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The EEG rhythmic activities of the somato-sensory cortex reveal event-related

desynchronization (ERD) or event-related synchronization (ERS) in beta band (14–30Hz)

as subjects perform certain tasks or react to specific stimuli. Data reported for imagination

of movement support the hypothesis that activation of one sensorimotor area (SMA) can

be accompanied by deactivation of the other. In order to improve our understanding

of beta ERD/ERS generation, two neural mass models (NMM) of a cortical column

taken from Wendling et al. (2002) were interconnected to simulate the transmission of

information from one cortex to the other. The results show that the excitation of one

cortex leads to inhibition of the other and vice versa, enforcing the Theory of Inhibition.

This behavior strongly depends on the initial working point (WP) of the neural populations

(between the linear and the upper saturation region of a sigmoidal function) and on how

the cortical activation or deactivation can move the WP in the upper saturation region

ERD or in the linear region ERS, respectively.

Keywords: ERD/ERS, EEG, neural mass model, transcallosal connection, Theory of Inhibition, Theory of Excitation

INTRODUCTION

An important feature of the brain is its ability to generate characteristic rhythms in its activity.
The frequency of such brain oscillations depends both on the membrane properties of the single
neurons and on the organization and interconnectivity of networks to which they belong (da Silva,
1991).

The EEG rhythmic activities of the somato-sensory cortex (Sensory Motor Rhythms, SMR) are
commonly modulated when subjects perform certain tasks or react to specific stimuli. Generally, it
is assumed that the spectra band power is related to the degree of synchrony of the underlying
oscillating neuronal population. In particular, a decrease in mu (8–13 Hz) or beta (14–30 Hz)
rhythmic activity occurring after a given event, which manifests as a decrease in the spectra band
power, is called event-related desynchronization (ERD), whereas the inverse is called event-related
synchronization (ERS). Both mu and beta rhythm ERD/ERS patterns are associated with real and
imagined movement, and these features are much used for brain computer interface (BCI) control.

Different mechanisms are probably at the origin of these two rhythms. Hughes and Crunelli
(2005) discovered that the occurrence of mu oscillations depends on the activity of a subset of
thalamocortical neurons (Hughes and Crunelli, 2005). Conversely, several experiments found out
that oscillations in the beta frequency range are easily detectable in different cortical sites, but not
in simultaneously obtained recordings from thalamic electrodes. These findings have led to the
interpretation that these rhythmic activities are primarily generated in the cortex itself (da Silva,
2010).
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Pfurtscheller and Neuper studied the spatiotemporal patterns
of mu and beta rhythms during motor imagery with a dense
array of EEG electrodes. The subjects were instructed to imagine
movements of either the right or the left hand. These rhythms
displayed an ERD only over the contralateral hemisphere,
while an enhancement of the rhythms ERS was found over
the ipsilateral side. Furthermore, Pfurtscheller (2006), using a
qualitative model, proposed that ERD or ERS, induced by a
sudden change of activation, may depend on the initial working
point (WP). At certain physiological levels of activation, an
increase in activation results in ERD, whereas activation decrease
results in ERS.

The previous data support the hypothesis that activation
of one sensorimotor area (SMA) can be accompanied by
deactivation of the other (Pfurtscheller and Neuper, 1997). The
ipsilateral synchronization can be interpreted as deactivation or
active inhibition of the ipsilateral sensorimotor structures. It is
not surprising that, for an optimal performance of a specific task
(e.g., imagination of the right handmovement), cortical areas not
specifically involved in the task may be deactivated or inhibited
for information processing (Pfurtscheller, 1992; Pfurtscheller and
Neuper, 1997). By way of example, enhanced inhibition of the
homotrophic motor area via the transcallosal fiber system, was
reported by Netz et al. (1995).

The corpus callosum is a brain structure that connects the
left and the right cerebral hemispheres. Intrahemispheric
communication occurs by means of axonal projections
connecting cortexes both with cortico-cortical and cortico-
subcortical pathways. It is however still uncertain how the
corpus callosum regulates transfer and communication between
hemispheres, as studies investigating its role report conflicting
statements.

Some studies suggest that the corpus callosum could
play an inhibitory role (Theory of Inhibition), whereas
others say that the corpus callosum serves an excitatory
function (Theory of Excitation) (Clarke and Zaidel, 1994;
Bloom and Hynd, 2005). The inhibitory model poses that
the corpus callosum maintains independent processing
between the two hemispheres, hindering activity in the
opposing hemisphere and causing greater connectivity to
increase lateralization (positively correlated) (Welcome and
Chiarello, 2008; Adam and Güntürkün, 2009). Lateralization
of the brain hemispheres refers to a functional dominance
of one hemisphere over the other, in which one is more
responsible or entirely responsible for control of a function in
comparison to the other (Noggle and Hall, 2011). The excitatory
model poses that the corpus callosum shares and integrates
information between hemispheres, causing greater connectivity
to decrease laterality effects by masking the underlying
hemispheric differences in tasks that require interhemispheric
exchange (negatively correlated) (Clarke and Zaidel, 1994;
Bloom and Hynd, 2005; van der Knaap and van der Ham,
2011).

A deeper understanding of the EEG signal and of the
neurophysiological information it contains can be gained
through the use of biologically inspired neurocomputational
models. In particular, two main classes of models have been

proposed to simulate cortical rhythms: models with spiking
neurons (see Dayan and Abbott, 2001 for a review) and
neural mass models (NMM). In the latter, the main variables
represent the cumulative activity of population of neurons
(instead of single cells) which share a similar membrane
potential and exhibit the same dynamical behavior. Among
the others, NMMs have been successfully used to simulate
specific aspects of electrical brain activity, such as alpha
rhythms (Jansen and Rit, 1995), oscillations and synchronization
in the γ-band (Schillen and König, 1994), dynamics in the
olfactory cortex (Freeman, 1987), epileptic patterns (Wendling
et al., 2002) and brain rhythms during sleep (Cona et al.,
2014).

In order to test the phenomenon of mu ERD/ERS generation,
Suffczynsky et al. used a computational model of interacting
neural populations, with the emphasis on thalamo-cortical
networks (Suffczynski et al., 2001). Even though intra-cortical
networks also play an important role in rhythms propagation,
the model in Suffczynski et al. (2001) does not include these,
rather focusing on the system responsible for the generation
and modulation of mu rhythmic activities, namely the thalamo-
cortical circuit. However, this simplification cannot be valid
for beta ERD/ERS, because of their origin in the cortex.
Pfurtscheller proposed a cortical activation model to explain
whether an internally or externally paced event induces an
ERD or ERS in a specific frequency band (Pfurtscheller, 2006).
He found that, depending on the baseline level of cortical
activation, a sudden change in input can induce either ERD
or ERS in a given area. This study introduces the concept of
WP as the level of activation from which different behaviors
can be obtained. In particular, when the baseline of cortical
activation is low and most of the neurons in a given area
are still available for synchronization, an ERS is expected
following an increase in cortical activation. Converesely, when
the cortical activation baseline is high and the majority of
neurons is occupied by synchronization processes, an increase
of cortical activation can induce an ERD. The number of
neurons available for synchronization and the excitation level
of cortical neurons are the two parameters that define the WP
in the cortical activation model and therewith the amplitude
of oscillations. However, this still remains quite a theoretical
concept if not included in a quantitative framewok, which can
explain the relationship between the WP and the mechanism
that generates a specific rhythm. Grabska-Barwinska proposed
a simplified lumped computational model of a cortical circuit
consisting only of pyramidal and fast spiking interneuronal
populations. The model elucidates the mechanisms of transition
between slower and faster rhythms, gamma synchronization
and beta desynchronization and rebound effects during motor
preparation and execution (Grabska-Barwińska and Żygierewicz,
2006).

The introduced works have analyzed different aspects
of the same phenomenon, but they also exhibit important
limitations, especially for what concerns the analysis in the
beta band. In particular, a neural model which includes
four populations is more adequate to analyze how beta
rhythms are generated in the cortex (Wendling et al., 2002).
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Moreover, previous models do not include the interhemispheric
communication and so cannot analyze its role in the ERD/ERS
generation.

In order to overcome the previous limitations, in the present
paper we make use of a NMM that: (i) generates beta rhythm
through a four population modeling of intra-cortical networks.
In particular, we used the four population NMM by Wendling
et al. (2002), originally proposed to simulate rhythms generation
in the hippocampus, but with parameters assigned to simulate
beta rhythms in the right and left SMA (Zavaglia et al.,
2006). (ii) evaluates how intercortical connections transmit that
rhythm. Hence, the overall model consists of two neural columns
(one per each area). For both the two areas, we defined a
set of parameters to generate beta rhythm independently of
one another. The intercortical connections are modeled as
long range synapses that mimic the transcallosal connections
(TC).

The final aim is to gain a deeper understanding of the
mechanisms responsible for ERD/ERS in the somatosensory
cortex in response to a modulating input. In particular,
we aim (i) to verify whether the experimentally observed
ERD/ERS patterns can be ascribed to a simple change of
the population WP and to the TC transmission between the
two hemispheres, (ii) to assess whether the obtained results
support the well-known theory of inhibition. A more general
aim is to provide a straightforward theoretical framework, which
can be used to interpret different data (depending on the
WP), to drive BCI experiments, and to formulate new testable
predictions.

METHODS

Single Column Model
The model of a single area was obtained by modifying the
Equations by Wendling et al. (2002). The model consists of
four populations of neurons, pyramidal cells (p), excitatory
interneurons (e), inhibitory interneurons with slow synaptic
kinetics (s) and inhibitory interneurons with fast synaptic
kinetics (f). Neurons in each population are lumped together
and are assumed to share the same membrane potential. One
lumped circuit communicates with another through the average
firing rate, which corresponds to the average activity of that
given population of cells. Each neural group receives an average
postsynaptic membrane potential from the other groups, and
converts the average membrane potential into an average density
of spike fired by the neurons. This conversion is simulated via a
static sigmoidal relationship. The effects of synapses are described
by a second order linear transfer function, which converts
the presynaptic spike density into the postsynaptic membrane
potential. Three different kind of synapses, with impulse response
he, hs and hf , are used to describe the synaptic effect of excitatory
neurons (both pyramidal cells and excitatory interneurons), of
slow inhibitory interneurons and fast inhibitory interneurons.
The layout of the model of a single column is shown in Figure 1.

According to Figure 1, model Equations can be written as
follows:

PYRAMIDAL NEURONS

dyp(t)

dt
= xp (t) (2.1)

dxp(t)

dt
= Ge ωezp (t) − 2ωexp (t) − ω2

e yp(t) (2.2)

zp =
2 e0

1+ er(s0−vp)
(2.3)

vp = Cpeye (t) − Cpsys (t) − Cpf yf (t) (2.4)

EXCITATORY INTERNEURONS

dye(t)

dt
= xe (t) (2.5)

dxe(t)

dt
= Ge ωe

(

ze (t)+
up (t)

Cpe

)

−2ωexe (t)−ω2
e ye(t) (2.6)

ze =
2 e0

1+ er(s0−ve)
(2.7)

ve = Cepyp (t) (2.8)

SLOW INIBHITORY INTERNEURONS

dys(t)

dt
= xs (t) (2.9)

dxs(t)

dt
= Gs ωszs (t) − 2ωsxs (t) − ω2

s ys(t) (2.10)

zs =
2 e0

1+ er(s0−vs)
(2.11)

vs = Cspyp (t) (2.12)

FAST INIBHITORY INTERNEURONS

dyf (t)

dt
= xf (t) (2.13)

dxf (t)

dt
= Gf ωf zf (t) − 2ωf xf (t) − ω2

f yf (t) (2.14)

dyl (t)

dt
= xl (t) (2.15)

dxl(t)

dt
= Ge ωeuf (t) − 2ωexl (t) − ω2

e yl(t) (2.16)

zf =
2 e0

1+ er(s0−vf )
(2.17)

vf = Cfpyp (t) − Cfsys (t) + yl (2.18)

In these Equations and in Figure 1, the symbols vi represent
the average membrane potentials (i = p, e, s, f ). These are the
inputs for the sigmoid function which converts them into the
average density spike (zi, i = p, e, s, f ) fired by the neurons. The
sigmoid function is defined by parameters e0, s0 and r, and it
is shown in Figure 2. These parameters, assumed to be equal for
all populations, set the maximal saturation, the position, and the
slope of the sigmoid, respectively. In the curve, we identified a
low saturation region (zi < 1), a linear slope region (1 < zi < 4)
and a high saturation region (zi > 4).

These outputs (zi) enter into the synapses (excitatory, slow
inhibitory or fast inhibitory), represented by the second order

Frontiers in Computational Neuroscience | www.frontiersin.org 3 June 2017 | Volume 11 | Article 57

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mangia et al. Transcallosal Inhibition during Motor Imagery

FIGURE 1 | Layout of the model of a single region: four neural populations (pyramidal cells, excitatory interneurons, fast inhibitory interneurons and slow inhibitory

interneurons) which communicate via excitatory and inhibitory synapses.

FIGURE 2 | Representation of the sigmoid curve used in the model.

linear functions. Each synapse is described by an average
gain (Ge, Gs, Gf for the excitatory, slow and fast inhibitory
synapses, respectively) and a time constant (the reciprocal of
ωe, ωs and ωf , respectively). The outputs of these Equations

represent the postsynaptic membrane potentials (yi, i =

p, e, s, f ). Interactions among neurons are represented via seven
connectivity constants Cij, from the j-th population to the i-th
one. Finally ui (i = p, f ) represents the external input to the
column, which will be described in detail in paragraph Driving
Input.

Since the beta frequency band in which ERD/ERS occur
may differ among individual subjects, we tested the robustness
of the obtained results by using three sets of parameters, to
simulate three beta sub-bands. Specifically, starting from the
parameters’ values proposed by Zavaglia et al. (2006) we finely
tuned synapsis average gains and time constants to obtain three
power spectra with the peaks in. low beta (LB: 14–19 Hz),
medium beta (MB: 20–24 Hz) and high beta (HB: 25–30 Hz)
sub-bands.. The values of these parameters are reported in
Table 1.

Two Columns Model and Transcallosal
Connection
Transcallosal Connection
In order to study the interhemispheric connectivity by TC, we
considered two cortical areas, the right and the left SMA (each
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TABLE 1 | Model basal parameters.

Common parameter Low beta Medium beta High beta

C = 135

Cep = C Ge = 3.9 Ge = 3.9 Ge = 4.3

Cpe = 0.8 C Gs = 4.3 Gs = 4.3 Gs = 4.6

Csp = 0.25 C Gf = 25 Gf = 25 Gf = 29

Cps = 0.25 C ωe = 55 ωe = 75 ωe = 90

Cfp = 0.3 C ωs = 25 ωs = 33 ωs = 36

Cfs = 0.1 C ωf = 250 ωf = 330 ωf = 380

Cpf = 0.8 C

s0 = 6

e0 = 2.5

r = 0.56

described by Equations 2.1–2.18), interconnected through long-
range excitatory connections with a time delay. Figure 3 shows
the model layout.

In TC modeling, we relied on the assumptions that all
transcallosal fibers are excitatory at a neurochemical level (Bloom
and Hynd, 2005) since the long-range connections originate
exclusively from pyramidal population. However, both excitatory
and inhibitory messages have been demonstrated to travel
through the corpus callosum (Swayze, 1987; Bloom and Hynd,
2005); indeed, the functional effects of these connections depend
on various factors, such as the receptors and the interneurons
involved. In particular, a synaptic connection from pyramidal
neurons in one area to pyramidal neurons in the other areas has
an excitatory role on the target region, whereas a connection from
pyramidal neurons in one area to inhibitory interneurons in the
other area has an inhibitory effect.

Ursino et al. demonstrated that an excitatory connection to
fast inhibitory interneurons is able to transmit the rhythms from
one region to the other very efficaciously, while connections
to slow inhibitory interneurons are less effective (Ursino et al.,
2010). For these reasons, we modeled TC as projections from
pyramidal cells to contralateral pyramidal neurons and to fast
inhibitory interneurons.

To simulate connectivity, we assumed that the average spike
density of pyramidal neurons of the presynaptic area (zp) affects
the target region via a connectivity constant to fast inhibitory
interneurons (Kf ) and to pyramidal neurons (Kp) with a time
delay T.

This is achieved by modifying the input quantities up and uf
of the two cortexes.

We can write:

ui(t) = ni(t)+ Ki · zp(t − T)i = p, f (2.19)

where ni (t) represents the external input (see Section Driving
Input).

In the model, we defined a global connectivity constant K as:

K = Kp + Kf (2.20)

We used the same value of Kp and Kf for both cortexes.
To assign a relative value for these parameters, we made
two approximations: (i) we considered only layers 2/3 and 5,
provided that the origins of TC is mainly located in those
layers (Koralek et al., 1990; Rouiller et al., 1991; Martínez-García
et al., 1994; Karayannis et al., 2007; Molyneaux et al., 2007); (ii)
we considered that the fibers from layers 2/3 and 5 generate
more synapses to fast-spiking interneurons (about 70%) than to
pyramidal neurons (about 30%). The contribution of synapses to
the other interneurons was considered negligible (Dantzker and
Callaway, 2000).

Accordingly, we assumed that 70% of synapses target the fast
inhibitory interneurons (hence Kf = 0.7K), while the remaining
30% of synapses target the pyramidal ones (Kp = 0.3K).
The choice of these percentages might seem decisive for model
behavior. However, a preliminary sensitivity analysis showed that
the overall behavior of the model does not change appreciably
if this ration is changed even greatly. Indeed, only the edges of
the working regions range, that will be described below, slightly
changes.

It is known that the corpus callosum has a variable
number of fibers and, depending on the considered theory
(Theory of inhibition or Theory of Excitation), that number
correlates negatively/positively with the information transfer
and positively/negatively with the lateralization, respectively. To
represent this variability, we tested the model with 101 K K -
values equally distributed between 0 and 100; then Kp varies
between 0 and 30 and Kf between 0 and 70.

The delay in the information transfer between the two
cortexes, which depends on the complexity of the specific
task, can vary in a range 10–300 ms. Considering the
results of transcranial magnetic stimulation studies, transcallosal
conduction times between motor cortexes of healthy subjects are
typically about 13 ms (Liederman, 1998). So we used a time delay
T equal as great as 13 ms.

Driving Input
Parameters sensitivity analysis showed that inputs to slow
inhibitory and excitatory interneurons do not produce
appreciable changes in the model dynamics (Ursino et al.,
2010). Therefore, in the following, we will consider only external
inputs to pyramidal neurons and to fast inhibitory interneurons.

The external input ni(t) (i = p, f ) is represented as a Gaussian
white noise which accounts for all inputs not incorporated in
the model, both excitation coming from the environment and
the density of action potentials coming from other connected
regions. It was modeled as a positive input to the pyramidal cells
(hence excitatory) with mean m = 40 pps (pulses per second)
and standard deviation σ = 1 and a positive input to the fast
inhibitory interneurons (hence with an inhibitory effect) with
m = 3 pps and σ = 1. The external inputs have the same m
and σ for the two cortexes. The inputs are given for the entire
simulation. The model parameters and the external input set the
WP at a level similar to that used by other models in literature
(Wendling et al., 2002; Zavaglia et al., 2006).

The driving input has a very important role for setting
the population WP and then the potential cortex excitability.
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FIGURE 3 | Layout of the model of two regions. For each region (Right and Left SMA), four neural populations (pyramidal cells, excitatory interneurons, slow-inhibitory

interneurons and fast-inhibitory interneurons) communicate via excitatory and inhibitory synapses. The connection between the two cortexes is mediated by two

connectivity constants which origin from pyramidal neurons of one cortex and target the pyramidal neurons and the fast-inhibitory interneurons of the other cortex.

In particular, in agreement with the cortical activation model
(Pfurtscheller, 2006), the baselineWP determines themodulation
of the cortex, and so the induction of an ERD or an ERS.

Modulating Input
To simulate the occurrence of the task, consisting in the
persistent imagery of the right hand movement, we added
a modulating input to the pyramidal population of the
contralateral cortex (i.e., to the left SMA).

We simulated a typical motor imagery trial lasting 16 s: 4 s
of baseline, 8 s of motor imagery and 4 s of rest (Suffczynski
et al., 2001). The modulating input is modeled as a smoothed
trapezoidal function, with the rise and fall times as long as 2 s
and a maximum amplitude plateau as high as 100 pps lasting 4 s
(Figure 4).

Model Output
Outputs of the model are the average membrane potentials of the
pyramidal populations, which simulate the local field potential
recorded by superficial EEG over the left and the right SMA (in
Figure 3 vout_L and vout_R , respectively). Moreover, during the
simulations we also analyzed the average spike density zp of the
pyramidal neurons. This variable is related with the neuronal
firing rate, then it contains a direct information on the interaction
between the two cortexes. In particular, zp can vary between 0
and 2 × e0. In the following, we will call WP the value of zp
around which the cortex works. The simulated sample frequency
is 100Hz.

After introducing the modulating input and once fixed the
WP, we computed the ERD/ERS as follows:

ERD/ERS (%) =
P (t) − PB

PB
· 100 (2.21)

FIGURE 4 | Modulating input introduced to the Left SMA. It includes 4 s of

baseline, 8 s of motor imagery and 4 s of rest.

where P(t) is the power extracted of vp(t) at each time-point over
the 16 s, and PB the mean power in baseline (during the first 4 s).

RESULTS

Single Column Model
The power spectral density (PSD) in the three beta sub-bands is
shown in Figure 5.

The spectra show a peak at three different frequencies (about
15, 20, and 25 Hz) covering the all range of beta frequencies. As
reported in Table 1, it is possible to modulate the spectral content
and obtain the generation of these rhythms just tuning Gi and
ωi, i = e, s, f .

The three spectra are the starting point to evaluate the changes
induced by the connection of the two cortexes. As in the previous
presented models (Wendling et al., 2002; Zavaglia et al., 2006),
the WP of the pyramidal population for the three beta sub-bands
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FIGURE 5 | PSD of the single column model output in the three beta

sub-bands (Low Beta, Medium Beta and High Beta). The PSD spectra are

computed with modified periodogram method using 1 s window and 0.01 s

overlapping and averaged for the total length of the trial.

is around 4, then near to the transition between the linear slope
region and the high saturation region (Figure 1). The excitatory
interneurons population works in a condition of completely
upper saturation (WP = 5), the slow inhibitory interneurons
work near the linear region and the upper saturation region
(WP = 3/4) and the fast inhibitory interneurons work near
the low saturation region (WP = 0.5/0.8). These working
conditions make the fast inhibitory interneurons the most
sensitive population to an excitatory driving input because,
starting from a lower saturation condition, they have the greater
margin to increase and to move their WP near a linear region.

Two Columns Model and Transcallosal
Connection
Driving Input
For each beta sub-bands, we considered 101 values of K to
evaluate the role of the connection strength on the transmission
of the signal from one cortex to the other. In this phase there is
no modulating input on the cortexes.

The average value of zp over time (16 s), for each of the two
cortexes, is shown in Figure 6 as a function of K. LB, MB, and
HB curves show the same behavior and include 3 regions:

(i) In the first region the relation between mean zp and K
describes a concave curve, which reflects the passage from the
saturated to the linear slope region of the sigmoid.

(ii) In the second region, the relation between mean zp and K
describes a convex curve. As for the first region, the average
zp decreases with K, moving in the linear slope region of the
sigmoid function.

(iii) In the third region, the activity in the two cortexes quickly
move away from the linear slope region of the sigmoid. In
particular, activity in one region falls to zero, i.e., the WP
moves in the silent region of the sigmoid, while the other
cortex works in its original WP, as if there were no connection
with the other cortex.

The previous results can be explained by the following
mechanisms: in the first two regions, the network start from
an upper saturation point and the presence of TC move the
WP of pyramidal neurons near a linear region of the sigmoid,
increasing the interhemispheric communication. In particular,
excitation from pyramidal neurons of the other hemisphere,
via the inter-hemispheric connection Kf , causes excitation of

FIGURE 6 | Trends of pyramidal average spike density for both Right (blue

line) and Left (green line) SMA as a function of K. For each of the three beta

sub-bands three regions were identified, here delimited with a dashed line.

fast inhibitory interneurons. Indeed, this population has a very
important role since it is sensible to the input and produces the
greater variations of the WP at the increase of K. Conversely,
excitation to pyramidal neurons, through the connection Kp,
has a less relevant role, since this population works close to
the upper saturation. The strong increase in zf , in turn, causes
a significant inhibition of pyramidal neurons, with the global
result to move the pyramidal WP toward a linear region of the
sigmoid. Moreover, the decrease of pyramidal activity reduces
the WPs of the slow inhibitory interneurons and of excitatory
interneurons. Finally, it is worth while that a reduction in the
WP (i.e., functioning in the linear region) is associated with larger
fluctuations in the population activity induced by noise.

The behavior in the third zone reflects a competitive
mechanism, similar to a winner takes all dynamics: only one
region (due to a better influence of external noise) wins the
competition causing the almost complete inhibition of the other.
This mechanism reflects a strong lateralization of the brain.

Figure 7 shows a map of the vout_R and vout_L log-
transformed PSD spectra of each beta sub-bands, computed for
each connectivity constant K. In the figure, the three previously
identified regions are well evident for each beta band. Specifically,
when K is lower than 7, the maps show the main spectral content
in the beta bands (light blue areas) for both the cortexes. Similar
to the first region, values of K belonging to the second identified
region (LB: 7 < K < 35, MB: 7 < K < 26 and HB: 7 < K < 16),
provide PSD spectra with the main content in the beta bands but
with a greater amplitude (red areas) for both right and left SMA.
In the third region (LB:K > 35,MB:K > 26 andHB:K > 16), one
of the cortex is completely inhibited (left SMA) and it shows the
main spectral content in low frequency band (2–7 Hz) (light red
and white areas), whereas the other cortex shows a behavior as in
the “no-connectivity” condition with the main spectral content
in beta bands (light blue and white areas).

To clarify this phenomenon Figure 8 shows the vout_R and
vout_L PSD spectra of each beta sub-bands, computed using
3 connectivity constants belonging to the 3 above identified
working regions.

The information transfer is well evident using the connectivity
constant K = 4: the PSD spectra of the two cortexes are similar
and have a power content greater that the “no-connectivity”
condition (Figure 5).

Frontiers in Computational Neuroscience | www.frontiersin.org 7 June 2017 | Volume 11 | Article 57

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mangia et al. Transcallosal Inhibition during Motor Imagery

FIGURE 7 | Plots of the log-transformed PSD extracted from both cortexes for each beta sub-band and for each K-value. The PSD spectra are computed with

modified periodogram method, using 1 s window and 0.01 s overlapping and averaged for the total length of the trial.

Using K = 14 there is a very efficient transmission of the two
rhythms: the two cortexes are indeed synchronized at the same
frequency, and the PSD spectra show a peak of higher amplitude
with respect to the K = 4 condition.

In the third region (K = 70), we found a different behavior
between the two cortexes: one cortex works as in the “no-
connectivity” condition, whereas the other is characterized by a
low frequency content. This signifies that the strong connection
strength form the first to the second cortex causes a slower
rhythm (mainly in the theta range) but, due to the prevalence of
inhibition, the average membrane potential in the second cortex
lies below the threshold of the sigmoid relationship, i.e., the
second region works in the low saturation region.

Modulating Input
After analyzing the behavior of the system with the driving input
alone, we added the modulating input to simulate the imagery

task. Since simulation concerns the imagination of the right hand
movement, we gave the input to the left SMA.

Figure 9 shows the ERD/ERS % maps (computed with
Equation 2.21) as a function of the time and as function of K.
In this phase, we focused on the first two previously identified K
regions.

As shown in the figure, an increase in K causes a significant
decrease in the average power (hence ERD) in the contralateral
side, and a significant increase in power (hence ERS) in the
ipsilateral side. The latter increases with K until a maximum is
reached, than the effect decreases at larger values of K.

From Figure 9, we selected two K K -values, KH and KL, for
each beta sub-bands, corresponding to a high and low amplitude
of ERD/ERS, respectively, and tested the temporal pattern of
ERD/ERS during the task (Figure 10). The selected values are 10
and 26 for LB band, 6 and 24 for MB band and 4 and 13 for HB
band.
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FIGURE 8 | Plots of the PSD extracted from both cortexes for each beta sub-band using three K-values belonging to the three previously identified working regions.

The PSD spectra are computed with modified periodogram method, using 1 s window and 0.01 s overlapping and averaged for the total length of the trial.

For each beta sub-bands the figure shows that, using KH , an
ERD occurs in the Left SMA, while an ERS occurs in the Right
SMA, at the beginning of the imagery task. As the motor imagery
task ends, the two powers return to their baseline values. Using
KL, the transmission becomes less efficient. Actually, the ERD
follows the same behavior as for KH , but with a lower amplitude.
Conversely, the ERS is not generated.

To better explain the ERD/ERS generation, some exempla of
vout_R, vout_L, zp_R and zp_L are showed as function of time
in Figure 11. The figure shows the behavior of the network for
low beta and the two K-values used in Figure 9 (KH = 10
and KL = 26). In particular, the ERD is generated for both K-
values since the modulating input, during the motor imagery
task, moves zp of the target cortex (left cortex) toward upper
saturation. The smaller fluctuations in zp, in turn, are reflected in
smaller fluctuations in the overall column, and so the amplitude
of vout_L decreases. For KH , the TC produces a decrease of zp
in the ipsilateral cortex, (right), moving the WP in the linear
region. This corresponds to large fluctuations (ERS). For KL, zp
oscillation of the right cortex is already maximum and it cannot
generate a further ERS.

DISCUSSION

Two Columns Model and Transcallosal
Connection
Weused a neural massmodel to simulate the connection between
the Left and the Right SMA in resting state and during a
motor imagery task. In particular, we adopted the model by
Wendling et al. (2002) which represents a good compromise
between synthesis and completeness. Compared with the well-
known model by Jansen and Rit (1995) it incorporates a
fourth population of fast inhibitory interneurons, which allows

FIGURE 9 | Maps of ERD/ERS % as function of time during the modulating

input and as function of K-value. The value of K was varied only in the first two

previously identified regions. The maps are reported for both cortexes and

each beta sub-band.

a more accurate simulation of brain rhythms especially at high
frequencies (Beta and Gamma bands). We did not include the
thalamus, as in other recentmodels (Suffczynski et al., 2001; Cona
et al., 2014), since a thalamic feedback is especially significant in
the generation of lower frequency rhythms (Alpha and Theta)
which are not investigated in the present work.

The communication between the two cortexes is driven
by means of TC, simulated as a connectivity constant, which
transmits the cortical rhythms (Pyramidal Output), using the
same dynamics used for the excitatory (glutamatercig) synapses.
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FIGURE 10 | Plots of ERD/ERS % as function of the time during a trial. For

each beta sub-band, the selected KH and KL are used to extract the

ERD/ERS.

This choice agrees with the well-accepted idea that long-range
connections are imputable to pyramidal neurons. Furthermore,
we included a physiological time delay to account for the long
inter-hemispheric connection.

A difficult problem is to decide to which population the
connection should target. Neurophysiological data (Felleman
and Van Essen, 1991) suggest that long range connections
from pyramidal neurons to distal cortical regions can reach
all populations, depending on the role of these connections.
However, a previous work using a similar NMM (Ursino et al.,
2010) showed that synapses to excitatory interneurons and to
slow inhibitory interneurons have a minor influence on the
dynamics of the target region. Hence, for the sake of parsimony,
only pyramidal-pyramidal and pyramidal-fast inhibitory
connections are included in this work. Furthermore, according
to neurophysiological data, we assumed that connections to
inhibitory neurons are more numerous than connections to
the pyramidal ones. We explored a 0–100 range of connectivity
constants K, which simulate the TC strength.

Driving Input
Analyzing Figure 6, we distinguished 3 regions:

(i) In the first region the neurons work close to the upper
saturation, and so there is only a moderate communication
of the individual rhythms.

(ii) In the second region, the two neurons work in the linear
slope region of the sigmoid function, since the reciprocal
inhibition reduces the position of the WP. This is the
region of maximum information transfer because the two
cortexes’ WPs are near the sigmoid central point, and so the
oscillatory activity is maximal.

(iii) In the third region, one of the cortexes works below the
lower threshold of the sigmoidal relationship (mean zp close
to 0) while the other works at its own equilibrium point
(around zp = 4). In this condition, one cortex is completely

inhibited, while the other is potentially excitable and its WP
is the same as for K = 0.

Behavior in the third region agrees with the inhibitory theory
of metacontrol proposed by Banich. In fact, in metacontrol
information presented to both hemispheres is completely
managed by one dominant hemisphere (Banich, 1995). In other
words, by inhibiting activity of the opposing hemisphere the
other hemisphere becomes dominant for the processing of the
stimulus information (Hellige et al., 1989). The model suggests
a similar behavior in case of high values of K (i.e., in the third
region described above). Here, model behavior implements a
“winner takes all” dynamics, in which only one among the
competitors (in this case one of the two areas of the cortex) wins
the competition and completely dominates the task. Conversely,
at intermediate vales of K, both hemispheres are involved in
the process, and in this region we can observe the maximal
synchronization between the two rhythms. Here, the model
suggests that cooperation between the two hemispheres is the
adopted strategy, in which binding of the rhythms allows the
integration of the two pieces of information (left and right) into
a single combined response.

Modulating Input
In this section we will discuss how a modulating input is
transmitted from the target cortex to the other. When K is equal
to zero (no connection) the input is not transferred from one
cortex to the other, than an ERD is generated on the target
cortex but and ERS is not generated in the controlateral one.
However, for low values of K the transfer is maximum (blue
and red areas for ERD and ERS, respectively in Figure 8) and
specifically there is a turning point after which, increasing the
value of K, the transfer starts to decrease (light blue and light red
areas for ERD and ERS, respectively in Figure 8). The condition
of maximum transfer is a condition in which the two cortexes are
near the transition from the concave region to the convex region.
In this point the zp amplitude and mean are not too high, so a
modulating input is able to modulate the zp in a significant way.

Our simulation results show that a modulating input produces
a decrease of the power in beta band on the target cortex ERD and
an increase of the power on the ipsilateral cortex ERS. This can
be explained with the following mechanism. The input excites
the target cortex, which inhibits more the ipsilateral cortex. The
latter in turn inhibits less the target cortex. This process generates
a loop to which the target cortex is increasingly excited and
the ipsilateral one increasingly inhibited. As a consequence, the
WP of the target cortex moves to a position closer to the upper
saturation, i.e., a position where the amplitude of the rhythm
decreases. In fact, here the spiking frequency of the neurons
is less affected by the external noise. Conversely, the WP of
the ipsilateral cortex moves down in the linear region of the
sigmoid relationship, where the spiking frequency of neurons is
maximally affected by noise, thus causing a power increase in the
beta range. This mechanism allows the generation of the ERD
(related with an excitation state, close to upper saturation) and
ERS (related with a inhibition state, close to the central region)
patterns.
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FIGURE 11 | Plots of vout and zp of the Right cortex (blue line) and of the Left SMA (green line) as function of time for LB using K = 10 and K = 26. For both

K-values, the modulating input moves zp of the target cortex (left) toward the upper saturation region and so the amplitude of oscillation decreases. For K = 10, zp in

the ipsilateral cortex (right) moves toward a linear region and the amplitude of the oscillation increases. For K = 26, zp in the ipsilateral cortex has already reached a

maximum oscillation amplitude, then it cannot be further modulated and vout_R does not change its amplitude. The red line is the moving average filtered signal of

each subplot.

Of course, this result strongly depends on model assumption
on the initial WP of the two pyramidal populations, placed in
the upper portion of the sigmoidal relationship, not too distant
from saturation (Wendling et al., 2002; Zavaglia et al., 2006) and
is consistent with the model of cortical activation (Pfurtscheller,
2006). According to this theory, when the cortical activation
baseline level is high and the majority of neurons is occupied

by synchronization processes, an increase of cortical activation,
induced for example by an external excitatory input, can only
induce an ERD. This is the behavior observed in the target
cortex. In turn, the WP of the pyramidal population strongly
depends on WP of the fast interneurons population, placed in
the lower saturation portion of the sigmoid. These neurons are
very sensitive and ready to spike as soon as they receive an
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input. As a consequence, excitation of fast inhibitory neurons
in the ipsilateral cortex (induced by TC from the target other
cortex) causes a decrease in the WP of their pyramidal neurons,
thus inducing an increase in fluctuations. This is in accordance
with the cortical activation model: when the cortical activation
baseline level is high and the majority of neurons is occupied by
synchronization processes, a decrease of cortical activation can
only induce an ERS.

In this phase we have not considered the before identified
third region, since in that region one of the cortexes takes the
control of the process and the other is completely turned off.

Excitation and Inhibition Theories
In the context of the debate about excitatory or inhibitory
theories of the corpus callosum, this model is collocated mainly
in accordance with the inhibitory theory.

If there are no modulating inputs on the cortex, but only a
common driving input, as K increases, the interaction between
the two cortexes moves the WP toward a more linear region of
the sigmoid. After a certain value ofK, i.e., increasing the strength
of the TC, the laterality increases because one hemisphere is
inhibited and the other tasked with the performance of the
specific cognitive process. This is in accordance with the finding
of Fling et al., which reported a strong, positive relationship
between the strength of interhemispheric inhibition and the
microstructure of interhemispheric fibers that is specific to
tracts connecting the primary motor cortexes. In particular,
an increased fiber microstructure in young adults predicts
interhemispheric inhibitory capacity (Fling et al., 2013).

With the introduction of the modulating input, the behavior
remains of inhibitory type: the inhibition of one cortex leads
to the excitation of the other cortex, and vice versa. This
behavior, causing an opposite shift in the WP of the two areas,
can explain the observed ERD in the target cortex and the
observed ERS in the ipsilateral cortex, and enforces the inhibitory
theory: the two hemispheres are in constant mutually inhibitory
relationship with each other and this competition is mediated
by the corpus callosum. Also, included in this theory there is
the notion that the corpus callosum serves as an “inhibitory
barrier” between hemispheres to prevent maladaptive cross
talk between the hemispheres for which a given function is
dominant (Kinsbourne, 1982; Bloom and Hynd, 2005; Welcome
and Chiarello, 2008; Adam and Güntürkün, 2009).

Implication in BCI Control and New Perspective
As previously investigated by several researchers (Filippini
et al., 2010; Lindenberg et al., 2012; Halder et al., 2013), the
integrity and the number of connections of the deep white
matter structure are predictors of SMR-based BCI performance,
and there is a relation between the white matter architecture
and SMR-BCI aptitude. In particular, the corpus callosum was
one of the top five white matter regions which were found
to be most discriminating in the low vs. high BCI-aptitude
group comparison, showing significant correlations (p < 0.05)
with individual BCI-performance. According to our findings,
when corpus callosum had a too low number of fibers, we
expected a lower ERD and ERS amplitude and consequently

lower BCI performances. At the increasing of corpus callosum
fibers number, the generation of ERD/ERS becomes optimal until
reaching a too high number of fiber and only an ERD is produced.

Halder et al. proposed that the best strategy to improve
BCI performance in low aptitude users is by conducting a
long-term BCI training program consisting of multiple sessions,
which not only targets to increase proficiency in BCI usage for
communication and control, but also attempts to incorporate
interventions to increase or stabilize the microstructural integrity
of BCI-critical central white matter (Halder et al., 2013).

In this context and in the light of our findings, we propose a
further strategy to be combined with the one just presented. It
consists in the use of neuromodulation techniques during BCI
training (Matsumoto et al., 2010; Wei et al., 2013; He et al., 2014).
In particular, an appropriate stimulation could move the neural
circuit in an ideal WP, which could improve the information
transfer between the two cortexes and increase the ERD/ERS
amplitudes.

Model Validation Hypothesis
The validation of a model requires predictive ability to be tested.
As the proposedmodel is based on several assumptions separately
validated in the previously discussed studies (Pfurtscheller and
Neuper, 1997; Suffczynski et al., 2001; Wendling et al., 2002;
Grabska-Barwińska and Żygierewicz, 2006; Zavaglia et al., 2006;
Fling et al., 2013), the model should simulate accurately the
phenomenon of beta ERD/ERS generation and its dependency on
TC. A specific protocol for the validation of the proposed model
should include the recording of both:

(i) EEG signals from the SMA, during resting state condition
and motor imagery tasks. The PSD and ERD/ERS should be
extracted and fitted with model outputs to identify a K-value
for each participant.

(ii) Images of structural data using DTI for in-vivo scanning
of human brain anatomy connectivity. The Functional
Anisotropy could be extracted as indices of the TC (Halder
et al., 2013).

The analysis of the correlation between K and Function
Anisotropy could provide the validation of the model,
demonstrating the dependency of the ERD/ERS amplitude
on TC and the phenomenon of Transcallosal Inhibition. This is
planned in future works.

CONCLUSIONS

A two columns NMM was implemented to simulate (i) the
right and left SMA and (ii) the mechanism of generation and
propagation of beta ERD/ERS induced by a modulating input
which simulates a motor imagery task. The model assumes that
the way in which the input is transmitted is inhibitory, i.e., the
inhibition of one cortex leads to the excitation of the other cortex
and vice versa. The results can explain the ERD and ERS observed
during the task and enforces the theory of inhibition, which
supports that the two hemispheres are in constant mutually
inhibitory relationship with each other and this competition is
mediated by the corpus callosum.
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