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Intensive Care Unit, Hebei Medical University Fourth A�liated Hospital and Hebei Provincial Tumor

Hospital, Shijiazhuang, China

Object: This study aimed to develop and validate a set of practical predictive

tools that reliably estimate the 28-day prognosis of acute kidney injury patients

undergoing continuous renal replacement therapy.

Methods: The clinical data of acute kidney injury patients undergoing

continuous renal replacement therapy were extracted from the Medical

InformationMart for Intensive Care IV databasewith structured query language

and used as the development cohort. An all-subset regression was used for the

model screening. Predictive models were constructed via a logistic regression,

and external validation of the models was performed using independent

external data.

Results: Clinical prediction models were developed with clinical data from

1,148 patients and validated with data from 121 patients. The predictive model

based on seven predictors (age, vasopressor use, red cell volume distribution

width, lactate, white blood cell count, platelet count, and phosphate) exhibited

good predictive performance, as indicated by a C-index of 0.812 in the

development cohort, 0.811 in the internal validation cohort and 0.768 in the

external validation cohort.

Conclusions: The model reliably predicted the 28-day prognosis of acute

kidney injury patients undergoing continuous renal replacement therapy. The

predictive items are readily available, and the web-based prognostic calculator

(https://libo220284.shinyapps.io/DynNomapp/) can be used as an adjunctive

tool to support the management of patients.
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1. Introduction

Acute kidney injury (AKI) is a critical comorbidity and a

global health problem with high morbidity and high mortality

(1–3). In the intensive care unit (ICU), the morbidity can be as

high as 50% (4). Since there are no specific drugs for AKI, renal

replacement therapy (RRT) plays a major role in treatment (2).

Although there is currently no evidence that continuous RRT

(CRRT) is superior to intermittent RRT (IRRT) (5–7), CRRT

is often preferred for hemodynamically unstable patients (2).

However, among these patients, even with appropriate CRRT,

there is still very high mortality (8), and the cost of treatment

is often high. Thus, it is important to develop reliable tools

that can inform expectations regarding outcomes and decisions

regarding treatment.

Clinical predictive models can estimate the probability of

a patient’s outcome through the statistical implementation of

a series of clinical characteristics of the patient, and may be

helpful for patient management as a decision support tool (9).

Currently, the most widely used outcome prediction models

in the ICU are the Acute Physiology and Chronic Health

Evaluation II (APACHE II) classification system (10) and the

Sepsis-related Organ Failure Assessment (SOFA) score (11).

However, these models do not focus on outcome prediction

in AKI patients undergoing CRRT. Several prediction models

have been published (12, 13), but there are some limitations in

clinical practice, such as improper variable selection strategies,

difficulty of use in clinical settings and a lack of generalizability

to different settings. Therefore, there is an urgent need develop

an easy-to-use predictive tool that supports clinical decision-

making.

We developed and validated outcome prediction models of

AKI patients treated with CRRT.

2. Methods

2.1. Data source

The development cohort included 1148 patients who

were recruited from Medical Information Mart for Intensive

Care IV (MIMIC IV version 1.0) (14, 15). MIMIC IV is a

relational database containing the real information of patients

admitted to the ICUs of Beth Israel Deaconess Medical Center

in Boston, MA, USA, from 2008 to 2019. The principal

investigator completed the Human Research Course (Record

ID: 37097306) and obtained access to this database, and the

project was approved by the institutional review boards of

the Computational Physiology Laboratory of the Massachusetts

Institute of Technology and Beth Israel Deaconess Medical

Center and was granted a waiver of informed consent. All

data were extracted with structured query language (SQL) from

BigQuery.

The validation cohort included 121 patients treated in

the Department of Intensive Care Unit, Fourth Hospital of

Hebei Medical University, Shijiazhuang, China. This study was

approved by the Ethics Committee of the Fourth Hospital of

Hebei Medical University (approval number: 2021KS034).

2.2. Patient involvement

The inclusion criteria in this study were as follows: (1)

AKI patients meeting the KDIGO-AKI criteria; and (2) patients

who received CRRT after diagnosis. Patients younger than

18 years were excluded, and when the same patient were

admitted multiple times, only data for the first admission was

included. In addition, in the validation cohort, patients whose

family members voluntarily stopped treatment within 24 h after

receiving CRRT were also excluded.

2.3. Diagnosis and outcomes

AKI was defined as any of the following Kidney Disease

Improving Global Outcomes (KDIGO) criteria (16): increase in

SCr≥ 0.3mg/dl (≥ 26.5mol/l) within 48 h; increase in SCr≥ 1.5

times baseline, which is known or presumed to have occurred

within the prior 7 days; or a urine volume < 0.5ml/kg/h for 6 h.

The primary outcome was defined as death within 28 days

after receiving CRRT. Patients in the validation cohort whose

family members voluntarily stopped treatment for more than 24

h were considered dead.

2.4. Variable extraction

The following variables were extracted from the relevant

literature and clinical records:

Demographic characteristics: Age (17–21), sex (20, 21),

height, and weight (21).

Comorbidities: Congestive heart failure (CHF) (18),

atrial fibrillation (AF), chronic liver disease (CLD), chronic

obstructive pulmonary disease (COPD), chronic coronary

syndrome (CCS) (18), hypertension, diabetes, and malignant

cancer (18, 19).

Last vital signs within 2 h prior to receiving CRRT: Heart

rate (HR) (18), mean arterial pressure (MAP) (18, 21), and

temperature (T).

Results of the last laboratory test within 24 h prior to

receiving CRRT: White blood cell count (WBC), hemoglobin

(HB) (17, 20), red cell volume distribution width (RDW) (22),

platelet count (PLT) (18, 20, 21), sodium (20), potassium (20),

calcium, phosphate (18, 23, 24), total bilirubin (TBIL) (18,

20, 21), albumin (18, 20, 21), creatinine (18, 21), baseline

creatinine (20, 21), pH (17, 20), oxygenation index (21), base
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excess (20), and lactate (20, 21). Oxygenation index is calculated

by equation PaO2/FiO2.

Interventions 24 h prior to receiving CRRT: Mechanical

ventilation (18, 20, 21), vasopressor use (20, 21), sedative use,

and analgesic use.

Central venous pressure (CVP) (missing rate: 74.7%), mean

platelet volume (25) (missing rate: 100%), troponin (missing

rate: 73.9%), N-terminal pro B type natriuretic peptide (NT-

proBNP) (missing rate: 97.4%), and creatine kinase (missing

rate: 70.2%) were not extracted due to excessive amounts of

missing data (missing rate > 50%), and there appears to be no

evidence of their relationship with prognosis in this group of

patients.

2.5. Handling of missing data

In the development cohort, there were missing data for most

variables. Variables with excessive amounts of missing data were

excluded.We assumed that the data were missing at random and

filled in missing data using multiple imputation with chained

equations. We performed fifty multiple imputations and merged

the dataset into the development dataset. All analyses were

performed with R software (version 4.1.1; R Foundation for

Statistical Computing).

2.6. Model development

Weused aQ-Q plot to assess the normality of the continuous

variables, and cubic spline functions were used to assess the

linearity of the relationship. Continuous variables that did

not conform to normal or linear distributions were converted

to categorical covariates based on their clinical significance.

The continuous variables are expressed as the mean (standard

deviation), and the categorical covariates are reported as

numbers and percentages.

All variables were included in the logistic regression

model, and we added an interaction term between mechanical

ventilation and oxygenation index. The variables were screened

using an all-subset regression, with the best model judged

by adjusting the r-squared and Bayesian information criterion

(BIC). The screened models were tested for multicollinearity by

calculating the variance inflation factor (VIF).

Finally, we used the best model to construct a nomogram

that could provide clinicians with an intuitive and quantitative

tool for predicting the outcomes of AKI patients undergoing

CRRT.

2.7. Model validation

The model discrimination was evaluated with the C-index

and area under the receiver operator characteristic curve (AUC).

The model calibration was evaluated with Brier scores and

calibration plots. Decision curve analysis (DCA) curves were

used to assess the clinical applicability of the model (26, 27).

Internal validation was performed with the enhanced

bootstrap technique, in which regression models were fitted in

1,000 bootstrap replicates, drawn with replacement from the

development cohort. The model was refitted in each bootstrap

replicate and tested using the original sample to estimate

optimism in the model performance. External validation was

performed with the validation cohort.

FIGURE 1

Flow chart of this study.
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TABLE 1 Clinical characteristics of the development cohort.

Overall Survival Death

N 1,148*50 662*50 486*50

Sex (male) [n(%)] 34,800 (60.6) 19,950 (60.3) 14,850 (61.1)

Age [mean (SD)] 63.17 (14.61) 62.60 (14.68) 63.95 (14.48)

BMI [mean (SD)] 31.37 (8.28) 31.02 (8.06) 31.84 (8.56)

CHF [n (%)] 12,150 (21.2) 7,150 (21.6) 5,000 (20.6)

AF [n (%)] 16,200 (28.2) 9,850 (29.8) 6,350 (26.1)

CLD [n (%)] 9,350 (16.3) 4,550 (13.7) 4,800 (19.8)

COPD [n (%)] 7,600 (13.2) 4,300 (13.0) 3,300 (13.6)

CCS [n (%)] 16,200 (28.2) 9,900 (29.9) 6,300 (25.9)

Hypertension [n (%)] 6350 (11.1) 3,100 (9.4) 3,250 (13.4)

Diabetes [n (%)] 23,500 (40.9) 14,950 (45.2) 8,550 (35.2)

Malignant cancer [n (%)] 7,650 (13.3) 3600 (10.9) 4,050 (16.7)

MAP (mmHg) [mean (SD)] 73.71 (13.79) 75.83 (14.13) 70.83 (12.76)

HR (bpm) [mean (SD)] 88.66 (19.44) 85.79 (19.17) 92.56 (19.11)

Temperature (◦C) [n (%)]

<36.0 7,210 (12.6) 3515 (10.6) 3695 (15.2)

[36.0, 37.5] 41,331 (72.0) 24,776 (74.9) 16,555 (68.1)

[37.5, 38.0] 4,330 (7.5) 2,368 (7.2) 1,962 (8.1)

≥38.0 4,529 (7.9) 2441 (7.4) 2,088 (8.6)

WBC (∗109/L) [n(%)]

<4.0 2,535 (4.4) 1,120 (3.4) 1,415 (5.8)

[4.0, 10.0] 17,198 (30.0) 12,220 (36.9) 4,978 (20.5)

[10.0, 40.0] 36,139 (63.0) 19,188 (58.0) 16,951 (69.8)

≥40.0 1528 (2.7) 572 (1.7) 956 (3.9)

Hemoglobin (g/dL) [mean (SD)] 9.29 (1.75) 9.31 (1.72) 9.26 (1.78)

RDW (%) [mean (SD)] 17.05 (2.67) 16.67 (2.34) 17.57 (2.99)

PLT (∗109/L) [n(%)]

>150 24,543 (42.8) 16,170 (48.9) 8,373 (34.5)

≤150 11,659 (20.3) 7,170 (21.7) 4,489 (18.5)

≤100 14,989 (26.1) 7,372 (22.3) 7,617 (31.3)

≤50 6209 (10.8) 2,388 (7.2) 3821 (15.7)

Sodium (mmol/L) [n(%)]

<135.0 19,410 (33.8) 11,644 (35.2) 7,766 (32.0)

[135.0,145.0] 33,517 (58.4) 20,001 (60.4) 13,516 (55.6)

>145.0 4473 (7.8) 1455 (4.4) 3,018 (12.4)

Potassium (mmol/L) [mean (SD)] 4.77 (0.97) 4.70 (0.94) 4.87 (1.00)

Calcium (mmol/L) [n(%)]

<2.25 45,339 (79.0) 26,116 (78.9) 19,223 (79.1)

[2.25, 2.75] 11,499 (20.0) 6,674 (20.2) 4,825 (19.9)

>2.75 562 (1.0) 310 (0.9) 252 (1.0)

Phosphate (mmol/L) [mean (SD)] 2.08 (0.79) 1.95 (0.75) 2.26 (0.82)

Total bilirubin≥ 17.1 µmol/L [n(%)] 36,292 (63.2) 19,085 (57.7) 17,207 (70.8)

Albumin (g/dL) [mean(SD)] 2.91 (0.73) 2.98 (0.71) 2.82 (0.74)

Creatinine/Baseline creatinine [n(%)]

<1.5 4,578 (8.0) 3,363 (10.2) 1,215 (5.0)

≥1.5 5,527 (9.6) 3,653 (11.0) 1,874 (7.7)

≥2.0 12,982 (22.6) 7,150 (21.6) 5,832 (24.0)

(Continued)

TABLE 1 Continued

Overall Survival Death

≥3.0 34,313 (59.8) 18,934 (57.2) 15,379 (63.3)

pH [mean (SD)] 7.31 (0.11) 7.34 (0.10) 7.28 (0.12)

Oxygenation index [n (%)]

≤100 6,409 (11.2) 3,086 (9.3) 3323 (13.7)

[100, 200] 22,440 (39.1) 12,171 (36.8) 10,269 (42.3)

[200, 300] 18,407 (32.1) 11,345 (34.3) 7,062 (29.1)

>300 10,144 (17.7) 6498 (19.6) 3646 (15.0)

Base excess (mmol/L) [mean (SD)] −5.48 (6.38) −3.89 (5.67) −7.64 (6.65)

Lactate (mmol/L) [mean (SD)] 3.93 (4.27) 2.54 (2.61) 5.83 (5.25)

Mechanical ventilation use [n (%)] 18,250 (31.8) 9,500 (28.7) 8,750 (36.0)

Vasopressor use [n (%)] 34,900 (60.8) 15,200 (45.9) 19,700 (81.1)

Sedative use [n (%)] 38,800 (67.6) 20,600 (62.2) 18,200 (74.9)

Analgesic use [n (%)] 42,900 (74.7) 22,700 (68.6) 20,200 (83.1)

*BMI, bodymass index; CHF, congestive heart failure; AF, atrial fibrillation; CLD, chronic

liver disease; COPD, chronic obstructive pulmonary disease; CCS, chronic coronary

syndromes; MAP, mean arterial pressure; HR, heart rate; WBC, white blood cells count;

RDW, red cell volume distribution width; PLT, platelet count.

3. Results

3.1. Model development

In total 1,148 patients from the MIMIC IV database were

eventually included in our study (Figure 1). The 50 datasets

obtained by multiple imputation techniques were merged into

the final development cohort (Table 1). The best models were

screened by adjusting the r-squared value and BIC (Figure 2).

The VIFs of the screened variables were all <5. Seven

variables (age, vasopressor use, RDW, lactate, WBC, PLT, and

phosphate) were finally included in our model, which was used

to plot the nomogram (Figure 3) and make the web-based

prognostic calculator (Figure 4, https://libo220284.shinyapps.io/

DynNomapp/).

The predictive performance of our model as measured

by the C-index was 0.812 (Table 2 and Figure 5A) in the

development cohort, indicating that the model had relatively

good discriminative capacity. Our model showed high

agreement between the actual and predicted probabilities in

the development cohort, with a Brier score of 0.173 (Table 2

and Figure 5B). In addition, the DCA curve demonstrated

that our model was clinically useful in the development cohort

(Figures 5C,D).

3.2. Internal validation

Our model also achieved good internal validation

performance after 1,000 bootstrap replicates, with a C-index of

0.811 and a Brier score of 0.173 (Table 2).
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FIGURE 2

All-subsets regression by adjusting the r-squared value (A) and BIC (B).

3.3. External validation

In total 121 patients were eventually included in the

external validation cohort (Table 3 and Figure 1). The predictive

performance of the nomogram as measured by the C-

index was 0.768 (Table 2 and Figure 6A) in the external

validation cohort, indicating that the model had relatively

good discriminative capacity and generalizability in different

settings. The nomogram also showed acceptable agreement

between the actual and predicted probabilities in the external

validation cohort, with a Brier score of 0.202 (Table 2

and Figure 6B). In addition, the DCA curve demonstrated
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FIGURE 3

The nomogram for acute kidney injury patients undergoing continuous renal replacement therapy.

FIGURE 4

The web-based prognostic calculator.

that our model was clinically useful in different settings

(Figures 6C,D).

4. Discussion

AKI is common in the ICU, and although a subset of small

studies has shown that preventive measures, and the rapid

identification of AKI can lead to improved outcomes (28–30),

patients entering the ICU often already have AKI, thus in clinical

practice in the ICU, ICU physicians tend to focus more on the

treatment and prognosis of AKI than on the prevention and

diagnosis of AKI.

TABLE 2 The performance in model development, internal validation,

and external validation.

C-index Brier score

Development 0.812 0.173

Internal validation 0.811 0.173

External validation 0.768 0.202

CRRT plays an important role in the management of AKI

in the ICU. Since not all patients with AKI ultimately benefit

from CRRT, patients, their relatives and clinicians need reliable
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FIGURE 5

The receiver operator characteristic curve (A), calibration plots (B), decision curve analysis curves (C), and clinical impact curve (D) for model in

the development cohort.

information regarding prognosis such that they can effectively

participate in shared decision-making. This is important because

they are unlikely to rely solely on clinician experience and

intuition when making treatment decisions.

With the widespread use of electronic medical record

systems in clinical settings, “big data” and clinical medicine are

becoming inseparable. From the perspectives of volume, speed,

and diversity, the ICU is a wonderful combination of “big data”

and clinical medicine (31). In such an era of big data, the organic

combination of medical informatics and big data analytics

provides a fertile new ground for analyzing the management

of AKI (32, 33). Prediction tools provide an opportunity to

improve AKI management in the era of big data.

Numerous predictive models of acute kidney injury are

available (34), but few models are available for patients with

AKI who are receiving CRRT (18, 35–37). Therefore, we aimed

to obtain a reliable tool to predict the 28-day mortality in this

group of patients. It is essential to clarify that although the use
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TABLE 3 The predictor items of external validation cohort.

Overall Survival Death

N 121 63 58

Age [mean (SD)] 62.56 (14.79) 57.32 (14.18) 68.26 (13.36)

Vasopressor use [n (%)] 88 (72.7) 36 (57.1) 52 (89.7)

RDW (%) [median [IQR]] 14.90 [13.90, 16.20] 14.50 [13.70, 15.35] 15.60 [14.60, 17.12]

Lactate (mmol/L) [mean (SD)] 3.80 (3.83) 2.89 (2.43) 4.79 (4.74)

WBC (∗109/L) [n (%)]

<4.0 4 (3.3) 2 (3.2) 2 (3.4)

[4.0, 10.0] 28 (23.1) 17 (27.0) 11 (19.0)

[10.0, 40.0] 87 (71.9) 42 (66.7) 45 (77.6)

≥40.0 2 (1.7) 2 (3.2) 0 (0.0)

PLT (∗109/L) [n (%)]

>150 53 (43.8) 30 (47.6) 23 (39.7)

≤150 24 (19.8) 11 (17.5) 13 (22.4)

≤100 23 (19.0) 13 (20.6) 10 (17.2)

≤50 21 (17.4) 9 (14.3) 12 (20.7)

Phosphate (mmol/L) [mean (SD)] 1.69 (0.70) 1.59 (0.68) 1.81 (0.71)

*RDW, red cell volume distribution width; WBC, white blood cells count; PLT, platelet count.

of Major Adverse Kidney Events (MAKE) has been suggested as

a composite endpoint for such studies (38). Such a composite

endpoint was also used in the SEA-MAKE score developed by

Sukmark et al. (39). Twenty-eight day mortality was chosen as

the single endpoint in this study. The primary considerations

are as follows: First, the significant advantage of the composite

endpoints is that it increases the number of events, but in

patients with AKI undergoing CRRT, mortality would have been

high enough and a better solution might have been to use

a multivariate outcome with different outcomes, but due to

the limitations of the study, this issue needs to be considered

in future studies. Second, we did not know which predictors

contributed to each component of the composite outcomes.

Finally, even with the current definition of MAKE, death is

still the most serious and important outcome of a concern.

Therefore, mortality was ultimately chosen as the outcome

variable in this study.

Ultimately, the prediction models performed robustly in

a validation cohort from different geographical regions, time

periods, and settings of care. The predictors in our model are

readily available, and the nomogram and web-based prognostic

calculator could facilitate clinical adoption.

4.1. Comparison with previous studies

Several prediction models of the outcome of AKI patients

with CRRT have been developed, although their clinical use is

rare.

Kim et al. (12) developed the MOSAIC model for patients

with AKI undergoing CRRT. Unfortunately, this model only

incorporated APACHE II outcomes and SOFA scores, and

although these data were extremely accessible, they did not

consider several other indicators that have predictive value and

are readily available. A study by Oh et al. (22) showed that RDW

was an independent predictor of the 28-day mortality in patients

with AKI receiving CRRT. Phosphate reflected disease severity

and predictedmortality in AKI patients undergoing CRRT in the

studies by Jung et al. (23, 24). Both RDW and phosphate were

included in our study. In addition, we considered additional

comorbidities and laboratory indicators.

Machine learning algorithms have also been applied to

predict outcomes in AKI patients undergoing CRRT (13).

Machine learning algorithms appear to provide better predictive

performance than traditional models, but their hard-to-interpret

nature may also lead to overestimation of model accuracy and

exaggeration of actual performance (40). We chose the more

robust logistic regression model in our study. Our model did not

perform worse than machine learning algorithms.

The HELENICC score is an excellent model for predicting

mortality in patients with sepsis-related AKI undergoing

CRRT (41), but not all patients with AKI undergoing CRRT have

sepsis, and we hope that our model will be useful for clinical

decision making in a larger number of patients with AKI.

The greatest advantage of this study over previous studies

is that the external validation was based on completely

independent data, and good model performance was achieved.

This finding demonstrates the good generalizability of our

model.
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FIGURE 6

The receiver operator characteristic curve (A), calibration plots (B), decision curve analysis curves (C), and clinical impact curve (D) for model in

the validation cohort.

4.2. Implications for clinical practice

As statistician Professor Efron stated, in the absence of

genius-level insight, statistical estimation theory is intended as

an instrument for peering through noisy data and discerning

a smooth underlying truth (42). Our models are not

solely designed to predict patient outcomes but to offer new

possibilities for clinicians and patient families to participate in

shared decision-making regarding patient care.

We were able to quickly assess the risk of patient death

with the nomogram and web-based prognostic calculator in this

study, but some challenges exist.

On the one hand, although ICU physicians readily accept

data-driven advice in their interactions with smart devices and

the Internet, they remain cautious regarding the advice such

technology provides in clinical decision-making (43). Evenwhen

models conclude that some AKI patients will not be able to

reverse their deterioration even with CRRT, ICU physicians
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still prefer to treat them to the fullest. Physicians are always

concerned that they are doing too little, and sometimes they

are willing to do more than resuscitation interventions knowing

that a treatment does not fundamentally change the patient’s

outcome (44). Using such technologies in clinical work must

provide actionable information for the right patient at the right

time. For example, outcomes can be predictive information

to help clinicians make clinical decisions with some basis

of reference. In addition, many factors that influence clinical

decisions, including clinical, social, and personal factors, are not

necessarily reflected in the digital record, thus any predictive

results need to be evaluated, interpreted, and fleshed out by

the clinician before any action is taken. Therefore, it is still

the clinician who makes the final decision. Of course, this also

requires critical care physicians to have some ability to interpret

and use these results (43).

On the other hand, no medical practice is immune to ethical

considerations, and the application of these technologies to the

management of critically ill patients is fundamentally a medical

practice for patients. This also requires compliance with medical

ethical requirements.

It is important to emphasize that the inappropriate use of

these technologies can cause harm to patients (45). Therefore,

we must be cautious and ensure that it can be reasonably and

safely tested and used in critically ill patients (46).

4.3. Weaknesses of the study

There are potential limitations in our study.

First, missing data are unavoidable in retrospective studies.

Rather than excluding all patients with missing data from the

analysis, we used multiple imputation to reduce the impact

of missing data. With theoretical and empirical evidence of

the technique’s superiority to traditional complete case analysis,

multiple interpolation has become widely accepted and is

increasingly used (47, 48).

Second, because our development cohort was derived from

the MIMIC-IV database, variables with significant predictive

value that are easily accessible, such as the mean platelet

volume and some widely reported biomarkers, were not

included in our study. Han et al. (25) showed that the mean

platelet volume may be an inexpensive and useful predictor

of the 28-day all-cause mortality in AKI patients requiring

CRRT. The predictive value of biomarkers such as tissue

inhibitor metalloproteinase-2 (TIMP-2), insulin-like growth

factor-binding protein 7 (IGFBP7) and neutrophil gelatinase-

associated lipocalin (NGAL) has also been widely reported (49,

50). Unfortunately, these variables were not available in the

MIMIC-IV database. These variables may need to be considered

in future model updates.

Finally, our model seems to underestimate the mortality

rate of patients. However, the performance during model

development, internal validation, and external validation was

in the acceptable range. Importantly, our validation cohort was

completely independent of the development cohort in both time

and space.

5. Conclusion

The prediction model we developed based on data

from 1,148 patients from the MIMIC IV database reliably

estimated outcomes in a fully independent validation

cohort containing data from 121 patients. The predictor

items are readily available, and the nomogram and the

web-based prognostic calculator offer new possibilities for

shared clinical decision-making between clinicians and

patient families.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary material, further inquiries

can be directed to the corresponding author/s.

Ethics statement

The studies involving human participants were reviewed

and approved by the Ethics Committee of the Fourth Hospital

of Hebei Medical University. Written informed consent for

participation was not required for this study in accordance with

the national legislation and the institutional requirements.

Author contributions

Study design: BL, YH, KZ, and ZH. Data collection: BL,

LC, HZ, XW, and LL. Data analysis and drafting of the

manuscript: BL. Data interpretation: BL, YH, and KZ. Revising

themanuscript content: YH and KZ. Approving the final version

of the manuscript: ZH. All authors contributed to the article and

approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2022.853989
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2022.853989

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fmed.2022.853989/full#supplementary-material

References

1. Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, et al.
Global epidemiology and outcomes of acute kidney injury.Nat Rev Nephrol. (2018)
14:607–25. doi: 10.1038/s41581-018-0052-0

2. Negi S, Koreeda D, Kobayashi S, Yano T, Tatsuta K, Mima T, et al. Acute kidney
injury: epidemiology, outcomes, complications, and therapeutic strategies. Semin
Dial. (2018) 31:519–27. doi: 10.1111/sdi.12705

3. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. (2019)
394:1949–64. doi: 10.1016/S0140-6736(19)32563-2

4. Hoste EAJ, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al.
Epidemiology of acute kidney injury in critically ill patients: themultinational AKI-
EPI study. Intens Care Med. (2015) 41:1411–23. doi: 10.1007/s00134-015-3934-7

5. Rabindranath K, Adams J, Macleod AM, Muirhead N. Intermittent versus
continuous renal replacement therapy for acute renal failure in adults. Cochrane
Database Syst Rev. (2007) CD003773. doi: 10.1002/14651858.CD003773.pub3

6. Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, et al.
Choice of renal replacement therapy modality and dialysis dependence after acute
kidney injury: a systematic review and meta-analysis. Intens Care Med. (2013)
39:987–97. doi: 10.1007/s00134-013-2864-5

7. Nash DM, Przech S, Wald R, O’Reilly D. Systematic review and meta-analysis
of renal replacement therapy modalities for acute kidney injury in the intensive
care unit. J Crit Care. (2017) 41:138–44. doi: 10.1016/j.jcrc.2017.05.002

8. Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan
I, et al. Continuous renal replacement therapy: a worldwide practice
survey. The beginning and ending supportive therapy for the kidney
(B.E.S.T. Kidney) investigators. Intensive Care Med. (2007) 33:1563–70.
doi: 10.1007/s00134-007-0754-4

9. Steyerberg EW,Moons KGM, van derWindt DA, Hayden JA, Perel P, Schroter
S, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research.
PLoS Med. (2013) 10:e1001381. doi: 10.1371/journal.pmed.1001381

10. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a
severity of disease classification system. Crit Care Med. (1985) 13:818–29.
doi: 10.1097/00003246-198510000-00009

11. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H,
et al. The SOFA (sepsis-related organ failure assessment) score to describe organ
dysfunction/failure. On behalf of the working group on sepsis-related problems
of the european society of intensive care medicine. Intens Care Med. (1996)
22:707–10. doi: 10.1007/BF01709751

12. Kim Y, Park N, Kim J, Kim DK, Chin HJ, Na KY, et al. Development of
a new mortality scoring system for acute kidney injury with continuous renal
replacement therapy. Nephrology. (2019) 24:1233–40. doi: 10.1111/nep.13661

13. Kang MW, Kim J, Kim DK, Oh KH, Joo KW, Kim YS, et al. Machine
learning algorithm to predict mortality in patients undergoing continuous
renal replacement therapy. Crit Care. (2020) 24:42. doi: 10.1186/s13054-020-
2752-7

14. Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA, Mark R. MIMIC-IV
(Version 1.0). PhysioNet. (2021). doi: 10.13026/s6n6-xd98

15. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG,
et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research
resource for complex physiologic signals. Circulation. (2000) 101:E215–20.
doi: 10.1161/01.CIR.101.23.e215

16. Levin A, Stevens PE, Bilous RW, Coresh J, Francisco ALMD, Jong PED, et al.
Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO
2012 clinical practice guideline for the evaluation and management of chronic
kidney disease. Kidney Int Suppl. (2013) 3:1–150. doi: 10.1038/kisup.2012.73

17. Lines SW, Cherukuri A, Murdoch SD, Bellamy MC, Lewington
AJP. The outcomes of critically ill patients with acute kidney injury

receiving renal replacement therapy. Int J Artif Organs. (2011) 34:2–9.
doi: 10.5301/IJAO.2011.6312

18. Demirjian S, Chertow GM, Zhang JH, O’Connor TZ, Vitale J, Paganini EP,
et al. Model to predict mortality in critically ill adults with acute kidney injury.
clinical journal of the american society of nephrology: CJASN. (2011) 6:2114–20.
doi: 10.2215/CJN.02900311

19. Stads S, Fortrie G, van Bommel J, Zietse R, Betjes MGH. Impaired
kidney function at hospital discharge and long-term renal and overall survival
in patients who received CRRT. Clin J Am Soc Nephrol. (2013) 8:1284–91.
doi: 10.2215/CJN.06650712

20. De Corte W, Dhondt A, Vanholder R, De Waele J, Decruyenaere J, Sergoyne
V, et al. Long-term outcome in ICU patients with acute kidney injury treated with
renal replacement therapy: a prospective cohort study. Crit Care. (2016) 20:256.
doi: 10.1186/s13054-016-1409-z

21. Katayama S, Uchino S, Uji M, Ohnuma T, Namba Y, Kawarazaki H, et al.
Factors predicting successful discontinuation of continuous renal replacement
therapy. Anaesth Intens Care. (2016) 44:453–7. doi: 10.1177/0310057X1604400401

22. Oh HJ, Park JT, Kim JK, Yoo DE, Kim SJ, Han SH, et al. Red blood cell
distribution width is an independent predictor of mortality in acute kidney injury
patients treated with continuous renal replacement therapy. Nephrol Dial Transpl.
(2012) 27:589–94. doi: 10.1093/ndt/gfr307

23. Jung SY, Kim H, Park S, Jhee JH, Yun HR, Kim H, et al. Electrolyte
and mineral disturbances in septic acute kidney injury patients undergoing
continuous renal replacement therapy. Medicine. (2016) 95:e4542.
doi: 10.1097/MD.0000000000004542

24. Jung SY, Kwon J, Park S, Jhee JH, Yun HR, Kim H, et al. phosphate is a
potential biomarker of disease severity and predicts adverse outcomes in acute
kidney injury patients undergoing continuous renal replacement therapy. PLoS
ONE. (2018) 13:e0191290. doi: 10.1371/journal.pone.0191290

25. Han JS, Park KS, Lee MJ, Kim CH, Koo HM, Doh FM, et al. Mean
platelet volume is a prognostic factor in patients with acute kidney injury
requiring continuous renal replacement therapy. J Crit Care. (2014) 29:1016–21.
doi: 10.1016/j.jcrc.2014.07.022

26. Vickers AJ, Elkin EB. Decision curve analysis: a novel method
for evaluating prediction models. Med Decis Making. (2006) 26:565–74.
doi: 10.1177/0272989X06295361

27. Kerr KF, Brown MD, Zhu K, Janes H. Assessing the clinical impact of
risk prediction models with decision curves: guidance for correct interpretation
and appropriate use. J Clin Oncol. (2016) 34:2534–40. doi: 10.1200/JCO.2015.
65.5654

28. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C,
Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing
the KDIGO guidelines in high risk patients identified by biomarkers: the
PrevAKI randomized controlled trial. Intens Care Med. (2017) 43:1551–61.
doi: 10.1007/s00134-016-4670-3

29. Göcze I, Jauch D, Götz M, Kennedy P, Jung B, Zeman F, et al.
Biomarker-guided intervention to prevent acute kidney injury after major surgery:
the prospective randomized BigpAK study. Ann Surg. (2018) 267:1013–20.
doi: 10.1097/SLA.0000000000002485

30. Selby NM, Casula A, Lamming L, Stoves J, Samarasinghe Y, Lewington
AJ, et al. An organizational-level program of intervention for AKI: a pragmatic
stepped wedge cluster randomized trial. J Am Soc Nephrol. (2019) 30:505–15.
doi: 10.1681/ASN.2018090886

31. Sanchez-Pinto LN, Luo Y, Churpek MM. Big data and data science in critical
care. Chest. (2018) 154:1239–48. doi: 10.1016/j.chest.2018.04.037

32. Sutherland SM, Goldstein SL, Bagshaw SM. Acute kidney injury and big data.
Contrib Nephrol. (2018) 193:55–67. doi: 10.1159/000484963

Frontiers inMedicine 11 frontiersin.org

https://doi.org/10.3389/fmed.2022.853989
https://www.frontiersin.org/articles/10.3389/fmed.2022.853989/full#supplementary-material
https://doi.org/10.1038/s41581-018-0052-0
https://doi.org/10.1111/sdi.12705
https://doi.org/10.1016/S0140-6736(19)32563-2
https://doi.org/10.1007/s00134-015-3934-7
https://doi.org/10.1002/14651858.CD003773.pub3
https://doi.org/10.1007/s00134-013-2864-5
https://doi.org/10.1016/j.jcrc.2017.05.002
https://doi.org/10.1007/s00134-007-0754-4
https://doi.org/10.1371/journal.pmed.1001381
https://doi.org/10.1097/00003246-198510000-00009
https://doi.org/10.1007/BF01709751
https://doi.org/10.1111/nep.13661
https://doi.org/10.1186/s13054-020-2752-7
https://doi.org/10.13026/s6n6-xd98
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1038/kisup.2012.73
https://doi.org/10.5301/IJAO.2011.6312
https://doi.org/10.2215/CJN.02900311
https://doi.org/10.2215/CJN.06650712
https://doi.org/10.1186/s13054-016-1409-z
https://doi.org/10.1177/0310057X1604400401
https://doi.org/10.1093/ndt/gfr307
https://doi.org/10.1097/MD.0000000000004542
https://doi.org/10.1371/journal.pone.0191290
https://doi.org/10.1016/j.jcrc.2014.07.022
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1200/JCO.2015.65.5654
https://doi.org/10.1007/s00134-016-4670-3
https://doi.org/10.1097/SLA.0000000000002485
https://doi.org/10.1681/ASN.2018090886
https://doi.org/10.1016/j.chest.2018.04.037
https://doi.org/10.1159/000484963
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2022.853989

33. Sutherland SM, Chawla LS, Kane-Gill SL, Hsu RK, Kramer AA, Goldstein
SL, et al. Utilizing electronic health records to predict acute kidney injury risk and
outcomes: workgroup statements from the 15(Th) ADQI consensus conference.
Can J Kidney Health Dis. (2016) 3:11. doi: 10.1186/s40697-016-0099-4

34. Hodgson LE, Sarnowski A, Roderick PJ, Dimitrov BD, Venn RM,
Forni LG. Systematic review of prognostic prediction models for acute kidney
injury (AKI) in general hospital populations. BMJ Open. (2017) 7:e016591.
doi: 10.1136/bmjopen-2017-016591

35. Koyner JL, Adhikari R, Edelson DP, Churpek MM. Development of a
multicenter ward-based AKI prediction model. Clin J Am Soc Nephrol. (2016)
11:1935–43. doi: 10.2215/CJN.00280116

36. Malhotra R, Kashani KB, Macedo E, Kim J, Bouchard J, Wynn S, et al. A risk
prediction score for acute kidney injury in the intensive care unit. Nephrol Dial
Transpl. (2017) 32:814–22. doi: 10.1093/ndt/gfx026

37. Bhatraju PK, Zelnick LR, Katz R, Mikacenic C, Kosamo S, Hahn
WO, et al. A prediction model for severe aki in critically ill adults that
incorporates clinical and biomarker data. Clin J Am Soc Nephrol. (2019) 14:506–14.
doi: 10.2215/CJN.04100318

38. Leaf DE, Waikar SS. End points for clinical trials in acute kidney injury. Am
J Kidney Dis. (2017) 69:108–16. doi: 10.1053/j.ajkd.2016.05.033

39. Sukmark T, Lumlertgul N, Praditpornsilpa K, Tungsanga K, Eiam-Ong
S, Srisawat N. SEA-MAKE score as a tool for predicting major adverse
kidney events in critically ill patients with acute kidney injury: results from
the SEA-AKI study. Ann Intens Care. (2020) 10:42. doi: 10.1186/s13613-020-
00657-9

40. Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine
learning, and clinical medicine. N Engl J Med. (2016) 375:1216–9.
doi: 10.1056/NEJMp1606181

41. da Hora Passos R, Ramos JGR, Mendonça EJB, Miranda EA, Dutra FRD,
CoelhoMFR, et al. A clinical score to predict mortality in septic acute kidney injury

patients requiring continuous renal replacement therapy: the HELENICC score.
BMC Anesthesiol. (2017) 17:21. doi: 10.1186/s12871-017-0312-8

42. Efron B. Prediction, estimation, and attribution. J Am Stat Assoc. (2020)
115:636–55. doi: 10.1080/01621459.2020.1762613

43. Verghese A, Shah NH, Harrington RA. What this computer needs is
a physician: humanism and artificial intelligence. JAMA. (2018) 319:19–20.
doi: 10.1001/jama.2017.19198

44. Gawande A. Being Mortal: Illness, Medicine, and What Matters in the End.
London: Profile Books (2014). p. 282.

45. Han YY, Carcillo JA, Venkataraman ST, Clark RSB, Watson RS, Nguyen
TC, et al. Unexpected increased mortality after implementation of a commercially
sold computerized physician order entry system. Pediatrics. (2005) 116:1506–12.
doi: 10.1542/peds.2005-1287

46. Ghassemi M, Celi LA, Stone DJ. State of the art review: the data revolution in
critical care. Crit Care. (2015) 19:118. doi: 10.1186/s13054-015-0801-4

47. Bounthavong M, Watanabe JH, Sullivan KM. Approach to addressing
missing data for electronic medical records and pharmacy claims data research.
Pharmacotherapy. (2015) 35:380–7. doi: 10.1002/phar.1569

48. Austin PC, White IR, Lee DS, van Buuren S. Missing data in clinical
research: a tutorial on multiple imputation. Can J Cardiol. (2020) 37:1322–31.
doi: 10.1016/j.cjca.2020.11.010

49. Xie Y, Ankawi G, Yang B, Garzotto F, Passannante A, Breglia A, et al. Tissue
inhibitormetalloproteinase-2 (TIMP-2) IGF-binding protein-7 (IGFBP7) levels are
associated with adverse outcomes in patients in the intensive care unit with acute
kidney injury. Kidney Int. (2019) 95:1486–93. doi: 10.1016/j.kint.2019.01.020

50. Kümpers P, Hafer C, Lukasz A, Lichtinghagen R, Brand K, Fliser D, et al.
Serum neutrophil gelatinase-associated lipocalin at inception of renal replacement
therapy predicts survival in critically ill patients with acute kidney injury.Crit Care.
(2010) 14:R9. doi: 10.1186/cc8861

Frontiers inMedicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2022.853989
https://doi.org/10.1186/s40697-016-0099-4
https://doi.org/10.1136/bmjopen-2017-016591
https://doi.org/10.2215/CJN.00280116
https://doi.org/10.1093/ndt/gfx026
https://doi.org/10.2215/CJN.04100318
https://doi.org/10.1053/j.ajkd.2016.05.033
https://doi.org/10.1186/s13613-020-00657-9
https://doi.org/10.1056/NEJMp1606181
https://doi.org/10.1186/s12871-017-0312-8
https://doi.org/10.1080/01621459.2020.1762613
https://doi.org/10.1001/jama.2017.19198
https://doi.org/10.1542/peds.2005-1287
https://doi.org/10.1186/s13054-015-0801-4
https://doi.org/10.1002/phar.1569
https://doi.org/10.1016/j.cjca.2020.11.010
https://doi.org/10.1016/j.kint.2019.01.020
https://doi.org/10.1186/cc8861
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	Development and validation of outcome prediction models for acute kidney injury patients undergoing continuous renal replacement therapy
	1. Introduction
	2. Methods
	2.1. Data source
	2.2. Patient involvement
	2.3. Diagnosis and outcomes
	2.4. Variable extraction
	2.5. Handling of missing data
	2.6. Model development
	2.7. Model validation

	3. Results
	3.1. Model development
	3.2. Internal validation
	3.3. External validation

	4. Discussion
	4.1. Comparison with previous studies
	4.2. Implications for clinical practice
	4.3. Weaknesses of the study

	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	Supplementary material
	References


