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Breastfeeding is associated with long-term wellbeing including low risks of infectious
diseases and non-communicable diseases such as asthma, cancer, autoimmune
diseases and obesity during childhood. In recent years, important advances have been
made in understanding the human breast milk (HBM) composition. Breast milk
components such as, non-immune and immune cells and bioactive molecules, namely,
cytokines/chemokines, lipids, hormones, and enzymes reportedly play many roles in
breastfed newborns and in mothers, by diseases protection and shaping the immune
system of the newborn. Bioactive components in HBM are also involved in tolerance and
appropriate inflammatory response of breastfed infants if necessary. This review
summarizes the current literature on the relationship between mother and her infant
through breast milk with regard to disease protection. We will shed some light on the
mechanisms underlying the roles of breast milk components in the maintenance of health
of both child and mother.
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Abbreviations:HBM, human breast milk; BDM, Breast-derived microbiota; EBV, Epstein–Barr virus; CMV, cytomegalovirus;
HIV, human immunodeficiency virus; MMC, maternal microchimerism; BMI, body mass index; GI, gastrointestinal; MSC,
mesenchymal stem cells; hBmScs, human breast milk stem cells; NIMA, noninherited maternal antigen; EV, extracellular
vesicles; ESCRT, endosomal sorting complex required for transport; AchE, acetylcholine esterase; HLA, human leucocyte
antigen; DCs, dendritic cells; BrMM, breast milk macrophage; GM-CSF, granulocyte-macrophage colony-stimulating factor;
IL, interleukin; CD, cluster of differentiation; NET, neutrophile extracellular traps; MAC-1, macrophage-1 antigen; ADCC,
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interferon; TNF, tumor necrosis factor; G-CSF, granulocyte-colony stimulating factor, MCP-1, monocytes chemotactic protein
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INTRODUCTION

Breastfeeding is considered as an optimal way to provide the
developmental nutrients needs to newborns and shaping their
immune system. Indeed, the immune system of an infant
matures by learning to fight infections, establishing adequate
tolerance to the environment and the developing microbiota.
Breastfeeding is characterized by important psychological
consequences on neonates and mothers (1–4).

Breastfeeding is the most optimal food for infants, and in this
regard, the World Health Organization (WHO) and the United
Nation International Children’s Emergency Fund (UNICEF)
recommend exclusive breastfeeding of babies at least during
the first six months after birth and add complementary foods
in addition to breastfeeding for up to 2 years or beyond (2). In
addition to provide nutrients, breast milk is rich in microbiota
and non-immune and also immune components to ensure the
infant protection against numerous diseases and support
maturation of the developing immune system of an infant (5,
6). The roles of the different breast milk components are far from
being completely understood. Of note, immune cells such as B
and T lymphocytes, regulatory cells, monocytes/macrophages,
neutrophils, natural killer cells and IgA, IgG and IgM antibodies
are found in the breast milk (7). Breast milk-derived antibodies
are produced as a result of pathogenic or non-pathogenic
stimulation of mucosa-associated lymphoid tissues in the gut
and airways (8). Therefore, breast milk-derived immune
components are related to a wide range of intestinal and
respiratory pathogens which the infant will encounter (8–10).

Studies in human have shown that many factors such as
geography, infant sex or number of pregnancies influence the
heterogeneity and composition of human breast milk (HBM)
(11). These parameters shape the composition of HBM and
therefore impact the maturation and the susceptibility of the
human immune system. Indeed, Holmlund et al. have shown
that the maternal country of birth influences the pro- and anti-
inflammatory contents of HBM, resulting in susceptibility or not
to immune-mediated diseases such as allergy or necrotizing
enterocolitis (11).

However, breast milk may also transfer virus such as Epstein–
Barr virus (EBV) and cytomegalovirus (CMV) from infected
mothers to the infants (12), without infection in infants (13–15).
Furthermore, as hepatitis B or C virus are lowly presented in
breast milk, breastfeeding is not a contraindication by infected
mothers (14). Influenza, rotavirus and HIV virus transmitted by
breast milk from infected mothers could lead to infant increased
disease susceptibility (12, 14, 16). Moreover, environmental
chemicals are sometime also found in HBM leading to toxicity
(17, 18). All of these environmental factors need to be assessed
for a positive impact of HBM on dyad mother/infant.

Furthermore, maternal microbiota, especially breast-derived
microbiota (BDM), is one of the relevant features in the
development of the immune system of the infant and his
microbiota colonization, affecting mucosal and systemic
immunity (10). Bacteria strains are shared in the dyad mother/
infant (19, 20). BDM is involved in shaping of the microbiota of
offspring, resulting in important differences between breast-fed
Frontiers in Immunology | www.frontiersin.org 2
infant microbiota and those of formula-fed infant (21, 22). BDM
include mostly Staphylococcus and Streptococcus bacteria (23),
but other bacteria such as Bifidobacterium, Lactobacillus, and
Acinetobacter are commonly detected (24, 25). Many factors,
namely, geographic locations, maternal lifestyle, the delivery
mode and contact to microorganisms influence BDM
composition, with variable consequences on the infant immune
system (26, 27).

In this review, we summarize the current literature on the
breast milk with focus on both non-immune and immune
compositions of the breast milk. We also shed some light on
their roles in the maintenance of the health of both child
and mother.
CELLS, MICROVESICLES AND
MOLECULES FOUND IN HBM

Breast milk can be subdivided into colostrum, transitional milk
and mature milk that reflect the time of breastfeeding from the
delivery and the needs for the newborn growth (28). Indeed,
colostrum is produced from delivery until seven days while
transitional milk is produced between days seven and fifteen
after delivery. The mature milk production begins four weeks
after postpartum (29). Colostrum is the most important type
of HBM based on it high concentration of immune components
(7). Overall, the different types of HBM is composed of
factors, namely, breast-derived cells, blood-derived cells (30),
antibodies, vitamins, and many other cells-derived factors
(extracellular vesicles, nucleic acids, enzymes, polysaccharides,
lipids, and hormones). All this is reinforced with the presence of
probiotic bacterium (10, 31–35). Immune component levels
decrease over time and become stable when breast milk is
mature (29). Breast-derived cells included lactocytes and
myoepithelial cells and also progenitor and stem cells (32). A
sustainable proportion of breast milk stem cells is capable of
crossing the intestine of nursed infants, entering their circulatory
system, and populating distant organs (32, 36, 37). Molès and
colleagues have proposed a specific mechanism termed maternal
microchimerism (MMC) allowing the transfer and persistent
nesting of maternal cells to infant intestinal mucosal tissue, and
from there, to other infant immune tissues (38). Milk cells
crossing through intestinal mucosal tissue is allowed by
weakening interepithelial junctions (39). An important number
of breast milk-derived cells are transferred to infant before gut
closure and lead to more efficient and effective maturation of
mucosal immunity and/or systemic immunity (38).

These natural human milk bioactive components enhanced
immunity in the infant during the first years of life (40). High
proportion of breast-derived immune cells is activated showing
the transfer of active immunity to the infant. These active cells
supports the immunological maturation and immune defense of
newborns against pathogens (41–43). While it is expected that
other components will be identified in the future, the overall
picture indicates that HBMmay have considerable impact on the
dyad mother/infant health.
April 2022 | Volume 13 | Article 849012
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Stem Cells
Multicolor flow cytometry has been used to identify in breast
milk two major groups of cells, the breast-derived cells, and the
blood-derived cells. Both of these groups contain heterogeneous
progenitor stem cells, namely, early-stage stem cells,
hematopoietic stem cells, mammary stem cells, mesenchymal
stem cells, neuro-progenitor cells, and myoepithelial progenitor
cells (44–52). Healthy infants consume between 0.5 and 1.5 L of
breast milk per day. Immune cells constitute less than 2% of
mature human milk-derived cells in healthy mothers. Therefore
stem cells ingested daily will represent an important number of
breast and blood-derived cells and may reach billions of cells (46,
48, 53). Indeed, in a recent publication, the higher number of
hematopoietic stem cells in mature breast milk compared to
colostrum was described (53). Moreover, Kakulas et al., formerly
Hassiotou, using luminous mice have shown that viable
multifunctional stem cells are in breast milk and can cross
gastrointestinal (GI) tract mucosa and enter the systemic
circulation of the breastfed neonates (48). After crossing the GI
tract through diapedesis and entering the bloodstream, these
cells immigrate into the different organs and differentiate into
functional cells (Table 1) (32). Therefore, specific breast-derived
stem cells are found in the thymus, liver, pancreas, brain,
bone marrow, spleen, intestinal tissues, and lungs and remain
unharmed after (32, 48, 54–57). For instance, the incorporation
of breast-derived stem cells in the brain is followed by
differentiation into the neuron and glial cells (57, 58).

Using gene expression in stem cells (47, 59), Li et al. have
recently characterized stem cells in preterm and term mother’s
milk (53). They have shown that gestational age at delivery but
also body mass index (BMI), the mode of delivery and parity
influenced the percentages of hematopoietic stem cells in
colostrum and transitional milk. These observations confirmed
the Briere et al. data in which breast milk samples obtained from
feeding mothers of preterm and term offspring are obviously
different in the proportion of stem cells (60). Moreover, stem cell
numbers changed dynamically at different breastfeeding stages
(53, 59). Mesenchymal stem cells (MSC) (CD44+, CD90+, and
CD105+ cells) represent 10–15% of stem cells (50) and MSC were
shown to be higher in mature milk than in colostrum (59). These
changes in colostrum vs mature milk were not confirmed by
Shujuan et al. (53), showing the need of more data to better
describe the breast milk composition.

It is still a challenge to identify the origin of human breast
milk stem cells (hBmSc). Hassiotou and Hartmann have
suggested that at least some subpopulations of hBmSCs could
have the same origin as hematopoietic stem cells (48). This
suggestion is reinforced by the presence of other blood-derived
cells in breast milk (51, 61). Unfortunately, the precise
mechanisms by which they enter into breast milk and the
physiological roles of hematopoietic stem/progenitor cells in
early neonate development remain unclear.

The last decades allowed good documentation of the
transmission of cells from mother to fetus and vice versa
through placenta but also from mother to breastfed infants via
breast milk (36, 37, 62–64). Breast milk-derived cells seem to
Frontiers in Immunology | www.frontiersin.org 3
cause microchimerism in breastfed infants and these cells may
survive in the infants for several years as those cells exchanged
between mother and fetus in utero (37, 65–68). This
microchimerism is firmly involved in tissue repair and in the
efficient maturation of infant immune system (38, 69), for
instance, by inducing tolerance to mother noninherited
maternal antigen (NIMA), especially in case of graft from
mother to breastfed infants (37). This not fully understood
physiological role of hBmSC becomes a great challenge to learn
more about all the implications of breastfeeding and harness
stem cells to provide significant therapies.

Innate Immune Cells
At birth, the newborn immunity is characterized by its
remarkable difference compared to the adult immune system
(70–72) placing an infant at an increased risk of infection (70, 73,
74). However, breastfeeding is perfectly adapted to provide needs
to learn how to establish balance between fighting infections and
tolerance to harmless environmental compounds (40).
Furthermore, in some cases the immune system of the
newborn is associated with developmental immune deficiencies
which might render the newborn more susceptible to infections,
eventually decreases vaccine efficacy and increases the
susceptibility of the respiratory and gastrointestinal (GI) tract
to infections (75). Breastfeeding will reinforce and educate
neonatal immune trajectories allowing the best protection for
the newborn (76, 77). In addition to stem cells (53, 54, 59), HBM
is rich in immune cells such as monocytes/macrophages,
neutrophils, cytotoxic, helper and regulatory T cells, natural
killer (NK) cells and B cells. These cells provide active
immunity to neonates by their abilities to produce bioactive
molecules such as lactoferrin, lysozyme, oligosaccharides,
cytokines and others. B cells complete these bioactive
molecules by producing immunoglobulins (secretory IgA, IgG
and IgM) (29, 30, 78). Breast milk shapes the development of the
newborn immune system and is involved in the development of
the microbiota of the infant (10). The proportion of leucocytes is
significantly higher in colostrum than in transitional milk and in
mature milk. More interesting, although the number of
leucocytes/ml decreased significantly from colostrum to mature
HBM, the variety of leucocytes and their phenotypic
characteristics is associated with minor difference with the
breastfeeding time, the length of pregnancy or delivery mode
(79–82).

Macrophages
Macrophages are part of the innate immune system that detect
pathogenic microbes or infected cells and trigger immune
responses by producing inflammatory mediators and activating
adaptive immune responses. These cells are professional antigen
presenting cells and therefore important players during adaptive
immune activation. Breast milk macrophages (BrMM) represent
up to 80% of colostrum and transitional HBM, showing their
involvement in the immune protection of the infant (83). Recent
data have confirmed the abundance of monocytes/macrophages
in HBM and are grouped into inflammatory (CD16−) and non-
April 2022 | Volume 13 | Article 849012

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lokossou et al. Breast Milk Allow Healthy Newborns
inflammatory (CD16+) macrophages (84–87). Although a
consistent number of monocytes/macrophages found in breast
tissue are originated from the peripheral blood, the gut, or the
nasopharynx-associated lymphoid tissues, a fraction is locally
constituted in the mammary tissue (8, 78). The strong presence
of macrophages in HBM is due to their high phagocytic role (88)
and BrMM were able to produce spontaneously granulocyte-
macrophage colony-stimulating factor (GM-CSF) upon
exposure to HBM components. In the presence of exogenous
interleukin-4 (IL-4) alone, BrMM differentiated into CD1+ DCs
showing their abilities to stimulate T cells (89, 90).

Zheng et al. reported that macrophages homing to breast, and
are found in milk, in response to ongoing respiratory infections in
the nursing infant, displayed an anti-inflammatory profile that
correlated with protection of the infant against mucosal
inflammation (84). Indeed, these breast macrophages of a mother
are trafficking to the mucosal surfaces of the offspring in mice and
other animal models (36, 39, 58, 62, 91). Therefore, it is clear that
these cells play a crucial role in the gastrointestinal mucosa and are
involved in the maturation of the immune system of the nursing
infant without causing inflammation (73, 84, 92, 93). These breast-
derived macrophages may therefore exert an important role in
innate immunity but also triggering high antigen-specific T cells
(89). These findings showed the uniqueness functions of BrMM in
both normal and pathological conditions, which is not the case with
other differentiated cells that are transferred into breast milk.
Moreover, BrMM immunoprotective function is improved by
opsonin-independent mechanisms than blood monocytes, by
differentiating into lectinophagocytic properties (94). However,
the mechanism underlying this function needs to be investigated.

Neutrophils
Neutrophils are important sensor cells that help to prevent
infections by blocking, disabling or digesting invading particles
and microorganisms. These cells are key players during acute
inflammation and also contribute to chronic inflammatory
conditions and adaptive immune responses (95).

Neonatal neutrophils are in lower numbers and they are not
able to effectively kill bacteria as neonatal neutrophils do not
form neutrophil extracellular traps (NETs). Expression of
adhesion molecules (e.g., L-Selectin: CD62L, Integrin: MAC-1)
is also decreased on neonatal neutrophils, affecting their binding
ability to the endothelium. They are also characterized by a lower
expression of TLR2 and TLR4 as well as decreased level of
phagocytosis, neutrophilic burst, and diminished capacity of
degrading intracellular infective agents (96). HBM neutrophils
will make up these deficiencies by being more active and motile,
and presenting interactive features showing that HBM
neutrophils are involved in active immune response in infants
(44, 93, 97, 98). During breastfeeding, the relative median
frequencies of neutrophils within total leukocytes significantly
increased from colostrum to mature milk (79) showing their
involvement in infant immune protection. Furthermore, milk
from asthmatic mothers has demonstrated elevated proportions
and activation of neutrophils. These changes of HBM
neutrophils due to maternal asthma may result in alteration in
the immune response of the infant (99). Besides, breastfeeding
Frontiers in Immunology | www.frontiersin.org 4
mothers with high levels of neutrophils in their milk (>20%) are
more likely to have children who are allergic to cow’s milk than
breastfeeding mothers with low neutrophil levels (100).

On the other hand, this does not question the fact that data
from the systematic reviews have shown the breastfeeding
protection of infants against the development of atopic diseases
such as eczema and food and respiratory allergy, especially when
there is a family history (101, 102).

Natural Killer (NK) Cells
Natural killer cells are important players in the innate immune
response. These cells act directly against infection but also
produce cytokines that activate others immune cells. Therefore,
NK cells contribute to neonate protection (42, 45). Recent data
have described NK cells in HBM (30, 44). NK cells represent on
average 0.5% of colostrum-derived leucocytes, 1.3% of
transitional breast milk cells, and 2% of mature breast milk
cells (53). The proportion of NK cells was significantly lower in
mature milk of preterm mother (79) and formula-fed newborns
(103). Interestingly, Fernandez et al. have shown that human
milk-derived Lactobacillus may enhance the release of Th1
cytokines, and activate NK cells, and others immune cells (104).

NK cells migrate to the breast from lymphatic vessels and
systemic circulation (105), and arrive in mammary glands (106).
These cells do not play a protective role only in the infant
gastrointestinal tract but also protect the mammary gland from
infection (42).

The involvement of breast milk-derived NK and NKT cells in
antibody-dependent cellular cytotoxicity (ADCC) and antibody-
dependent cellular phagocytosis (ADCP) should be more
investigated to better understand how NK cells contribute to
pathogen clearance in infant. For instance activated NK cells are
found in HBM during CMV reactivation, supporting the
immune response against CMV (15).

Innate Lymphoid Cells (ILCs)
One of the most recent discoveries in the composition of breast
milk is the presence of innate lymphoid cells (ILCs) that often
were found near the lining of the aero-digestive tract (96, 107–
109). These cells seem to be more activated and/or differentiated
than their blood homologous (108) and constituted guard
against breast infection by pathogens. They share functions
with T cells (110) and may shape neonatal innate immunity
(108) as they are important players in intestinal microbiota and
the adaptive immunity of the newborn (111–113). Based on
cytokines secretion and transcription factor profiles, ILCs were
regrouped within 3 subtypes of ILCs with ILC1 counted 3 to 10
times of ILC3 which was 3 times the count of ILC2. More
interesting, ILC1 produce higher levels of IFN-g than IL-5 and
IL-22 produced by ILC2 and ILC3 respectively (108). ILC2 and
ILC3 are therefore important player in the GI tract health as IL-
22 is highly associated with the maintenance of gut barrier
integrity (113). Furthermore, ILCs play an important role
during inflammation and tissue homeostasis (108, 112). As
breast milk-derived ILCs modulate the immunity of the
neonate, maternal ILCs may affect the infant ILCs. But it is not
clear how this occurs. The next step will be to investigate the role
April 2022 | Volume 13 | Article 849012
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of maternal ILCs in shaping infant ILCs and understand how;
1—they protect the infant from enteric infections and intestine
inflammation, 2—they are harnessed to regulate the
establishment of the gut microbiome of the infant.

Adaptive Immune Cells
T Lymphocytes
As key actors of adaptive immunity, lymphocytes represent 5 to
10% of all HBM leucocytes (105). Among these lymphocytic
populations, T cells represent more than 80% whereas B cells are
only 4 to 6% (114). In HBM, CD4+ T cells are present in activated
state and express activation markers such as CD40L, sCD30, IL-2
receptor, HLA-DR+, human mucosa lymphocyte antigen-1
(hMLA-1), or late activation protein-1 (LAP-1). These adaptive
immune cells also express CD45RO which is associated with
immunological memory functions (115–118). Low number of
naïve CD4+ T cells were also described in HBM (117). In HBM,
26–76% of CD4+ T cells co-express the C chemokine receptor 5
(CCR5) and CXC chemokine receptor 4 (CXCR4), the major co-
receptors used by HIV to attach and entry cells (119–121).
Although the expression of CD103, the mucosal homing
marker indicating their mucosal origin, these HIV target cells
were preserved in HIV-infected mothers breast milk unlike in
other mucosal immune areas in which these cells were quickly
eliminated by HIV (122). Moreover, the HIV-infected women
were clinically stable on highly-active antiretroviral therapy
(HAART) allowing low or undetectable viral loads but do not
achieve CD4+ T cell reconstitution in the periphery (122). As
HBM contains memory CD45RO+ T cells with helper-inducer
function, they may be resistant to killing by HIV (123) and
shelter the mammary gland from HIV replication (124–127).

HBM-derived CD8+ T cells are homed from the mother
mucosal immune system to the breast and are presented at a
higher proportion than CD4+T cells. Indeed, Wirt et al. have
shown that the HBM mean CD4/CD8 ratio of T cell was 0.88,
ranging from 0.40 to 1.25 whereas it decreases in peripheral
blood (116). CD8+ T cells express L-selectin, a4b7 integrin,
mucosal addressin cell adhesion molecule-1, intestinal homing
receptor CD103, mucosal homing receptor CCR9, high level of
CD45RO, and HLA-DR markers showing their effector memory
functions (117, 128, 129). Comparable to peripheral blood, HBM
CD8+ T cells express IFN-g alone or IFN-g and granzyme
together and increase during human cytomegalovirus, HIV,
influenza, or EBV infection (80, 130). The increased number of
CD8+ T cells were positively correlated with breast milk viral
load showing that local virus replication induced homing of
antigen-specific CD8+ T cells into the breast for local viral
control and relative lack of viral transmission via mammary
glands (131). As showed in murine pups, maternal breast milk
cytotoxic T lymphocytes home to the Peyer’s Patches of the
breastfed infant and this was due to the expression of gut-
homing molecules a4b7 and CCR9. Moreover, breast milk
cytotoxic T cells have a high capacity to produce potent
cytolytic and inflammatory mediators when compared to those
generated by the breastfed infant (130). These data suggest the
compensation of the learning adaptive immune system of the
Frontiers in Immunology | www.frontiersin.org 5
infant in order to limit oral infectious during the postnatal
phase (36).

Since the first description of presence of leucocytes in HBM,
especially in colostrum (132, 133), subsequent findings have
elucidated the HBM composition. It is established that breast
milk is involved in initiating immunologic tolerance in newborns
to antigens of both mother and environment to achieve lifelong
homeostasis and prevent immune-related disorders (128, 134). It
was reported that the thymus size of breast-fed infants is double to
that of non-breast-fed infants (135–137) and supports the role of
human milk on regulatory T cells expansion during the first three
weeks after birth in breastfed human babies. These cells are nearly
twice as abundant as in formula-fed babies. These cells also control
the immune response of the baby against maternal cells
transferred with breast milk and help to reduce inflammation
(65, 66, 138, 139).

As the increased number and functionality of T regulatory
cells (Treg) are crucial for establishing and maintaining the semi-
allograft fetus (140–142), these cells are the main players for
providing tolerance in the newborn (138, 139). Cérbulo-Vázquez
et al. have demonstrated a higher frequency of CD127− CD25++

cells (Treg) in colostrum than peripheral blood, showing a
passive transfer of tolerance mediated by memory cells and it
is positively associated with vaginal delivery (143).

These tolerogenic cells also exhibited higher expression of
CD25, CD152, CD279, and TGF-b than blood-derived Treg cells,
suggesting the increased ability of colostrum-derived Treg cells
to mediate immunomodulation and maternal microchimerism
(37, 143).

Treg cells will play a beneficial role in the newborn by lowing
inflammation in the gut mucosa (144) and reducing the risk of
developing allergy, asthma, obesity, and diabetes type 1 during
the short-and long-term life of the infants (145).

Moreover, it has been shown that maternal allotransplants
from the human kidney are better tolerated if the graft recipient
has been breastfed during early life (146, 147). This
immunosuppressed anti-maternal immunity may be related to
the ability of newborn naive CD4+ T cells to differentiate toward
tolerogenic features and drive the suppression of normal
immune responses leading to T cell anergy (148–150). The
breakdown of tolerance to maternal antigens mechanism
throughout the life can drive autoimmune diseases such as
type 1 diabetes (T1D), multiple sclerosis (MS), and systemic
lupus erythematous (SLE), suggesting the necessity of
maintaining this maternal microchimerism induced by HBM
(151–155). More recently, CD161+/TRAV1‐2+ mucosal‐
associated invariant T cells (MAIT) and gd T cells were found
in breast milk. The study by Bedin et al., reported an increased
frequency of CD161+/TRAV1‐2+ MAIT cells in HIV-infected
mother breast milk compared to healthy mother (107).
Furthermore, gd T cells have selective compartmentalization
and represent almost 9% of CD45+ breast milk leucocytes
whereas they represent only 2.5% of blood-derived lymphocyte
cells. gdT cells number decrease slowly in HIV-infected women
breast milk and represent 7.26% of breast milk-derived
leucocytes. In blood from HIV-infected cells, 3.31% of CD45+
April 2022 | Volume 13 | Article 849012
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cells were TCR gd cells (107). This observation shows the
detection of unconventional T cells that may also be involved
in both the protection against infection of the lactating
mammary gland and the maturation of infants’ gut and
microbiota (107). One of the future challenges will be to focus
on exploring their precise role in gut and microbiota integrity.

B Lymphocytes
The most important thing we knew about breast milk is the
presence of a variety of immunoglobulins. These antibodies are
secreted by B lymphocytes or plasma cells (79).

After memory B cells or Ig-secreting cells were generated
following B cells activation, they recirculate through peripheral
lymph nodes, spleen, tonsils, and mucosal effector sites such as
exocrine glands, including the lactating mammary gland (9,
156–159).

Phenotypically and functionally, two main subsets of memory
B cells have been described in HBM (156, 160). The most
abundant subset, class-switched B memory cells (CD27+IgD−)
express surface IgG or IgA molecules, while non-class switched B
cells, less abundant (CD27+IgD+) express IgM and are involved
in the response to T cell-independent antigens (161, 162).

HBM-derived B cells are activated cells with high levels of
CD38 expression, low expression of complement receptors, a
feature of plasma cells (163–165). Mammary gland-homed
memory B cells and plasma cells arise from other mucosal areas
where they have encountered antigens (139–141). These B cell
homing-molecule profiles are different from those of homed B
cells in nasal-associated lymphoid tissue (NALT) or gut-associated
lymphoid tissue (GALT) (166–169). However, HBM-derived
memory B cells are a4b7+/−, a4b1+, CD44+,CD62L−, sharing
their profile with GALT B cells which also bear a4 and b7
integrin chains and are CD62L− (168, 170–172). Based on
homing profiles, these observations showed that the breast is
more closely associated with intestinal mucosa than with upper
respiratory mucosal sites (28). B cell migration to the mammary
glands is mediated by chemokine CCL28 which is the mucosa-
associated epithelial chemokine (111, 173, 174). Moreover, during
lactation CCL28 is upregulated and is linked to the CCR10
receptor expression on IgA-secretory cells (IgA-SCs) in the
mammary gland, allowing IgA-SCs accumulation in the
mammary gland, unlike to IgG-SCs or IgM-SCs (173, 174).
Since IgA-SCs are accumulated in the mammary gland, >90% of
Igs secreted in breast milk are IgA (111, 175). The entero-
mammary pathway appears to be another process by which the
mother could also provide the protection to offspring (176).
Indeed, during suckling, the mouth-derived pathogen of the
infant may be retro-transferred via the nipple to breast inducing
a mammary immune response (41, 177, 178). After the
recognition of the pathogen by the mother immune system,
specific antibodies are then produced in milk and fed to the
infected infant (42, 111, 179). Cleary, maternal, and infant
infections stimulate a rapid leukocyte response in breast milk
(41). Moreover, in the milk of HIV-infected mothers and stools of
their breastfed children, the levels of total IgA and IgG were
increased indicating the activation and homing into the breast of
gut mucosa-derived B cells (175, 180). Notably, breast milk
Frontiers in Immunology | www.frontiersin.org 6
samples and stool samples from HIV-negative and HIV-positive
babies breastfed by their HIV-infected mothers, contained high
levels of HIV-specific IgG. However, IgA antibodies were less
frequent, and IgM are scarce (181). These antibodies, that
specifically target gp120, purified from HIV-exposed breastfed
infants, were able to inhibit HIV binding to HT29 cells and
monocyte-derived macrophages (181). Moreover, the intestinal
mucosa of infant exposed to HIV by breastfeeding produces HIV-
specific antibodies with inhibitory properties to HIV, showing the
effect of prophylactic breastfeeding on immune responses of an
infant against natural immunization with HIV (181).

It is therefore clear that class-switched B memory cells may
highly be involved to compensate the low antigen-presenting
capacity of newborn macrophages.

Acquired immunity of a newborn is characterized by its
excellent capacities to learn fighting pathogenic microbes and
during this learning phase, it is supplemented by maternal
antibodies (70–72, 182). These antibodies are provided first in
utero and after birth by breast milk. These in uteromaternal IgGs
are actively transported through the placenta to the fetus via the
Brambell receptor commonly called FcgRn (183). However, IgG
with certain specificities and with high avidity are more
efficiently transferred to the fetus than others (184). These IgG
antibodies are involved in newborn protection and mediate
antimicrobial and antibody-related cytotoxicity (185). These
antibodies recognize microbes on intestinal mucosa but also in
the circulation and tissues (43, 186).

Soluble milk IgAs also have antimicrobial properties and are
higher in milk from very preterm delivered mothers compare to
term milk (187–190) and in preterm milk vs term milk (185). sIgA
could inhibit pathogen binding (79, 191) by complexing antigens
and taking them up by intestinal DCs which will then process and
present these antigens (192). IgM, antimicrobial antibodies, are also
found in breast milk and mediate cytotoxicity (185).

Extracellular Microvesiles
Recently, extracellular vesicles (EV) have been identified in breast
milk and seem to shape the breastfed infant immune system,
especially his intestinal immune response (10, 124, 193, 194).
Moreover, Hock et al. have shown that rat milk-derived exosomes
promote intestinal epithelial cell viability, enhance proliferation, and
stimulate intestinal stem cell activity. These findings support the fact
that milk-derived exosomes play important roles in gut health and
prevent necrotizing enterocolitis in infants (195).

Breast milk-derived EVs contain a rich cargo, namely, cytosolic
and membrane proteins, mRNA, miRNA, and are oriented towards
cell-to-cell communication and result in the immune shaping of
newborns (196–198). EVs include two subsets such as microvesicles
(100–1.000 nm) (199, 200) and exosomes (30–100 nm) (201, 202).
Exosomes differ from the other cellular microvesicles according to 1
—the endocytic pathway by which they are generated, 2—their
homogenous cup-shaped structure, when observed by electron
microscopy, and 3—their buoyant density ranges between 1.13
and 1.19 g/ml on a sucrose gradient (203). Although the protein
composition of exosomes varies from their originating cell,
proteome analyses shown that the tetraspanins, CD9, CD63,
CD81, and the endosomal sorting complexes required for
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transport (ESCRT)-related proteins, Alix and TSG101, are
constituents of nearly all exosomes and are markers used for the
detection of exosomes (196, 203). The acetylcholine esterase (AChE)
activity is also a useful tool to control for exosomes isolation and
purification (204). Exosomes, are formed through the endosomal
pathway and are released from cells following the fusion of
multivesicular bodies with the plasma membrane (205). Exosomes
are released by a large range of cells, namely, immune cells, neural
cells, stem cells, placenta cells, and many cancer cells (reviewed here
(205)), and can be isolated from different body fluids, such as serum,
urine, cerebrospinal fluid, amniotic fluid and breast milk (10, 195,
203, 205–207). There are enriched by immunologically relevant
components that direct immune responses (208). High
concentration of exosomes is found in colostrum compared with
mature milk. HLA-DR is highly incorporated in early milk-derived
exosomes which displayed significantly lower levels of HLA-A, -B,
and -C in relation to mature milk. Indeed, breast milk-derived
exosomes phenotype depends on maternal sensitization and
lifestyle, which might increase allergy sensibility in the offspring
(209). Comparatively to breast milk volume, a high level of micro
RNAs (miRNAs) is found in breast milk (196). These large various
non-coding molecules (210) are stable in an acidic conditions of GI
tract (211) and regulate post-transcriptional expression of genes and
have biological activities in humans (210, 212, 213). According to
the HBM immune cells miRNAs and mammary gland cells
miRNAs, HBM-derived miRNAs seem to originate from
immune-related and mammary gland cells (193). HBM-derive
exosomes contain mostly miR-148a-3p, miR-22-3p, miR-200a-3p,
miR-146b-5p, miR-30d-5p, let-7a-5p, miR-30a-5p, let-7f-5p, let-7b-
5p, and miR-21-5p (193, 214–221). Upon in the GI tract, these
microvesicles-derived microRNAs are taken up by intestinal cells
(222). Moreover, some of these miRNAs seem to shape the neonate
immune system (210, 214) by limiting cytokine production (223)
and inhibiting T-cell proliferation induced by DCs (223) or B cell
activation, TLR4 signaling, and macrophage activation (193, 224).

Since gestational age induces changes in the miRNA profile
which influence metabolism and lipid biosynthesis (225), it
becomes opportune to understand the impact of these changes
on breast milk composition and offspring health (193). In the
same way, other HBM exosome-derived miRNAs induced B-
and T-cell activation, proliferation, and differentiation (193).
They are able to protect newborn from infection by reducing
inflammation and boosting the immune response by many ways
(193, 222, 226).

Carr et al. have recently proposed that breast milk miRNAs
may act as TLR7/TLR8 agonists and may boost the immune
system (193). This opens the way for a better understanding of
the specific role of HBM exosomes-derived miRNAs on the
immune system and the neonatal microbiota (10, 193, 227).
CYTOKINES/CHEMOKINES PROFILE OF
BREAST MILK

HBM contains an array of cytokines and chemokines reviewed
by Nolan et al. (228). These cytokines are primarily originated
from the mammary glands, and include IL-1 b (229, 230),
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IL-2 (229), IL-4 (230), IL-5 (230), IL-6 (84, 229–231), IL-8
(232), IL-10 (189, 230), IL-12 (233), IL-13 (230, 233), TNFa
(229, 231), TGF (transforming growth factor)-b (232), IFN-g
(235), granulocyte-colony stimulating factor (G-CSF) (234),
monocytes chemotactic protein 1 (MCP-1) (115) and
Regulated upon Activation, Normal T Cell Expressed and
Presumably Secreted (RANTES) (93, 230). Purified immune
cells from HBM have been shown to be able of producing
several cytokines (231). For instance, ongoing infection in
breastfeeding infant change milk-derived macrophage profiles
into a more anti-inflammatory profile compared to the healthy
breastfeeding infant (84). It will be very worthwhile to generate
more data to understand how these cytokines stay stable and
passage through the infant digestive system. These molecules
may be embedded and protected until they reach the intestine
(234, 235). The HBM-derived cytokines shape the maturation
and development of immune cells in infants. For instance,
maternal milk-derived TGF-b, IL-6, and IL-10 induce the
development and differentiation of IgA-producing cells (230)
and maturation of the naive intestinal immune system (236).
Moreover, infant infection is associated to IL-6 and IL-8 increase
in HBM that also contains CCL2 and CX3CL1 (84).

Many factors influence the cytokine/chemokine profile of
breast milk. For example, geographic location, migration of
women to a place different from the place of birth, the number
of pregnancies, etc., determine the cytokine/chemokine profile of
HBM. Thus, studies have shown that maternal country of birth
may influence breast milk composition of cytokines. For
instance, immigrant mothers from low income country with
high exposure to pathogens, to low exposure developed country,
continue to produce higher levels of pro-inflammatory cytokines
(IL-6 and IL-8) and TGF-b in their breast milk when they gave
birth in developed country (237). In countries with high
pathogens exposure, it is relevant to produce higher levels of
TGF-b1 and IL-6 in breast milk because of their involvement in
stimulation of IgA synthesis (238, 239). Therefore, their offspring
will be primed for more inflammatory cells to fight pathogens.
However, when these mothers immigrate to developed countries
with low exposure to pathogen, their infants continue to be
primed with higher levels of IL-8, IL-6 and TGF-b1, resulting to
higher incidence of inflammatory disease (237).

The number of pregnancies also influences the levels of
cytokines in breast milk. Indeed, a larger number of previous
pregnancies are associated to lower levels of IL-6, IL-8 TGF-b
and soluble CD14 in breast milk (237), resulting in a global
damping of the immune system. A lot of information is still
needed in order to better appreciate the role of these
cytokines/chemokines.
HBM MICROBIOTA

Immune development during infancy is in part related to
bioactive factors provided by HBM. Among these factors,
probiotic bacteria are important players and their variation due
to geographic locations, maternal lifestyle, the delivery mode and
contact to microorganisms can impact positively or negatively on
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the infant immune system (26, 27). Breast milk microbiota
contains a large number of specific bacterial species with
antimicrobial properties and health benefits (240–242). These
bacteria include beneficial, commensal and probiotic bacteria
(243, 244).

In regard to the number of bacteria consumed per day, about
8.105 bacteria/day, breast milk appear to be the second source of
bacteria for the infant after normal delivery (21). Human breast
milk-derived bacteria spectrum in healthy mothers is highly
diverse. The major bacterial species belong to Lactobacillus (L.
gasseri, L. fermentum, L. plantarum, L. rhamnosus, and L.
salivarius) (25, 241, 245, 246) and Bifidobacterium (B. breve, B.
bifidum, B. lungum, B. dentium, and B. adolescentis) (247, 248).
Among Staphylococcus spp. presented in HBM, S. epidermidis
was predominant while S. aureus was also found (249, 250).
Streptococcus spp. included mostly S. salivarius, S. hominis, and
S. mitis (249, 250). Recent analysis of HBM using sequencing
technologies has provided more detail about the diversity of
microbiota of milk with more than hundred bacterial species
(10). Interestingly, these bacteria are not present at the same
lactation time and their proportion among all bacterial is not
identical in all women. It is therefore believed that variations in
HBM microbiota are based on maternal diet, genetic, the mode
of delivery, demographic or environmental differences (27, 251–
253). Indeed, during the first month of lactation, full-term and
preterm milk samples shared bacteria such as Bifidobacterium,
Lactobacillus, Staphylococcus, Streptococcus, and Enterococcus
with significantly lower number of Bifidobacterium spp. in
preterm group (254). However, Urbaniak et al. did not found
significant changes in the bacterial composition between term
and preterm patients (255), showing that more research are
needed to highlight the composition of breast milk with regard to
the gestational age. According to the mode of delivery, cesarean
sections were associated with higher overall bacterial
concentration in colostrum and transitional milk. Moreover,
higher concentration of Streptococcus spp. and lower
concentration of Bifidobacterium spp. were found in cesarean
sections than vaginal deliveries (254).

Anti-biotherapy during pregnancy could also influence
microbiota diversity, leading to a significant decrease of
Bifidobacterium and Lactobacterium spp (256).. Other factors
that might impact breast milk microbiota are mother BMI and
geographical locations. Indeed, high BMI is associated with lower
bacterial diversity with reduction of Bifidobacterium spp. levels
and this lower bacterial diversity is correlated to celiac disease in
mothers (257). Mothers living in Africa, Asia, and Europe have
different milk profiles (253, 258), even if Staphylococcus and
Streptococcus were constant compounds of the milk microbiota
regardless the geographical locations (253, 258).

Too much debate surrounded the origin of breast milk
bacterial population. Similarities were found between the adult
skin microbiome and milk microbiota, suggesting bacterial
transfer from the skin of the mother during infant suckling
(21, 242, 259). In addition, infant oral cavity also influences the
breast milk bacterial composition based on retrograde back flow
mechanism (179, 260, 261). This mechanism referred to a
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“retrograde transfer” of external bacteria, and the gut-
mammary pathway for translocation of internal bacteria (261).
Many data are expected from BDM analysis and the harnessing
of BDM will be useful in disease prevention and therapy.
HBM AND INFECTIOUS DISEASES

Mortality and risk of infection in breastfed infants vs.
nonbreastfed infants is one of the markers of immunological
benefits of breastfeeding (262). Indeed, Victora et al. meta-
analysis shows that breastfeeding during the first six months of
life is strongly protective against infectious diseases (101). Their
analysis and others have demonstrated at least 88% reduction of
mortality in breastfed compared to nonbreastfed infants (101,
263). Regarding the many advantageous anti-infection and
immunological properties described in this review, HBM
appear as the optimal food with strong potential to reduce
infectious diseases and to optimize the well-being of offsprings,
especially in premature neonates. Although, mishandling or
misadministration of HBM may result in transmission of
infection to neonate, the many immune compounds prevails
the potential risk of infection. A recent study showed that
mothers are able to significantly increase their breast milk-
derived leucocytes in response to acute neonatal infection (41).
Some chronic diseases and respiratory infections and also otitis
and gastroenteritis rates are shown to be decreased in breastfed
infants (264, 265). HBM is also associated with decreased risk of
necrotizing enterocolitis and late-onset sepsis in premature
neonates (266, 267). When mothers are infected by airbones
diseases such as measles, varicella and tuberculosis, infants are
recommended to be temporarily separated from their mother.
Because these airbone diseases are not transmitted by their milk
as long as there are no lesions in the breast area, infants can
receive pressed milk from their mothers (268). Chronically
infected mothers by hepatitis B virus can produce in their
breast milk some virus even if the risk of transmissiom is low
(269). Therefore, the benefits of breastfeeding prevails the risk of
transmission and it is recommended for mothers to continue
breastfeeding (270, 271). In case of Herpes simplex virus (HSV)
which is responsible of perinatal infections and, even if less
frequently in neonate, HSV infections result from infected
maternal breast lesions. As there is no evidence of HSV
transmission in HBM, breastfeeding or pumping milk in the
absence of breast lesions is recommended when women are
infected by HSV (268).

Some pieces of evidence suggest that HBM can provide
immune protection against Severe Acute Respiratory
Syndrome novel Coronavirus 2 (272, 273). Indeed, significant
specific IgA to the full SARS-CoV-2 spike protein and significant
IgA, IgG, and/or IgM directed to SARS-CoV-2 spike protein
receptor-binding domain are found in HBM (272, 273). As
SARS-CoV-2 RNA is expressed in HBM (274) without it being
possible to demonstrate the viability and transmissibility of
detected virus (275–277), the feeding of HBM should be
encouraged, either via direct breastfeeding or via pumped HBM.
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Acute gastroenteritis may be cause by norovirus (NV)
resulting in diarrhea in infant. It has been shown that high
positivity rates and titers of IgA directed to NV in HBM is
associated with reduced diarrheal symptoms in NV infected
infants (278). These data confirm the antiviral properties of
HBM and taking more attention to breask milk composition will
help fighting infectious disease in low income countries.

HBM is an antibacterial and anti-infectious food which
reduces the possibility of pathogens transmission to neonate
(270). These anti-infection properties are confirmed in in vitro
studies that showed that HBM-derived Lactobacillus rhamnosus
and Lactobacillus crispatus have anti-infection activities against
Staphylococcus aureus (S. aureus). As S. aureus is involved in
mastitis in lacting women (279), antibiotic-resistant nosocomial
infections, and neonatal infections, breastfeeding is and
important weapon to reduce the pathogen load owing to S.
aureus (270, 280). Moreover, in vitro and in vivo studies in mice
have shown that HBM-derived lactobacilli strains, especially,
Lactobacillus salivarius, have antibacterial activity and that
inhibit Salmonella enterica adhesion to mucins. This results in
high survival proportion in infected mice (240, 280). In addition,
lactic acid bacteria in HBM allow acid pH, resulting in inhibition
of the growth of anaerobic bacteria and protection of the gut
(240, 281).

Escherichia coli (E. coli) are responsible of neonatal systemic
infection and urinary tract infection. However, HBM is not a
source of E. coli due to the anti-infection properties of breask
milk (282). Therefore, if a mother is experiencing E. coli
infection, breastfeeding migh not be interrupted (270). HBM is
also known to prevent oropharyngeal infant Haemophilus
influenza type b (Hib) colonization. Therefore, breastfeeding
migh be continued with careful masking and hand hygiene when
mother is experiencing Hib disease (270, 283).

During delivery, the risk of transmission of Group B
Streptococcus (GBS) is significant, resulting in neonatal late-
onset sepsis. Although GBS can be found in HBM (284),
the anti-infection properties of HBM justify the fact that
breastfeeding is encouraged during GBS disease. However, in
case of recurrent late-onset GBS disease in preterm neonate,
it suggests avoiding breastfeeding until the disease is
resolved (285).

Sexually transmitted diseases caused by Chlamydia or
Neisseria gonorrhea can result in perinatal infection.
Chlamydial acquired infection during delivery results in
neonatal conjunctivitis and pneumonitis. While HBM is not a
source of chlamydial transmission, specific secretory IgA has
been found in colostrum and mature milk of infected women
allowing the continuation of breastfeeding (286). N. gonorrhea
also is not transmitted by HBM and breastfeeding is
recommended if women experiencing infection are treated
with appropriate medication (286).

While tuberculosis (TB) remains a burden in developing
countries, there has been no demonstrated case of TB
transmission through HBM, excepted during TB mastitis
(287). Therefore, during separation between TB experienced
woman and infant, infants are allowed to receive pumped milk
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with adequate precautions and are breastfed in case of
asymptomatic TB (279).
GLOBAL BENEFIT FOR
BREASTFEEDING MOTHERS

The benefit of breastfeeding in both mother and infant health is
demonstrated by recent data showing that HBM bacteriome are
associated with anti-tumor properties (280). Indeed, live, heat-
killed and cytoplasmic fractions of HBM-derived Enterococcus
faecalis and Staphylococcus hominis have shown anti-tumor
activity against a breast cancer cell line in vitro (288).

In vitro study has also demonstrated that Lactococccus lactis has
therapeutic effects against colon cancer (289). HBM bacteriome has
also relevant implication in mastitis that occurs in about 30% of
breastfeeding women (290, 291). HBM-derived Lactobacillus
salivarius and Lactobacillus gasseri are shown to be effective
substitutes for the treatment and control of mastitis (292).

A collaborative study analyzing 47 epidemiological studies,
including women with breast cancer and without the disease, has
demonstrated an inverse relationship between breastfeeding and
breast cancer. A reduction of 4.9% in the incidence of breast cancer
is associated with the duration of breastfeeding (293). This
observation was confirmed in a meta-analysis performed by
Victora et al. who found that longer breastfeeding is associated
with 7% reduction of breast cancer (101). Ovarian cancer is also
reduced by 30%when infant was breastfed for a long duration (294).

Potential mechanisms underlining the relationships between
breastfeeding and cancers may include inflammatory disorders
and epigenetic reprogramming in the tissues, resulting in
disorders in progenitor cell pools. For instance, in breast
cancer, high FOXA1 methylation is found among women who
did not breastfeed (295). Using technological advances, it will be
possible to shed light on the mechanism(s) by which
breastfeeding contributes to reduce specific cancers.

Compelling data have demonstrated the maternal health
outcomes of breastfeeding. Victora et al. have well demonstrated
how breastfeeding acts as natural contraceptive by spacing birth,
especially when mother exclusive breastfed (101, 296).

Type 2 diabetes (T2D) risk is also reduced by breastfeeding (297,
298), while every 6 months an increase in breastfeeding duration is
associated to 1% lower mean body maternal index (299). The
mechanism underlining the benefit effect of breastfeeding includes
the increase in the number of b cells into the pancreas. Indeed,
during breastfeeding prolactin induces serotonin in b cells
improving insulin secretory function and glucose tolerance (300).
The impact of prolactin on the immune system has been described
during the last 2 decades. This polypeptide can act as hormone
when synthetized by hypophysis and as cytokine when it is provides
by neurons, mammary epithelium, skin, prostate, immune organs,
and cells (301). In addition to controlling lactation and maternal
behaviors, polymorphisms in prolactin gene appear to play an
important role in autoimmune disease including SLES (301, 302).
Indeed, hyperprolactinemia impairs B-cell tolerance (303), and
results in SLE (303).
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HBM AND INFANT’S IMMUNE DISEASES

T1D characterized by the destruction of pancreatic B cells (304),
is strongly based on genetic susceptibility but also involves non-
genetic factors (305–307) including breastfeeding which could
protect against T1D in infants (308). T1D risk is reduced in
newborn breastfed during more than 3 months or during
minimum of 2 weeks exclusive breastfeeding after postpartum
(309) while T1D risk is twofold increased in nonbreastfed infants
(307). However, this study did not found positive association
between the time of introduction of specific solid foods and T1D
(307). In contract two important studies, the Diabetes and
Autoimmunity Study in the Young (DAISY) (310) and the
Type 1 Diabetes Prediction and Prevention Project (DIPP)
(311) suggested that introduction of solid foods before 4
months and after 6 months of age increase the risk of T1D
(303). The risk of T2D in childhood is also reduced by proper
breastfeeding including the duration of breastfeeding and
exclusive breastfeeding (312).

The protective role of breastfeeding in immune disease,
including juvenile idiopathic arthritis (JIA) and rheumatoid
arthritis (RA) is controversial (303). For instance, breastfeeding
has been associated to protection against JIA (313) whereas other
authors did not support this observation (314). It also has been
shown that the gut microbiome is altered among JIA patients
suggesting a role of breastfeeding (315). Futures studies are
needed to better understand the impact of HBM on the risk
of JIA.

The influence of HBM on the risk of developing RA is not
clear (303) and a recent meta-analysis has concluded that the risk
of RA is not affected by the duration of breastfeeding (316).
CONTROVERSY ON HBM PROTECTION
OR SUSCEPTIBILITY TO ALLERGY AND
OTHER IMMUNE DISEASES

Most studies on the relationship between breast milk and allergy
development in offspring often show contradictory results (317–
320). It has been proposed that breastfeeding is associated with
anti-allergic properties due to it bacteriome. For instance, HBM
probiotic lactobacilli, especially Lactobacillus gasseri together
with Lactobacillus coryniformis, decrease the frequency and
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severity of allergic responses to cow milk proteins in animal
studies (321). Moreover, some studies have demonstrated the
reduction of infant eczema between one and two years when
mother are supplemented with Lactobacillus spp. and/or
Bifidobacterium spp (322, 323). However, the supplementation
with probiotic in the first six months after birth did not show a
reduction of the risk to develop atopic eczema (324).

According to Victoria et al., there is no clear consistent
evidence indicating a protective effect of breastfeeding towards
either eczema or food allergy (101). More data are therefore
needed to clearly understand the role of breastfeeding in
allergy prevention.

Other immune disease such as Celiac disease (CD),
inflammatory bowel diseases (IBD) and MS seem to be
reduced by breastfeeding (303). Indeed, breastfed infants who
have developed CD have better long term health (325) owing to
the later introduction of gluten (326). Likewise, IBD (327)
including ulcerative colitis and Crohn disease (328) is found to
be reduced by breastfeeding (327). However, in other studies, no
association was found between breastfeeding and IBD (329, 330).
This controversy is based on difference in the definition of
exclusive or nonexclusive and duration of breastfeeding (303).
Breastfeeding during at least 4 months has been associated to
protection against MS (152) whereas the impact of breastfeeding
duration on the risk of developing MS continues to be questioned
by others (331, 332).
CONCLUSION AND FUTURE
PERSPECTIVES

The current understanding of HBM supports that it is
biologically and temporally adapted to the breastfeed child.
Breast milk composition varies greatly from one pregnancy to
another, from one mother to another, and despite these
differences, breast milk remains the best food for the
infant. Immune benefits associated to breastfeeding are well
documented, but the role of some immune cells is still unclear
and need to be investigated. Moreover, how these immune cells
especially effector memory cells and some innate immune cells
such as macrophages are involved in infant protection against
infection and immune-related diseases need to be more
investigated. As stem cells are also present in breast milk and
TABLE 1 | Infant’s organs in which specific cells of HBM are found.

Infant distal organs Breast milk cells

Progenitor cells Stem cells Hematopoietic stem cells Immune cells

Brain + + – –

Bone marrow + + + –

Intestinal tissues + + – +
Liver + + – +
Lungs/spleen + + + +
Pancreas + + – +
Thymus + + + –
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are able to differentiate into various organs, it become ambitious
to consider breast milk-derived stem cell use in transplantation.

Overall, understandingmechanisms under HBM components in
newborn protection and wellbeing may increase the promotion and
support of breastfeeding to achieve the third sustainable
Development Goal of The United nations, namely, maternal and
child health. This third sustainable goal also includes non-
communicable disease such as breast cancer, overweight, obesity,
and diabetes. It is noteworthy that breastfeeding is not only relevant
for nutrition, a part of the second Development Goal, but also for
education which is a part of the fourth Goal. Therefore,
breastfeeding can effectively contribute to the reduction of poverty.
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181. Moussa S, Jenabian M-A, Gody JC, Léal J, Grésenguet G, Le Faou A, et al.
Adaptive HIV-Specific B Cell-Derived Humoral Immune Defenses of the
Intestinal Mucosa in Children Exposedvia Breast-Feeding. PloS One (2013)
8:e63408. doi: 10.1371/journal.pone.0063408

182. Brandtzaeg P. Function of Mucosa-Associated Lymphoid Tissue in Antibody
Formation. Immunol Invest (2010) 39:303–55. doi : 10.3109/
08820131003680369

183. Junghans RP. Finally! The Brambell Receptor (FcRB). Mediator of
Transmission of Immunity and Protection From Catabolism for IgG.
Immunol Res (1997) 16:29–57. doi: 10.1007/BF02786322

184. Avanzini MA, Pignatti P, Chirico G, Gasparoni A, Jalil F, Hanson LA.
Placental Transfer Favours High Avidity IgG Antibodies. Acta Paediatr
(1998) 87:180–5. doi: 10.1080/08035259850157633

185. Koenig A, de Albuquerque Diniz EM, Barbosa SFC, Vaz FAC. Immunologic
Factors in Human Milk: The Effects of Gestational Age and Pasteurization.
J Hum Lact (2005) 21:439–43. doi: 10.1177/0890334405280652

186. Hanson LA. Breastfeeding Provides Passive and Likely Long-Lasting Active
Immunity. Ann Allergy Asthma Immunol (1998) 81:523–33. doi: 10.1016/
S1081-1206(10)62704-4

187. Nolan LS, Parks OB, Good M. A Review of the Immunomodulating
Components of Maternal Breast Milk and Protection Against Necrotizing
Enterocolitis. Nutrients (2019) 12(1):14. doi: 10.3390/nu12010014
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