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Elasticity-induced force reversal between active
spinning particles in dense passive media
J.L. Aragones1, J.P. Steimel1 & A. Alexander-Katz1

The self-organization of active particles is governed by their dynamic effective interactions.

Such interactions are controlled by the medium in which such active agents reside. Here we

study the interactions between active agents in a dense non-active medium. Our system

consists of actuated, spinning, active particles embedded in a dense monolayer of passive, or

non-active, particles. We demonstrate that the presence of the passive monolayer alters

markedly the properties of the system and results in a reversal of the forces between active

spinning particles from repulsive to attractive. The origin of such reversal is due to the

coupling between the active stresses and elasticity of the system. This discovery provides a

mechanism for the interaction between active agents in complex and structured media,

opening up opportunities to tune the interaction range and directionality via the mechanical

properties of the medium.
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L
ife occurs out of equilibrium. Living organisms are
continuously generating and consuming energy to achieve
self-generated motion. In addition, equilibrium conditions

are barely found in nature or industrial material processing.
Thus, due to their out-of-equilibrium nature, active systems
have attracted much attention in recent years. These systems
exhibit exotic behaviours not possible under equilibrium
constraints such as emergent collective motion1,2, pattern
formation3–5 or even phase segregation in the absence of
attractive interactions6–9. The most studied active agents are
those which convert some sort of energy into translational
motion. Such systems resemble how bacteria swim, and are
known as self-propelled agents6,7,10–11. Energy conversion into
rotational motion is also common in nature; important
examples are the motor adenosine triphosphate synthase12,
certain cilia13, the vortex array formation of sperm cells3 and the
dancing Volvox14. Furthermore, experiments and several
numerical and theoretical studies have focused on this type of
active system in viscous media15–25. In addition to the type of
activity, the medium can have a great influence on the effective
interaction between different particles, which can be particularly
important for active systems. Mixtures of active and passive
particles can be used as a model system where active particles
are embedded in a complex passive system, a scenario that is
prevalent in many biological systems or processes. For example,
bacterial biofilms, where live and dead bacteria phase
segregate26,27, cell migration through tissues28,29 or sperm
swimming through the viscoelastic cervical mucus30. Although
these systems are ubiquitous, very few works have investigated
these hybrid active–passive matter systems2,31–36. McCandlish
et al.31 reported phase segregation of active rods in the presence
of passive rods, where they point to a dynamical instability as
the origin of activity-induced phase segregation; this instability
originates from the differential parallel and transversal diffusion

coefficients coming from the anisotropy of the rods. Ni et al.
focused on the behaviour of a passive particle suspension in a
glassy state doped with active agents. They observed that the
presence of active particles shift the glass transition toward
higher packing fractions32 and promote the crystallization of
hard-sphere glasses37. Stenhammar et al.34 showed that
mixtures of self-propelled and passive particles phase separate
into a dense and a dilute phase, between which the interfacial
tension is negative38. However, despite all these efforts, the
origin of the emergent interactions between active agents in
mixtures with passive agents remains unclear.

To shed light on the emergent interactions that govern the
self-organization of non-Brownian active rotating particles,
henceforth referred to as spinners, in systems composed of
mixtures of active and passive particles, we use both experi-
ments and simulations. We focus on the behaviour of pairs of
co-rotating and counter-rotating spinners suspended in a
viscous fluid or embedded in dense monolayers of passive
particles. Importantly, we show a force reversal between
spinners as the concentration of passive particles increases
above a threshold. In particular, we observe that in a viscous
fluid at small but finite Reynold numbers (Re), the fluid flows
generated by co-rotating spinners produce a repulsion between
spinners (Fig. 1a), whereas for counter-rotating spinners
the resulting forces are attractive (Fig. 1b). By contrast, two
co-rotating spinners in a dense passive monolayer attract each
other (Fig. 1c), whereas counter-rotating spinners repel
(Fig. 1d). We demonstrate that this force reversal is induced
by the change in the mechanical properties of the matrix, from a
viscous medium, if suspended in the fluid, to a solid-like
viscoelastic medium, in the presence of passive particles. We
anticipate that this mechanical attraction between co-rotating
spinners is responsible for the phase separation between active
and passive particles in macroscopic systems.
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Figure 1 | Schematic of the co- and counter-rotating spinners settled on a wall in a viscous fluid and embedded in a dense passive monolayer.

(a) Fluid flows generated by two co-rotating spinners in a viscous fluid medium at finite Re result in spinner–spinner repulsion, as shown by the black

arrows that indicate the direction of forces exerted by the medium on the spinners. The tangential components (t) come from the fluid flows generated by

the neighbouring spinner, whereas the normal components (n) come from secondary flows. The resultant force generates trajectories where both spinners

rotate around their center of mass while moving apart. (b) Fluid flows generated by two counter-rotating spinners at finite Re result in attraction.

(c) Two co-rotating (red spheres) spinners rotating at frequencies o in a dense monolayer of passive particles (blue spheres) attract. The effective forces

exerted on the spinners by the passive medium are represented by black arrows. (d) Two counter-rotating spinners in a dense monolayer of passive

particles repel (forces in black).
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Results
Spinners in a viscous fluid. Our experimental system is
composed of spherical ferromagnetic particles of diameter
s coupled to an external rotating magnetic field of frequency o,
see Supplementary Fig. 1. For the experimental conditions, the
rotational frequency of the particles always coincides with the
rotational frequency of the field. Spinners suspended in an
incompressible fluid (ru¼ 0) of viscosity Z and density r gen-
erate fluid flows that can be described by the Navier–Stokes
equation:

Re u � ruð Þ ¼ �rpþr2uþ f ð1Þ
where we have assumed no-slip boundary conditions at the
particle surface, u¼Uþx� r being U the translational velocity
of the particle, o the angular velocity and r the vector pointing
from the center of mass of the particle to the surface of the
particle. In equation (1), we have chosen a translating reference
frame at the center of the spinner (that is, such as the flow is
steady) and scaled the velocities and lengths by os and s,
respectively. u corresponds to the fluid velocity field, Re is the
Reynold number (Re¼os2r/Z), p is the pressure and f is the
force density exerted by the particle on the fluid. Therefore, in the
absence of any other particle, and in the limit of Re¼ 0 (that is,
where the left-hand terms in equation (1) are 0), a rotating
spherical particle generates a velocity field given by ref. 39.

u rð Þ ¼ t
8pZr3

ẑ�r ð2Þ

where r is the position of the fluid from the center of the particle,
t is the torque acting on the particle, and t

pZs3 corresponds to the
angular rotational frequency (o) of the spinner, which is constant
in our system. This rotating field decays as 1/r2 from the center of
the spinner, as shown in Supplementary Figs 2–4 and
Supplementary Discussion.

First, we study the effective interaction between two spinners in
a dilute system of co-rotating spinners in the absence of passive
particles, see Supplemetary Methods. In this system, the
interaction between spinners is controlled by the fluid flows
generated by the rotation of the spinners and the magnetic
dipole–dipole attraction between them. Experimentally, we
observe that spinners initially positioned further than four
particle diameters do not feel either the fluid flow created by
other spinners or the permanent dipole of the other spinners.
Therefore, they rotate in place without experiencing any
translation, as shown in Fig. 2. By contrast, spinners closer than
4s attract due to the magnetic dipole–dipole interaction, thereby
forming a doublet and rotating around its center of mass. To get a
deeper insight in the behaviour of the system, we also perform
hybrid molecular dynamic simulations of the spinners sedimen-
ted onto a wall within a channel of height h¼ 30 Dx and coupled
to a Lattice–Boltzmann (LB) fluid40. These simulations, which
lack the dipole–dipole interaction, show that co-rotating spinners
closer than 3s experience a hydrodynamic repulsion, while
rotating around the center of mass of the repulsive pair. We
hypothesize that in our experiments, the hydrodynamic repulsion
is hidden by the strong dipole–dipole interaction between
ferromagnetic particles. To test this, we increase the rotation
frequency of the applied magnetic field up to 50 Hz. At this
frequency the hydrodynamic repulsion overcomes the dipole–
dipole attraction, and spinners separate up to 3s, blue circles in
Fig. 2. The fact that the hydrodynamic repulsion increases with
Re proves the inertial nature of the interaction15, and it is in good
agreement with previous observations on millimeter-sized
rotating magnetic disks adsorbed at the air–water interface15,16.
Although our experimental set-up does not provide us with
control over the direction of rotation of individual spinners, our

simulations allow us to explore the case of spinners rotating on
opposite directions. In this case, we find that two counter-rotating
spinners closer than 3s attract each other until the separation
distance between them becomes about 1.15s (see Supplementary
Fig. 5), and simultaneously translate as a doublet in the direction
orthogonal to the vector joining both centers41. The equilibrium
distance between counter-rotating spinners does not depend on
the Re, but the strength of the interaction and translational
velocity of the center of mass does (see Supplementary Fig. 5 and
Supplementary Discussion), which indicates that the observed
attraction between counter-rotating spinners is also inertial in
nature.

Inertial contributions to the fluid velocity field, left-hand terms
in equation (1), are the origin of the repulsion between co-
rotating spinners17,42 and the attraction between counter-rotating
spinners. At a finite Re, inertial terms generate additional forces
on the particles due to the momentum of the fluid. These type of
forces, known as lift forces, originate from the relative translation
of a rotating particle with respect to the fluid43, known as Magnus
forces, or by the translation of the rotating particle with a shear
flow44. Both lift forces depend on the translational velocity of the
rotating particle. Under these conditions, the fluid velocity profile
generated by a rotating sphere, equation (2), needs to be corrected
to include these inertial terms, which generate a so-called
secondary flow. Perturbation methods have been used to
calculate the secondary flow around a rotating sphere due to
small inertial effects45; these studies have shown that the
secondary flow produces no correction in the azimuthal part of
the fluid velocity profile, equation (2). However, because of the
centrifugal force effect, the fluid is pulled in towards the poles and
expelled from the equator, which generates a secondary flow on
the zx-plane (see Supplementary Fig. 6). The presence of a second
rotating sphere breaks the symmetry of the secondary flow;
around the equator of the spheres the fluid velocity between the
spinners decreases for co-rotating spinners and increases for
counter-rotating spinners, as shown in Fig. 3a,b. We compute the
forces exerted by the fluid on co- and counter-rotating spinner
pairs along trajectories of repulsion and attraction, as shown in
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Figure 2 | Evolution of the distance between spinners in an

incompressible fluid. Time evolution of the distance between two

co-rotating, rij, in the experiments at 5 Hz (Re¼ 1.25� 10� 3) at two

different initial distances, blue lines. The blue circles corresponds to the

trajectory at 50 Hz (Re¼ 1.25� 10� 2). Time evolution of the distance

between two co-rotating in our simulation model for two different initial

distances, green lines, at Re¼0.84; and between two counter-rotating

spinners at two different initial distances, red lines, using simulations at

Re¼0.84. The dashed line at 4s points out the experimental threshold for

the attraction between spinners suspended in an incompressible fluid. The

spinners are on the bottom wall of a channel of height h¼ 30 Dx.
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Fig. 3c,d, respectively. For two co-rotating spinners, hydro-
dynamic forces generate a net repulsion between them, while a
hydrodynamic attraction is generated for the case of counter-
rotating spinners. The fluid flows generated by two co-rotating
spinners cause the spinners to rotate around their center of mass.
This translation of the spinners generate a lift force that results in
a repulsion of co-rotating spinners17,18. Previous studies have
shown that both co-rotating and counter-rotating spinners, repel
each other as a consequence of the lift forces42; however, in the
presence of a channel the hydrodynamic attraction between two
counter-rotating spinners overcome the lift force, resulting in an
effective attraction25. As discussed below, the equilibrium
distance between counter-rotating spinners does not depends
on the Re number (Supplementary Fig. 5); however, it does on the
channel height (Supplementary Fig. 7 and Supplementary
Discussion). Thus, the confinement of the counter-rotating pair
reduces the strength of the lift forces, making the hydrodynamic
attraction dominant. Similarly, the confinement of co-rotating
spinners pairs results in a shorter repulsion distance (Supple-
mentary Fig. 7) because of the reduction of the lift force
magnitude25.

Spinners in a dense passive media. The behaviour of spinners
embedded in monolayers of passive particles is completely
different. At finite Re, the fluid flow generated by a spinner repels
neighbouring passive particles, and generates the rotation of the
first shell of particles around it (see Supplementary Movies 1
and 2). The distance of this first shell of passive particles with
respect to the spinner depends on the area fraction of the
monolayer, fA, and the angular rotational frequency of the
spinner, o. Therefore, the spinner produces a local increase of the
mobility of neighbouring passive particles and compresses the
monolayer (Supplementary Fig. 8). When more than one spinner
are present in the monolayer, we observe that two co-rotating
spinners attract each other; this behaviour is opposite to that
observed in the absence of passive particles, as shown in both
experiments and simulations in Fig. 4. The experimental trajec-
tories of two co-rotating spinners in a monolayer with an area
fraction of fA¼ 0.7±0.1 show two well-differentiated regimes:
(i) If the distance between the spinners is smaller than 4s, then

the slope of the trajectory is sharp; this indicates that the
attraction between spinners in this regime is governed by the
strong magnetic dipole–dipole interaction. (ii) At distances larger
than 4s, the slope is small, which indicates that the attraction
between spinners must be of a different nature. By contrast, in the
simulations the trajectories exhibit a single regime of slow
attraction due to the lack of dipole–dipole interactions in our
model. Furthermore, once the spinners squeeze out all the passive
particles initially positioned between them, they remain as a
doublet at a distance of about 2s for monolayers of fA¼ 0.8.
In our experiments, we can only study co-rotating spinners, a
limitation absent in our simulations. Thus, using simulations we
find that two counter-rotating spinners repel each other at a
distance of about 5s within a monolayer of fA¼ 0.8. Therefore,
we also observe a reversal of the interaction force between two
counter-rotating spinners with respect to the pure viscous media
in the presence of a passive matrix.

To investigate the nature of the interaction between two
spinners in the presence of the passive matrix, we define four
different regions in the system and label the particles within these
regions accordingly. These four regions are: the first shell of
particles around the spinners, named as corona, the region
between the two spinners, referred as bridge, the region besides
the spinners on the opposite side of the bridge, denoted as the
surroundings, and the bulk, as illustrated in Fig. 5a,b. Particles
located in the corona rotate coherently around the spinners, and
collide against neighbouring particles transferring their momen-
tum. These particles rarely escape from this region and the
number of particles in the corona remains almost constant until
the coronas of the two spinners starts to collide with each other.
Therefore, we count these particles as a part of the spinner for
every calculation (green shade region in Fig. 5a,b). The bridge and
the surroundings are very dynamic; particles in these regions are
in continuous motion. The stresses generated by the spinners
through the corona are released in these regions. To relax the
stresses they need to yield.

To study the evolution of the passive particles in the bridge,
surroundings and bulk decoupled from the spinners rearrange-
ment, we perform numerical simulations freezing the distance
between the spinners at different values. These constrained
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systems are just able to relax the stress coming from the activity of
the spinners through the displacement of passive particles, and
thus they never reach a steady state. However, the initial time
evolution of these systems allows us to study the process of
loading and yielding of the monolayer without the relaxation of
the system through the displacement of the spinners. In Fig. 5c,d,
the initial time evolution of the particle area fraction in the
different defined regions are presented for co-rotating and
counter-rotating spinners separated 6s and 4s, respectively. We
observe that for co-rotating spinners, the fA of particles in the
bridge is significantly reduced as compared with the fA in the
surroundings and bulk, as shown in Fig. 5c and Supplementary
Fig. 9. The compression and shear stresses produced by the
spinners in the bridge, through the corona, result in a fA

reduction within this region as it is constantly yielding due to
shear stresses induced by the spinners. Thus, the higher mobility
of passive particles initially located in this region allows them to
migrate to less-stressed regions. On the contrary, for counter-
rotating spinners, the fA of passive particles in the bridge is
significantly increased compared with the bulk and surroundings,
as shown in Fig. 5d and Supplementary Fig. 9. Therefore, the
mechanism by which the passive matrix mediates the interaction
between spinners is related to the type of stresses that the
spinners exert on their vicinity. Co-rotating spinners compress
and shear the bridge, as schematically illustrated in Fig. 5a. To
alleviate the stress, the system prefers to yield by transporting
particles from the bridge into the other regions. This occurs
through avalanches and single-particle hopping, as will be shown
later. Clearly, this migration reduces the density on the bridge.
This imbalance repositions the spinners closer to each other,
thereby restoring the temporal mechanical equilibrium. This
process is continuously occurring, which slowly degrades the
bridge until the active particles are able to come together
(Supplementary Movies 1 and 2). During this process the
monolayer is annealed, inducing the defects to migrate and
concentrate around the spinners, as depicted in Supplementary

Fig. 10 and Supplementary Discussion. We discard the migration
and coalescence of defects as the driving force for the co-rotating
spinners attraction by performing simulations in which the initial
configuration is a perfect hexagonal close packing lattice. In this
case, co-rotating spinners aggregation is still observed, as shown
in Supplementary Fig. 11. By contrast, counter-rotating spinners
produce compression and dilation stresses in the bridge. Both
spinners move passive particles into the bridge, which increases
the pressure in this region; this pushes both spinners away,
thereby resulting in a repulsion between counter-rotating
spinners (Supplementary Movie 3).

To further investigate this emergent interaction between
spinners embedded in passive matrixes, we estimate the mean
spinner–spinner interaction potential in monolayers of fA¼ 0.8,
as shown in Fig. 6. By means of the application of harmonic
springs, F¼ k(r� r0), to restrain the separation distance between
the spinner pair at r0, we calculate a potential of mean force
between co- and counter-rotating spinners, as presented in
Fig. 6a,b, respectively. The mean interaction potential, black
circles, is obtained by averaging over five independent initial
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configurations at each separation distance r0. The emergent
interaction between two co-rotating spinners within a passive
monolayer is repulsive at distances smaller than 2s. At larger
distances, shallow attractive minima are separated by small
energy barriers, as shown in Fig. 6a. The local energy input
coming from the spinners’ activity is enough to overcome these
small energy barriers. The presence of these energy barriers at
distances larger than 2s agree with the observation that the
loading of the bridge plays a key role for this interaction.
Moreover, the shallow minima would then correspond with the
state of the system after an yielding event. In the case of counter-
rotating spinners, the interaction is repulsive with a strong
repulsive peak at 1.5s; it also presents a small energy minimum at
3s, as can be seen in Fig. 6b. This shallow energy minimum
explains that along the repulsive trajectories, the spinners spend
long times at this distance, as it can be seen in Supplementary
Fig. 12B. We also use this methodology to evaluate the interaction
potential between co- and counter-rotating spinners in the
absence of passive particles, represented by the magenta solid
circles in Fig. 6a,b, respectively. In agreement with our previous
calculations, Fig. 6 clearly shows that the change in the
mechanical properties of the media produces not only a reversal
of the forces acting on the spinners but also significantly increases
the range of the interaction. Interestingly, the potential of mean
force at the different separation distances strongly depends on the
initial configuration of the monolayer, as shown in Fig. 6; the
average s.d. between the different initial configurations is about
10%. Therefore, in spite of the general trend captured by these
mean spinner–spinner interaction potentials, this interaction is of
a stochastic nature and thus, the strength and range of the
interaction between spinners in passive matrixes is determined by
the instantaneous and previous configurations of the monolayers,
that is memory effects. Another proof of that is shown in
Supplementary Fig. 13, where we compute, by means of
harmonics springs that restrain the separation distance between
co-rotating spinners, the attractive force between the spinners for
100 configurations selected from the unconstrained trajectory
presented in Fig. 4 of spinners initially positioned 6s apart, as
shown in Supplementary Fig. 13A. The different configurations
present significantly different values of the force, as it can be seen
in Supplementary Fig. 13B; however, the average force as a
function of the separation distance between the spinners is in
good agreement with the one estimated by averaging over five
independent configurations at each separation distance. We
would like to point out that the direction of the interaction is not
determined for a given distance (Supplementary Discussion;
Supplementary Fig. 14). For example, in Fig. 6a at rij¼ 4.5s the
interaction can be either attractive or repulsive depending on the
configuration (different seeds). Thus, for any spinner pair it is not
possible to predict the exact local evolution, but only that they
will attract or repel over the length of the experiment.

We have also found in both experiments and simulations that
the aggregation process of co-rotating spinners embedded in a
monolayer is governed by the elasticity of the medium and the
ability of the spinners to increase the elastic energy of the system.
This can be directly confirmed by measuring the storage and loss
moduli of the system in the absence of active particles, and
observing at what particle area fraction the attractive interaction
between co-rotating spinners is lost (Supplementary Discussion;
Supplementary Figs 15 and 16). In Fig. 7, the initial distance
between two co-rotating spinners is represented against the
distance reached after a long run. For passive monolayers at
fA¼ 0.8 and 0.7, spinners initially separated up to 6s are
attracted to each other up to a distance of about 2s and 2.5s,
respectively. However, for particle area fractions smaller than 0.7,
passive-mediated interactions are no longer effective and only the

hydrodynamic repulsion is observed. According to the mechan-
ical properties of the passive monolayer, the elastic response of
the system dominates at long times for monolayers of fA¼ 0.8
and 0.7, as depicted in Supplementary Fig. 16A,B; for the latter,
elastic and viscous responses are almost equivalent at long times.
On the contrary, for area fractions of 0.6 and 0.5 the viscous
response dominates for the entire frequency range,
Supplementary Fig. 16C,D. This demonstrates that an elastic
response of the passive media is a necessary condition for
co-rotating spinners to interact. As mentioned before, this
elasticity-mediated attraction between active spinning particles
is inherently stochastic. Thus, the initial configuration of the
system determines the length of interaction and the time required
for spinners to aggregate, as shown by the different experimental
and simulation trajectories in Fig. 4. Hence, one can imagine a
rough and dynamic energy landscape in which the spinners must
traverse to form a dimer, and where multiple paths exist when
moving from state to state, as schematically illustrated in Fig. 8a.
Erosion of the bridge, which happens when passive particles are
removed from it, occurs through three main mechanisms:
(i) Single-particle removal from the bridge to the corona and
then to the bulk, as shown in Fig. 8b; (ii) multiple particle
removal, where two or three particles in the bridge, due to the
shear stresses, are moved into the bulk or intermittently moved to
the corona and then ejected into the bulk, as seen in Fig. 8c; and
(iii) avalanches where entire lines of particles in the bridge are
pushed into the bulk by the shear exerted by the spinners, as
depicted in Fig. 8d. We use the name avalanche to invoke the
instantaneous and dramatic nature of the particle removal
process. Whereas the bridge erosion produced by the two first
mechanisms is slow and depends on stochastic collisions, the
removal of particles in avalanche happens almost instantaneously.
In fact, it has been previously shown that the devitrification of
hard-sphere glasses is mediated by large rearrangements of
particles, so-called avalanches46. This interaction opens up
possibilities to study the mechanism of elasticity-mediated
interaction between active particles in these systems governed
by a glassy dynamics.

Discussion
In summary, the forces exerted by an incompressible fluid at
small but finite Re on a pair of non-Brownian active rotating
particles depends on the relative sense of rotation of each particle,
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Figure 7 | Co-rotating spinners in passive monolayers at different /A.
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resulting repulsive for co-rotating spinners and attractive for
counter-rotating spinners when confined in a channel. The
presence of a dense passive matrix modify the mechanical
properties of the system from a viscous media to a viscoelastic
material. In this latter case, the interaction between spinners
becomes controlled by elastic effects, which act in the opposite
direction than inertial effects47–49. Hence, the switch between
inertial and elastic stresses derives in a reversal of the interaction
between spinners, resulting in an attraction of co-rotating
spinners and a repulsion of counter-rotating spinners. In fact,
the structure of the passive dense medium cannot be treated at
the mean field level. For example, assuming a pure viscous
scenario where the passive matrix would be an homogeneous
continuum with higher viscosity than the system in the absence of
passive particles, the stress would be dissipated by the viscous
media, and one would just observe the repulsion between
co-rotating spinners, but the strength of the secondary flows
would be smaller due to the viscosity increment. Therefore, the
change of the mechanical properties of the matrix from a viscous
material to a solid-like material is the responsible for the force
reversal. Furthermore, the interaction between spinners in dense
monolayers of passive particles is of stochastic nature; it depends
on the configuration of the passive monolayer. Thus, it is the
instantaneous configuration of the monolayer that determines the
strength and range of the interaction, and the dynamics of
attraction is intimately related to the timescale for the
rearrangement of the monolayer. This can be better understood
by looking at the oscillation between periods of well-defined
distances and periods of fast attraction along the trajectory
between two co-rotating spinners, Figure 4 and Supplementary
Fig. 12A. The level of stress put into the bridge by the spinners
must reach a configuration dependent threshold value, and when
this level is reached the system yields by removing entire groups
of particles from the bridge, as depicted in Fig. 8. Then, the
spinners approach each other and start stress loading the bridge
again. Therefore, this effective interaction mediated by the passive
medium cannot be seen as a position-dependent interaction
potential (U(rij)). Interestingly, the dynamic trajectories of the
distance between the spinners initially positioned at different
distances show an almost linear regime of attraction, as it can be
seen in Fig. 4 and Supplementary Fig. 11. This means that the
spinners approach each other on average at a constant speed.

Assuming a Stokes’ scenario, F¼ 6pms/2U, for the translation of
the spinners through the monolayer along their attractive
trajectory, the strength would be a constant and independent
on the distance between them. Moreover, this elasticity-mediated
interaction is of a very long range. For example, in our
simulations we observe that spinners separated up to six-
particle diameters still interact, whereas the hydrodynamic
interaction reach only three-particle diameters. Remarkably, our
experimental measurements show that the interaction threshold
shifts even at longer distances, and spinners separated by up to
17s attract each other50, while the dipole–dipole interaction reach
4s (Figs 2 and 4). Our results resemble other elastic media such as
lipid membranes, where elasticity-mediated forces between trans-
membrane embedded proteins show logarithmic decays51,52.
However, the origin of the stresses in our system are
different.

In conclusion, we have shown that the interaction between
active spinning particles depends on the properties of the
medium and the dynamics of the active particles. Therefore, this
cooperative interaction between the mechanical and dynamical
properties of the system offers a variety of possibilities to tune this
type of interaction between active agents. Remarkably, we have
also observed that the spinners produce an annealing of the
passive matrix structure (Supplementary Fig. 10), in agreement
with previous simulation results in hybrid passive–active systems
but with a different type of active particles33. We anticipate that
this mechanical attractive force between co-rotating spinners is
responsible for the phase separation observed in systems with
higher concentrations of spinners. Moreover, in ternary hybrid
active–passive systems, composed of mixtures of spinners
rotating either clockwise or counter clockwise, we observe
phase segregation in three different phases: one composed of
the passive particles, other of co-rotating spinners, and the last
one of counter-rotating spinners. In principle, this elasticity-
induced interaction between active spinning particles is general
for other active agents such as self-propelled particles. Therefore,
this study opens up routes to control the range and direction of
the interaction between active units in passive and structured
environments. This interaction between active spinning particles
in passive matrixes is different from the emergent interactions
observed between passive objects within active fluids. Those
effective interactions mediated by active matter between passive
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Figure 8 | Bridge erosion mechanisms. (a) Sketch illustrating the rough energy landscape the spinners have to move through to form a dimer. Three

different mechanism by which the passive particles are squeezed out from the bridge by the stress imparted by the spinners: (b) A single passive particle

from the bridge jumps into the corona of one of the spinners and is released in the surroundings or the bulk. (c) Multiple particle removal mechanism: Two

or three passive particles are taken from the bridge and moved to the bulk or surroundings. (d) Avalanche mechanism: an entire shell of particles is

removed from the bridge. The shaded regions indicate the bridge.
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objects depend on the mobility of the passive objects53,54 and
their shape55. Therefore, it would be very interesting to
investigate these effects in the opposite scenario between active
particles in passive matrixes (Supplementary Fig. 17). Even more,
this type of interaction could play an important role in
overcoming diffusive limitations that active biological molecules
encounter if interacting within dense viscoelastic materials such
as the highly viscoelastic nucleus of the cell56 or cells in
extracellular polysaccharide matrix secreted by biofilm-forming
bacteria57.

Methods
Experimental set-up. To study the behaviour of active rotating particles in
pure viscous and in dense passive environments, we have designed a hybrid
active–passive system composed by ferromagnetic particles (the active units or
spinners) and polystyrene particles (the passive units). To measure pairwise
interactions between spinners we mix an extremely dilute solution of active
ferromagnetic particles with a solution containing passive polystyrene particles.
Both particles have a diameter of 5 mm. We first study the case of pure spinners, in
the absence of any passive particle. We then study the interactions between
spinners in a monolayer of passive particles at a particle area fraction of
fA¼ 0.7±0.1. These solutions, dilute spinners and dense mixtures, are placed
between a cover slip and a slide, and placed in our experimental set-up, which is
composed by four magnetic coils (Supplementary Fig. 1); this allows us to generate
a rotating magnetic field that is parallel to the substrate and rotates around the z
axis (see Supplementary Information for more details). The frequency of rotation
used in this study was 5 Hz. On actuation of the external rotating magnetic field the
magnetic dipole moment of the spinner couples to the applied field, and the
particle spins in place around the z axis.

Simulation. To gain a more detailed insight into the non-equilibrium
nature of this system we carry out numerical simulations using hybrid molecular
dynamic simulations of the colloidal particles coupled to a LB fluid40. The
simulation box is discretized in three-dimensional grids with resolution
Nx�Ny�Nz¼ 214� 214� 30 bounded in the z direction by no-slip walls and
periodic boundary conditions in the x and y directions. The LB fluid is described by
the fluctuating LB equation58, which properly describes the dissipative and
fluctuating hydrodynamic interactions. We implement the discrete 19-velocity
model (D3Q19). The LB fluid parameters are density r¼ 1, kinematic viscosity
n¼ 1/6 and temperature kBT¼ 2� 10� 5. For simplicity, we set the grid spacing Dx
and the LB time step Dt equal to unity. Interactions between the LB fluid and the
particles are described by the bounce-back rule59, and enforcing no-slip boundary
conditions at the surface of the particles. Specifically, we implement the Aidun, Lu,
Ding (ALD) method60, where particles are treated as real solid objects. Therefore,
we do not taken into account lubrication forces; however, we tested that including
lubrication forces only shifts towards smaller Re numbers (that is, smaller
rotational frequencies) the behaviour observed here. In our simulation model,
colloidal particles are considered as hard spheres61 of diameter s¼ 12Dx; thus, we
are just considering excluded volume interactions. The spinner activity is generated
by imposing an external torque, t, about the z axis. To form the monolayer we also
include a gravity force FG¼ 0.005. Since we are interested in the hydrodynamic
interactions that occur between spinners, and not their magnetic interaction, we do
not include dipole–dipole interactions in our simulation model to more clearly
delineate the origin of the effective interactions. The typical simulation length is of
about 0:2tB , where tB is the characteristic Brownian time.
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19. Lenz, P., Joanny, J. F., Jülicher, F. & Prost, J. Membranes with rotating motors.
Phys. Rev. Lett. 91, 108104 (2003).

20. Yeo, K., Lushi, E. & Vlahovska, P. M. Collective dynamics in a binary
mixture of hydrodynamically coupled microrotors. Phys. Rev. Lett. 114, 188301
(2015).

21. Nguyen, N. H. P., Klotsa, D., Engel, M. & Glotzer, S. C. Emergent collective
phenomena in a mixture of hard shapes through active rotation. Phys. Rev. Lett.
112, 075701 (2014).

22. Götze, I. O. & Gompper, G. Dynamic self-assembly and directed flow of
rotating colloids in microchannels. Phys. Rev. E 84, 031404 (2011).

23. Llopis, I. & Pagonabarraga, I. Hydrodynamic regimes of active rotators at fluid
interfaces. Eur. Phys. J. E Soft Matter 26, 103–113 (2008).
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