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Abstract

Objective: To examine the gut microbiota in individuals with and without

pediatric-onset multiple sclerosis (MS). Methods: We compared stool-derived

microbiota of Canadian Pediatric Demyelinating Disease Network study partici-

pants ≤21 years old, with MS (disease-modifying drug [DMD] exposed and

na€ıve) or monophasic acquired demyelinating syndrome [monoADS] (symptom

onset <18 years), and unaffected controls. All were ≥30 days without antibiotics

or corticosteroids. V4 region 16S RNA gene-derived amplicon sequence variants

(Illumina MiSeq) were assessed using negative binomial regression and network

analyses; rate ratios were age- and sex-adjusted (aRR). Results: Thirty-two MS,

41 monoADS (symptom onset [mean] = 14.0 and 6.9 years) and 36 control

participants were included; 75%/56%/58% were female, with mean ages at stool

sample = 16.5/13.8/15.1 years, respectively. Nine MS cases (28%) were DMD-

na€ıve. Although microbiota diversity (alpha, beta) did not differ between partic-

ipants (p > 0.1), taxa-level and gut community networks did. MS (vs. mono-

ADS) exhibited > fourfold higher relative abundance of the superphylum

Patescibacteria (aRR = 4.2;95%CI:1.6–11.2, p = 0.004, Q = 0.01), and lower

abundances of short-chain fatty acid (SCFA)-producing Lachnospiraceae

(Anaerosporobacter) and Ruminococcaceae (p, Q < 0.05). DMD-na€ıve MS cases

were depleted for Clostridiales vadin-BB60 (unnamed species) versus either

DMD-exposed, controls (p, Q < 0.01), or monoADS (p = 0.001, Q = 0.06) and

exhibited altered community connectedness (p < 10�9 Kruskal–Wallis), with

SCFA-producing taxa underrepresented. Consistent taxa-level findings from an

independent US Network of Pediatric MS Centers case/control (n = 51/42)

cohort included >eightfold higher abundance for Candidatus Stoquefichus and
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Tyzzerella (aRR = 8.8–12.8, p < 0.05) in MS cases and 72%–80% lower abun-

dance of SCFA-producing Ruminococcaceae-NK4A214 (aRR = 0.38–0.2,
p ≤ 0.01). Interpretation: Gut microbiota community structure, function and

connectivity, and not just individual taxa, are of likely importance in MS.

Introduction

The human microbiome’s combined genetic load surpasses

that of human genes with bacterial protein-coding genes

estimated as being over 300 times more abundant. Most

(>90%) of the human microbiota reside in the gastro-

intestinal tract.1 Alterations in the gut microbiota may be

influential in neurological diseases, including multiple scle-

rosis (MS).2 The gut microbiota regulates the immune sys-

tem and contributes to the maturation and modulation of

the CNS, including myelination, via multiple complex

mechanisms.3 MS is considered an immune-mediated and

neurodegenerative disease, with the CNS being the primary

target. While both genetic and early-life environmental

exposures are implicated in triggering MS, current knowl-

edge surrounding these exposures remains incomplete.

Animal models of CNS demyelination provide a proof-of-

principle that the gut microbiota influence CNS-directed

immune responses.4,5 Studies involving persons with MS,

while still limited in size, suggest that compared with con-

trols, subtle differences in key gut microbial taxa exist.6

The concept of a “period of risk” during which the

inciting biology is triggered is important when consider-

ing risk factors for chronic disease. A symptomatic pro-

dromal period, possibly extending for years before clinical

MS onset in adults, has recently been recognized.7 Fur-

ther, childhood and adolescence are key periods of risk

exposure for MS. As such, analysis of the gut microbiota

in pediatric-onset MS patients represents a unique oppor-

tunity to examine pathological processes closer to actual

risk acquisition. Children and youth have accrued fewer

confounding exposures, such as medications and medical

comorbidities compared to adults, permitting a unique

window into the native gut microbiota.8

We compared the gut microbiota from stool samples

of well-characterized persons with pediatric-onset MS and

unaffected controls in a case-control study, taking into

consideration any prior disease-modifying drug (DMD)

exposure, and capturing key features seldom considered

in MS studies, including other medications, dietary sup-

plements, and stool consistency (the Bristol Stool

Scale).8,9 In addition, we included another disease

group––participants with monophasic acquired demyeli-

nating syndromes (monoADS)––to serve as an additional

comparator to the chronic disease, MS. Generalizability of

main findings was sought in an independent case-control

cohort of pediatric-onset MS and unaffected controls.

Methods

Study design and participants

This case-control study was embedded within two larger

prospective North American studies of pediatric-onset MS

and related demyelinating diseases. Participants ≤21 years

old who provided a stool sample and had monoADS or

MS (McDonald criteria, 2017) and symptom onset (first

clinical attack) <18 years or were an unaffected control

were eligible. MonoADS was defined as an initial acute

clinical episode of symptoms involving the CNS, with evi-

dence of inflammatory demyelination and no new clinical

or MRI findings of recurrent demyelination (median

observation from first symptom onset = 9.1 years,

range = 3.1–12.9 years).10 Unaffected controls had no

known neurological or (auto) immune-related condition

(headache/migraine, asthma, and allergies were permissi-

ble) and were recruited using a mixed-methods approach

(e.g., via general pediatric clinic posters, and web-based

advertising), with the aim of enrolling age, sex, race, and

geographical location representative individuals.

Informed assent/consent were obtained from partici-

pants/guardians. Ethical approval was obtained from each

institution’s research ethics board.

The main and complementary analyses were conducted

for the ‘Canada-USA cohort’ which comprised MS cases,

monoADS, and unaffected controls enrolled from four

Canadian and one USA site (Children’s Hospital of

Philadelphia), between 11/2015 and 03/2018 through the

Canadian Pediatric Demyelinating Disease Network. A

second, independent “USA-only cohort” comprised MS

cases and unaffected controls enrolled from eight USA

sites, between 06/2012 and 03/2018 through the US Net-

work of Pediatric MS Centers was used to test generaliz-

ability of findings.

Cohort characteristics were captured for participants pri-

marily through standardized forms and questionnaires

administered to the participant/caregiver by trained coor-

dinators at stool sample collection (details of data sources

and categorization of variables are in Supplementary

Methods). Briefly, these included demographics: age, sex,

country of birth/residence, and race (white, non-white);

clinical: comorbidities, body mass index (BMI = height

(kg)/weight(m)2), cigarette smoking (active or passive),

medication use (any prior DMD use for MS, and, in the

30 days pre-stool sample, any other medication/dietary
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supplement, defined using the World Health Organiza-

tion’s Anatomical Therapeutic Chemical classification sys-

tem, level 4 (Supplementary Methods)). Participants/

caregivers completed the Block Kids Food Screener

(NutritionQuest©)11 and, for the Canada-USA cohort, the

Bristol Stool Scale,9 adapted for children. The validated

food screener captured the prior week’s diet,11 reported

as the percentage caloric intake of protein, fat, and carbo-

hydrate and total grams of fiber. The seven-point ordinal

Bristol Stool Scale captures stool consistency, considered

a useful reflection of the gut ecosystem, and is associated

with gut microbiota composition9 and was categorized

into: hard (types 1–2); medium (3–5); or loose (6–7).

Stool sample collection, sequencing, and
bioinformatics

A common protocol was used for stool sample collection.

The following were not permitted: antibiotics or corticos-

teroids within 30 days pre-stool sample; any history of

cytotoxic immunosuppressant use or major bowel-related

comorbidity (e.g., inflammatory bowel disease, IBD). The

same collection kits were used for all participants, with

stool shipped on ice before �80°C storage in the central

laboratories (University of Manitoba IBD Clinical/

Research Centre, Winnipeg, Canada or UCSF, USA), with

all sequencing performed together (batched) at the

National Microbiology Laboratory, Winnipeg. Dry ice was

used for cross-border shipping (USA to Canada) to pre-

vent thawing.

DNA was extracted from stool fecal punches using the

Zymo Quick-DNATM Fecal/Soil Microbe Miniprep Kit

(D6010). The 16S rRNA gene (V4 region) was amplified

in triplicate, combined, purified, and pooled in equimolar

concentrations. Sequencing was performed via the Illu-

mina MiSeq platform (reagent kitv.3, 2 9 300 bp base-

pair run),12 with paired-end reads trimmed to 252 bp and

clustered into amplicon sequence variants (ASVs) using

Deblur (v.1.1.0) and QIIME2 (Quantitative Insights Into

Microbial Ecology;v.2019.4).13,14 Data were normalized

using the median of ratios method (R-package DESeq2;

Differential Expression of Sequencing data) or rarefied to

16,181 sequences for alpha- and beta-diversity analyses.

Alpha and beta-diversity were examined as evenness,

richness (Shannon, Margalef’s index, Chao1), and

weighted UniFrac.15 Gut microbiota network analyses

(genus-level) used the R-package SPIEC-EASI (SParse

InversE Covariance Estimation for Ecological Association

Inference, neighbourhood mode), when present in ≥80%
of samples.16 Network connectivity were quantified as de-

grees and betweenness.17 The five most connected taxa

were annotated and described. Predicted metagenome func-

tions were generated using the validated Phylogenetic

Investigation of Communities by Reconstruction of

Unobserved States (PICRUSt2) algorithm, summarized as

metabolic pathways (MetaCyc database).18,19

Statistical analyses

Cohort characteristics were described. The gut microbiota

metrics were compared by disease, and then DMD status

(grouped as three categories: MS, controls, monoADS;

then four: MS [DMD-na€ıve, exposed], controls, mono-

ADS). Alpha-diversity, network metrics (connectivity and

betweenness), and the metabolic pathway relative abun-

dances were compared between groups using nonpara-

metric tests (Kruskal�Wallis [KW] rank sum test, Holm-

adjusted [adj .] p-values). Beta-diversity was similarly

explored using permutational multivariate analysis of

variance (PERMANOVA). The relative abundance of indi-

vidual ASVs was compared between groups at the phy-

lum, genus, and species-level, using sex and age at stool

sample (continuous) adjusted negative binomial models.

Findings were expressed as crude and adjusted-rate ratios

(aRR) and 95% confidence intervals (95%CI), along with

p and Q-values (false discovery rate adjusted p-values).

To guide future studies, complementary analyses were

performed for the Canada-USA cohort, with alpha and

beta-diversity compared by: sex, age at stool sample, race,

country of residence, Bristol Stool Scale, BMI, dietary

intake (protein, carbohydrate, fiber, and fat), and other

medications/dietary supplements), categorized as shown

in the Supplementary Methods. Finally, key main analyses

(alpha-, beta-diversity and genus, and species-level com-

parisons) were performed using a similar approach for

the pediatric-onset MS cases (DMD-na€ıve and exposed)

and unaffected controls within the independently

acquired USA-only cohort. Statistical analyses were per-

formed using R (V.4.0.2).

Results

In total, 109 participants in the Canada-USA cohort and

93 in the USA-only cohort fulfilled inclusion criteria.

Characteristics are shown in Tables 1 and 2. In both

cohorts, the MS cases/controls were similar in age at stool

sample procurement (averaging 16.5/15.1 years for

Canada-USA and 15.9/15.6 years for USA-only). Females

represented 73%–75% of MS cases and 58%–69% of con-

trols across both cohorts. As expected, monoADS partici-

pants were younger at symptom onset and at stool

sample procurement versus the MS cases and/or controls;

56% were female (Table 1, Canada-USA cohort). The

average dietary metrics were rather similar across groups

in both cohorts, as were the Bristol Stool Scale scores in

the Canada-USA cohort.
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Table 1. Characteristics of the pediatric-onset multiple sclerosis cases, unaffected controls, and monophasic acquired demyelinating syndrome

participants, the Canada-USA cohort.

Characteristic, n (%) unless stated otherwise

Multiple sclerosis

cases, n = 32

Unaffected controls,

n = 36

Monophasic demyelinating

syndrome participants, n = 41

Female 24 (75%) 21 (58%) 23 (56%)

Age at symptom onset, years: mean (SD; range) 14.0 (3.9; 4–17) – 6.9 (3.9; <1–14.6)

Age at stool sample collection, years: mean (SD; range) 16.5 (3.7; 5–21) 15.1 (3.44; 7–21) 13.8 (4.2; 5–21)

Self-identified race:1 White 17 (61%) 13 (41%) 31 (78%)

Birth country:2 North America

(Canada or USA)

22 (79%) 31 (91%) 35 (90%)

Country of residence (at stool collection): Canada 21 (66%) 27 (75%) 38 (93%)

USA 11 (34%) 9 (25%) 3 (7%)

Atopy-related condition (dermatitis, psoriasis, asthma, or allergies): present 8 (25%) 7 (19%) 17 (41%)

Other comorbidity:3 present 2 (6%) 1 (3%) 1 (2%)

Disease-modifying drug (DMD) exposure status:4 ever/never 23 (72%)/9 (28%) – –

Ever beta-interferon 11 (34%) – –

Ever glatiramer acetate 7 (22%) – –

Ever dimethyl fumarate 4 (13%) – –

Other4 4

Any other medication (excl. DMDs, incl. vitamins, supplements) 30 days

pre-stool sample:5 yes

27 (84%) 16 (44%) 28 (68%)

Mean and total number of different drug classes per child 2.0; total 21 0.8; total 17 1.1; total 13

Any vitamin or dietary supplement:6 yes 26 (81%) 10 (28%) 27 (66%)

Mean and total number of different vitamin or dietary supplements6 1.2; total 7 0.4; total 5 1.0; total 7

Bristol Stool Scale:7 median (IQR) 3 (2.5–4) 4 (3–4) 3 (3–4)

Hard (types 1–2) 8 (26%) 7 (20%) 9 (23%)

Medium (types 3–5) 21 (68%) 27 (77%) 28 (72%)

Loose (types 6–7) 2 (6%) 1 (3%) 2 (5%)

BMI:8 crude median (range) 22.8 (13.8–36.3) 19.9 (13.2–29.9) 19.7 (14.0–30.0)

Overweight/obese (≥85th percentile) 5 (16%) 6 (18%) 5 (12%)

Cigarette smoking (passive or active) ever pre-stool sample 2 1 1

Block Kids Screener:9 dietary intake per day, median

% protein caloric intake (range) 16% (8–23) 16% (10–24) 18% (13–26)

% fat caloric intake (range) 34% (28–51) 34% (23–45) 35% (26–43)

% carbohydrate caloric intake (range) 50% (28–63) 50% (35–68) 50% (33–64)

Grams of fiber (range) 9 (3–20) 11 (4–29) 10 (4–25)

Total with available/valid diet data n = 90 26 34 30

Percentage calculated with the denominator reflecting individuals with non-missing data for that variable; ADS = acquired demyelinating syn-

drome; BMI = body mass index; DMD = disease modifying drugs; excl. = excluding; MS = multiple sclerosis; SD = standard deviation.

Antibiotic use: by design, no participant had used a systemic antibiotic within 30 days pre-stool sample. Only one participant (with monophasic

acquired demyelinating syndrome) had a record of antibiotic use within 3 months pre-stool sample (i.e., >30 to 90 days pre-stool sample). Addi-

tional numbers shown below ordered as “MS/controls/ADS”.

Totals exceed 23 (72%) of those ever DMD-exposed pre-stool sample as three MS cases were exposed to >1 DMD (the most recent pre-stool

sample is shown first: natalizumab, beta-interferon [IFNB]; IFNB, dimethyl fumarate [DMF]; teriflunomide, DMF).
1Race: For non-whites, which included those self-identifying as a mixed group, the most common were: Black (MS/controls/ADS; 6/3/3); Oriental

(0/3/3); Black–Hispanic (0/5/0); Indian or Pakistani (1/3/1); Unavailable (4/4/1). European ancestry predominated (15/14/23), for non-Europeans (in-

cluding mixed heritage), more commonly identified regions were: Africa (4/5/1) and Asia (1/6/6); Unavailable: (6/2/3).
2Birth country: Canada (13/21/29); USA (9/10/6); Other (6/3/4); Unavailable (4/2/2).
3Other comorbid conditions (present pre-stool sample): depression/anxiety (1/0/1); attention deficit hyperactivity disorder (1/0/0); hypothyroidism (0/1/0).
4‘All “ever DMD” participants had also been exposed within 3 months of stool sample procurement. “Other” DMDs were: rituximab (n = 2);

natalizumab (n = 1); teriflunomide (n = 1).
5“Other medications” exclude the MS DMDs and were grouped into drug classes according to the WHO’s Anatomical Therapeutic Chemical

(ATC) classification system (level 4, details in Supplement 1).
6The vitamins or dietary supplements were the most commonly used and the total number of classes are shown which included, by ATC group:

A11A multivitamins, combinations; A11CC Vitamin D and analogues; A11E Vitamin B-complex, incl. combinations (B6-B12); A11GA Ascorbic acid

(vitamin C); A11HA Vitamin E; A12AA Calcium; B03A Iron preparations; B03BA Vitamin B12 (cyanocobalamin and derivatives); B03BB Folic acid

and derivatives; C10AX Other lipid modifying agents (Omega 3); uncategorized Fish Oil.
7Bristol Stool Scale: 4 participants selected 2 responses (instead of one) and their scores were averaged. Unavailable: (1/1/2).
8BMI unavailable for 2 controls.
9Recent diet: excluded due to implausible daily caloric intake20,21[<500 kcal/day (2/1/1); >5000 kcal/day (none)]; missing (4/1/10); total missing or

excluded (6/2/11).
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All cases had relapsing-remitting MS, and the mean dis-

ease duration (from symptom onset) at stool sam-

ple = 30.1 months (SD:35.1) in the Canada-USA cohort

and 16.2 months (SD:13.3) in the USA-only. Approxi-

mately one-third of MS cases had never used a DMD prior

to stool sample procurement [nine (28%) Canada-USA

and 18 (35%) USA-only]. Beta-interferon or glatiramer

acetate were most commonly used (Tables 1 and 2).

For the Canada-USA cohort, the mean number of non-

DMD medication/supplement classes used in the previous

30 days = 2.0 for MS, 1.1 for monoADS and 0.8 for con-

trol. The most common were vitamins/dietary supple-

ments, with >80% (n = 26) of MS cases, 66% (n = 27) of

monoADS and 28% (n = 10) of controls taking ≥one.
Atopy was common, affecting 32 (29%) of the partici-

pants, but only 4 (4%) had any other comorbidity

(Table 1).

Canada-USA cohort

Gut diversity and taxa-level findings by disease
and DMD status

Alpha and beta-diversity did not differ by disease status

(across the three groups compared: MS monoADS, con-

trols) or by DMD status (four groups: MS DMD-exposed/

na€ıve, monoADS, controls), all p > 0.1. Figure 1 depicts

richness, all other diversity metrics are shown in Table 3.

At the taxon-level, 8 phyla, 144 genera, and 228 species

had sufficient coverage, based on their presence in 80%

of samples, for modelling by disease status, with nominal

significance (p < 0.05) reached for 5 (63%), 44 (31%),

and 60 (26%), respectively (Tables S1–S3).
Overall, five phyla, 11 genera and four species reached

significance (p,Q < 0.05) in either the disease or DMD

status comparisons. Of the five phyla (p,Q < 0.05) – Acti-

nobacteria, Firmicutes, Fusobacteria, Patescibacteria, Verru-

comicrobia, three differed between the MS cases and

controls (Table S1). Compared to controls, cases were

depleted for Actinobacteria (aRR = 0.57;95%CI:0.36–0.91,
p,Q < 0.035) and Firmicutes (aRR = 0.66;95%CI:0.46–
0.95, p,Q < 0.038), while enriched for Verrucomicrobia

(aRR = 13.9;95%CI:2.6–73.8); p,Q < 0.05), with the latter

differing by DMD status, being higher in the DMD-

exposed, but not na€ıve, MS cases (p,Q < 0.05). Other

group differences also emerged, for example, compared to

monoADS, MS cases had a fourfold higher relative abun-

dance of Patescibacteria (a recently identified superphy-

lum; aRR = 4.2;95%CI:1.6–11.2, p = 0.004,Q = 0.01).

This higher abundance remained consistent for both the

DMD-exposed and na€ıve MS cases, although only the for-

mer reached significance (p,Q < 0.035 vs. monoADS).

Eleven genera were identified (p,Q < 0.05): Actinomyces,

Anaerosporobacter, Bacteroides, Enterorhabdus, (Eubac-

terium) eligens, Pseudomonas, Ruminococcaceae NK4A214-

group, Ruminococcaceae UCG�003 and three uncultured/

Table 2. Characteristics of the pediatric multiple sclerosis (MS) cases

and unaffected controls from the USA Network of Pediatric MS Cen-

ter’s microbiome study.

Characteristic, n (%)

unless stated

otherwise MS cases = 51

Unaffected controls,

n = 42

Female 37 (73%) 29 (69%)

Age at symptom

onset, years: mean

(SD; range)

14.5 (2.2; 8.6–17.9) –

Age at stool sample

collection, years:

mean (SD; range)

15.9 (2.1; 9.6–19.7) 15.6 (2.8; 8.1–20.7)

Disease duration at

stool sample

collection, mean

(SD; range)

1.3 years (1.1; 0.1–5.4)

16.2 months (13.3;

1.1–65.3)

–

Self-identified race:

White

35 34

1 missing

Disease-modifying

drug (DMD)

exposure status:

ever/never

33 (65%)/18 (35%) –

Ever beta-interferon 10 (30%) –

Ever glatiramer

acetate

20 (61%) –

Ever dimethyl

fumarate

3 (9%) –

Ever natalizumab 6 (18%)

BMI: crude median

(range)

25.0 (17.4–47.0) 22.0 (9.0–43.9)

1 missing

Overweight/obese

(≥85th percentile)

9 5

Block Kids Screener: dietary intake per day, median

% protein caloric

intake (range)

16.9 (10.2–25.7) 17.3 (12.0–25.7)

% fat caloric intake

(range)

35.5 (21.2–44.9) 36.2 (25.0–47.0)

% carbohydrate

caloric intake

(range)

47.1 (32.5–67.3) 47.7 (29.8–65.6)

Grams of fiber

(range)

10.1 (1.8–25.1) 12.1 (2.9–23.5)

Total with

available/valid diet

data

n = 46 n = 40

Percentage calculated with the denominator reflecting individuals with

non-missing data for that variable; BMI = body mass index; DMD =

disease modifying drugs; MS = multiple sclerosis; SD = standard devia-

tion. Beta-interferon products used included: �1a (IM or SC), �1b

(SC), and peginterferon beta�1a; 6 MS cases had been exposed to 2

different DMDs (the most common sequential combination was for a

beta-interferon or glatiramer acetate followed by natalizumab; n = 3

participants).
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unnamed taxa within Lachnospiraceae, Ruminococcaceae

and Clostridiales vadin BB60 (Fig. 2A,C, and Table S2).

Four genera Anaerosporobacter, Ruminococcaceae

UCG�003, Clostridiales vadin BB60, Pseudomonas differen-

tiated MS cases from the others, with the latter two influ-

enced by the cases’ DMD exposure status. Both

Anaerosporobacter and Ruminococcaceae UCG�003 were

lower in MS versus either controls or monoADS (for

Anaerosporobacter both aRR<0.01, p,Q < 0.05; for

Ruminococcaceae UCG�003, the respective aRR = 0.23;

95%CI:0.09–0.59, p,Q < 0.05 and 0.35;95%CI:0.14–0.90,
p < 0.05, but Q > 0.05), with the direction of findings for

both genera consistent regardless of the MS cases’ DMD

exposure. For Clostridiales vadin BB60, both DMD-na€ıve

and exposed MS cases were lower in relative abundance

versus monoADS (p,Q < 0.01 and p = 0.001, but

Q = 0.06, respectively), while the DMD-na€ıve MS cases

were lower versus both the controls (aRR = 0.02;95%

CIs:0.00–0.17, p,Q < 0.04) and the DMD-exposed cases

(p < 0.05, although Q > 0.05). Pseudomonas was also lower

for the DMD-na€ıve versus exposed MS cases (p,Q < 0.03),

while MS cases were enriched versus monoADS

(aRR = 16.5;95%CI:4.3–62.5, p,Q < 0.007) which

remained significant for the DMD-exposed MS cases only

(vs. monoADS, p,Q < 0.004).

Other genera appeared particularly relevant in differen-

tiating monoADS participants from the other groups––
both Actinomyces and Bacteroides differed versus the MS

cases or controls (p < 0.05, although not all Q < 0.05),

while no differences emerged when the MS cases and con-

trols were directly compared (p > 0.05). Shared features

for both disease groups were observed: versus controls,

both Ruminococcaceae-NK4A214 group and (Eubacterium)

eligens were lower in MS and monoADS (p,Q < 0.05),

while the two disease groups did not differ (p > 0.05).

Finally, for the remaining three genera, findings were lar-

gely driven by differences in relative abundance between

MS and monoADS participants. For example, both Lach-

nospiraceae and Ruminococcaceae were lower in MS (and

the DMD-exposed subgroup) versus monoADS, while the

latter were enriched versus controls (all p,Q < 0.05). Con-

versely, Enterorhabdus was higher in MS versus monoADS

(aRR = 26.2;95%CI:4.6–149.3, p,Q < 0.02), with the

direction of findings consistent irrespective of the MS

cases’ DMD-exposure (p < 0.01). Further, the monoADS

participants were depleted versus controls (p,Q < 0.05).

The four identified species (p,Q < 0.05) were housed

within the genera: Anaerosporobacter, Enterorhabdus, Pseu-

domonas, or family Ruminococcaceae (Table S3). Findings

largely mirrored the genus-level observations. Briefly,

Figure 1. Gut microbiota alpha diversity (richness) for the pediatric-onset multiple sclerosis cases (DMD-exposed or na€ıve), monophasic acquired

demyelinating syndromes (monoADS), and unaffected control participants for the Canada-USA cohort. Margalef’s richness index: (S � 1)/ln(n),

where S is the number of taxa, and n is the number of individuals. ASV data were rarefied. Box-and-whisker plots: thick black horizontal

line = median; horizontal edges of box depict Q1 and Q3 (interquartile range); the ends of the whiskers represent one and a half times the

interquartile range (1.5*IQR); circles = individual outliers. For example, as depicted, the median richness for each of the participant groups were

18.0 for the multiple sclerosis, 19.2 for the monophasic acquired demyelinating syndrome (ADS) and 18.8 for the unaffected controls. The clinical

relevance of these slight differences is unknown. None of the comparisons were statistically significant (all p > 0.5). The overall group p-values

shown here are based on the Kruskal–Wallis test and the pairwise p-values are based on the Dunn’s Kruskal–Wallis with a Holm adjustment for

multiple comparisons: (1) Overall group p = 0.507; MS cases versus controls (p = 0.737), ADS versus controls (p = 1.00), MS versus ADS

(p = 0.583). (2) Overall group p = 0.521; MS cases DMD-exposed versus controls (p = 0.761), MS cases DMD-na€ıve versus controls (p = 0.783),

MS DMD-exposed versus na€ıve (p = 1.00).
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Anaerosporobacter sp. (family Lachnospiraceae) was lower

for MS cases versus either controls (p < 0.0001,

Q = 0.003) or monoADS (p = 0.00153, p,Q > 0.05), with

both aRR<0.02. Compared to monoADS, Enterorhabdus

sp. was higher for controls (p,Q < 0.05) and MS cases

(p < 0.05, Q > 0.05). Pseudomonas sp., and Ruminococ-

caceae sp. were both lower in monoADS, particularly ver-

sus the DMD-exposed MS cases (p,Q < 0.05).

Gut microbiota network analysis by disease and
DMD status

From network analyses, the MS cases, monoADS, and

controls’ genus-level gut microbiota did not differ by

degree of connectivity or betweenness (p > 0.1, Figs. 3

and 4). However, findings differed by DMD status; the

na€ıve MS cases exhibited a visually distinct gut microbial

network (Fig. 3) and had a higher connectivity (between-

ness) versus the other three groups (DMD-exposed cases,

monoADS, and controls, all p < 0.00007, Fig. 4). Further,

annotation of the five most connected taxa suggested dis-

tinct patterns across groups (Fig. S1A–E). For example,

four of the five most connected taxa (by degrees or

betweenness) for controls were short chain fatty-acid

(SCFA) producers (all were in the Firmicutes phylum,

e.g., Ruminococcaceae family members [UCG-003, UCG-

005], Anaerostipes, and Veillonella). Conversely, for the

MS cases, several housed microbes commonly cited as

opportunistic pathogens (e.g., Actinobacteria [phylum

Actinomyces], Gemella, and Leuconostoc [phylum Firmi-

cutes]). Among the most connected taxa (by degrees or

betweenness) for the DMD-na€ıve MS cases, several had

Figure 2. Heatmaps summarizing gut microbiota genus-level findings (ASV counts) expressed as sex and age-adjusted rate ratios for the

pediatric-onset multiple sclerosis (MS), monophasic acquired demyelinating syndrome (ADS) and unaffected control participants for the Canada-

USA cohort. (A) Three-groups compared: multiple sclerosis, ADS, and controls. (B) Three-groups compared: multiple sclerosis, ADS, and controls,

overlaid with a hierarchical cluster analysis. (C) Four-groups compared: multiple sclerosis (DMD-na€ıve and exposed), ADS, and controls. (D) Four-

groups compared: multiple sclerosis (DMD-na€ıve and exposed), ADS, and controls, overlaid with a hierarchical cluster analysis. ADS = monophasic

acquired demyelinating syndrome, DMD = disease-modifying drug, MS = pediatric-onset multiple sclerosis; MS DMD-na€ıve = MS case has never

been exposed to a DMD at the time of the stool sample. Each Panel summarizes age and sex-adjusted RRs derived from a single negative

binomial regression model for each genus (two models in total, one for three group comparison, and another for four group comparisons), with

only the RRs reaching nominal significance (p < 0.05) for at least one group comparison within a genus shown (see Tables S1–S3) for unadjusted

and adjusted models). For each comparison, the second group forms the reference. *p < 0.05, **p < 0.01, ***p < 0.0001, ***+p < 0.0001 and

Q < 0.05. (A) adjusted RRs were ordered from highest to lowest for each column as follows: (1) MS versus controls (middle column); (2) MS

versus ADS (left); (3) ADS versus controls (right). (C) adjusted RRs were ordered from highest to lowest for each column as follows: (1) MS DMD-

na€ıve versus control; (2) MS DMD-exposed versus control; (3) MS DMD-exposed versus na€ıve; (4) ADS versus MS DMD-exposed; (5) ADS versus

MS DMD-exposed; (6) ADS versus control. (B and D) Findings are ordered according to the hierarchical cluster analysis (R package pheatmap).

Briefly, each taxon is assigned to its own cluster, then the algorithm proceeds iteratively, at each stage joining the two most similar clusters,

continuing until there is a single cluster. At each stage distances between clusters are recomputed using the Lance–Williams dissimilarity update

formula.22 Biological relevance is inferred from the clusters (rather than being directly assessed).
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been identified relatively recently; all were contained in

the phylum Firmicutes: Candidatus Stoquefichus, Mogibac-

terium, Phocea, and Subdoligranulum.

Metagenomic predictions by disease and DMD
status

After filtering for sparsity, 193 of 399 identified pathways

were assessed, and 50 differed between the MS, mono-

ADS, and controls (p < 0.05, KW, Fig. 5, Table S4). From

the pairwise comparisons, while the MS and monoADS

participants did not differ from each other (all p > 0.05),

both differed versus controls: five pathways were enriched

and eight depleted in MS, and 17 were enriched and 31

depleted in monoADS (all Holm-adjusted KW for multi-

ple comparisons p < 0.05). For example, the nicotinamide

adenine dinucleotide salvage and pyruvate fermentation

pathways differed across the three main groups (KW,

p = 0.0311 and p = 0.0182, respectively), being depleted

in MS versus controls (both adj.p < 0.03; Fig. 5A and B).

The latter pathway was also lower in monoADS versus

controls (adj.p = 0.0410). While the direction of these

findings was consistent regardless of whether MS cases

were DMD-na€ıve or exposed (unadj.p < 0.05), others dif-

fered, although none remained significant after multiple

comparison adjustments. For example, both the reductive

tricarboxylic acid cycle I and glycolysis pathways were

enriched for the DMD-na€ıve MS cases (unadj.p < 0.05,

Fig. 5C).

Complementary analyses

For all Canada-USA participants combined, those exposed

(versus unexposed) to other medications/supplements

exhibited lower alpha-diversity (richness, Chao1

p < 0.02). Beta-diversity also differed by other medication

use, race, country of residence, and dietary intake (fiber),

but all associations were small, explaining 3–8% of the

variability in the gut microbiota (all p < 0.02). No other

findings reached significance (all p > 0.05; Table S5).

Figure 3. Gut microbiota network analysis (genus-level): depiction of the gut microbiota networks. ADS = monophasic acquired demyelinating

syndrome; MS = multiple sclerosis (pediatric-onset). Each sphere represents a node (taxa); sphere size represents the normalized counts (number

of taxa). Lines show connectivity; longer lines indicate less connectivity. Connectivity can be positive or negative (genera may promote or inhibit

each other). Annotated network analyses plots, with the relevant genera labelled are shown in Figure S1. Figure 4 quantifies and compares

connectivity (betweenness) between the control, monoADS and MS participants.
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Comparisons with the independent USA-only
cohort

Diversity

Consistent with the Canada-USA cohort, alpha and beta

gut microbiota diversity did not differ for the MS cases

(DMD-na€ıve or exposed) versus the unaffected controls,

all p > 0.1 (data not shown).

Taxa-level findings

While consistency in the direction of effect was observed

across several genera and species for the MS cases and

controls within each cohort, none reached both p and

Q < 0.05 in both cohorts (Fig. 6, Tables S6 and S7).

Briefly, at the genus-level, when compared to controls,

the relative abundance of Ruminococcaceae-NK4A214

group was lower for the MS cases, reaching significance in

both cohorts (aRRCanada-USA0.20;95%CI:0.08–0.55, p = 0.002;

aRRUSA0.38;95%CI:0.18–0.82, p = 0.01), including for the

DMD-na€ıve cases (aRRCanada-USA0.10;95%CI:0.02–0.47,
p = 0.003; aRRUSA0.27;95%CI:0.10–0.76, p = 0.01). Chris-

tensenellaceae R � 7 group was lower for the MS cases,

reaching significance at either the genus- or species-level

in each cohort (genus-level: aRRCanada-USA0.58;95%

CI:0.28–1.2, p = 0.1; aRRUSA0.44;95%CI:0.23–0.83, p = 0.01;

species-level: (aRRCanada-USA0.13;95%CI:0.02–0.81, p = 0.03;

aRRUSA0.25;95%CI:0.05–1.29, p = 0.096). Other genera were

also lower in MS in both cohorts (aRR < 1, but p > 0.05), and

all were housed in the phylum Firmicutes, including Veillonella

and three within the order Clostridiales (Roseburia, Ruminococ-

caceae UCG�003). In addition, some genera were higher inMS

versus controls in both cohorts, such as: Candidatus Sto-

quefichus (also identified as highly connected in the Canada-

USA network analyses) and Tyzzerella aRRCanada-USA10.1–12.8;
aRRUSA8.8–9.1, all p < 0.05). The genera Clostridium sensu

stricto 1 and Turicibacter specifically differed by the MS cases’

DMD status in both cohorts, being higher for the DMD-

exposed versus na€ıve (aRRCanada-USA4.1–5.5 and aRRUSA2.6–
2.9, all p < 0.05). Further, compared to controls, the DMD-

na€ıve cases exhibited a significantly higher relative abundance

of the species Clostridium innocuum group (genus Erysipelotri-

chaceae; aRR exceeded 10, with p < 0.03 in both cohorts) and

lower abundance of an unnamed species within the genus

Ruminococcaceae UCG�003 (aRR<0.4, p < 0.047 in both

cohorts).

Conversely, two of the genus-level findings differed

across cohorts; both were higher for the MS cases (vs.

controls) in the Canada-USA but lower in the USA-only

cohort (all p < 0.05). These comprised Pseudomonas (Pro-

teobacteria phylum) (aRRCanada-USA5.5;95%CI:1.5–20.2,
p = 0.01; aRRUSA0.16;95%CI:0.03–0.85, p = 0.03) and an

unnamed taxon within the functionally diverse Lach-

nospiraceae family (aRRCanada-USA2.6;95%CI:1.4–5.1,
p = 0.004; aRRUSA0.57;95%CI:0.37–0.88, p = 0.001). The

latter similarly differed for the DMD-exposed cases,

Figure 4. Gut microbiota network analysis (genus-level): box plots show node (taxa) connectivity (betweenness) for the unaffected controls,

monoADS, and pediatric-onset MS cases (DMD-exposed and na€ıve). ADS = monophasic acquired demyelinating syndrome; MS = multiple sclerosis

(pediatric-onset). Summary: node (taxa) connectivity (betweenness) differed between the 4 groups: controls, monoADS, DMD-exposed and na€ıve

MS cases (p < 10-9 Kruskal-Wallis) The DMD na€ıve MS cases also differed from each of the groups - controls, monoADS, & DMD-exposed MS

cases (all p < 0.00007, Holm adjusted for multiple pairwise comparisons). Additional information and related analyses: The degree of connectivity

did not differ between groups (all p > 0.05, data not shown).
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versus controls (aRRCanada-USA2.8; 95%CI;1.4–5.8,
p = 0.005; aRRUSA0.48; 95%CI:0.30–0.78, p = 0.003).

On completion of the pre-planned analyses, post-hoc

principal component analysis (PCA) plots (genus-level)

were generated to explore the potential for bias for the

following elements: for the Canada-USA cohort, presence

of atopy, and use of supplements (all participants com-

bined, then separated by disease status), for both cohorts

combined, shipping-related (use of additional dry ice

shipment [yes, no]) and cohort (Canada-USA, USA-

Figure 6. Heatmap summarizing gut microbiota genus-level findings (ASV counts): Comparisons between the Canada-USA and USA-only cohorts

for the multiple sclerosis cases and controls. Adjusted RRs were ordered from highest to lowest for the multiple sclerosis cases versus controls,

first, for the Canada-USA cohort, then for the USA-only. Each Panel summarizes age and sex-adjusted RRs derived from negative binomial

regression models for each genus, with only the RRs reaching nominal significance (p < 0.05) in at least one of the cohorts within a genus shown

(see Tables S2 and S6) for unadjusted and adjusted models). For each comparison, the control group forms the reference. RRs are colored from

high (red) to low (blue); gray shading–not available. *p < 0.05, **p < 0.01, ***p < 0.0001, ***+p < 0.0001 and Q < 0.05.

Figure 5. Metagenomic predictions: relative abundance of three predicted metagenomic pathways for unaffected controls (n = 36), monoADS

participants (n = 41), and MS cases (all MS cases, n = 32, then by DMD exposure status [exposed, n = 23 or na€ıve, n = 9]). (A) Nicotinamide adenine

dinucleotide (NAD) salvage pathway I. Summary of group comparisons: 3 groups: controls, ADS, MS cases, P=0.0311KW Pairwise comparisons where

P<0.05. Controls vs: MS cases; P=0.00939; adj.P=0.0282 4 groups: controls, ADS, MS DMD exposed, MS DMD na€ıve cases P=0.0675KW Pairwise

comparisons where P<0.05.Controls vs: DMD+ MS cases; P=0.0294; adj.P=0.177; DMD- MS cases; P=0.0419; adj.P=0.209; (B) Pyruvate fermentation

to acetate and lactate II pathway. Summary of group comparisons: 3 groups: controls, ADS, MS cases, P=0.0182KW Pairwise comparisons where

p<0.05. Controls vs: MS cases; P=0.0148; adj.P=0.0295; monoADS; P=0.0137; adj.P=0.0410 4 groups: controls, ADS, MS DMD exposed, MS DMD

na€ıve cases, P=0.0456KW Pairwise comparisons where p<0.05. Controls vs: DMD+ MS cases; P=0.0245; adj.P=0.123; monoADS; P=0.0137;

adj.P=0.0820; (C) The reductive tricarboxylic acid (TCA) cycle I pathway. Summary of group comparisons: 3 groups: controls, ADS, MS cases,

P=0.168KW Pairwise comparisons; all P>0.05. 4 groups: controls, ADS, MS DMD exposed, MS DMD na€ıve cases, P=0.0250KW Pairwise comparisons

where P<0.05. Controls vs: DMD- MS cases; P=0.00559; adj.P=0.0336 DMD- vs DMD+ MS cases; P=0.0161; adj.P=0.0806. Plots provide key

examples of where the relative abundance(s) of pathways were lower for the MS cases relative to unaffected controls, with the direction of findings

remaining consistent regardless of DMD exposure (A and B) or differed by DMD exposure status, being lower for the DMD-exposed relative to na€ıve

MS cases (C). All predicted metagenomic findings are shown in Table S4. Box plots: Thick black horizontal line = median; horizontal edges of box

depict Q1 and Q3 (interquartile range); the ends of the whiskers represent one and a half times the interquartile range (1.5*IQR); circles = individual

outliers. Y axis represents the mean relative pathway abundance from metagenomic predictions, derived from a validated algorithm via PICRUSt2

(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) and summarized as metabolic pathways using MetaCyc

(database of metabolic pathways and enzymes from all domains of life). ADS = monophasic acquired demyelinating syndromes; MS = multiple

sclerosis (pediatric onset); DMD = disease modifying drug; DMD+/DMD� = DMD disease modifying drug exposed/na€ıve (never exposed);

KW = Kruskal–Wallis rank sum test; adj.p = multiple comparisons adjusted p-values (derived from the Dunn Kruskal–Wallis test with Holm

adjustment for multiple comparisons). Bolded p-values indicate <0.05 (reached nominal significance).
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only). No remarkable patterns or clustering of individuals

based on these elements were observed (all PCA plots

available upon request from the authors).

Discussion

While overall gut microbiota diversity did not differ

between individuals with pediatric-onset MS (DMD-na€ıve

or exposed), monoADS, and unaffected controls, impor-

tant taxa-level differences emerged. Compared to mono-

ADS, MS cases exhibited a fourfold higher relative

abundance of the recently identified superphylum

Patescibacteria (aRR = 4.2; p,Q < 0.05), and a lower

abundance of several butyrate-producing genera and spe-

cies within Lachnospiraceae (e.g., Anaerosporobacter) and

Ruminococcaceae families (p,Q < 0.05). An unnamed spe-

cies within the genus Clostridiales vadin BB60 differenti-

ated the DMD-na€ıve MS cases from all others, being

depleted versus either the DMD-exposed cases, controls

(p,Q < 0.01) or monoADS participants (p = 0.001,

Q > 0.05). In addition, for all MS cases (either DMD-

exposed or na€ıve), gut metagenomic predictions suggested

depletion in the tryptophan-related nicotinamide adenine

dinucleotide salvage and SCFA-producing pyruvate fermen-

tation pathways versus controls (Holm-adjusted

p < 0.03). These pathways were recently found of impor-

tance in persons with MS and MS animal models.23

Finally, network analyses revealed a distinct gut micro-

biota community structure for the MS cases versus mono-

ADS and controls, with an overrepresentation of highly

connected opportunistic pathogens, and an under repre-

sentation of SCFA-producing taxa. Together, findings

suggest that the gut microbiota community structure,

function and connectivity, and not just individual taxa,

are of likely importance in MS.

We were able to compare our main findings with an

independent cohort of pediatric-onset MS cases and unaf-

fected controls. Consistent across both cohorts, and with

most other studies,4,6,24–27 neither alpha nor beta gut

microbiota diversity differed significantly for the MS cases

(DMD-na€ıve or exposed) versus controls. At the individ-

ual ASV-level, these included a lower relative abundance

of several SCFA-producing taxa for the MS cases versus

controls, such as Ruminococcaceae-NK4A214 group which

was 61%–79% lower for the cases (aRR:0.39–0.21) and

72%–90% lower for the DMD-na€ıve cases (aRR:0.28–
0.10) across both cohorts, all p < 0.02. Depletion of this

genus has been reported in MS and other chronic dis-

eases,24,28,29 as has depletion of other SCFA-producing

taxa in MS (versus controls), including for example,

Butyricimonas27 and Clostridia clusters XIVa and IV.25

Christensenellaceae R-7 group, a member of the highly

inheritable Christensenellaceae family,30 was lower for the

MS cases versus controls across both cohorts, by 42%–
52% at the genus-level (aRRs:0.58–0.44) and 75–87% at

the species-level (aRRs:0.25–0.13), reaching nominal sig-

nificance (p < 0.05) in the USA-only cohort at the genus-

level, and in the Canada-USA cohort at the species-level.

Christensenellaceae appears depleted in other immune-

mediated conditions, such as IBD, as well as MS, suggest-

ing that diminution of these genera may be important for

systemic T-cell dysregulation disorders.6,30 A large meta-

analysis, comprised 3,048 individuals, identified Chris-

tensenellaceae R-7 group, along with Ruminococcaceae

UCG-005, as among the top five genera enriched in con-

trols versus IBD-participants.31 Considered as potential

biomarkers of a healthy gut,31 these observations broadly

concurred with ours, including, for example, our Canada-

USA cohort’s gut community network analyses;

Ruminococcaceae UCG-005 genus was among the top five

most connected taxa for the unaffected controls. Authors

of the same meta-analyses identified members of the fam-

ily Erysipelotrichaceae as potential markers of gut inflam-

mation.31 Relatedly, we observed >10-fold higher relative

abundance of Clostridium innocuum group sp., housed

within this family for our MS cases in both cohorts

(p < 0.03). Interestingly, both of the genus-level taxa that

differed between our cohorts (families Pseudomonas and

Lachnospiraceae) house functionally diverse species, such

that inconsistencies in findings across studies and diseases

are not unexpected.32

Intriguingly, within our main Canada-USA cohort, the

DMD-na€ıve MS cases’ gut communities were more con-

nected (betweenness) versus all others (DMD-exposed

cases, monoADS, or controls), perhaps indicative of more

resilient pathogenic or pro-inflammatory microbial com-

munities in the native MS gut. Findings warrant further

investigation in larger populations, although accessing siz-

able groups of individuals with MS who are entirely

DMD-na€ıve is challenging in today’s therapeutic era. We

found just one other study assessing gut community

structures in adults with MS (aged 20–63 years).33 They

also observed differences in network connectivity between

DMD-na€ıve MS cases (n = 45) and controls (n = 44).33

While the degree of connectivity was lower for the MS

cases in this older population, inferences are similar to

ours; gut microbiota communities and network structure

are of likely importance, not just individual taxa. We

annotated our gut microbiota community networks,

observing overrepresentation in MS cases of opportunistic

pathogens, for example, Actinomyces (Actinobacteria phy-

lum), Gemella, and Leuconostoc (Firmicutes phylum). In

contrast, for controls, SCFA-producing taxa dominated,

including Ruminococcaceae family members, Anaerostipes

and Veillonella (Firmicutes phylum). Other members of

the Veillonellaceae family are also reported as higher in
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controls (versus DMD-na€ıve MS case),5 and higher in

DMD-na€ıve versus exposed MS cases.34 SCFAs represent

key microbial metabolites, can exert anti-inflammatory

effects, and may facilitate beneficial microbiota-gut-brain

interactions.35

Gut metagenomic predictions suggested depletion of the

nicotinamide adenine dinucleotide salvage and pyruvate fer-

mentation pathways in MS (DMD-exposed or na€ıve) versus

controls. Both pathways are implicated in MS pathogenesis,

possibly mediated via SCFA-production (acetate and lac-

tate), neuronal mitochondrial damage and energy deple-

tion.36–39 Modification of these pathways may has potential

neuroprotective and immunomodulatory effects in MS.36–

39 Our findings concur with the broader MS literature; for

example, dietary precursors of the former nicotinamide sal-

vage pathway include tryptophan and niacin (vitamin B3),

and a higher abundance of gut-derived tryptophan

metabolites were associated with a lower risk of pediatric-

onset MS and subsequent disease activity.23 Two other

pathways—reductive tricarboxylic acid cycle I and glycolysis

—differed by DMD status, being lower for our DMD-

exposed versus na€ıve MS cases. Both are considered central

hubs for energy metabolism,40,41 and others report upregu-

lation within active MS lesions, and a relationship of these

pathways with disease severity.42,43 Further, pathways

related to energy metabolism (e.g., methane) and metabo-

lism of other vitamins (e.g., retinol, vitamin A) have been

shown to differ by DMD status.34 These predicted path-

ways provide mechanistic insights warranting future direct

functional characterization of the microbiota.

Strengths and limitations

Pediatric-onset MS remains relatively rare, such that our

study size was modest. Nonetheless, our participants were

well phenotyped; our MS cases, controls, and monoADS

participants were similar for important metrics rarely cap-

tured, such as stool consistency (via the Bristol Stool Scale).

This is considered an important confounder in gut micro-

biota studies.9 Household controls (typically spouses, some-

times siblings) can be another approach, but are not well

suited to a rare pediatric disease for several reasons.2,44,45

Adults are not suitable controls for children, and declining

fertility rates renders it impractical to enroll a household

sibling of similar age and sex (North American women aver-

age <2 children).46 Overmatching and misclassification also

pose a threat44,47; an unaffected sibling is genetically predis-

posed to be at a higher risk of MS, but may not develop MS

until some (unknown) time in the future.

Our MS cases had a relatively short disease duration,

averaging 2.5 years from symptom onset in our primary

Canada-USA cohort, and had thus accrued few comor-

bidities (aside from atopy), and had a low medication

burden, aside from dietary supplement use. Nonetheless,

our complementary analyses suggested some modest dif-

ferences in gut diversity based on broad cohort character-

istics, including race, country of residence, fiber intake

and other medication, and supplement use. These modest

differences, and others, may become relevant in larger

cohorts and warrant further consideration, especially as

comorbidity and chronic medication/supplement use are

common, increase with age and disease duration,48 and

most MS microbiota studies have included older adults

with very long disease durations.6 This raises the possibil-

ity that these seldom reported exposures may have a pro-

found impact on the adult MS gut microbiota, including,

for example, the commonly used antipsychotics.16,17 Fur-

ther, supplement use (e.g., vitamin D) is common in per-

sons with MS of all ages; our findings suggest that future

work is needed to establish its full potential impact on

the MS gut microbiota. Our inclusion of pediatric-onset

MS cases who were never exposed to a DMD and use of

an additional comparator group (monoADS) may be of

value to advance understanding of which differences in

the gut microbiota are specific to MS, or are common to

other neurological or demyelinating diseases. We also

compared our main findings with an independent cohort

of pediatric-onset MS cases and unaffected controls, with

all samples collected in a similar manner and sequenced

in the same central facility.49 Finally, we were able to

assign taxonomy using the newer ASVs50 rather than the

operational taxonomic unit system employed previously

in MS.6 ASVs are considered advantageous in achieving

greater resolution and may have enhanced our ability to

detect previously unrecognized taxa of importance in MS.

Conclusions

Gut microbiota diversity was similar for pediatric-onset

MS cases versus either monoADS or unaffected controls.

However, at the taxa- and gut-community-network-level,

differences were observed. MS cases, irrespective of prior

DMD exposure, exhibited an overrepresentation of highly

connected opportunistic pathogens, and an under repre-

sentation of SCFA-producing taxa. Further, several SCFA-

producing taxa, such as Ruminococcaceae NK4A214, and

Christensenellaceae R-7 group, identified as possible uni-

versal makers of gut health,31 were consistently lower for

the pediatric-onset MS cases versus unaffected controls

across two independent North American cohorts.

Together, findings suggest that commonality in the gut

microbiota composition can be found across different MS

cohorts, and that disruptions in key taxa may contribute

to MS pathogenesis. Further, findings suggest that the gut

microbiota community structure, function, and connec-

tivity, and not just individual taxa, are of likely
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importance in MS. Further work is warranted to delineate

the likely bi-directional relationship between the gut

microbiota and MS.
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