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Abstract
Premise: Common steps in phylogenomic matrix production include biological
sequence concatenation, morphological data concatenation, insertion/deletion (indel)
coding, gene content (presence/absence) coding, removing uninformative characters
for parsimony analysis, recording with reduced amino acid alphabets, and occupancy
filtering. Existing software does not accomplish these tasks on a phylogenomic scale
using a single program.
Methods and Results: BAD2matrix is a Python script that performs the above‐
mentioned steps in phylogenomic matrix construction for DNA or amino acid sequences
as well as morphological data. The script works in UNIX‐like environments (e.g., LINUX,
MacOS, Windows Subsystem for LINUX).
Conclusions: BAD2matrix helps simplify phylogenomic pipelines and can be
downloaded from https://github.com/dpl10/BAD2matrix/tree/master under a GNU
General Public License v2.
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Matrix concatenation is an early, critical task in all
phylogenomic pipelines. Phylogenomics, in this paper,
references phylogenetic and evolutionary analyses using
massive amounts of genome and/or transcriptome data.
Although there are numerous programs that can concatenate
matrices at the multilocus scale (e.g., 2matrix [Salinas and
Little, 2014], SequenceMatrix [Vaidya et al., 2011], iPhy [Jones
et al., 2011], AIR‐appender [Kumar et al., 2009]), input
datasets for phylogenomic analyses of eukaryotes are typically
one to two orders of magnitude larger than would be used in
even the largest traditional multilocus phylogenetic datasets.
Accordingly, few publicly available, stand‐alone programs
(e.g., SCaFoS [Roure et al., 2007], IQ‐TREE [Minh et al., 2020],
Phyx [Brown et al., 2017]) can accomplish the concatenation
task on a genomic scale. Furthermore, most programs omit a
substantial amount of genetic data while composing their
matrices, namely, insertions/deletions (indels) and gene
content (presence/absence); morphology is also often ignored

in phylogenomic tools. Additionally, most phylogenomic
practitioners remove genes from the concatenated matrix that
have not been recovered for a set proportion (e.g., 25–50%) of
the terminal organisms (Philippe et al., 2004; Roure et al., 2013;
Streicher et al., 2016)—a process we will refer to as occupancy
filtering. At a phylogenomic scale, analytic efficiency is also
critically important and can be improved by reducing
problematic or unnecessary portions of the data. For example,
removing loci with missing data typically increases efficiency,
and parsimony analyses are made much more efficient by the
removal of parsimony uninformative characters during matrix
construction.

Previously, we produced 2matrix (Salinas and Little,
2014), which focused on matrix concatenation at a
phylogenetic scale and allowed both molecular and
morphological data to be concatenated. While 2matrix
performs well, it is nonfunctional for large‐scale molecular
datasets because it stores all sequence data in RAM in order
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to produce output quickly. For this reason, the ability to
function with thousands of genes has been heavily requested
by 2matrix users. Furthermore, 2matrix does not compute
gene content or conduct occupancy filtering, as these are
typically neither necessary nor relevant to studies involving
a few loci.

Indels and gene content coding provide additional
phylogenomic data that are generally helpful for phyloge-
nomics. Indels can improve resolution and support (Giribet
and Wheeler, 1999; Rokas and Holland, 2000; Simmons
et al., 2007; Paśko et al., 2011; Yuri et al., 2013; Donath and
Stadler, 2018; Suvorov et al., 2020), whereas gene content
characters are similarly useful for tree building (Snel
et al., 1999; Rosenfeld et al., 2017) and thus should be a
useful total‐evidence matrix addition to help resolve deep‐
level nodes in phylogenomic reconstructions. Both indels
and gene content characters retain information about gene
content that is typically lost in phylogenomic matrices.
Furthermore, reduced amino alphabets often lessen issues
with saturation and compositional heterogeneity, which can
negatively impact tree‐building (Susko and Roger, 2007;
Feuda et al., 2017). Lastly, morphology is relevant but is
often ignored for phylogenomics: We believe incorporating
these data should further help to resolve difficult nodes that
are of interest in phylogenomics (e.g., morphology for the
early‐diverging animal lineages [Neumann et al., 2021]).

There are programs currently available for some of
the functions detailed here, but none that provide a single
path for all the methods. A partial list of publicly available
tools that are built to work with phylogenomic‐scale data
includes: SCaFoS (Roure et al., 2007) for concatenation and
occupancy filtering; NGS‐Indel Coder (Boutte et al., 2019),
GATK (McKenna et al., 2010), and SIDIER (Muñoz‐
Pajares, 2013) for indel coding; Phyx for concatenation
and uninformative position filtering (Brown et al., 2017);
and Roary (Page et al., 2015) and BPGA (Chaudhari
et al., 2016) for gene content recording.

Here we present Big‐Ass Dataset 2matrix (BAD2matrix),
which concatenates gene and morphology files, thereby
facilitating partitioned analyses. BAD2matrix is the only
concatenation program currently available that can also code
indels, record gene content, recode amino acid sequences
in reduced alphabets, remove parsimony uninformative
sequence characters, and/or allow for occupancy filtering. It
formats output matrices for IQ‐TREE 2 (Minh et al., 2020),
RAxML (Stamatakis, 2014; Minh et al., 2020), TNT (Goloboff
and Catalano, 2016), and FastTree (Price et al., 2010),
providing a smooth transition to tree‐building with a wide
variety of popular programs.

METHODS AND RESULTS

BAD2matrix is a serial script written in Python 3 and is
partially based on 2matrix (Salinas and Little, 2014). The
program produces a concatenated matrix from a directory
of many individual FASTA (Pearson and Lipman, 1988)

files of DNA or amino acid sequences. The OrthologID
(Chiu et al., 2006) convention is used for sequence names,
i.e., “>species#sequenceID”, where “species” is the name of
the terminal taxon used (e.g., “Dryopteris_intermedia” or
“SARS‐CoV‐2”) and “sequenceID” is a unique identifier for
the particular sequence (e.g., “seq. 101”). Therefore, by
default, data across alignments will be concatenated by the
species name only. This can be overridden by the user with
the “‐f” flag, in which case the entire accession given in the
FASTA file is used (e.g., “Dryopteris_intermedia#seq. 101”),
and accession names must be consistent across all FASTA
files. When using this option, we recommend completely
avoiding sequenceIDs. For both naming conventions, only
letters, numbers, periods, and underscores are preserved in
sequenceIDs to prevent incompatibility with downstream
phylogenetic programs. Filenames in the input directory are
used to determine locus names (e.g., for a file named
“matK.fasta”, the locus will be named “matK”). Both
sequence and morphology data can be concatenated.

If the user has specified a cutoff for occupancy coding (“‐m
x” flag), files that have occupancy below that threshold are
skipped and no data are output for them. The occupancy
threshold x is the upper percentile of genes in the distribution
of missing data to be retained (e.g., if x = 25, genes in the upper
25 percentiles of occupancy will be retained, thereby removing
genes in the lower 75 percentiles). Authors have suggested
different cutoffs for occupancy, but have typically acknowl-
edged that missing data should be limited to some degree
(Philippe et al., 2004; Roure et al., 2013; Streicher et al., 2016).
Only one file is read into memory (RAM) at a time, which is
very RAM efficient, but demanding in regard to disk use (read/
write). For parsimony analysis, only informative sequence
characters are included in the output. Amino acids can also be
recoded using any of the 13 reduced amino acid alphabets
available with bins ranging from two to 18 character states; a
few recent phylogenomic works focused on six‐character
binnings of amino acid data (Feuda et al., 2017; Laumer
et al., 2018; Neumann et al., 2021).

BAD2matrix offers the option to code and append a binary
gene content (absence/presence) matrix to the concatenated
sequence data. Absence and presence are recorded based on
whether a sequence for a specific taxon is present in a given
FASTA file. For example, if only sequence data from taxon 1 is
missing for a given locus, taxon 1 is coded “0” while all other
taxa in the matrix are coded “1”. Similarly, BAD2matrix
optionally produces an indel absence/presence matrix using
“simple indel coding” (Simmons and Ochoterena, 2000). This
type of indel coding records absence (“0”)/presence (“1”) of
unique indels (different 5′ and/or 3′ positions). When an indel
is a subset of a longer indel, the taxa with the longer indel are
coded as not applicable (“‐”) for the shorter indel. The
resulting matrix can be formatted for several of the most
popular likelihood‐based phylogenomics programs: RAxML
(RAxML‐NG version 1.1.0; extended PHYLIP [Stamatakis,
2014; Kozlov et al., 2019]) or IQ‐TREE 2 (extended PHYLIP
[Minh et al., 2020]). Formatting for FastTree 2 (Price et al.,
2010), a shortcut likelihood program, is also available;
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however, morphology, indel, and gene content data cannot be
included due to limitations inherent in FastTree 2. The matrix
can also be formatted for parsimony analysis in TNT version
1.5 using extended XREAD (Goloboff and Catalano, 2016). A
detailed explanation of the command‐line flags is provided in
Table 1, and an example of an output concatenated matrix is
provided in Table 2. The code is designed for UNIX‐like
environments and has been tested on MacOS version 11.6
(Apple, Cupertino, California, USA) and Ubuntu version 22.04
(Canonical, London, United Kingdom). Along with the code,
an example dataset (Little, 2006) composed of multiple DNA
regions and a morphology matrix are included.

CONCLUSIONS

BAD2matrix is deposited on GitHub (https://github.com/
dpl10/BAD2matrix, see Data Availability Statement), where
instructions, example data, and further documentation can
be accessed. It carries out critical first steps in phylogenomic
matrix production and simplifies analytic options that are

often ignored. These options—concatenation of sequence
and morphological data, indel coding, gene content
(presence/absence) coding, removal of parsimony uninfor-
mative sequence characters, reduced amino acid alphabets,
and occupancy filtering—are often omitted simply because
there are no programs that easily implement them. These
BAD2matrix analytic options allow users to maximize
their data and more fully control matrix composition at
phylogenomic scale.
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TABLE 1 Command‐line flags for BAD2matrix.

Option flaga Description Required

‐a 2 | 3 | 4 | 5 | 6|6dso|6kgb|
6sr | 8 | 10 | 11 | 12 | 15 | 18 | 20

Number of amino acid states (default = 20). Reduction with option “6dso” follows Dayhoff et al.
(1978); option “6kgb” follows Kosiol et al. (2004); option “6sr” follows Susko and Roger (2007);
option “11” follows Buchfink et al. (2015); and all other options follow Murphy et al. (2000).

No

‐d directory‐name Specify the input directory of aligned FASTA files. Names should use the following
convention: “>species#sequenceID”. Characters other than letters, numbers, periods, and
underscores will be deleted. Use “‐f” for an alternate naming convention.

Yes

‐f Use full FASTA names rather than default settings (see “‐d” description for default).
Characters other than letters, numbers, periods, and underscores will be deleted.

No

‐g Do not code gene content (absence/presence). If this flag is not set, gene content is coded. No

‐i Do not code indels. If this flag is not set, indels are coded. No

‐m x Retain the upper x percentile of genes in the distribution of missing sequences.
By default, x = 1 (i.e., include all genes with four or more sequences).

No

‐n root‐name Specify the root‐name for output files. Yes

‐r Folder containing a morphological matrix or a set of ortholog duplication matrices. Datasets
should be saved as .tsv tables. Multiple states should be separated by pipes ("|").

No

aItalicized text following option flags should be specified by the user.

TABLE 2 Example of an output concatenated matrix, showing gene alignments, simple indel codings, and gene content (presence/absence) codings.

Genes Indels Gene content

G 1 G 2 … G 1 K I 1 I 2 … I 1 K GC 1 GC 2 … GC 1 K

ACTG C ‐ ‐ A … — 0 1 … * 1 1 … 0

AC ‐G C ‐ ‐ A … — 1 1 … * 1 1 … 0

— — … TGAC ? ? … * 0 0 … 1

ACTG CTCA … TGCC 0 0 … * 1 1 … 1

AC ‐G CTGA … TGCC 1 0 … * 1 1 … 1

*Loci without indels are not used for indel coding.
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