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Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that orchestrate genetic networks
by modulating gene expression. Given their importance in vascular development,
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homeostasis and diseases, along with the technical feasibility in deploying their function » endothelium
in vivo, the so-called ‘vascular miRNAs' have become key targets for therapeutic intervention. > signalling
Herein, we have summarised the state-of-the-art on vascular miRNAs and we have

discussed the role miRNA biogenesis and the extracellular vesicles (EVs) miRNA transport

in vascular biology.

Introduction to miRNAs in vascular biology

MicroRNAs (miRNAs) are a member of the small
non-coding RNA family; they are ~22 nucleotides and are
strong post-transcriptional regulator of gene expression.
The specificity of miRNA targeting is defined by the
complementarities between positions 2 and 8 of miRNA
5’-end (also termed the seed sequence), with generally the
3’-untranslated region of target mRNAs. The capacity of
miRNAs to simultaneously inhibit many different mRNAs
allows for an amplification of biological responses (1). The
reference repository miRBase, currently holds information
about 1917 human precursors and 2656 mature miRNAs
(release 22) (2). In the last decade, the importance of
miRNAs in vascular biology has consolidated, with
miRNAs being established one of the major post-
transcriptional regulatory elements in vascular biology.
Among the miRNAs deposited in miRBase, 42 have been
described as associated with endothelial cell function
and angiogenesis (3). The ability of miRNAs to regulate
vascularisation and to target several genes simultaneously
makes them an extremely attractive target for therapeutic
angiogenesis.

Analysis of miRNA transcription target
recognition have been extensively studied in the past
years; however, two regulatory mechanisms will deserve

and

specific attention in the future: regulation of miRNA
biogenesis and intercellular transfer.

Regulation of miRNA biogenesis in
vascular biology

Most miRNAs are transcribed by RNA polymerase II as
primary pri-miRNA transcripts, and undergo further
processing by Drosha and Dicer nuclease complexes to
produce miRNA duplexes 19-24bp in length (4).

Research in the past few years has provided novel
knowledge of miRNA biogenesis which have been also
described in the vascular cells (Fig. 1). To date, there are
not studies that describe aspects of miRNA biogenesis that
are specific only for vascular cells.

Dicer-dependent of miRNA expression
plays an important role in the regulation of
vascular function. Dicer is critical for embryonic (5) and
postnatal angiogenesis (6) and regulates endothelial
miRNA expression (7). Endothelial Dicer promotes
endothelial inflammation and atherosclerosis in part by
miR-103-mediated suppression of KLF4 (8). Interestingly,
Dicer1-dependent

control

ageing-induced dysregulation of
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miRNA expression impairs angiogenic capacity of rat
brain microvascular endothelial cells (ECs) (9).

Drosha, as well as Dicer, a key role in endothelial
miRNA expression (7). Drosha-deficient zebrafish showed
abnormalities in vascular development, and mice with
an endothelial-specific knockout of Drosha exhibited
disorganised, dilated vasculature and haemorrhage, which
resemble the clinical presentations of HHT patients (10).
Interestingly, the knockout of Drosha-regulating proteins
DEADbox RNA helicases p68-p72 is embryonically lethal
and knockout embryos display severe malformation
of blood vessels (11). Argonaute 2 (AGO2)-associated
miRNAs and mRNAs encoding cytoskeletal, contractile,
adhesive and extracellular matrix (CAM) proteins have
been identified (12). Inhibition of DROSHA or AGO2
promoted a contractile phenotype in endothelial and
fibroblast cells in vitro, and increased tissue stiffness,
contractility and extracellular matrix deposition in the
zebrafish fin fold in vivo (12).

Crosstalk between different cellular pathways and
miRNA biogenesis has been reported, and it is likely
that many more such connections will be unravelled.
For example, the regulatory potential of RNA-binding
protein (RBPs) is tightly linked to miRNA biogenesis,
and a broad layer of miRNA regulation by RBPs can be
predicted (13). A recent paper demonstrated that post-
transcriptional regulation of 14932 miRNAs is mediated
by the cold-inducible RBP (CIRBP) and hydroxyacyl-
CoA dehydrogenase trifunctional multienzyme complex
subunit beta (HADHB) during vascular regeneration

Regulation of miRNA biogenesis in vascular cells.

after ischaemia (14). Specifically, CIRBP and HADHB
are upregulated after hind-limb ischaemia in mice and
regulates the processing of miR-329 (14).

Furthermore, crosstalk between miRNA biogenesis
and signal transduction through phosphorylation of
miRNA-processing enzymes is emerging as an important
regulatory principle in vascular disease. The regulation
of miR-21 is crucial in vascular biology and SMADs are
recruited to pri-mir-21 in a complex with the RNA helicase
p68 and facilitate its DROSHA-mediated processing (15,
16). MAPK signalling affects miRNA biogenesis. TRBP
is phosphorylated by the MAPK ERK, which increases
the stability of the Dicer-TRBP complex and stimulates
miRNA production (17). Additional stabilisation of TRBP
is achieved through its phosphorylation by ribosomal
protein S6 kinase (S6K), which is activated by ERK and
mTOR, thereby integrating input from different signalling
pathways. This also contributes to a pro-growth miRNA
expression signature in lymphatic ECs and can be
pharmacologically modulated (18).

Interestingly, also autophagy has been linked with
miRNA biogenesis. DICER and AGO2 are targeted
for degradation by the selective autophagy receptor
NDPS2. Autophagy establishes a checkpoint required for
continued loading of miRNA into AGO2, and it is required
for activity of miRNAs (19). Notably in the context of the
vascular biology, a recent study showed HIF-la binds
directly Dicer and enhances its autophagy-mediated
degradation by facilitating Dicer ubiquitination by the E3
ligase Parkin (20).
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miRNA intercellular transfer and
signalling via EVs

A revolutionary hypothesis, that extracellular miRNA
can mediate cell-cell signalling via paracrine or even
endocrine routes, emerged after several research groups
found that substantial amounts of miRNA purified
with extracellular vesicles (EVs) including microvesicles
(MVs) and exosomes (21, 22). MVs are a heterogeneous
population of EVs up to 2pm in diameter called which are
formed by budding and shedding of the cell membrane,
a process that involves calcium-dependent signalling
and enzyme activity. On the other hand, exosomes
(50-100nm) are a homogenous population of Evs,
which are released from cells when multivesicular bodies
(MVBs) fuse with the plasma membrane in a highly
regulated process and release their contents (23).

Multiple follow-up publications demonstrated that
miRNAs entrapped within various EVs can be transferred
to recipient cells, alter gene expression and provoke
functional effects (24). Moreover, several studies reported
that miRNA content in exosomes was significantly
different from that in parental cells, indicating that
extracellular miRNAs may be selectively packed into
the EVs (24). The extracellular miRNAs embedded
in EVs are protected from nucleases activity (22, 25).
Some studies report absence of AGO2 in the exosomes
sub-group of EVs (26), whereas others report the presence
of AGO2 protein (27). In this regard, RISC proteins in
EVs could process precursor miRNAs (pre-miRNAs) into
mature miRNAs, inducing the cell-independent miRNA
biogenesis (28).

Recently a different theory on extracellular miRNAs
has been proposed: the association of AGO protein-bound
miRNAs with exosomes, microvesicles and apoptotic
bodies could be explained by the well-known capacity of
AGO?2 to bind the membranes (29). It is possible that all
extracellular miRNAs detected so far reside outside EVs,
raising further dispute about the putative mechanisms of
their export and penetration into target cells. Based on this
hypothesis, the extracellular miRNAs have the potential
to serve just as diagnostic tools for vascular disease with a
limited transfer between the cells.

Effects of intra- and extracellular miRNAs
on vascular function

Recent studies have revealed important roles for miRNAs
in regulating either physiological angiogenesis or
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post-ischaemic neovascularisation, particularly through
the regulation of EC function (Table 1). The expression
of miRNA in murine models of hind-limb ischaemia has
been profiled showing that miR-100 (30), miR-424 (31)
and miRNAs belong to miR-106b-25 cluster (32) control
perfusion Interestingly,
inhibition of miRNAs belonging to the 14q32 locus has led
to improvements in post-ischaemic blood flow in vivo (33).
The regulatory effects on angiogenesis are not surprising
within this miRNA cluster as it is known to target critical
angiogenic factors including vascular endothelial growth
factor A (VEGF-A) (33). The miR17-92 cluster is upregulated
in hypoxic tissues and serves a proangiogenic role. The
proangiogenic function of this cluster is associated with
miR-18a and miR-19a (34), whereas the anti-angiogenic
function with miR-92a. Systemic administration of
miR-92a inhibitor restored vascularisation in a mouse
model of hind-limb ischaemia and myocardial infarction
(35). Recently, our work demonstrated that miR-503 has
a prominent role in diabetes-induced impairment of
post-ischaemic reparative neovascularisation (36, 37).
miR-15a, miR-16 and miR-503 belong to the same family
of miRNAs with overlapping targets because of common
seed sequence (38). Transplantation of healthy circulating
proangiogenic cells where miR-15a and 16 were inhibited,
improved post-ischaemic blood flow recovery and
vascularisation (39).

To better understand what miRNAs are involved
in regulating the vasculature and what contribution
they have in the disease pathology, numerous methods
for detecting miRNAs and tools for overexpressing
and knocking down miRNAs have been designed (40).
One novel approach is to identify miRNAs involved
in angiogenesis is high-content screening. In our own
experiment, we used human miRNA mimic library to
identify miRNAs important in the proliferation of ECs, a
critical stage in the process of angiogenesis. Through this
technique, we identified miRNA-26Db as a positive regulator
of endothelial cell proliferation and survival (41).

Endothelial MVs promote re-endothelialisation
following endothelial injury in mice by stimulating
endothelial migration and proliferation upon transfer
of functional miR-126 to target endothelium, with
subsequent downregulation of SPRED1 (42). We have
demonstrated that NF-kB signalling induced miR-503
transcription and the shedding of endothelial MVs by
triggering the expression of Rho kinase (36). miR-503-
containing endothelial MVs are taken up by pericytes
in vivo, thus increasing vessel permeability (36).
Furthermore, miR-143 and miR-145 packaged in

recovery and angiogenesis.
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endothelial EVs released under shear stress are taken up by
smooth muscle cells, where they downregulate target genes,
inducing atheroprotective effects (43). On the other hand,
pericyte-derived miR-132 is taken up by ECs, resulting in a
higher proangiogenic capacity (44). A recent study showed
that several anti-inflammatory microRNAs including
miR-10a were transferred to monocytic cells from EC-EVs
and could repress inflammatory signalling through the
targeting of several components of the NF-xB pathway
(45). Finally, analysis of pericardial fluid (PF) showed that
exosomes are enriched in proangiogenic miRNAs (46).
Delivery of PF exosomes in a mouse model of hind-limb
ischaemia improved post-ischaemic blood flow recovery
and angiogenesis in mice (46).

Conclusions

There is no disputing that miRNAs have a huge influence
on angiogenesis and vascular homeostasis and have
the potential to be the next generation of vascular
therapeutics, however, several technical challenges remain
before this can become a reality and incorporated into
daily treatments for vascular disease. Analysis of miRNA
biogenesis in vascular biology could reveal new mechanisms
to regulate miRNA abundance. Importantly, selective
pharmacologic regulation of the mechanisms involved
in post-transcriptional regulation of miRNA biogenesis,
such as inhibition of ERK or S6 kinases, could provide a
foundation for therapeutic intervention in cardiovascular
diseases underpinned by deregulated miRNA levels. Finally,
the understanding of the fundamental roles of each
type of EVs have in the vessels and the discovery of the
comprehensive mechanism behind the sorting of miRNAs
inside the EVs are the key steps to develop EVs as a tool for
efficient therapeutic angiogenesis in vascular disease.
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