dynamics based on actual data, they lack quantifiable
links to the underlying biophysical interactions between cells
in multicellular environments and to intrinsic cell motility
parameters (12). PMs of lymphocyte migration dynamics derived
from the Newtonian second law offer the possibility to define cell
motions in terms of the forces generated by the environment and
the cell itself. Using the experimental data on cell movement,
the potential functions underlying cell-to-cell interactions and
intrinsic cell motility can be identified and can provide a deeper
insight into the mechanical properties of cells. Thus, PMs
of individual cells and coordinated cell migration represent a
general and generic way to describe and predict the multicellular
system dynamics for a broad range of cell numbers and external
conditions (13, 14).

It is widely accepted in immunology that the physiological
function of cytotoxic T cell (CTL) motility is to search
for target cells, i.e., for virus-infected cells or cancer cells
(15). Computational modeling studies have revealed that the
search efficiency depends on the organization of the stromal
environment of a tissue (16). In addition, the spatial behavior,
for example, of HIV-infected target cells scanned for foreign
antigens by CTLs strongly impacts the elimination efficiency
of the infected targets (17, 18). Experimental investigation of
live attenuated SIV vaccines clearly suggested that a robust
protection against intravenous wild-type SIVmac239 challenge
strongly correlates with the number and function of antigen-
specific effector CTLs in LN rather than the responses of such
cells in the blood (19). However, the quantitative effects of T-
cell migration parameters in LNs on the efficiency of antiviral
immune responses in vivo remain unknown.

In the current study, we have developed a physics-based
description of spatial T-lymphocyte dynamics in themulticellular
environment of LNs. A fundamental relationship between a cell
motion and the forces acting on it is provided by Newton’s
second law. It is used to formulate, calibrate, and apply a
generic mathematical model of coordinated T-cell migration

dynamics in LNs. By choosing a first principles approach
in formulating the governing equations in conjunction with
published experimental data on T-cell motility in lymphoid
tissues, we offer a broadly applicable generic mathematical tool
linking individual and coordinated cell behaviors. The potential
of the model is illustrated by an analysis of the combined effects
of antigen-specific T-cell numbers and intrinsic T-cell motility
parameters in LNs on the time needed to locate both mobile
and non-motile HIV-infected target cells. Computed predictions
of the ratio of effector CTLs to infected T cells in the LN
paracortex needed for a timely detection of infected cells within
18 h postinfection, i.e., before the release of viral particles starts
(20), provide a novel quantitative guide for an informed design
of HIV vaccines.

MATERIALS AND METHODS

Programming Languages and
Computing Resources
All algorithms were written in C++ and compiled using G++
(version 5.4.0). Pseudorandom numbers were generated using
the PCG random library (version 0.98) and the PCG64-XSL-
RR algorithm (21). The seed was either specified manually (for
code development) or set based on the system’s random device
(for computational experiments). Simulations were run on a 2-
core Xeon E3-1220 v5 @3.0 GHz × 4 processor. The wxWidgets
library (version 2.8.12) was used for visualization purposes.
The processing of the simulation results (i.e., calculating
statistical motility profiles, comparing CDFs, and plotting) was
implemented in Python and R scripts.

Model Equations of Multicellular Dynamics
According to a basic mechanics view, a system consisting of N
cells of somemass located in a liquidmilieu, interacting with each
other and affected by some external field, is uniquely determined
by their coordinates and velocities and is governed by the classical
mechanics motion equations. In our model, each cell i, i = 1,N,
is represented as the circle with certain mass mi, radius ri, and
position of its center xi. The fundamental equation governing
locomotion of cells is Newton’s second law of motion. It can be
expressed as follows:

mi ẍ i = Fi =
∑

j 6=i

f intij + fmot
i + f disi , i = 1,N, (1)

where the first term on the right side specifies the net effect of
the pairwise interaction forces with contacting neighbor cells, the
second term stands for the cell intrinsic locomotion force, by
which the cell establishes motility within the extracellular matrix
(ECM) of the LN reticular network, and the last one takes into
account the action of a dissipative force, taken to be proportional
to the cell velocity f disi = −µẋi. We neglect the impact of gravity.

Random Motility Force Sampling
The random motility force fmot

i for the ith cell is modeled as a
stochastic vector fi sampled every 30 s from certain probability
distributions analogously to the inverse homogeneous correlated
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random walk (IHomoCRW)model (22). The motility magnitude
∣

∣fi
∣

∣ = ηi ·Ki is sampled from the following Gaussian distribution:
Ki ∈

∣

∣N
(

µ (K) , σ 2 (K)
)∣

∣. To obtain the motility magnitude
∣

∣fi
∣

∣,
the sampled value Ki is multiplied by the arresting coefficient
ηi. The arresting coefficients are increased for both T cells and
DCs if they establish a sufficiently long contact to temporarily

arrest their inner motility as follows: (1) ηi : = 10η
default
i for T

cells and DCs when the duration of an uninterrupted contact

exceeded 30 s, and (2) ηi : = 100η
default
i if the contact outlasted

20min. The cell inner motility is restored back to a default value
if the contact lasted for a time longer than the sampled value
tcontact ∈ N (2, 0.4) hours. The parameter ηi is also used to
decrease intrinsic motility when performing in silico simulations
to study the effect of decreased T-cell motility on target cell
location efficiency (see details in Supplementary Text).

The motility direction f̂i is turned from the previous direction
on the angle θi:

αi ∈ N
(

0, σ 2 (α)
)

, θi = αi ·

(

1−

(

Ki

Kmax

)β
)

,

Kmax = µ (K) + 3σ (K) . (2)

Here, N
(

0, σ 2 (·)
)

denotes a Gaussian distribution, and β

is a scalar coefficient. The angle sampled from the normal
distribution is multiplied by a factor depending on the sampled
motility magnitude to reproduce the experimentally observed
negative correlation between cell translational and turning angle
speeds. Indeed, the cells do not simultaneously perform fast
translational movements and large reorientations (22). Note
that a similar feature was named “directional propensity” and
modeled with trigonometric parameterization in a cellular Potts
model to describe the motion of T cells (11). The Gaussian
distribution for the motility magnitude is set so that the

(µ − 3σ ,µ + 3σ) range is positive. The absolute value is taken
to ensure that the magnitude is non-negative. The parameter
Kmax provides an upper boundary for sampled values Ki

(approximately 1 of 370 cases falls outside of the three-sigma
interval). The hat above the vector denotes the normalized
unit vector.

Implementation of Contact Inhibition
of Locomotion
After the stochastic vector fi is sampled, it is modified in
accordance with the contact inhibition of locomotion (CIL)
model, as described (23). The resultant vector fmot

i is then used
in the right-hand side of Equation (1). The modification consists
of shifting the direction of vector fi away from the neighboring
cells and decreasing the magnitude of vector fi proportionally to
the number of neighboring cells:

fmot
i =

∣

∣fi
∣

∣ ·
(

cinh f̂i + R̂i

)

cinh + n
, R̂i =

∑

j,hij≤ri+rj

xi − xj

hij
, (3)

in which
∣

∣fi
∣

∣ is the magnitude and f̂i is the direction of the inner
motility as it would be if unaffected by CIL, n is the number of

neighboring cells in contact (such that the distance between cell
centers hij ≤ ri + rj), and R̂i determines the net shift of the
inner motility direction away from the neighboring cells, cinhis
the weighting coefficient varying the level of CIL. The hat above
the vector indicates that it is normalized.

Numerical Integration of the Equations of
Cell Motion
To numerically integrate the equations of motion (Equation 1),
we used the first-order semi-implicit (i.e., the cell coordinate at
time tn+1 is computed using the velocity vector vn+1

i rather than
vni ) Euler method:

vn+1
i =

miv
n
i + h ·

(

Finti

(

tn, xni
)

+ fmot
i

(

tn, xni
))

mi + h · µ
(4)

xn+1
i = xni + h · vn+1

i (5)

in which xni and vni are the coordinate and velocity of cell i at the
time tn after n steps tn = t0+h ·n. We note that the second-order
generalization of this method, i.e., the Störmer–Verlet method,
could be developed. However, it will be computationally more
demanding as the cell acceleration depending on velocity due
to the presence of dissipative velocity-damping viscosity forces
needs to be reevaluated at each time step tn+1. We verified that
the time step h = 0.02 min used in the simulations is sufficient
for a stable integration of the initial value problem with the
semi-implicit Euler method. To efficiently locate the neighboring
cells (which is needed for intercellular force calculations and for
determining the effect of CIL), we use a simple uniform-grid-
based spatial neighbor search, which performs well for a densely
packed multicellular environment. Note that the convergence of
the integration scheme was verified by repeating simulations for
a smaller time step.

Boundary Conditions
During themodel calibration process, we used periodic boundary
conditions for all boundaries of a square domain. To perform in
silico simulations in a closed ellipse-shaped domain representing
a LN, we implemented a biologically based boundary condition
of cell repolarization. We do not model explicitly the interaction
forces between cells and the boundary (i.e., the subcapsular sinus
wall). At the stage of coordinate updates (in accordance with the
numerical scheme specified in the section Numerical Integration
of the Equations of Cell Motion), if the proposed coordinate of
cell xn+1

i is outside the boundary, the current coordinate of the

cell is preserved (xn+1
i = xni ), while the direction of the motility

vector Efmot
i is changed to be the opposite direction of vector vn+1

i ,
thus resulting in cell repolarization.

Generating the Initial Spatial Configuration
for Simulations Within a LN
To generate the initial spatial configuration of the immune
cells within a LN, we followed the descriptions from a LN
imaging study (24). The following cell subsets were considered:
CD4+ T cells, CD8+ T cells, and cross-presenting migratory
CD8αintCD103hi DCs. Both T-cell subsets are distributed
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uniformly through the whole LN, while migratory DCs are found
mainly deep in the paracortex area. To arrange cells in agreement
with the experimental data, we approximated the DC-rich area
as an ellipse Ωα=0.99

DC . The spatial positions for DC locations are
iteratively sampled from the 2D Gaussian distribution with a 99-
percentile ellipse Ωα=0.99

DC and accepted if the DC with sampled
coordinates lies within the LN domain ΩLN and does not overlap
with the other seeded DCs. After DCs are placed, the T cells are
positioned uniformly through the remaining non-occupied space
of ΩLN.

RESULTS

Biophysical Parametrization of the Spatial
Multicellular Dynamics
Multicellular systems dynamics can be accurately described by
biophysical models as reviewed recently (14, 25). Here, we
develop a physics-based mathematical model of coordinated
immune cell motion that belongs to the class of self-propelled
particle models (14) and, more generally, to the dissipative
particle dynamics (26, 27) framework.

Immune cells in LNs are continuously interacting with each
other and with stromal cells via forces of different origin, i.e.,
elastic (membranes), chemical (receptors), and electric. The
respective forces in combination with cell intrinsic locomotion
events act in concert to determine the basal intranodal motility
of T cells. Figure 1A presents the overall summary of physical
forces included in the model with some implementation details.
The scheme of the forces exerted on cell i interacting with cells
p and k is shown in Figure 1B. The quantitative features of
the force functions are detailed in Figure 1C. Here, f intij is the

intercellular force acting on cell i due to interaction with cell j.
The pairwise cell-to-cell interactions are assumed to have a finite
cutoff distance and are considered to be elastic acting along the
line of cell centers. The intercellular forces f intij can be considered

as the gradients of pairwise potentials, which are repulsive at
short distances and attractive at larger distances, thus accounting
for volume exclusion at the cell body and cell–cell adhesion
near membranes. We consider the following cubic polynomial
function to model the force exerted by cell j on cell i:

f intij =
xi − xj

hij
·







−a · f adh ·
rj−x

rj
+ b · f adh ·

(

rj−x

rj

)3
, hij < ri + rj,

0, hij ≥ ri + rj,
(6)

where ri is a radius of the ith cell membrane, hij is the distance
between cell centers (see Figure 1C), and x = hij − ri is the
distance between the center of cell j and the surface membrane

of cell i. The function a · f adh ·
rj−x

rj
describes the attraction force

between two cells, and the function b · f adh ·
(

rj−x

rj

)3
corresponds

to a repulsive force, both calibrated as shown in Figure 1C.
The coefficients a and b are set such that the minimum of
function f intij is equal to f adh. Thus, the only remaining free

parameter is f adh, the adhesive interaction strength. In the
case of T cell/T cell interaction, it corresponds to weak non-
specific electrical forces (electrostatic and electrodynamic) that

are expected to be present between all cells according to the
model of Bell (28). We calibrate this parameter by the typical
value of low-adhesive forces, with which integrins present on T-
cell membrane bind to their ligands present on the other cells
(29). For cognate T cell/APC interactions the attraction force
is much stronger as it is determined by a broad spectrum of
various adhesion molecules involved in T-cell activation clusters,
i.e., the immunological synapse (30). The estimated values of
the intercellular interaction forces are given in Table 1. For
details on the data-based T-cell motility model calibration, see
Supplementary Text.

The dissipative (friction) force acting on T cells describes
the effect of viscous damping, which reduces the velocity
of the cell. It is assumed to be proportional to the cell
velocity f disi = −µẋi. The dissipative force acts along the
line of the cell center and in opposite direction to the cell
displacement. Consideration of viscous damping is appropriate
for the highly viscous low-Reynolds-number environment of
LNs (40). The viscous damping parameter estimate is listed
in Table 1.

The random motility force fmot
i determines the traction of

self-propelled lymphocytes. It represents a stochastic process
of receptor-mediated cell–ECM interactions regulated by either
cytoskeletal or membrane reorganizations and governed by
biomechanical and intracellular molecular mechanisms (4, 13).
Basically, cells establish directed caterpillar-like movement
by polarizing, forming contacts between their leading edge
and collagen fibers of ECM, detaching their trailing edge
from ECM, and contracting. However, T lymphocytes and
dendritic cells (DCs) are characterized by low-adhesive integrin
interactions with the microenvironment. This allows them to
adapt their direction and morphology with no need to reorganize
microstructure while effectively sliding along the stromal
network of fibroblastic reticular cells (41, 42). As we do not
model the reticular network and the ECM microstructure in this
study explicitly, this motility behavior is considered implicitly
in the stochastic nature of fmot

i . Note that the autonomous cell
motility can also be affected by external signaling, e.g., through
chemotaxis, CIL, or immunological synapse formation. The cell
trajectory in the model is characterized by three quantifiable
values, i.e., the translational speed, the turning angle speed,
and the meandering index as explained in Figure 1D and as
described in Read et al. (22). The corresponding experimental
data are shown in Figure 1E. To capture the experimentally
observed patterns of T-lymphocytemigration in lymphoid tissues
(see Figure 1E), the T-cell motility is modeled using a random
variable fi with its magnitude and angle values updated every
1t seconds according to the IHomoCRW recently suggested
and validated (22). The IHomoCRW model was shown to
reproduce the experimentally measured statistical profiles of
T-cell locomotion (22). In the present model, the magnitude
and direction of the random vector fmot

i are sampled from
distributions provided by the experimental data (the specific rules
are defined in sectionMaterials andMethods). The key difference
from the original IHomoCRWmodel is that it is the cell motility
inducing force fmot

i rather than the cell velocity ẋi that is sampled
and then substituted into equation (Equation 1). In addition,

Frontiers in Immunology | www.frontiersin.org 4 June 2019 | Volume 10 | Article 1213

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Grebennikov et al. T Cell Motility in HIV Infection Control

FIGURE 1 | Physics-based model of multicellular system dynamics reproduces experimental data on T-cell locomotion. (A) The set of forces considered in the

model with description of their features and implementation details. (B) The fundamental equation governing locomotion of cells determined by the forces exerted on cell i,

(Continued)
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FIGURE 1 | including the repulsive–attractive interaction with neighbor cells p and k, respectively. (C) The parameterization of intercellular interaction force f intij and

formula definition. The calibrated force for non-specific interaction of two T cells with a radius of 3µm is depicted. By simulation, the parameters a and b are

calculated at each time step depending on the radii ri , rj and the distances hij , x, so that the condition fij
(

λrj
)

= fij
(

rj
)

= 0,minfij (x) = −fadh
i

is satisfied. The

parameter λ determines the relative deformation of the cells that separates the repulsive and attractive interactions between them. Parameter fadh
i

represents the

adhesive strength between the membranes of cells i and j. (D) Schematic illustration and definition of the metrics characterizing T-cell motility: translational speed,

turning angle speed, and meandering index. All metrics are measured for each cell every 1t seconds and pooled together to form statistical distributions. (E)

Statistical profiles characterizing the T-cell locomotion consists of distribution histograms of translational speeds, turning angle speeds, and meandering indices. The

histograms are derived from the corresponding empirical cumulative distribution functions (CDFs) available in Figure S17 from Read et al. (22), in which original in vivo

data are presented. (F) The details of the 2D geometric setup for simulations used in the model calibration: spatial configuration, initial and boundary conditions, and

the experimental protocol used to sample the statistical profile. (G) The statistical characteristics of T-cell motility coming from simulations of the calibrated model

plotted against the in vivo histogram data (22). The statistical distributions of each metric are depicted as CDFs. The Kolmogorov–Smirnov statistics comparing the

model and target CDFs are indicated with their respective p-values.

TABLE 1 | Set of calibrated model parameters used as a baseline for all simulations.

Parameter Description Value References

mTC T-cell mass 215 pg (31–34)†*

rTC T-cell radius 3µm (35)†

µ Viscous damping coefficient 0.2 nN·min/µm (= 12 g/s) (36, 37)*t

fadh
T−T Adhesive strength between T cells 0.01 nN (28–30)†

λTC The normalized distance between the cell-to-cell interaction synapse and the cell

center separating repulsive and attractive modes of T-cell interaction (model

analog of nuclear-to-cytoplasmic ratio in experimental cell biology)

0.83 (with respect to r TC) (38)*t

1t Time step for inner motility mTC update 30 s (22) ‡

µ
(

mTC

)

Mean of the inner motility force magnitude distribution 3 nN (22, 39)‡*t

σ
(

mTC

)

SD of the inner motility force magnitude distribution 0.3 nN (22, 39) ‡*t

σ
(

αTC
)

SD of the inner motility turning angle distribution 60◦ (22)‡t

cinh Scalar coefficient varying the level of CIL 1.0 (23)‡t

β Scalar coefficient in parameterization of negative correlation between magnitude

and turning angle of sampled inner motility

2.0 (23)‡t

†
Parameters obtained directly from experimental measurements.

*Parameters estimated indirectly from experimental measurements.
‡Parameters derived from underlying computational models.
tParameters tuned to fit cell motility profiles within the model calibration.

the random vector fmot
i can be influenced by contact effects

from neighboring cells, resulting in (1) a shift of the vector fmot
i

away from neighboring cells and (2) a decrease of its magnitude
proportionally to their number, similar to the CIL model (23)
(see details in section Materials and Methods). By default, the
arresting coefficient for T cells is equal to one. For DCs, its value
is estimated so that the resultant DC velocities do not exceed 5
µm/min (the estimated value is specified in Table 2).

Overall, the mechanistic model of the spatial multicellular
dynamics is formulated as a system of N random ordinary
differential equations (44) represented by Equation (1) and
embedded into the 2D geometric domain as detailed in
Figure 1F. Essentially, the system is a deterministic system
of ordinary differential equations on each interval of 1t
seconds, until the force fmot

i becomes updated. The quantitative
consistency of the computational model of multicellular
dynamics with experimental data on translation speed,
turning angle speed, and the meandering index is illustrated
in Figure 1G. The relevant components of the numerical
implementation of the model (computational domain, boundary
conditions, integration algorithm) are described in Materials and
Methods. The dynamics of the net forces and their contributions

acting on a randomly selected T cell in a simulation of
multicellular dynamics are shown in Figure S1.

Calibration of T-Cell Motility
Our model mostly operates with biophysical parameters that
are either directly measurable or can be estimated indirectly
such as the mass m (wet weight) and the radius r of a cell, the
adhesive strength between T-cell membranes f adhij (measured by

single cell force spectroscopy), the viscous damping coefficient
µ, typical forces and velocities of T cells, and the location
of demarcation between repulsive and attractive areas of a
cell λ (nuclear-to-cytoplasma ratio). The other parameters that
describe the random motility force or the contact inhibition
of locomotion are derived using the information presented
in the original IHomoCRW model (22) and the CIL model
(23) with the underlying experimental data. To calibrate our
model, we evaluated admissible ranges of parameters and tuned
them manually to match the statistical characteristics of T-
cell locomotion (22). The baseline sets of the estimated model
parameters are presented in Tables 1, 2. For details of the
parameter estimation, see Supplementary Text.
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TABLE 2 | Extra parameters which are used for LN simulations.

Parameter Description Value/range References

mCD4 CD4+ T-cell mass 215 ± 28 pg (31–34)

mCD8 CD8+ T-cell mass 290 ± 28 pg (31–34)

mDC Dendritic cell mass 350 ± 28 pg (32–34)

rDC Dendritic cell radius 6.5µm (38, 43)

λDC The normalized distance between the cell-to-cell interaction synapse and the cell

center separating repulsive and attractive modes of DC interaction (model

analog of nuclear-to-cytoplasmic ratio in experimental cell biology)

0.5 (38)

fadh
DC

Adhesive strength between specific T cells and DCs 1 nN (28, 30, 36)

ηDC Default value for coefficient arresting inner motility of DCs 3 Tuned so that DC

velocities are <5

µm/min

Computational Domain, Immune Cell Subsets, and

Initial Configuration
The computational domain was implemented as an ellipse-
shaped 2D approximation of the bean-like cross section of a
murine skin-draining LN (see Figure 2A). At the beginning,
both CD4+ T cells (green) and CD8+ T cells (blue) are evenly
distributed throughout the domain. Some randomly chosen T
cells are considered to be antigen specific and marked in light
green and blue, respectively (their numbers are specified below).
The antigen-presenting cells considered in this study represent
the subset of cross-presenting migratory CD8αintCD103hi DCs,
which are mainly involved in CD8+ T-cell immune responses
and which immigrate into LNs from the periphery (24). They
are normally localized in the deep parts of the T-cell zone
and leave LNs slowly with a turnover rate of 6 days. For
initial configuration, these DCs are spatially placed according
to a Gaussian distribution with 99-percentile ellipse Ωα=0.99

DC
representing the T-cell zone (see Figure 2A and sectionMaterials
and Methods).

The numbers of antigen-specific DC and T-cell subsets
are estimated using published data (24), which were rescaled
according to the size of the computational domain. A total
population of 12,469 immune cells was considered. The total
number of non-antigen-specific T cells was estimated so that
about 80% of the computation domain was filled up. The
precursor frequency of antigen-specific T cells, that is, their
proportion in the total amount of T cells, was set to be about
1%. We consider the inflow and outflow of immune cells to
the region of interest to be negligible because of the short
simulation time of 12 h. The closed boundary conditions used in
the simulations are specified in section Materials and Methods.
The overall geometrical scheme of the computational domain
and the initial configuration of themulticellular system generated
for simulations are presented in Figure 2A.

Data Assimilation and Model Validation
To assimilate the statistical data on the three T-cell locomotion
measures (i.e., the translational speed, turning angle speed, and
meandering index), the following numerical simulation protocol
was used, which is close to the original experimental protocol
(22). First, the same 2D 412 × 412µm2 domain was used, in
which we initialized 4,489 squarely tiled T cells with 3-µm radii
and η ≈ 80% packing density. The initial direction of the intrinsic

motility force was generated randomly for all cells. The positions
of cells were saved every 30 s during 10 numerical experiments of
30-min simulation time after a 30-min pre-run to randomly mix
the cells. Cells with total displacements <27µm were excluded
as was done in the original experimental protocol. Likewise, cells
that passed through the boundary and left the imaging volume
were also excluded. The saved cell positions were post-processed
to calculate the target metrics (defined in Figure 1D), which
were pooled together to form three separate distributions. The
pooled cell motility distributions were calibrated with in vivo
data. The simultaneous adjustment of all distributions was
computationally challenging due to the different uncorrelated
aspects of cell migration captured in each of themotility metric as
previously outlined (22). Figure 1G shows the best-fit cumulative
distribution functions (CDFs) of the calibrated model with the
baseline parameter set fromTable 1 and the target experimentally
observed distributions with Kolmogorov–Smirnov statistics and
p-values describing the discrepancy between CDFs.

The evolution of the above multicellular system was
simulated over a 12-h period. The visualization of the systems
spatiotemporal dynamics is presented inMovie S1. Figures 2B,C
shows the kinetics of median velocities of antigen-specific CD4+

T and CD8+ T cells, and the median distances between the
T cells and the centroid of their cognate antigen-presenting
DCs throughout 12 h of an in silico experiment. The model
demonstrates that antigen-specific CD8+ T cells that interact
with their cognate CD8αint DCs but not the CD4+ T cells
decrease their velocities, move closer to the area of DCs in
the first 4–6 h, and remain there with low velocities afterward.
Figures 2B,C is quantitatively consistent with experimental data
shown in Figures 1E,F, and in Figure 2B from Kitano et al. (24).

Quantitation of the DC and T-Cell
Contact Interactions
The calibrated mathematical model of T-cell locomotion was
validated by confronting its predictions with data from the
intranodal spatiotemporal dynamics of different immune cell
subsets after soluble antigen immunization presented in a recent
experimental study (24). The data specify the evolution of the
distances between the centroid of the migratory DC area and
individual CD4+ T and CD8+ T cells. The model was adjusted
to the functional configuration of skin-draining LNs specified
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FIGURE 2 | Heterogeneous dynamics of T cells in LNs. (A) The scheme of a LN and illustration of the initial configuration generated for simulations. DCs, CD4+ T

cells, and CD8+ T cells are placed within a LN as described in the Supplementary Text with total cellularity of 12,469 cells, ≈80% packing density and ≈1%

precursor frequency. (B) Twelve-hour kinetics of median velocities of antigen-specific CD8+ T and CD4+ T cells, and their distributions at the start and at the end of a

12-h simulation. (C) Twelve-hour kinetics of median distances from T cells to the centroid of DCs, measured for antigen-specific CD8+ T and CD4+ T cells, and their

distributions at the start and at the end of a 12-h simulation. TC, T cell; DC, dendritic cell.

in the above study. A representative example of the numerical
simulation of individual cell trajectories is shown in Figure 3A.
An example of multicellular dynamics in a LN during 12 h is
shown in Figure 3B.

Quantitation of the Forces Determining T-Cell and DC

Motility and Their Interaction
To consider DCs in multicellular system simulations, we carried
out a parameterization of their intrinsic motility forces and
the intercellular forces for contacts between (1) two DCs, (2)

antigen-presenting DCs and antigen-specific T cells, and (3)
antigen-presenting DCs and polyclonal T cells. The values of the
corresponding parameters are presented in Table 2. The physical
forces driving the dynamics of individual cells in the LN and
the respective velocities of the cells predicted by the model are
shown in Figure 3C. We assume that the intrinsic motility of
DCs can be represented by the same type of force function as
that for T cells (Figure 1C); however, due to their much smaller
average velocity, the respective DC force function value was
of small magnitude. The adhesive force for cognate contacts
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FIGURE 3 | Quantitation of immune cell motility, driving forces, and contacts. (A) Representative example of individual cell trajectories obtained with numerical

realization of the calibrated model. The trajectories illustrate the 5-h dynamics of 15 cells randomly chosen from 4,489 cells presented in the 412 × 412 µm2 domain

with periodic boundary conditions. (B) Twelve-hour multicellular dynamics of T-cell trajectories in a lymph node obtained by numerical simulation with an initial

configuration specified in Figure 2A. Only cells with total displacement longer than 27µm are shown. (C) Values of forces and cell velocities driving the multicellular

system dynamics in a square subdomain of a LN. In a center pane, the velocity field is represented as a contour plot of the field of cell velocity magnitudes linearly

interpolated at uniform grid, as well as detected streamlines of possible cell flow patterns. (D) Kinetics of the numbers of cognate DC–T cell contacts at different

stages of the simulation and distribution of durations of all cognate contact durations occurring within a 12-h simulation. DC, dendritic cell.

(i.e., of antigen-specific T cells with antigen-presenting DC) is
around 100 times higher (∼1 nN) than the non-specific adhesion
force for T cell/T cell contacts (36). We also implemented a

computational procedure to temporarily arrest the motility for T
cells in a sufficiently long cognate contact (see section Materials
and Methods).
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Ag-Specific CD8+ T Cells Migrate Toward

Cross-Presenting DCs and Form Cognate Contacts

With Them
Figure 3D presents the model prediction for the kinetics of
the number of cognate DC–CD8+ T-cell contacts occurring
at different time intervals during the in silico simulation.
Antigen-specific CD8+ T cells robustly increase the number
of contacts with DCs over time in the process of T-cell zone
scanning for antigen-presenting target cells. Although most of
the cognate contacts are of short duration, i.e., they last for
<5min, the distribution has a heavy tail of stable more than 1-h
length contacts. These predictions are in agreement with previous
data (45).

CTL Frequency Needed to Locate
HIV-Infected Target Cells Before
Viral Release
During viral infections, the induction of cellular immune
responses takes place in secondary lymphoid organs such as
LNs and spleen. Antigen-presenting cells such as DCs take up
antigens and migrate to LNs to encounter specific lymphocytes,
e.g., CD4+ T and CD8+ T cells, to induce their activation and
differentiation into effector and memory cell subtypes (46). The
low frequency of antigen-specific T cells in unprimed hosts turns
the scanning of cognate DCs by specific T cells in a highly
crowded cellular LN environment into a “needle-in-a-haystack”
problem (47). It was revealed that optimal LN scanning depends
on a combination of intrinsic T-cell motility, the chemokine
milieu, and the microarchitecture of the LN (1). When virus-
infected DCs reach the LN, the less the time needed to locate
virus-specific T cells and to form stable DC–T cell contacts, the
more likely is that the precursor CTL activation will happen
before the viruses will be released from infected cells, therefore
making the elimination of local clusters of infection spread more
probable. This aspect of CD8+ T-cell activity is crucial for a
prompt activation of specific CTL immune responses and the
elimination of viruses. The precursor frequency in blood can be
as small as 0.0001% (48), reaching about 5–10% in the chronic
stage of an HIV infection (49). The here-developed physics-
based model of T-cell dynamics can be directly used to study
the efficiency of scanning the paracortical T-cell zone of the LN
for target cells expressing cognate antigen as a function of the
frequency of CTL and their motility.

Development of an effective AIDS vaccine remains a
global priority, and there is a need for a vaccine to induce
cellular immune responses capable of eradicating or efficiently
containing virus replication (50). Experimental studies with
attenuated SIV vaccines indicated that SIV-specific CTLs, if
present in sufficient frequencies, can completely control and even
clear an infection (19). Similar to SIV, HIV infection is sustained
by the activation of CD4+ T cells, which occurs in the form
of transient bursts in the local microenvironment of lymphoid
tissues (51, 52). The proximal activation and transmission
involving latently infected cells represent locally propagating
events (53). Therefore, we applied our calibrated model of spatial
immune cell dynamics in LNs to study the necessary conditions
for effector HIV-specific CTLs to promptly locate HIV-infected

target cells before they can release viral progeny. We consider
only one HIV-infected cell in the computational domain, which
is consistent with the frequency of productively infected CD4+ T
cells of about 0.0001–0.001 (54). Specifically, the newly infected
target cell should be located by the nearby effector cells before it
can release viral progeny, i.e., before completion of the 18–24 h
life cycle of HIV (20).

The overall simulation setup is the same as described in the
model validation subsection above. Randomly chosen cells in
the stochastically generated multicellular system configurations
representing the LN cortex zone were marked as infected in
yellow (see Figure 4A). Both the motile CD4+ T cells and
the non-motile DCs were considered as HIV-infected targets.
In simulations, we varied the frequency of HIV-specific CD8+

T cells and the intrinsic motility of T cells (searching CD8+

T cells, infected- and uninfected CD4+ T cells) (Figure 4A)
to analyze the effect of variations on the target cell detection
time. A 10-fold range of HIV-specific CD8+ T-cell frequencies
typical for HIV infection, i.e., from 0.4 to 5%, was examined.
The intrinsic motility of T cell was varied within 100 and
50% relative to the calibrated baseline parameters of average
T-cell velocity (see details in the Supplementary Text). A
decreased intranodal T-cell motility (of searching CD8+ T
cells, infected- and uninfected CD4+ T cells) is expected to
take place during the chronic stage of an HIV infection when
LN tissues become fibrotic, i.e., when collagen formation in
T-cell zones takes place (55). Then, T cells have to move
through increased collagen deposition with major consequences
for search patterns (56). In addition, CD4+ T-cell migration
is also inhibited by the HIV-1 Nef protein as shown in
chemotaxis assays (57). In our study, the motility of all
considered types of T-cell subsets, i.e., the searching CD8+ T
cells, uninfected CD4+ T cells, and infected CD4+ T cells, is
decreased uniformly.

Figures 4B,C illustrate the model predictions for the decrease
of time to locate HIV-infected target cells with the increase
of HIV-specific CD8+ T-cell frequency. The modeling results
imply that 5% is a sufficient effector CTL frequency for a
timely detection of both types of target cells within 18 h
post-infection, i.e., before the beginning of HIV release from
productively infected cells (20). A stepwise increase by five-
fold of the HIV-specific CTL frequency from 0.04 to 5%
increases the probability of detection of HIV-infected cell within
24 h from 0.07 to 0.34 to 0.84 and to 1, respectively. In
addition, the model shows that infected motile CD4+ T cells
are located faster than non-motile DCs with the probability of
detecting them within 24 h increasing from 0.35 to 0.86 and
to 1 with a CTL frequency rising from 0.04 to 0.2% and to
1%, respectively.

Figure 4D shows the increase of time to locate infected non-
motile DCs for a decrease of the T-cell motility from a basal
level by 10 and 50% considering an HIV-specific CD8+ T-cell
frequency of 1%. If the average T-cell velocity is decreased by
50%, then the probability to locate DCs within 24 h is <0.5.
Figure 4E depicts a similar dynamics for locating motile infected
CD4+ T cells. Note that the motile targets were located within
24 h even with a 50% decrease of the average CD8+ T-cell velocity
in all performed simulations.
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FIGURE 4 | Conditions to locate HIV-infected target cells within a LN before viral release. (A) General scheme of in silico simulations. Time since the HIV-infected

target cell was introduced until it was located by effector HIV-specific CTLs was measured in 24-h simulations. The infected cell was either non-motile DC (B,D) or

motile CD4+ T cell (C,E). In (B,C), the precursor frequency, i.e., the frequency of effector T cells, was varied, from 0.04 to 5%. In (D,E), the effect of decreased

intrinsic motility of T cells was studied. The average T-cell velocity was decreased up to 50%. In all plots, the fraction of cases with location time >24 h is indicated,

thus providing the estimates for probability to locate target cells within 24 h. The time range between the start and the peak HIV release from infected T cells (20) is

shown in pink. It is used to estimate the probability of a virus burst to escape effector CTLs and, thus, to contribute to the spread of HIV-infected cells within a LN. TC,

T cell; DC, dendritic cell.

DISCUSSION

We have developed a biophysics-based computational model
of T-lymphocyte motility that is calibrated using empirical
in vivo data on T-cell migration in LN tissue representing

three spatial metrics of multicellular systems behavior, i.e.,
translational speed, turning angle speeds, and meandering index.
The model provides the tool to quantify the velocity and
the driving force fields in the LN. It enabled us to predict
frequency and motility parameters that are required for a
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timely detection of productively HIV-infected cells within LNs
before they release viral progeny. As such, our study provides
a quantitative guide for an informed design of HIV vaccines.
Furthermore, as the immunological principles of antigen-specific
T-cell activation and immune surveillance imbedded in our
model also apply to other infections and cancers, our findings
may be used to define the general requirements for any efficient
immunotherapeutic intervention against pathogens or cancers
in relation to disease-specific parameters and states of lymphoid
tissue and T cells. Thus, our model has a significant potential to
guide the search for better and more efficient immunotherapies
in the near future.

Other processes, e.g., chemotaxis, haptotaxis, and others,
can influence the efficacy of target cell search by CTL. The
impact of chemotactic migration of T cells toward DCs has
been computationally analyzed using a cellular Potts Model (58),
an agent-based model (59), and a multicompartmental spatially
resolved stochastic model of T-cell circulation (60). The results
suggest that the chemoattraction toward target cells modestly
speeds up the search process for T cells that successfully find
the chemokine-producing DCs. However, a qualitative model
presented in (59) suggested that with even weak chemotaxis,
substantially lower numbers of CTL are required for sterilizing
immunity. Further data-based model-driven research is needed
to clarify the contribution of chemotaxis to T-cell migration
under normal conditions and during inflammation (61).

Phenomenological Ordinary Differential Equation (ODE)
models may also be developed to simulate the interactions
between cell populations in the LN. However, these models are
not suitable for the present study for three reasons. First, data on
T-cell motility in the LN cannot be directly used to calibrate such
models, thereby limiting the validity of their predictions. Second,
the objective of our study, which is the early detection of HIV-
infected T cells and DCs, requires the monitoring of the spatial
density of T cells in the LN rather than the total number of T cells.
Changes in the spatial distribution of T cells in the LN can be
related to spatial mechanisms such as chemotaxis and migration.
Therefore, it is crucial to consider spatial aspects in the model.
Finally, ODE models based on “mass action”- or “predator–
prey”-type parameterizations would require the parameter values
specifying a per capita killing rate of target cells. The respective
parameter can be determined by the mean time needed for a
migrating CTL to locate infected cells. A priori estimates of this
parameter are not available. It is the spatially resolved model-
based simulation that needs to be implemented in order to
quantify the killing rate coefficient of the ODE model.

Moving from phenomenological models of spatiotemporal
dynamics of immune processes (e.g., the compartmental
models, CAMs) to a physics-based description of immune cell
migration in complex multicellular tissue environments presents
a challenge to mathematical immunology. Advances in the direct
visualization of antigen-specific T-cell mobility during their
search for and their interaction with antigen-presenting cells
within LNs set the basis for diverse modeling approaches (7, 10,
11), which have been so far based on ad hoc postulated rules
of cell behaviors. Our study gives a biophysics perspective on
coordinated cell motility in lymphoid tissues, thus extending the

range of modeling tools available for implementing integrative
approaches to the exploration of the immune system.

CPMs have also been applied previously to study intranodal
T-cell migration (58). The CPM framework is a valuable tool
for a phenomenological description of multicellular patterning,
providing realistic simulations of morphological changes for
various cell types. The strength of this approach stems from
its flexible energetic formalism that allows for extensions to
incorporate various biological processes (62). Although the
CPM framework has a richer potential for describing individual
cell dynamics, including the cell shape, this comes at the
expense of (i) a higher-dimensional representation of the cell
configuration (e.g., the number of voxels or pixels), (ii) the
use of phenomenologically rather than biophysically defined
parameters, and (iii) a much higher computational cost to
perform simulations required to explore T-cell search strategies.
Besides, there is no direct correspondence of most of the CPM
parameters with biophysical properties of cells, and the meaning
of some CPM parameters is still under debate (62, 63). Moreover,
CPM temporal kinetics obtained with the modified Metropolis
algorithm does not preserve the detailed balance condition for
the underlying stochastic process. This implies that the exact
relation between forces of cell interactions and energy terms of
CPMs cannot be obtained even for the overdamped dynamics
approximation (62, 63).

Computational modeling of multicellular dynamics in
lymphoid tissues provides a theoretical tool to be used for a
better understanding of the determinants of efficient immune
responses against pathogens with a final aim of an optimal
manipulation of the immune systems performance (2, 15).
Given that the quest for an effective HIV vaccine remains
a global priority (64) and that the localization, migration,
and frequency of CTLs in LNs determine the extent of virus
elimination (17, 19, 36, 56, 65), we sought to use our modeling
approach to define threshold frequencies of CTLs in LNs for
protection against HIV. Since an HIV infection can influence
(i) CD4+ T-cell motility by a direct mechanism involving
the HIV Nef protein and (ii) CTL locomotion via an indirect
mechanism related to the induction of lymphatic tissue fibrosis,
we considered both phenomena to predict the effect of reduction
of T-cell motility. We estimated that the frequency of antigen-
specific CTL should be about 5% to timely detect and completely
eliminate productively infected DCs within 18 h. The time
reduces to 4 h for productively infected CD4+ T cells, which are
motile. For an HIV-specific T-cell frequency of 1%, we computed
that the inhibition of CTL locomotion by two-fold would
reduce the probability of detection of infected target cells within
24 h post-infection from 0.84 to 0.42. Thus, the requirements
for a prophylactic vaccine for seronegative individuals and
an immunotherapeutic intervention of already HIV-infected
individuals may differ significantly and are influenced by the
state of the lymphatic tissue structure.

Understanding the spatiotemporal dynamics of immune cells
globally in the lymphatic system and locally in LNs is considered
to be a prerequisite for the development of novel immune
interventions in the context of HIV cure strategies (15, 56). To
this end, mathematical tools are being increasingly applied to
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predict the impacts of trafficking and motility parameters on
the efficiency of immune surveillance in health and disease. For
example, an optimal surveillance strategy for T cells was analyzed
by compartmental modeling of their systemic recirculation and
LN transit times using a multicompartmental consideration
(66). The protective effect of increased CD4+ T-cell trafficking
on the dynamics of HIV infection has been recently shown
using another compartmental model (67), thus providing a basis
for considering cell trafficking as an adjunct therapy option.
A multiscale model of Mycobacterium tuberculosis infection
including an agent-based description of the cellular movement in
a two-dimensional simulation grid representing the granuloma
was developed and calibrated using non-human primates to
derive the prediction of parameters underlying granuloma
sterilization (8). However, such modeling attempts are still rare.

In conclusion, the large number of existing mathematical
models based on low-resolution descriptions of immune
functions has to be further extended and embedded into
physiologically distinct compartments and 3D morphological
constraints inherent to cells, tissues, and the whole organism.
This will then allow the research community not only to
get a better quantitative understanding of immune system
functioning in infections such as HIV but also enable to
build integrative models for antiviral and immunomodulatory
drugs of various physical and chemical nature as well as the
effects of adoptive cell transfer therapies. We believe that a
comprehensive approach to combination therapies based onART
and immunomodulatory drugs affecting a range of processes,
including LN fibrosis, the exhaustion of CTLs, and T-cell
motility, should rely on formulation and implementation of
hybrid spatially resolvedmultiscale mathematical models of virus
infections (8, 9, 68). The here-developed model offers a broadly

applicable generic mathematical tool for linking individual and
coordinated cell behaviors that can be used for in silico studies
to embed immune processes into their spatial context. The
physics-based computational model of multicellular dynamics
of the immune response in lymphoid tissues provides a solid
module that can be universally used in systems immunology
studies (2, 6) for the benefit of patients suffering from chronic
virus diseases.
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