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Insights into the activation mechanism of class I
HDAC complexes by inositol phosphates
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Histone deacetylases (HDACs) 1, 2 and 3 form the catalytic subunit of several large

transcriptional repression complexes. Unexpectedly, the enzymatic activity of HDACs in

these complexes has been shown to be regulated by inositol phosphates, which bind in a

pocket sandwiched between the HDAC and co-repressor proteins. However, the actual

mechanism of activation remains poorly understood. Here we have elucidated the

stereochemical requirements for binding and activation by inositol phosphates,

demonstrating that activation requires three adjacent phosphate groups and that other

positions on the inositol ring can tolerate bulky substituents. We also demonstrate that there

is allosteric communication between the inositol-binding site and the active site. The crystal

structure of the HDAC1:MTA1 complex bound to a novel peptide-based inhibitor and

to inositol hexaphosphate suggests a molecular basis of substrate recognition, and an

entropically driven allosteric mechanism of activation.
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C
lass I histone deacetylases (HDACs) are enzymes involved
in ‘epigenetic’ gene regulation through controlling the
acetylation state of lysine sidechains in histone tails1. They

act as the catalytic subunit of several large protein complexes that
repress gene expression when targeted to the genome. Recent
structural and functional studies of class I HDACs in complex
with their cognate co-repressors have suggested that the activity
of these complexes is regulated in the cell by inositol phosphates
that are likely derived from membrane phospholipids2–4.
Understanding the regulation of these complexes is important
since they are promising targets for epigenetic therapies for a
range of diseases5. These include numerous cancers as well as
spinal muscular atrophy6, Friedrich’s ataxia7, Alzheimer’s
disease8 and HIV infection9. Five HDAC inhibitors are now
variously licensed for use in the clinic for the treatment of
cutaneous T-cell lymphoma, peripheral T-cell lymphoma10,11 and
multiple myeloma12.

The class I HDAC family comprises of HDACs 1–3 and 8
(reviewed in ref. 13). HDACs 1–3 are assembled
into at least five large multi-protein co-repressor complexes
that are recruited to chromatin through interaction with
repressive transcription factors or other silencing co-factors14.
The enzymatic activity of HDACs 1–3 show significant
enhancement when incorporated into their cognate co-repressor
complexes15–20. HDAC8, however, sits alone as the only class I
HDAC that is not recruited into a larger complex and is fully
active in isolation21,22. HDACs 1 and 2 are found within several
distinct co-repressor complexes including NuRD23, Sin3A24,
CoREST25 and MiDAC4,26. HDAC3, however, is exclusively
recruited to the SMRT/NCoR co-repressor complex20,27.
The regulation of these complexes by inositol phosphates
was first suggested by the surprising discovery that inositol
1,4,5,6-tetrakisphosphate (Ins(1,4,5,6)P4) was present in the
HDAC3:SMRT crystal structure2. The Ins(1,4,5,6)P4 is located
at a binding pocket formed at the interface between HDAC3 and
the co-repressor. The finding that the Ins(1,4,5,6)P4 co-purified
with the HDAC3 complex from mammalian cells suggests that it
is likely to be a physiologically relevant activator of the complex.
However, it is not possible to exclude the possibility that other
inositol phosphates might also be able to activate the complex.
Indeed, Ins(1,4,5,6)P4 is only one of several higher order inositol
phosphates which are produced in cells from Ins(1,4,5)P3, the
well-known second messenger that regulates Ca2þ release
through binding to the inositol trisphosphate receptor (InsP3R)
(ref. 28).

Importantly, the key residues which coordinate the binding of
Ins(1,4,5,6)P4 to the HDAC3:SMRT complex were found to be
conserved in several class I HDAC complexes, suggesting that
these complexes may also be activated by inositol phosphates.
However, it is notable that the key residues are not conserved in
the Sin3A co-repressor. Indeed, the structure of the
HDAC1:MTA1 complex confirmed that the inositol phosphate-
binding pocket was present in other class I HDAC co-repressor
complexes3.

We initially proposed that Ins(1,4,5,6)P4 serves as an
‘inter-molecular glue’, mediating interaction between HDAC3
and SMRT2. It later emerged that longer constructs of SMRT
form a constitutive complex with HDAC3 and that the role of the
Ins(1,4,5,6)P4 is to activate the HDAC3 enzyme itself3.
Intriguingly, we observed using mass-spectrometry, that the
HDAC3:SMRT complex always co-purifies with Ins(1,4,5,6)P4

and that the Ins(1,4,5,6)P4 can only be removed using a high-salt
wash (resulting in an inactive complex). In contrast, mass-
spectrometry showed that the HDAC1:MTA1 complex does not
co-purify with Ins(1,4,5,6)P4 or any other inositol phosphates.
However, the HDAC1:MTA1 complex is nevertheless robustly

activated by exogenous Ins(1,4,5,6)P4. The novel MiDAC
complex has also been shown to be activated by exogenous
Ins(1,4,5,6)P4 (ref. 4).

The physiological importance of inositol phosphate activation
of HDAC complexes is supported by the finding that mutants in
the inositol phosphate-binding pocket of HDAC1 are unable to
fully restore HDAC activity in HDAC1/2 knock-out ES cells and
rescue their viability29. Furthermore, mice containing a mutation
of one of the key inositol phosphate-binding residues in SMRT
(Y470) exhibit increased local histone acetylation in vivo30.

Whilst the structures of HDACs 1 and 3 in complex with their
cognate co-repressors, along with functional studies, have
established that these complexes are activated by inositol
phosphates3, the exact mechanism through which inositol
phosphates activate HDACs remains unclear. To address this
important issue we have taken a chemical biology approach to
understand what are the important stereochemical features of
inositol phosphates that are required to activate class I HDAC
complexes. We have used inositol phosphate derivatives to
directly investigate the binding of inositol phosphates to HDAC
complexes in vitro and to demonstrate how further derivatives
might be developed as tools to modulate HDAC activity. These
approaches do not purport to identify which inositol phosphates
are relevant in vivo. In addition, we have developed a novel
peptide-based HDAC inhibitor. This is essentially a substrate
mimic based on the histone H4 tail, but incorporating a
hydroxamic acid functionality. Using a structural biology
approach we have explored the details of substrate recognition,
as well as the relationship between the binding of substrate and
activation by inositol phosphates. These studies, together with
kinetic and mutational analyses of these enzyme complexes, give
insight into the mechanism underlying the inositol phosphate-
mediated allostery.

Results
HDAC3 activation by inositol phosphates. To understand the
stereochemical basis underlying the activation of HDAC3 by
inositol phosphates we investigated the ability of a range of
inositol phosphates and derivatives to enhance the activity of
HDAC3 in deacetylase assays. To achieve this we used an assay
based on the complex of HDAC3 with an extended SMRT
construct which is stable in the absence of inositol phosphate3.
In this assay, any endogenous inositol phosphate that has been
co-purified with the complex is removed by treatment with
high-ionic strength buffer, which results in a complex that shows
little catalytic activity but can be readily activated by the addition
of Ins(1,4,5,6)P4 (Supplementary Fig. 1).

The crystal structure of Ins(1,4,5,6)P4 bound to the
HDAC3:SMRT complex suggests that each of the four phosphates
on the inositol ring are recognized by distinct sites within the
binding pocket. These sites, referred to as A, B, C and D,
accommodate phosphates at positions 4, 5, 6 and 1, respectively,
on the inositol ring (Fig. 1a). Positions 2 and 3 of the inositol ring
are relatively unobstructed and the free hydroxyls do not appear
to be recognized by the protein suggesting that higher order
inositol phosphates might also be able to bind and activate the
HDAC3:SMRT complex. Indeed, both Ins(1,3,4,5,6)P5 and InsP6

are able to activate the complex to the same degree as
Ins(1,4,5,6)P4 (Fig. 1b). Interestingly, they bind with higher
apparent affinity than Ins(1,4,5,6)P4; Ins(1,3,4,5,6)P5 shows a
twofold increase and InsP6 a 16-fold increase (Kd values of 5.0
and 0.6 mM, respectively, compared with 10 mM). This higher
apparent affinity is mostly likely due to the increased negative
charge contributing to a higher on-rate for binding to the
positively charged pocket of the HDAC3:SMRT complex. In
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addition to being able to accommodate a phosphate group on the
2 position of the inositol ring, it also appears that the axial
orientation is not important, since scyllo-InsP5 (ref. 31), which
has an equatorial 2-hydroxyl, exhibits similar activity to
Ins(1,4,5,6)P4 (Fig. 1c).

The stereochemistry of the Ins(1,4,5,6)P4-binding pocket
suggests that the chair conformation of the inositol is important
to position the phosphates correctly. This interpretation is
supported by the finding that benzene 1,2,3,4-tetrakisphosphate32

(four adjacent phosphates on a planar ring) fails to substantially
activate the complex (Fig. 1c).

To fully rationalize the stereochemical requirements for
activation of the HDAC3:SMRT complex, we explored the ability
of eight tris- and tetrakis-inositol phosphates to enhance the

deacetylase activity of the complex. These molecules varied in
their ability to activate the HDAC3:SMRT complex and bound
with a range of apparent dissociation constants (Fig. 1d,e).
Interpreting these data is complicated by there being potentially
multiple modes of binding for the various inositol phosphates.
Furthermore, some of these modes might support binding to, but
not activation of, the complex. Careful analysis allows us to
conclude that a minimum of three adjacent phosphates is
required for the substantial activation of HDAC3 in the complex.
These phosphates must occupy sites A, B and C in the binding
pocket (Fig. 1a). Full analyses of these data and conclusions are
presented in the Supplementary Materials.

The requirement for three phosphates in positions A, B and C,
fits well with the HDAC3:SMRT structure. The phosphates at
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Figure 1 | The stereospecific requirements for activation of HDAC activity by various inositol phosphates. (a) Ins(1,4,5,6)P4 bound to the HDAC3:SMRT

complex, with the HDAC3 shown as a grey surface and the SMRT as a cyan surface. Schematic representation of the inositol phosphate-binding pocket,
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activity is expressed relative to the maximal Ins(1,4,5,6)P4-stimulated activity and is plotted against the inositol phosphate concentration (mM). (c) The
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sites B and C are essentially completely buried at the interface of
HDAC3 and the SMRT co-repressor. The requirement for site A
to be occupied can also be rationalized, since the phosphate at
this site forms a salt bridge with R265 in HDAC3 which has been
shown to be essential for activation of the enzyme2. It is
important to note that the well-established physiologically
relevant inositol phosphate signalling molecule, Ins(1,4,5)P3,
which activates the InsP3R to open calcium channels, is
completely unable to activate HDAC3. This can be explained as
it cannot simultaneously fulfil sites A, B and C.

To complement our analysis based on the ability of different
inositol phosphates to activate the HDAC3:SMRT complex,
we also performed computational docking studies. We used
Autodock to first examine the contribution to the overall binding
energy of the phosphates at the 1 or 4 position of Ins(1,4,5,6)P4

(Supplementary Fig. 4a–c). Removal of phosphate P1 (occupying
site D) reduced the binding energy by just 1.2 kcal mol� 1;
whereas removal of phosphate P4 (occupying site A) reduced the
binding energy by 5.4 kcal mol� 1. This fits well with the
activation data, which suggest that site A is more important
than site D. We also freely docked Ins(1,3,4,5)P4 into the
complex, since this molecule activates to greater than 75% yet can
only fulfil three adjacent phosphate sites. The three lowest energy-
docked molecules adopt an orientation that positions phosphates
P3, P4 and P5 in sites A, B and C with an average binding energy
of � 18.72 kcal mol� 1 (Supplementary Fig. 4d). This energy is
very similar to the calculated binding energy of Ins(1,4,5,6)P4

(� 18.86 kcal mol� 1). The majority of the other docking
solutions also fulfil positions A, B and C, but with lower binding
energies. None of the docking solutions positioned the phos-
phates in sites B, C and D, leaving the A site unoccupied. Taken
together, these computational docking studies fit well with our
conclusion that sites A, B and C are essential for both inositol
phosphate binding and activation of the complex.

Activation of the HDAC3:SMRT complex by synthetic analogues.
To explore further the distinction between molecules that activate
the InsP3 receptor and those that activate HDACs, we tested the
ability of synthetic adenophostin A, a potent InsP3 receptor
agonist33,34, to activate the HDAC3:SMRT complex. We observed
no activity for adenophostin A even at the high concentration of
200mM (Fig. 2a). This lack of activity likely results from the fact
that the phosphate groups on the pyranose ring of adenophostin
A mimic the 4 and 5 position phosphates of Ins(1,4,5)P3 and
hence cannot satisfy the sites required for activation.

The observation that InsP6 is able to activate the HDAC
complex, raised the question as to whether larger groups might be
added on the 2 and 3 positions of the inositol ring. Accordingly,
we synthesized and evaluated inositol phosphates with bulky
substituents (benzyl groups) at the 2 and 3 positions (Fig. 2a).
Strikingly, bulky groups at these positions can be tolerated with a
minimal loss of HDAC activation.

It has recently been reported that inositol pyrophosphates may
be important in S. cerevisiae for the regulation of the class 1
HDAC homologue Rpd3L (ref. 35). Since the inositol-binding
residues identified in HDAC3:SMRT are also present in Rpd3 and
the Snt1 co-repressor, we speculated that this regulation might be
mediated through the same inositol phosphate-binding pocket.
We therefore tested whether pyrophosphate analogues and
pyrophosphate, 5-PP-InsP4, might be able to activate the
HDAC3 complex. The pyrophosphate mimic 1-PA-InsP5 (ref. 36)
(pyrophosphate mimic on position 1 of the inositol ring) has
similar activity to that of Ins(1,4,5,6)P4, whereas 5-PP-InsP4

(pyrophosphate on position 5) has reduced activity (B60%)
compared with Ins(1,4,5,6)P4. In contrast, the pyrophosphate

mimic at position 5 in 2-OH-5-PA-InsP4 (ref. 37) is completely
inert (Fig. 2b). This difference in activity may be due to
differences in the possible binding modes of the pyrophosphates
and their mimics. 1-PA-InsP5 can bind in a way that sites A, B, C
and D are all satisfied, whereas 5-PP-InsP4 can only satisfy the
sites A, B and C. 2-OH-5-PA-InsP4, which contains a carbonyl in
place of the pyrophosphate of 5-PP-InsP4, cannot form the
crucial salt bridge with R265 in HDAC3.

Inositol hexakisphosphate activation of HDAC1. We have
previously shown that the HDAC1:MTA1 complex can also be
activated by Ins(1,4,5,6)P4 (ref. 3). Here we show that, as for the
HDAC3:SMRT complex, the HDAC1:MTA1 complex can be
activated by both Ins(1,3,4,5,6)P5 and InsP6, suggesting that the
mode of inositol phosphate binding is likely to be similar
(Fig. 3a). To investigate this, we soaked crystals of the
HDAC1:MTA1 complex (which had been co-crystallized with a
peptide-based inhibitor) with 225 mM InsP6 before freezing for
data collection. The structure was solved to 3.3 Å by molecular
replacement, by using the structure of unliganded HDAC1:MTA1
(pdb code 4BKX) (Table 1). The structure shows that the InsP6 is
bound as predicted in the pocket formed at the interface of
HDAC1 and MTA1, adjacent to the active site of HDAC1
(Fig. 3b, Supplementary Fig. 5). The occupancy of InsP6 in the
crystal was refined to 70%.

As might have been anticipated, there are some differences in
the mode of InsP6 binding when compared with Ins(1,4,5,6)P4

binding to the HDAC3:SMRT complex. In particular the inositol
ring is tipped away from the HDAC (towards MTA1), which
seems to correlate with the sidechain of R270 (HDAC1) adopting
a different position from that of the corresponding R265 in
HDAC3 (Fig. 3c,d). The molecule is supported in this new
position through a hydrogen bond between the hydroxyl of Y336
and the C3 phosphate group of the InsP6.

Careful analysis of the orientation of the InsP6 molecule at the
inter-molecular interface showed that the electron density clearly
fits best when the inositol phosphate orientation is rotated by
120� relative to that seen in the HDAC3:SMRT:Ins(1,4,5,6)P4

complex (Fig. 3c,d). This rotation allows the phosphate on the C2
position of the inositol to be accommodated in the pocket, and
compensates for small structural differences between the two
complexes. Despite this difference in orientation, the sites A, B
and C (see above) are occupied by phosphates in exactly the same
position as in the HDAC3 complex with Ins(1,4,5,6)P4; thus,
supporting the importance of satisfying these positions so as to
activate the enzyme. Interestingly, the phosphates in sites A and B
overlap perfectly with the position of the ordered sulphates seen
in the HDAC1:MTA1 complex in the absence of inositol
phosphate3.

A direct binding assay for inositol phosphates. The finding that
inositol phosphate analogues derivatized on carbons 2 and 3 of
the inositol ring are able to activate the HDAC3:SMRT complex,
suggested that it might be possible to use a fluorescence aniso-
tropy assay to directly measure the inositol phosphate binding to
the complex. Accordingly, we used a fluorescent derivative of
Ins(1,3,4,5,6)P5 in which fluorescein was coupled via a linker to
the oxygen on carbon 2 of the inositol ring (2-FAM-
Ins(1,3,4,5,6)P5) (Fig. 4a) (ref. 38). Importantly, the 2-FAM-
Ins(1,3,4,5,6)P5 activates the HDAC3:SMRT complex to a similar
extent as Ins(1,4,5,6)P4 (Supplementary Fig. 6).

Interestingly, the dissociation constant measured using this
direct binding assay is 0.3 mM (±0.01 mM). This is B10-fold
tighter than the apparent Kd value observed in the activation
assays, suggesting that binding does not necessarily equate to
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activation. This is likely due to there being multiple modes of
binding to the complex, such that some forms of the bound
complex are not fully active. However, we cannot rule out that the
fluorescein moiety might contribute in part to the binding.

The concept that binding does not necessarily equate to
activation is supported by the results of competition assays. These
indicate that certain inositol phosphates, such as Ins(1,3,4,6)P4

and Ins(1,4,5)P3, which do not activate the complex and cannot
simultaneously occupy sites A, B and C, can nevertheless displace
the 2-FAM-Ins(1,3,4,5,6)P5 with IC50 values of 1.5 and 19 mM,
respectively (Fig. 4b). We note that the InsP3R agonist,
adenophostin A33,34, neither activates HDAC3, nor competes
for inositol phosphate binding.

Inositol phosphates as allosteric regulators of Km and kcat.
Lysine deacetylase assays using the minimal substrate
Boc-Lys(Ac)-AMC show that both the HDAC3:SMRT and
HDAC1:MTA1 complexes are reproducibly activated by inositol
phosphates. However, in this assay, the HDAC3 complex appears
to be much more sensitive to inositol phosphates giving a 10–15-
fold increase in activity, compared with a 2–3-fold activation of the
HDAC1 complex. To explore further the differences between the
two complexes we established a more physiological, real-time
kinetic assay using substrates based on the tails of histones H4 and

H3. The peptides tested were; H4 12–18(K16ac), H3 23–29(K27ac)
and H3 6–12(K9ac). Interestingly, there is a marked variation in
Km, kcat and enzymatic efficiency (kcat/Km) for the various
substrates. HDAC3:SMRT is most catalytically active against H3
23–29(K27ac) (Supplementary Fig. 7), whereas HDAC1:MTA1 is
most catalytically active against H4 12–18(K16ac) (Fig. 4d). In
both cases an approximate 3-fold greater kcat is observed for
the preferred versus non-preferred substrate, in the absence of
inositol phosphate. In general, inositol phosphates had a modest
effect on Km (sometimes lowering, but sometimes increasing), and
a more marked effect on kcat (always increasing). The net effect of
both inositol phosphates tested was between a two and fivefold
increase in catalytic efficiency (kcat/Km) (Fig. 4c,d, Supplementary
Fig. 7).

A novel peptide-based inhibitor mimics substrate binding. To
understand how a substrate, such as the histone H4 tail, interacts
with HDAC1, we synthesized a novel inhibitor based on this
peptide. This inhibitor (termed H4K16Hx) comprises residues
12–18 of histone H4 with K16 being replaced by a hydroxamic
acid functionality (Supplementary Fig. 8). H4K16Hx is markedly
different from the macrocyclic peptide inhibitors39 (cyclic
peptides derived from natural products), one of which
(romidepsin) is licensed for the treatment of cutaneous and
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peripheral T-cell lymphoma10. Inhibition assays show that this
peptide inhibits the enzyme with an IC50 of 336 nM which is
comparable with IC50 values reported for other hydroxamic
acid-based inhibitors of Zn-dependent HDACs40 (Fig. 5a).

We co-crystallized the HDAC1:MTA1 complex with this
peptide before soaking it with InsP6 (see above). The peptide
was observed to be bound at the active site of the enzyme with
nearly 100% occupancy, although residues Lys12 and Gly13 were
not observed in the electron-density map suggesting that these are
not constrained on substrate binding. The hydroxamic acid
functionality is buried within the narrow active-site channel with
the carbonyl oxygen coordinating the Zn2þ in a similar manner
to that observed with other class I HDAC inhibitors (for example
trichostatin A (TSA) and SAHA bound to HDAC8: pdb codes
1T69 and 1T64, respectively). Several backbone amides in the
H4K16 peptide make complementary polar contacts with the
sidechain of D99 at the rim of the HDAC active site (Fig. 5b,
Supplementary Fig. 5). Interestingly, D99 is conserved in all class
I and class II HDACs. Comparison with the structure in the
absence of the histone peptide suggests that this residue, and its
immediate neighbours, undergo a conformation change on
peptide binding. The critical importance of D99 is supported by
the finding that mutation to alanine results in total loss of
catalytic activity (Fig. 5c).

Mechanism of class I HDAC activation by inositol phosphates.
The finding that the sites A, B and C are essential for activation of
the HDAC3:SMRT complex prompted us to investigate in more
detail the mechanism through which inositol phosphates activate
class I HDACs. We previously noted that the phosphate at site A
in the HDAC3:SMRT structure makes an apparently important
contact to the sidechain of R265, and that mutation of this
arginine resulted in a significant loss in activity of the enzyme2,3.
One possible explanation for this was that R265A mutant
abolished binding of Ins(1,4,5,6)P4 to the complex. To test this
we measured the binding affinity of 2-FAM-Ins(1,3,4,5,6)P5 with
the complex. Surprisingly, the dissociation constant was only
modestly increased from 0.3 mM to 0.6 mM (Fig. 6a), suggesting
that binding of phosphates in sites B and C is the main
thermodynamic driver of the interaction and that the interaction
of the phosphate in site A with R265 plays a more important role
in activation. Fitting with this hypothesis, the mutant complex is
only weakly activated by the addition of inositol phosphate
(24% of the activation seen for the wild-type complex; Fig. 6b).
Furthermore the mutation significantly impairs the ability of the
complex to repress transcription of a luciferase reporter gene
(Fig. 6c).

Given the importance of R265 in the HDAC3:SMRT:
Ins(1,4,5,6)P4 complex, it is surprising that the equivalent residue,
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R270, in the HDAC1:MTA1:InsP6 complex has a different
orientation, such that it interacts with the phosphate group in site
C. Accordingly, the R270A mutation in the HDAC1:MTA1
complex does not have as pronounced an effect as that seen when
R265 is mutated in the HDAC3:SMRT complex, but it still results
in a twofold reduction in kcat (Supplementary Fig. 9). We
previously observed that the R270Q mutation only modestly
impairs the ability of HDAC1 to rescue cells in which both
HDAC1 and 2 have been deleted. This mutation does, however,
strongly synergise with other mutations in the inositol phosphate-
binding pocket29. Interestingly, a survey of the available HDAC2
structures (pdb codes: 3MAX, 4LXZ, 4LY1) in the absence of an
inositol phosphate ligand, suggests that this arginine is rather
mobile and can adopt either the position seen for R265 in the
HDAC3:SMRT:Ins(1,4,5,6)P4 structure or the position seen in the
HDAC1:MTA1:InsP6 complex (Supplementary Fig. 10). In either
position the backbone trajectory remains unchanged. It seems
likely, therefore, that the important feature is that this sidechain
becomes immobilized on inositol phosphate binding and that this
stabilization is important for activation.

Notably we have also observed a measurable cross-talk between
the active site of HDAC3 and the inositol phosphate-binding site.
This is illustrated by the finding that binding of hydroxamic acid
inhibitors, such as TSA, SAHA and MS-275 (a structurally
distinct benzamide inhibitor) at the active site results in a
threefold enhancement of the binding of 2-FAM-Ins(1,3,4,5,6)P5

to the allosteric site (Fig. 6d). Interestingly, the inhibitor
H4K16Hx has a more modest effect on the Kd for 2-FAM-
Ins(1,3,4,5,6)P5. Those inhibitors that particularly influence

2-FAM-Ins(1,3,4,5,6)P5 binding position an aromatic group at
the mouth of the active site.

To further investigate the effects of both inhibitors and inositol
phosphates, we used a circular dichroism-based thermal-stability
assay. The unliganded HDAC3:SMRT complex showed co-
operative unfolding at 45 �C, which increased to 51 and 53 �C
by SAHA and InsP6, respectively. When the thermal denaturation
was measured in the presence of both SAHA and InsP6 the
melting temperature further increased to 62 �C. This indicates
that binding to the active site or inositol phosphate results
in significant stabilization of the complex (Fig. 6e). Similar
effects have also been observed on the stabilization of the
HDAC1:MTA1 complex (Supplementary Fig. 11).

Discussion
Class I HDAC complexes have been implicated in the regulation
of a wide range of biological processes from early development
and X-chromosome inactivation to metabolism and circadian
rhythms41–45. The finding that these complexes are regulated by
inositol phosphates was unexpected and raises the question what
is the physiological role of inositol phosphates; under what
circumstances do their levels change and which biological
processes are consequently regulated? We have not sought to
answer these questions in this manuscript. Rather we seek to
understand the molecular mechanisms through which inositol
phosphates regulate the activity of HDAC complexes. Specifically,
we wished to understand what are the important features of
inositol phosphates that allow them to activate HDAC co-
repressor complexes; what is the relationship between substrate
and inositol phosphate binding and what is the mechanism
underlying the allosteric activation? We have systematically tested
the ability of a range of naturally occurring and synthetic inositol
phosphates and their analogues to activate class I HDAC
complexes and this has allowed us to elucidate the important
stereochemical features of inositol phosphates that are required to
allosterically activate class I HDAC complexes. The use of a
fluorescently labelled inositol phosphate derivate has allowed the
investigation of the direct binding of inositol phosphates to
HDACs for the first time. This and other derivatives have
effectively demonstrated that inositol phosphate derivatives may
have potential use for modulating HDAC co-repressor
complexes. The structure of HDAC1 in complex with the novel
histone H4 12–18 tail inhibitor peptide has given insight into
understanding both substrate recognition and its relationship
with inositol phosphate binding. Taken together with kinetic and
mutational studies these results allow us to begin to understand
the mechanism underlying the allosteric activation by inositol
phosphates.

Our investigations into HDAC3:SMRT activation have led us
to propose a biological rationale for higher order inositol
phosphate signalling to HDAC complexes. Ins(1,4,5)P3 is a
major precursor for higher inositol phosphates, yet is completely
unable to activate HDAC3 since it cannot simultaneously occupy
sites A, B and C (Fig. 1a). Addition of a phosphate to Ins(1,4,5)P3

at either the 3 or 6 position creates a molecule that can robustly
activate HDAC3. Such phosphorylation of Ins(1,4,5)P3 is carried
out by an inositol phosphate multikinase enzyme (called IPMK or
IPK2) (ref. 46,47). We expect, therefore, that the activity of IPMK
is critical for class I HDAC activity in vivo, since it is essential for
the production of all of the inositol phosphates that are able to
activate HDAC complexes. The predominant nuclear localization
of IPMK fits well with this biological rationale48. Furthermore,
the fact that Ins(1,4,5)P3, as well as the potent InsP3R agonist
adenophostin A, are both completely inert in activating HDAC
complexes indicates that the signalling role played by higher

Table 1 | Data collection and refinement statistics.

Data collection
Wavelength (Å) 0.96862
Space group P 32 2 1

Cell dimensions
a, b, c (Å) 107.8, 107.8, 134.2
a, b, g (�) 90, 90, 120

Resolution (Å) 93.4–3.3 (3.56–3.3)*
I/sI 2.5 (1.3)*
Completeness (%) 93.1 (92.0)*
Redundancy 2.4 (2.4)*
Rmerge (%) 38.3 (86.4)*
CC1/2 0.795 (0.456)*

Refinement
Rwork/Rfree (%) 25.5/29.9
Reflections 12,263

Number of atoms
Protein 4,326
Zn ions, K ions and IP6 39
Water 0

B-factor (Å2)
Protein 34.9
Zn ions, K ions and acetate 29.7

R.m.s.d.
Bond lengths (Å) 0.008
Bond angles (�) 1.228

Ramachandran plot
Favoured (%) 92.3
Allowed (%) 7.7
Outliers (%) 0.0

*The highest resolution shell is shown in parentheses.
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order inositol phosphates in modulating the activity of class I
HDACs is physiologically isolated from the role played by
Ins(1,4,5)P3 in Ca2þ signalling.

Support for the concept that IPMK plays a key role comes
from previous findings that both IPMK and its yeast
homologue, Arg82p, have been reported to play a role in gene
activation46,49–54. However the role of the kinase activity of
Arg82p/IPMK in gene activation is controversial. The kinase
activity has been shown to be required for Pho5 transcription and
chromatin remodelling49, whereas other studies suggest that the
kinase activity is not required for the regulation of arginine
metabolism in yeast53,54. IPMK plays a role as a transcriptional
co-activator in immediate early gene induction in mice through
its interaction with the histone acetyltransferase CBP, though this
interaction is not dependent on the kinase activity of IPMK52.
Interestingly, Xu et al.52 speculate that the products of the kinase
activity of IPMK might be important for repression of gene
transcription, whereas the non-catalytic activity stimulates
histone acetylation and therefore gene activation.

Despite the uncertainty in the role of the kinase activity of
IPMK, it is well-established that all the products of IPMK (higher
order inositol phosphates) vary throughout the cell-cycle55. This
is particularly interesting, since it is established that histone
acetylation levels also vary during the cell-cycle56, yet the levels of
HDAC3 remain constant57. Furthermore, deletion of HDAC3
results in loss of the cell-cycle-dependent variation in histone
acetylation57. If HDAC3 is responsible for cell-cycle regulation of
histone acetylation yet its levels do not change, then some other
factor (perhaps inositol phosphate levels?) must change.

Despite these suggestive observations it still remains unclear
what is the physiologically relevant species that activates HDAC
complexes in vivo. While Ins(1,4,5,6)P4 co-purified with the
complex from HEK293 cells, it has become clear that a range of
higher order phosphates are able to activate in vitro. Importantly
inositol phosphate kinases that lie downstream of IPMK and give
rise to inositol pyrophosphates have been shown to be important
for the activation of the yeast class I HDAC RPD3L and for
implementing a stress response in yeast35. Indeed, Worley et al.35

have shown that mutation of residues in the inositol-binding site
on the yeast HDAC homologue Rpd3 results in similar effects on
gene expression in the environmental stress response as deleting
enzymes in the pyrophosphate synthesis pathway (including
Arg82). These findings fit well with our observation that certain
inositol pyrophosphates and pyrophosphate analogues are able to
activate the HDAC3:SMRT complex in vitro.

It is striking that there were only very minor structural changes
when HDAC1 binds InsP6 and the synthetic substrate mimic. The
most significant is the rearrangement of the sidechain of D99 that
mediates essential interactions with the peptide backbone of the
substrate. The importance of this residue in HDAC8 has been
noted before58. This rearrangement appears to be the result of
substrate binding, rather than an allosteric consequence of
inositol phosphate binding. Importantly, although the kinetic
analysis indicates that substrate binding is strongly influenced by
inositol phosphate binding and that catalytic turnover is
increased, there is little evidence for a substantive structural
change mediating these allosteric effects. This contrasts with the
classic dogma of allostery that requires concerted structural
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changes to mediate thermodynamic or kinetic alterations to an
enzyme mechanism59. The allosteric mechanism in the HDAC
complexes would seem to fit much better with concepts of
allostery being the result of changes in entropy (dynamics)
following binding at the allosteric site influencing the activity at
the active site60. This interpretation is supported by recent
computational studies which suggest that Ins(1,4,5,6)P4 binding
induces a change in the dynamic behaviour of the complex in the
vicinity of the inositol phosphate and active sites61. Furthermore,
the thermal denaturation studies reported here show that the
binding of inositol phosphate results in a significant stabilization
of both the HDAC3:SMRT and HDAC1:MTA1 complexes.

Whilst it is recognized that dynamically driven allostery can
occur over a large distance, the fact that the allosteric and active
sites are in relatively close proximity provides a likely explanation
of how inositol phosphate binding can influence the dynamics of
the active site59. It is particularly notable that the inositol
phosphate and the substrate–peptide interact on either side of a
loop involving residues Q26-P29 in HDAC1. Indeed, both the
substrate and inositol phosphate form hydrogen bonds with the
same peptide bond—Q26-G27 (Fig. 6f).

HDACs have recently shown promise as therapeutic targets to
treat a number of different diseases. However, one of the major
challenges is that inhibitors of class I HDACs exhibit relatively

modest subclass specificity and, furthermore, several different
complexes, with diverse biological functions, contain a common
catalytic HDAC subunit. The finding that class I HDACs behave
quite differently when they are in complex with their cognate
co-repressors, provides a new opportunity to develop inhibitors
that are specific for individual complexes. Understanding
the molecular details of substrate binding, and the allosteric
mechanism of activation by inositol phosphates, is likely to be
essential for rational drug design.

Methods
HDAC3:SMRT protein expression. Full-length HDAC3, and residues 350–480 of
SMRT were cloned into pcDNA3 vectors, with a FLAG tag and TEV protease
cleavage site in the SMRT construct. To express the complex both constructs were
co-transfected into HEK293F cells (Invitrogen). To transfect 300 ml of cells, 150 mg
of each construct was diluted in 30 ml PBS (Sigma), vortexed briefly and 1.5 ml of
0.5 mg ml� 1 25 kDa branched polyethylenimine (Sigma) added. This mixture was
vortexed briefly and incubated for 20 min at room temperature and then added to
cells at a final density of 1� 106 cells per ml. Cells were harvested after 48 h,
resuspended in buffer A (100 mM potassium acetate, 50 mM Tris pH 7.5, 5%
glycerol, 0.3% Triton X-100, Roche complete protease inhibitor tablet), lysed by
sonication and then centrifuged to remove the insoluble material. The cleared
supernatant was then incubated with FLAG resin (Sigma) for 1 h at 4 �C. The resin
was then washed three times with buffer A, three times with buffer B (300 mM
potassium acetate, 50 mM Tris pH 7.5, 5% glycerol), and three times with buffer C
(50 mM potassium acetate, 50 mM Tris pH 7.5, 5% glycerol, 0.5 mM TCEP). The
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resin was incubated with TEV protease overnight at 4 �C in buffer C to elute the
protein complex. Final purification of the eluted protein was perfomed by gel
filtration in buffer containing 50 mM potassium acetate, 25 mM Tris pH 7.5,
0.5 mM TCEP, on a Superdex S200 column (GE healthcare). The intrinsically
bound endogenous Ins(1,4,5,6)P4 was removed by treatment with high-ionic
strength buffer. 1 mM protein was incubated for 4 h at room temperature in buffer
containing 50 mM Tris pH 7.5, 1 M NaCl, 5% glycerol, then dialysed overnight
against buffer containing 50 mM Tris pH 7.5, 50 mM NaCl, 5% glycerol. Proteins
were then concentrated using an Amicon concentrator and the protein con-
centration determined by A280 in 6 M guanidine hydrochloride.

HDAC1:MTA1 protein expression and structure determination. Full-length
HDAC1 and residues 162–354 of MTA1 were cloned into pcDNA3 vectors, with a
FLAG tag and TEV protease cleavage site in the MTA1 construct. Transfections
and protein purification were performed as for the HDAC3:SMRT complex with
the modification of buffer B to 200 mM potassium acetate, 50 mM Tris pH 7.5, 5%
glycerol. Diffracting crystals were obtained by sitting-drop vapour diffusion at
20 �C against wells containing 0.1 M HEPES pH 7.5, 2 M ammonium sulfate and
5% PEG400 by mixing HDAC1:MTA1 (5 mg ml� 1) and peptide H4K16Hx at a 1:2
molar ratio. Crystals were frozen in mother liquor with the addition of InsP6

(225 mM) and 15% glycerol (cryoprotectant). Data were collected at the Diamond
synchrotron microfocus beamline I24 with use of the grid-scan tool to centre
the crystals. Diffraction data from 4 crystals were processed using Mosflm and
combined using Aimless. The structure was solved by molecular replacement
with HDAC1:MTA1 (PDB code 4BKX) as a search model using Phaser. The
HDAC1:MTA1 structure was built with Coot and refined using Refmac5 (ref. 62).
The atomic coordinates for the structure of the HDAC1:MTA1: InsP6:H4K16Hx
complex have been deposited in the Protein Data Bank under accession code 5ICN.

Peptide synthesis. Details of the syntheses of peptide H4K16Hx (histone H4
residues 12–18 with hydroxamic acid functionality at K16) and fluorescein-labelled
peptide H4K16Ac (FITC-H4 12–18 acetylated at K16) are given in the
Supplementary Methods.

Inositol phosphates and derivatives. Adenophostin A34, Ins(1,3,4,5)P4 (ref. 63)
scyllo-InsP5 (ref. 31), Bz(1,2,3,4)P4 (ref. 32), 1-PA-InsP5 (ref. 36), 2-OH-5-PA-InsP4

(ref. 37), 2-FAM-Ins(1,3,4,5,6)P5 (ref. 38) were synthesized as previously reported.
The identities and purities of these compounds were confirmed by 1H and 31P
NMR spectroscopy. Ins(1,3,5,6)P4, Ins(3,4,5,6)P4, Ins(1,3,4,5,6)P5, Ins(1,4,5)P3,
Ins(1,4,6)P3, Ins(1,5,6)P3, were purchased from Cayman Chemical Company.
InsP6 was purchased from Sigma. Details of the new syntheses of Ins(1,4,5,6)P4,
Ins(4,5,6)P3, Ins(1,3,4,6)P4, 2-O-Bn-Ins(1,4,5,6)P4 and 2,3-di-O-Bn-Ins(1,4,5,6)P4

are given in the Supplementary Methods.

HDAC assay. HDAC activity of the protein complex was measured using an
HDAC assay with a BOC-Lys-AMC substrate. 50 nM HDAC3:SMRT or 50 nM
HDAC1:MTA1 was incubated with 100mM BOC-Lys-AMC substrate in a final
volume of 50 ml buffer A (50 mM Tris pH 7.5, 50 mM NaCl, 5% Glycerol), in a
black 96-well plate for 30 min at 37 �C. The assay was developed by the addition of
50ml of developer solution (2 mM TSA, 10 mg ml� 1 Trypsin, 50 mM Tris pH 7.5,
100 mM NaCl). Fluorescence was measured at 335/460 nm using a Victor X5 plate
reader (Perkin Elmer).

To test the ability of inositol phosphates and derivatives to activate the complex,
50 nM HDAC3:SMRT (which had been stripped of its endogenous co-purified
inositol phosphate) or 50 nM HDAC1:MTA1 was incubated with inositol
phosphate or analogue for 30 min at 37 �C before the HDAC activity was
measured. All measurements were performed in triplicate and data analysed using
GraphPad Prism (version 6.0, GraphPad Software, Inc). In the case of titrations
Kd values were calculated by nonlinear curve fitting with a one-site binding
(hyperbola) model (Y¼Bmax*X/(KdþX)).

Enzyme kinetics. Michaelis–Menten kinetics were determined using a HDAC
assay on the Caliper EZ Reader II system (Caliper Life Sciences, http://www.cali-
perls.com). To assess the effect of inositol phosphate, 20 nM HDAC3:SMRT or
80 nM HDAC1:MTA1 were pre-mixed with InsP6 before dilution and addition of
fluorescein-labelled H4K16Ac substrate. Reactions were carried out in duplicate in
30ml reaction volumes, performed at room temperature in 50 mM Tris pH 7.5,
50 mM NaCl, 5% glycerol. Data was analysed using GraphPad Prism (version 6.0).

Fluorescence anisotropy assays. Fluorescence anisotropy experiments were
performed in a black 96-well plate (Corning), each well contained 10 nM
2-FAM-Ins(1,3,4,5,6)P5 and an increasing concentration of HDAC3:SMRT protein,
in assay buffer (50 mM NaCl, 50 mM Tris pH 7.5, 0.02% Tween-20), final volume
of 25 ml. When required, assays were performed in the presence of HDAC inhibitor
(20 mM final concentration). Plates were mixed by shaking for 1 s, and measure-
ments taken using a Victor X5 plate reader (Perkin Elmer) at room temperature
with an excitation wavelength of 480 nm and an emission wavelength of 535 nm.

Experiments were performed in triplicate and data were analysed using GraphPad
Prism (version 6.0), Kd values were calculated by nonlinear curve fitting using a
one-site binding (hyperbola) model (Y¼Bmax*X/(KdþX).

Displacement assays were performed essentially as above but with a fixed
concentration of protein/2-FAM-Ins(1,3,4,5,6)P5 and an increasing concentration
of inositol phosphate. The concentration of protein was determined as that which
gave 100% bound in the protein titration experiments. The data were analysed and
IC50 values calculated using GraphPad Prism (version 6.0).

Reporter gene assays. HEK293T cells were transfected with MH-100-TK-luc
reporter plasmid (containing Gal-binding sites), pCMX b-galactosidase, along with
GAL-DBD-fused SMRT350–480 (wild type and mutants) and untagged HDAC3,
using polyethylenimine. Cells were lysed and assayed for reporter expression 48 h
after transfection. Luciferase activity was determined using the Luciferase Assay Kit
(Biovision) and normalized to the b-galactosidase activity. Measurements were
carried out on a Victor X5 plate reader (Perkin Elmer).

Circular dichroism. A total of 14 mM of HDAC3:SMRT and 3.5 mM of
HDAC1:MTA1 were incubated with 200 mM of InsP6 or 40mM SAHA, either
individually or in combination. CD was monitored at 222 nm using a Applied
Photophysics Chiroscan plus spectropolarimeter, and the sample temperature was
increased from 10 �C to 90 �C (1 �C per minute). The data were analysed and
melting temperatures were calculated using GraphPad Prism (version 6.0).

Computational docking studies. Docking studies were carried out with
AutoDock4 (ref. 64), utilizing the AutoDockTools 1.5.6 GUI. Non-polar hydrogens
and Gasteiger atomic charges were added to the HDAC3:SMRT DAD atomic
coordinates (PDB ID: 4A69) in AutoDockTools. The inositol phosphate-binding
site was as defined in ref. 2. Probes were calculated at every 0.375 Å grid position of
a grid box (box size x, y, z¼ 21.406, 50.64, 23.036 Å, respectively), centred upon the
inositol ring. The docking of the inositol phosphates was run using the Lamarckian
genetic algorithm in AutoDock4. Other parameters were set to the default values.
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