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Dynamics of phase oscillator
networks with synaptic weight
and structural plasticity
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We study the dynamics of Kuramoto oscillator networks with two distinct adaptation processes,

one varying the coupling strengths and the other altering the network structure. Such systems
model certain networks of oscillatory neurons where the neuronal dynamics, synaptic weights, and
network structure interact with and shape each other. We model synaptic weight adaptation with
spike-timing-dependent plasticity (STDP) that runs on a longer time scale than neuronal spiking.
Structural changes that include addition and elimination of contacts occur at yet a longer time scale
than the weight adaptations. First, we study the steady-state dynamics of Kuramoto networks that
are bistable and can settle in synchronized or desynchronized states. To compare the impact of adding
structural plasticity, we contrast the network with only STDP to one with a combination of STDP and
structural plasticity. We show that the inclusion of structural plasticity optimizes the synchronized
state of a network by allowing for synchronization with fewer links than a network with STDP alone.
With non-identical units in the network, the addition of structural plasticity leads to the emergence
of correlations between the oscillators’ natural frequencies and node degrees. In the desynchronized
regime, the structural plasticity decreases the number of contacts, leading to a sparse network. In
this way, adding structural plasticity strengthens both synchronized and desynchronized states of a
network. Second, we use desynchronizing coordinated reset stimulation and synchronizing periodic
stimulation to induce desynchronized and synchronized states, respectively. Our findings indicate
that a network with a combination of STDP and structural plasticity may require stronger and longer
stimulation to switch between the states than a network with STDP only.

Networks with adaptive coupling are used as models of various real-world systems, such as social', chemical?, and
neuronal networks®=. Adaptive networks have also been used to study swarm dynamics®, epidemic spreading’,
and optimization of power grids®. While system-specific models can be used for the system entities (nodes of
the network) to study the dynamics of such networks, a phase oscillator model applies to several different net-
work types and has been widely used due to its simplicity and tractability’. Networks of oscillators with frozen
structure but adaptive coupling show the emergence of coherent, incoherent, and clustered states depending on
the adaptation rules and may exhibit multistability*'°-'2. With specific rules of adaptation, the degree of both
global and clustered synchrony can be enhanced". The rewiring of a network could also increase the level of
synchrony through activity-dependent re-organization of the network!.

In neuronal networks, the adaptive (plastic) nature of the synaptic contacts is linked to normal brain func-
tion, learning of new skills and retention of long-term memories'>~”, and formation of non-random and clus-
tered assemblies of neurons!>!31°. Notwithstanding, network plasticity may also engender pathological neuronal
synchronization observed in several brain disorders, such as epilepsy and Parkinson’s disease (PD)**-?2, On
the contrary, in Alzheimer’s disease (AD), disease progression is linked to pathological desynchronization and
decoupling of neuronal populations?*~%.

One of the prominent plasticity mechanisms is spike-timing-dependent plasticity (STDP), whereby the
weights of synaptic contacts can change depending on the relative spike timings of pre- and post-synaptic
neurons®-**, In networks of oscillatory neurons, STDP may lead to the formation of multiple metastable
states, such as coexisting attractors of synchronized and desynchronized states, which may represent patho-
logical and normal states'>*. A proper stimulation can be used to shift the network from an attractor of a
synchronized state to that of a desynchronized state, or vice versa. In PD, the desirable therapeutical effect is
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long-lasting desynchronization that can be achieved using e.g. Coordinated Reset (CR) stimulation that aims to
desynchronize**¢ and decouple®” neurons in subthalamocortical networks. In AD, a sensory stimulus-induced
re-synchronization of neuronal networks that restores the coherence of gamma-band oscillations and spike-
gamma coupling is a promising novel therapeutic approach?*>%.

Another form of plasticity called structural plasticity (SP), operating on a longer time scale compared to STDP,
involves the addition and elimination (pruning) of the synaptic contacts, which could be activity-dependent!>.
For instance, the homeostatic SP maintains a background (homeostatic) level of activity of the neurons**** and
is essential for stabilizing the activity of the neuronal networks'>* by both scaling the synaptic weights** and
adding and removing contacts'>*!. On the other hand, SP could lead to the stabilization of pathological condi-
tions such as chronic pain, neuropathic pain, and nociceptive hypersensitivity**.

In modeling studies, several different implementations of STDP and SP with homeostatic mechanisms have
been used to study specific brain functions'. Broadly, these studies either implement the addition and elimina-
tion of synapses besides the synaptic weight changes, or model synapse formation and elimination via dendritic
and axonal remodeling and outgrowth?>.

A major question is how the interplay of STDP and SP affects a network of oscillatory neurons and controls
the collective dynamics of the network. This question is particularly relevant to the development of therapeutic
stimulation techniques aimed at shifting the operational point of the collective neuronal dynamics from the
pathological to physiological state. A recent computational study of a detailed model of basal ganglia** showed
that following the desynchronization CR stimulation, homeostatic SP may decrease the network connectivity,
thereby slightly suppressing the neuronal synchrony in a stimulation-free setting. Consequently, the desynchro-
nization effect of stimulation increases during the stimulation-free epoch?’, as observed in clinical trials***.

The Kuramoto model of phase oscillators is extensively used for understanding a plethora of collective dynam-
ics phenomena*®*. Here we implement a network of phase oscillator model neurons with SP and a standard
additive STDP to study the collective dynamics that results from the interplay of these distinct adaptive mecha-
nisms. In our model, the SP incorporates a stochastic pruning of existing synaptic contacts and the addition of
new ones®>! with a time scale separation of neuronal spiking, STDP, and SP as suggested by previous studies'>*2.
In the case of adaptive coupling only (STDP), the connectivity remains frozen while the contact strength can
change. When SP is combined with STDP, both coupling and connectivity can change. We also examine the
effects of a desynchronizing CR stimulus and a synchronizing periodic stimulus on the network in the two
plasticity schemes.

Methods

Kuramoto model with STDP and SP. We consider N phase oscillators coupled on a random network.
The N x N adjacency matrix A sets the network’s structural connectivity, whereas the functional connectivity,
i.e., the coupling strength between the connected oscillators, is set by the N x N weight matrix W. Elements of
both these matrices are time-dependent, representing two slow adaptation processes: STDP for W and SP for A.
The phase of an oscillator is governed by

N
$i =i = N7 Agj(O)wij(t) sin(gi — ) + S(¢is t) + &i(1), i=1,.,N. (1)

j=1

where w; is the characteristic frequency of the i-th oscillator. For a network of identical oscillators, w; = w Vi,
while for a network of non-identical oscillators, w; can be sampled from a random distribution, such as Gaussian.
The second term introduces the Kuramoto-type coupling®. The element, A;j(t), of the adjacency matrix is either
1 if the contact from the oscillator j to i exists or 0 otherwise. The weight matrix element, w; ; (), lies between 0
and the maximum allowable weight, y, and gives the coupling strength of the contact from the oscillator j to i.
S(¢i, t) is the external stimulus whose action depends on the phase of the oscillator, as explained later, and &;(t)
is the independent Gaussian white noise with the intensity D such that (£;(£)§;(t')) = 2Dé;;6(t — t").

We interpret each oscillator as a neuron eliciting a spike whenever its phase crosses an integer multiple of 2.
Thus, in Eq. (1), the index i refers to a postsynaptic neuron while the index j marks a presynaptic neuron. The
adjacency matrix element, A;;(t) = 1, represents an existing synaptic contact from neuron j to i and the weight
matrix element, w; ;(£), gives its synaptic weight.

In the following, we consider two kinds of plasticity that modify the coupling (synaptic weight) and the
structure of the network, STDP and SP:

(i) STDP governs the functional connectivity, i.e., the evolution of the weight matrix according to the
microscopic dynamics of the oscillators, W = W (). STDP does not change the network structure,
A = constant;

(ii) SP changes the network structure according to the dynamics of the synaptic weights and homeostatic
mechanisms, A = A(t).

For a combination of STDP and SP (STDP + SP), both weight and adjacency matrices become time-depend-
ent, W = W(t)and A = A(¢).

STDP. The weight matrix evolves according to a standard additive rule: w;;(t) — w;;(t) 4+ Sw;;, where the
increment of each weight matrix element, w; j, is determined by the time lag, g, between the latest spike times,
t;and t;, of the pre- and post-synaptic neurons, i and j, respectively®>** (Fig. 1).
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Figure 1. Spike-timing-dependent plasticity. Synaptic weight increment vs. spike timing difference (time lag)
according to Eq. (2) for different values of the asymmetry parameter, a. When a postsynaptic neuron fires before
or at the same time as its presynaptic partner, i.e., when q < 0, the synaptic weight decreases (depression), while
it increases when q > 0 (potentiation). A positive asymmetry makes the STDP rule potentiation dominant, zero
makes it symmetric, and negative makes it depression dominant.

(b —a)exp —%), q>0,

dwij(q) = ¢ < ()
— exp

—% , q <0.
Here, q = t; — tjand the parameter, ¢ < 1, ensures a longer time scale of synaptic weight change compared to
the fast spiking dynamics of the neurons as suggested in Refs.>*. 7, is the time constant for long-term potentia-
tion (LTP) and b scales the time constant of long-term depression (LTD) with respect to potentiation, g = bty.
The total weight increment is Aw;; = jfooo dw(q)dq = —eaty. Thus, the parameter a in Eq. (2) determines the
overall asymmetry of STDP: a > 0 results in depression domination, a < 0 in potentiation domination, and
a = 0 corresponds to the balanced STDP. At any time, the synaptic weights, w; j, remain within the bounds [0, y'].
The above learning rule is implemented as a set of differential equations for the weight matrix, W, and traces
{x(#), ()} for pre- and post-synaptic spike trains®,

wij =e[(b— a)x; 8(t — t;) — yi 8(t — 1],

.1 .1 (3)
xj_—gxﬁ%}ja(t—tj), )’i—_g)’iﬂ-%}:a(t_ti)-
7 i

The summations are carried over all spike times of pre- and post- synaptic neurons, {t;} and {¢;}, respectively.

SP.  We consider several experimental findings to model SP in the framework of a phase oscillator network.
Cortical neurons may possess large dendritic arbors. If two neurons lie in the vicinity of one another, the axon of
one may come close to the dendrite of the other at multiple locations to form potential synapses, some of which
may develop into actual synaptic contacts®>*’. Consequently, a pair of neurons either remains disconnected or
develops several synaptic contacts®®****. Modeling studies suggest that multiple synaptic contacts between given
neurons stabilize the neuronal network dynamics and underlie long-term memory storage®®®!. Nonetheless, to
simplify the calculations while investigating the (de)synchronization dynamics, we replace multiple synaptic
contacts between two particular neurons by one contact that accounts for the overall effect of the activity of the
presynaptic neuron on the postsynaptic partner.

The structural changes consist of the pruning of existing synaptic contacts and the addition of new ones. In
our model, both of these processes are random and run on a time scale much longer than the average period of
oscillations. Pruning or adding a synaptic contact changes the adjacency matrix, A. Pruning the existing contact
from neuron j to i changes the corresponding element of the adjacency matrix, A;j, from 1 to 0, whereas add-
ing a contact changes it from 0 to 1. Thus, each non-diagonal element of the adjacency matrix is modeled as a
two-state stochastic process.

In the nervous system, neuronal activity and synaptic connectivity are closely linked, and different homeo-
static mechanisms are implemented to maintain physiologically meaningful operating ranges for both structure
and function®**4>62-64_ For instance, SP with homeostatic mechanisms can maintain a target level of neuronal
activity'**®*. Homeostatic mechanisms can cause changes in intrinsic neuronal excitability®® and scaling of
synaptic weights®® besides addition and pruning of contacts depending on the activity level of the neurons®.

For the Kuramoto model with a single first Fourier mode coupling function used in this study, i.e., without
the constant phase shift in the coupling term or additional cosine coupling term, cf.5%, it is expected that the
time-averaged frequencies of the oscillators in synchronized and desynchronized states do not vary significantly,
as opposed to those in the states obtained with a coupling function with an additional cosine coupling term
(or phase shift) and/or higher Fourier modes®”8. This is illustrated in Fig. 2 showing the distributions of the
time-averaged frequencies of the oscillators in synchronized and desynchronized states of a network of identical
oscillators with STDP only. Even in the case of non-identical oscillators, the network-averaged frequency shift
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Figure 2. Time-averaged frequency distributions in the synchronized and desynchronized states of a network
of N = 100 oscillators with STDP. (a) and (b) show networks of identical and non-identical oscillators,
respectively. The distribution averages (network-averaged frequencies) are marked by stars with corresponding
colors. Parameters are a = 0.3 and y = 3 for the identical oscillators; a = 0.3 and y = 15 for the non-identical
oscillators; the average node degree density (NDD), (8) is 0.2 for the identical, and 0.4 for the non-identical
oscillator networks.

is less than 2%, see Fig. 2b. Consequently, a homeostatic SP model that responds to the neurons’ firing rates in
order to keep them in a target firing range is not employed in this study. Instead, our SP model mechanism takes
into account that synaptic connectivity is fundamentally constrained for a number of reasons, including limited
axonal space available for synapses, limited anatomical overlap of neuronal arbors as well as anatomical and
metabolic constraints of synapse formation®>-**%. Such constraints on synaptic connections vary depending on
the neuron type and brain region®. A detailed model that includes a spatial network structure, among many other
details, would be required to account for the experimental findings on, e.g., barrel cortex”. Our phase oscillator
network model lacks spatial dimension. Thus, abstracting from details, our homeostatic SP rule imposes bounds
on each neuron’s incoming node degree density (In-NDD), defined by

1 N
Bih = ;Ai,ja), (4)

such that ; € [Bmin»> Bmax]- This precludes the physiologically non-typical or impossible situations of completely
disconnected neurons or hyperactive ones with a large number of presynaptic partners. In our model of SP, the
addition is a homeostatic process, and the pruning has both homeostatic and weight-dependent components.
The addition rate, A,44, decreases with increase in 8; and vanishes when §; exceeds its maximal value, Bax.
Similarly, the homeostatic pruning rate, Agm, increases with f; saturating near Bmay, irrespective of the synaptic
weight of the contact. If a contact’s weight becomes small enough and the neuron has more than the minimum
allowed number of contacts [(N — 1) Bmin]; it can also be pruned at a faster weight-dependent rate, A prq (8, wij)
6171 We do not put any constraints on the number of postsynaptic partners or the outgoing node degree density
(Out-NDD) of the neurons, defined by

1 N
B0 = 5 D Aij(0). (5)
i=1

Pruning of an existing synaptic contact (with A;; = 1) occurs at random, either at a rate determined by the
synaptic weight, w; j, and the In-NDD, §;, or at a lower homeostatic rate regardless of the synaptic weight.

Aprn (Bi» wi) =20 §(Bis Bmins WI[1 — §(Wijs Winin, V)],

~ 6
Ajia(BD) =108 (Bis Bmaxs v), ©

where 4 is the maximum rate of weight-dependent pruning, and g(x, xo, v) is the logistic function,
_ (x=xq) -1
gx,xp,v) = |1 +e "™ .

The first equation in (6) establishes the lower bound of In-NDD by ensuring the pruning of predominantly
weak contacts: Wi, is the weight below which a synaptic contact is most likely to be pruned if the In-NDD is
above Bmin. The second equation in (6) implements the homeostatic pruning on a longer time scale with the
rate scaled by the factor n with respect to the weight-dependent pruning, if a neuron’s In-NDD approaches or
exceeds Bmax. Pmin,max are related to Bmin,max as discussed below. The parameter v in the logistic function deter-
mines its steepness.

The addition of a new synaptic contact from neuron j to i (with A;; = 0) occurs randomly at the rate A,qq
that depends on the i-th neuron’s In-NDD, §;,
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Figure 3. Structural plasticity rates as functions of the synaptic weight and the In-NDD of a neuron. (a) The
maximum rates of pruning and addition (Eqs. 6 and 7) normalized with respect to 4 vs. the synaptic weight.
The addition rate is shown for comparison for n = 0.01. (b) The rates of homeostatic addition and pruning
normalized with respect to Ap x 1 vs. the In-NDD of a neuron. The vertical lines lie at the S, = 0.02 and
Bmax = 0.2. The addition rate drops to = 0 for 8; > Pmax and the pruning rate increases to the maximum for
Bi > Pmin. Parameters for (a): = 1 for pruning, and 8 = 0 for addition.

Aadd(B) = 10 [1 = g(Bis Bmaxs V)] 7)

Conventionally, n < 1, as the addition of new contacts occurs on a longer time scale compared to the weight-
dependent pruning®. The weight for a newly established contact is sampled from a uniform distribution in the
range [0, 0.05y ] as the new contacts are likely to be weaker than the existing ones’.

To correct for the possible undershooting of node degree due to pruning and overshooting due to addition,
the midpoints of the logistic function were corrected as follows. For addition, Bmax = Bmax/(1 — vlogpy), with
p+ = 1/(nN?). For pruning, Bmin = Bmin/(1 + vlogp_), with p_ = 1/N?. Figure 3 illustrates the maximum
rates of pruning and addition.

We observed no relevant variation in the time-averaged frequency distribution and the network-averaged
frequency in the synchronized and desynchronized states of a network with STDP + SP compared to those for
a network with STDP only (cf. Fig. 2).

Parameters and numerical simulation. We choose the parameters such that the network can settle
either in a synchronized or a desynchronized state in the absence of SP. For a network of non-identical oscilla-
tors, we draw the natural frequencies of the oscillators, w;, from a Gaussian distribution, w; = 27 f(1 + 07 &i)s
where fo is the mean frequency, oy is the normalized standard deviation (SD) and, ¢; is a zero-mean Gauss-
ian number with a unit SD. The mean frequency, fp, is set to 10 Hz, giving the average period of oscillations,
To = 0.1 s. The normalized SD of the natural frequency, oy, is set to 0.01. For an identical oscillator network,
w; = 2mfyVi. The intensity of the white noise source in Eq. (1) is taken to be D = 0.1.

The parameters for the STDP (Eq. 2) and SP (Egs. 6 and 7) are as follows: the STDP potentiation time constant,
T, = 0.02 s, the scaling parameter, b = 2, and the depression time constant, 7y = bt, = 0.04 s. The asymmetry
parameter, a, is varied while ¢ is set to 1073.sp operates on a time scale longer than that of STDP. In our model,
the time scale of SP is set by the maximal weight-dependent pruning rate, Ao, which is varied. Unless otherwise
specified, we set 1o = 1/(60000Tp) = 1.667 x 10~* s~ ! and the scaling parameter 7 = 0.01 in the simulations,
so that the maximal addition rate is 1.667 x 10~® s~1. The cutoff value of weights for pruning in Eq. (6) is set
t0 Wiin = ¥ x 1072. The In-NDD bounds are Bmin = 0.02 and Bmax = 0.2, and the slope parameter, v, of the
logistic function is set to 0.05.

The longest time scale in the model is associated with homeostatic addition and pruning with the charac-
teristic time of 1/(4g) ~ 10°s. The time scale of weight-dependent pruning is 1/7 times shorter than that of
homeostatic addition and pruning, but still much longer than the average oscillation period. Because of such
diverse time scales, numerical simulations are carried out in two sequential steps. First, the set of equations
(1, 3) describing the microscopic dynamics of the oscillators along with STDP are integrated during the time
To < I < 1/ with the time step of 0.002 s. During that time the adjacency matrix remains frozen. Second,
the structural update described in the above section is implemented resulting in an updated adjacency matrix.
Weuse 7 = 300s. Thus, the structural updates are performed every 3000 average periods, 7 = 30007Tj. Shorter
windows with 7~ < 300 s do not change the results but lengthen the calculations.

Initial conditions are as follows. Phases of oscillators are uniformly distributed between 0 and 2. The initial
connectivity is set by a random Erdos-Renyi graph with the probability pcon. The initial values for weights, w; j, are
drawn from a uniform distribution, [Wy — Aw, Wy + Aw], where Wy is the initial mean weight and 2Aw = 0.1
is the spread of weights about the mean.

In this paper, we present the results for networks of N = 100 oscillators. The larger networks of N = 200
and 500 oscillators demonstrate qualitatively similar dynamics. All network simulations include STDP, meaning
that the weights are always plastic. The networks with SP have STDP + SP and the networks without SP have
STDP only.
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Figure 4. Rapidly varying sequences (RVS) CR stimulus and its effect on a synchronized network of identical
oscillators. (a) Five cycles of RVS CR stimulus, separated by vertical dashed lines, delivered at N, = 4 sites (color
coded). (b) Raster plots before, during, and 10 h after stimulation. Stimulation sites are indicated by colored
patches. Parameters are a = 0.3,y = 3; stimulus: I, = 400, duration = 70 min.
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Measures of collective dynamics. The degree of synchronization in the network is characterized by the
Kuramoto order parameter’,

1t 1 &
A1) = — dt'|— " o)
O=7 /,_f N & ®)

where ¢,,(t) is the phase of m-th neuron. Z (t) varies between 0 (absence of in-phase synchronization) and 1
(perfect in-phase synchronization).

The synaptic weight dynamics of the network is given by the distribution of the synaptic weights and the
normalized mean synaptic weight of the network, (W) (¢), defined as

- .
(W) = D Wi®), Wit = o D Aijewije), 9)
i=1 =1

where k; is the node degree (i.e., number of presynaptic partners) of the i—th neuron. (W) — 1(0) is typically
related to synchrony (desynchrony).

The dynamics of the network structure is quantified by the In-NDD distribution and the mean In-NDD of
the network,

N
Bt = (1/N) D Bi(). (10)

i=1

Stimulation. Thedynamicsandstructureofneuronal networkscanbe manipulated by stimulation35:37:435473-83,

We use an anti-kindling coordinated reset (CR) stimulation to desynchronize initially synchronized networks.
CR stimulus is administered to N, sites in a population of N oscillators, as described in*>**%. Briefly, in CR
stimulation with fixed sequences, one cycle of period T; consists of N, pulses of amplitude Is and width fpee.
These N, pulses are administered to N, sites (i.e., one pulse per site) in a fixed order at intervals Ts/N, during
each cycle, thus, stimulating one site with one pulse per cycle. The order in which the N pulses are delivered to
the N, sites is called the sequence. In CR stimulation with rapidly varying sequences (RVS CR)****, used in this
study, the order in which the sites are stimulated is changed randomly for every stimulation cycle as illustrated
in Fig. 4a. To synchronize an asynchronous network, we used a kindling stimulus®>** in which N sites are stimu-
lated simultaneously.

The stimulus, S(¢;, t), in Eq. (1) is phase-dependent®, S(¢;, t) = X;(£)I; cos ¢;, where I is the stimulus inten-
sity and X;(¢) is the sequence of unit-magnitude pulses. In the following, we considered N, = 4 sites with N/10
oscillators within each site. The single pulse width was set to tpus = 10 ms, and the stimulus cycle period,
Ts = Ty = 0.1s. Figure 4b illustrates the effect of RVS CR stimulation on a network of synchronized oscillators.
The raster plot before stimulation shows the network synchrony. During stimulation, the oscillators remain
synchronized within stimulated sites (four colored patches) while the rest of the oscillators run out of synchrony.
The network attains a desynchronized state after stimulation.

Results

Previous studies showed that recurrent neuronal networks with STDP unbalanced towards depression possess
bistability with co-existent attractors corresponding to weak and strong synaptic weights®. When individual
neurons fire periodically, such bistability involves co-existent synchronized and desynchronized states. A proper
stimulation could shift the network from a synchronized state to a desynchronized state, resulting in a long-term
desynchronization®~"7>788788 or from a desynchronized to a synchronized state”?>*. We hypothesize that
the presence of SP may enhance the effect of STDP. On the one hand, pruning removes predominantly weaker
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Figure 5. The asymptotic states for a network of identical oscillators (with w; = 27fy) and their basins of
attraction in the two plasticity schemes considered—STDP and STDP + SP. (a,b) Refer to a network with STDP
only; panels (c,d) correspond to the network with STDP + SP. The colors in (a) and (c) indicate the values of
the order parameter, Z, in the asymptotic states when the system begins with the initial mean synaptic weight
and In-NDD given by (W) (0) and $(0). (b) and (d) show examples of time evolution of the mean synaptic
weight, (W), the order parameter, %, and the mean In-NDD, B, for different initial conditions (color coded)

as the network transitions to a synchronized or desynchronized state, for STDP and STDP + SP, respectively.
Parameters area = 0.3,y = 3.

synaptic contacts, thereby decreasing the overall connectivity. On the other hand, the addition of new contacts
between previously disconnected neurons, which may get potentiated further, would favor synchronization.

Asymptotic dynamics. We determine the spontaneous asymptotic states by setting the external stimulus,
S(¢i,t) = 0in Eq. (1) for the networks of identical and non-identical oscillators with two schemes of plasticity:
STDP only and STDP + SP. The states are characterized by the order parameter, Z (¢), mean synaptic weight,
(W)(t), and mean In-NDD, B(t). The states form attractors since the measures mentioned above converge to val-
ues corresponding to one of the asymptotic states. Thus, we determine the basins of attraction of the asymptotic
states with respect to the initial mean In-NDD, £(0), and mean synaptic weight, (W) (0).

We first consider a network of identical oscillators. Figure 5 shows that for both plasticity schemes, the
network settles in either a synchronized or a desynchronized state depending on the initial conditions. An
initial state with weak synaptic contacts or with sparse structure results in a desynchronized state (blue area
in Fig. 5a,c). The desynchronized state is characterized by small values of the mean synaptic weight and order
parameter for both the plasticity schemes (Fig. 5b,d). With SP, the contacts are prone to pruning, the weak ones
more than the others. Also, the newly added contacts are given small initial weight, and thus, are likely to get
depressed and removed in a desynchronized state. As a result, the network becomes extremely sparse with the
final mean In-NDD close to the minimum, Bpin, in a desynchronized state. The red curve in Fig. 5d demon-
strates this for an initial condition with relatively large initial mean In-NDD, $(0) = 0.3, but small initial mean
synaptic weight, (W) (0), leading to a desynchronized state with a small mean synaptic weight, order parameter,
and mean In-NDD.

Synchronization, on the other hand, promotes potentiation of the synaptic contacts, resulting in large values
of order parameter and mean synaptic weight. In the presence of SP, some new contacts between the previously
disconnected oscillators can appear and get potentiated, allowing for the accumulation of contacts over time.
The number of incoming contacts is bounded by the maximum allowed In-NDD, Bp,x. As a result, the average
In-NDD approaches Bmax in the synchronized state. Furthermore, a visual comparison of basins of attraction in
Fig. 5a,c confirms an increase in the size of the basin of attraction of the synchronized state due to SP, showing
that the synchronized state can be achieved with smaller initial connectivity for the given initial mean synaptic
weight in the presence of SP. With 8(0) > Bmax, the network with STDP only can get more strongly synchronized
than the one with STDP + SP since the In-NDD remains fixed in the absence of SP, ie., 8(¢) = B(0), while it
reduces to < Bmax with SP.

A network of non-identical oscillators may settle in partially synchronized states with an order parameter
much smaller than 1. This is illustrated by a spread of colors in Fig. 6a,c showing the maps of the order parameter
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Figure 6. The asymptotic states for a network of non-identical oscillators and their basins of attraction in the
two plasticity schemes. The natural frequency of oscillators, w;, were sampled from the Gaussian distribution.
(a,b) Refer to a network with STDP only; (¢,d) corresponds to the network with STDP + SP. The colors in (a)
and (c) indicate the values of the order parameter, %, in the asymptotic states when the system begins with
the initial mean synaptic weight and In-NDD given by (W) (0) and $(0). (b) and (d) Show examples of time
evolution of the mean synaptic weight, (W), the order parameter, %, and the mean In-NDD, g for different
initial conditions (color coded) as the network transitions to a synchronized, desynchronized, or intermediate
state, for STDP and STDP + SP, respectively. Parameters area = 0.3,y = 15.

vs. the initial conditions. We classify the states with the order parameter 0.2 < # < 0.7 as partially synchronized,
exemplified by the time traces of the mean synaptic weight and order parameter in Fig. 6b,d. The frequency dif-
ference of the connected oscillators significantly affects the synaptic weights of the contacts: the weights of those
from the faster oscillators to the slower ones increase while the opposite decrease in strength®. In the presence of
SP, the depressed contacts get pruned, reducing the node degree. At the same time, the addition of new contacts
from the faster to the slower oscillators can enhance synchronization as those are likely to get potentiated. This
way, the interplay of STDP and SP leads to synchronized states with lesser structural connectivity (i.e., increased
sparseness of contacts), compared to a network with STDP only. This is reflected by the increase in the size of
the basin of attraction of the synchronized state for the network with STDP + SP in Fig. 6¢ compared with the
network with STDP only, shown in Fig. 6a.

The existence of bistability depends on the asymmetry parameter, a, of the STDP rule (Eq. 2). An increase
in a makes the STDP rule more depression dominant, and thus, promotes weakening of the synaptic contacts
and ultimately desynchrony. On the contrary, a decrease in a makes the STDP less depression dominant or
potentiation dominant, supporting synchrony. Consequently, if a is sufficiently large (small), the network with
STDP only settles in globally desynchronized (synchronized) states, and the bistability exists for intermediate
values of a € (0.15 0.6). We observed that the inclusion of SP insignificantly affects the range of the asymmetry
parameter where the bistability exists.

Furthermore, we examine the effect of the rate of structural change on the asymptotic states of the network
with STDP + SP. The weight-dependent pruning rate, o, determines the rate of structural change as the rates of
addition and homeostatic pruning are relative to /g, scaled by a factor of . The smaller the g the longer is the
time scale of structural change. Figure 7 indicates that the decrease of the rate of SP does not alter the asymptotic
states, but rather slows down the transients for those. The case of the synchronized state is particularly illustra-
tive, as it further demonstrates the effect of synchronization enhancement due to SP, discussed above. The net-
work with STDP alone (dashed lines, 49 = 0) settles in a partially synchronized state with the order parameter
R ~ 0.4. With SP on, the order parameter first decreases, approaching the value corresponding to the network
with STDP only until the addition of excess contacts kicks in, ultimately resulting in a stronger synchroniza-
tion. At the same time, the average network connectivity settles to 8 = 0.15, which is significantly smaller than
its initial value. Variation of the scaling parameter 1 does not alter the dynamics qualitatively as long asn <« L

Statistics of network connectivity. The dynamics of the oscillators together with the plasticity mecha-
nisms determine the statistics of the synaptic weights and the In-NDD of the network. Figures 8 and 9 com-
pare the weight and In-NDD distributions of the asymptotic states in the two plasticity schemes, STDP and
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Figure 7. Time evolution of the dynamical measures with different pruning rates (and hence different
embodiments of SP) for a network of non-identical oscillators. (a) Shows the time traces of the mean synaptic
weight, (W), the order parameter, %, and the mean In-NDD, B, for a synchronized state and (b) shows the
same for a desynchronized state. The dashed lines show steady-state values of (W), Z, and g for the network
with STDP only. Note the different scales of the mean synaptic weight and the order parameter in (a) and (b).
Parameters area = 0.3,y = 15.
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Figure 8. Statistics of synaptic weights and In-NDD for a network of identical oscillators in the asymptotic
states belonging to the two plasticity schemes, STDP and STDP + SP. (a) and (b) show the synaptic weight
distributions in a synchronized and a desynchronized state, respectively. (c) and (d) show the distributions of
In-NDD in a synchronized and a desynchronized state, respectively. Parameters are a = 0.3 and y = 3. Initial
conditions for the synchronized sate are 8(0) = 0.2 and (W) (0) = 1; and for desynchronized state 8(0) = 0.2
and (W)(0) = 0.25.

STDP + SP, for identical and non-identical oscillator networks, respectively. The initial conditions for the Fig-
ures 8 and 9 are such that the networks with STDP only and STDP + SP end up in asymptotic states with similar
values of the order parameter.

In the desynchronized state, the synaptic weight dynamics is dominated by LTD, resulting in an overall weight
decrease. In a network of identical oscillators, the independent noise may counter weight depression, allowing
some synaptic contacts to get potentiated. Hence, a tailed peak is seen at W ~ 0 in Fig. 8b for both plasticity
schemes. This effect of the temporal noise is smaller for non-identical oscillators, where the heterogeneity of
natural frequencies wins over the temporal noise, forcing all the contacts to get depressed, resulting in a sharp
peak at W = 0 in Fig. 9b.
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Figure 9. Statistics of synaptic weights and In-NDD for a network of non-identical oscillators in the asymptotic
states belonging to the two plasticity schemes, STDP and STDP + SP. (a) and (b) show the synaptic weight
distributions in a synchronized and a desynchronized state, respectively; (c) and (d) show the distributions of
In-NDD in a synchronized and a desynchronized state, respectively. Parameters area = 0.3 and y = 15. Initial
conditions for the synchronized states are 8(0) = 0.4 and (W)(0) = 1; and for Desync (STDP): 8(0) = 0.4 and
(W)(0) = 0.06; for Desync (STDP + SP): (0) = 0.2 and (W) (0) = 0.2.

During in-phase synchronization, LTP dominates the synaptic weight dynamics, and hence the overall weight
increases. Noise may have a desynchronizing effect and induce depression of some contacts, hence a tailed peak is
seen in Fig. 8a for identical oscillators. In a network of non-identical oscillators, the higher frequency oscillators
dominate the lower frequency ones®, potentiating the contacts from faster to slower oscillators while depressing
the others. This leads to two sharp peaks at W ~ 0 (smaller) and W = 1 (larger) for non-identical oscillators in
Fig. 9a for the synchronized state.

SP modifies the network structure. The contacts may get pruned (predominantly the weak ones), while
new contacts may appear and get potentiated over time. In a desynchronized state, many of the contacts, both
previously existing and newly added, become weaker and eventually get pruned, leading to a sparser network.
Consequently, the corresponding In-NDD distribution of the network with STDP + SP shifts to smaller values
compared to that of the network with STDP only, as shown in Figs. 8, 9d.

In transition to a synchronized state, most of the newly added contacts in a network of identical oscillators
get potentiated and continue to accumulate until all neurons attain almost the maximum allowed number of
presynaptic partners. As a consequence, the In-NDD in Fig. 8c shows a narrow peak at 8 & Bax. In a synchro-
nizing network of non-identical oscillators, the change in the weight of the newly added contacts depends on
the natural frequencies of the connected oscillators, as mentioned above. This results in the accumulation of
synaptic contacts, mostly from the faster to the slower oscillators, and the elimination of those going the opposite
way. This results in a significant reduction in the total number of contacts in the network even in a synchro-
nized state, evidenced by a shift of the entire In-NDD distribution to smaller values in Fig. 9c. Furthermore, SP
leads to the emergence of correlations between the node degrees and the natural frequencies of the oscillators,
whereby faster oscillators tend to connect to a larger number of slower oscillators. Accordingly, Fig. 10a shows
positive correlations between the Out-NDD and the neurons’ natural frequencies. Such correlations are absent
in desynchronized states, Fig. 10b, where the weakly temporally correlated activity leads to no dependence of
synaptic weights and node degrees on the natural frequencies. A small cluster of oscillators in Fig. 10a,b with
the highest natural frequencies was not in synchrony with the rest of the network. As a result, those oscillators
did not develop many contacts with the rest of the network.

Response to stimulation. The analysis of asymptotic states shows that the remodeling of the network
structure due to the presence of SP leads to two main effects. First, in synchronized states, SP removes the
unused weak contacts while adding and sustaining strong contacts. This optimizes the network structure for
stronger synchronization, compared to the case of STDP only, as indicated by the larger basins of attraction of
the synchronized states in Figs. 5, 6a,c. Second, in desynchronized states, the weight-dependent pruning leads to
a significantly sparser network. Thus, we expect that compared to the synchronized network with STDP only, a
network with STDP + SP is harder to desynchronize, given the same order parameter and mean In-NDD in both
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Figure 10. Dependence of oscillator In- and Out- NDD (8, and ﬁ]"“t, respectively) on the characteristic
frequency of the oscillator in a network of non-identical oscillators with STDP + SP, observed in the asymptotic
states. (a) shows the dependence in a synchronized state and (b) shows the same in a desynchronized state. In
contrast, for a network with STDP only, the In- and Out-NDD remain independent of the oscillator frequency
as the network structure cannot change with activity and remains the same as initially set. Parameters are

a = 0.3,y = 15; for synchronized state—B(0) = 0.4, (W) = 1; for desynchronized state—8(0) = 0.2,

(W) =0.2.
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Figure 11. Desynchronization of a network of synchronized identical oscillators using RVS CR stimulation in
two plasticity schemes, STDP and STDP + SP. The mean synaptic weight, (W), (top) and the order parameter,
A, (bottom) show the long-term desynchronization of a network with STDP while the network with STDP + SP
goes back to synchrony. The shaded region highlights the time interval of stimulation. Parameters area = 0.3,

y = 3; stimulation parameters are duration = 70 min, intensity I, = 100, and F; = 10 Hz.

plasticity schemes. Conversely, the desynchronized state realized with SP is harder to re-synchronize because of
the sparser network structure.

To study the response of a network to a desynchronizing stimulation in the two plasticity schemes, we con-
sider the RVS CR stimulation. The stimulus is applied to the network of identical oscillators, as the order param-
eter and mean In-NDD in the synchronized state are almost identical for both plasticity schemes, see Fig. 5b,d.
Since SP operates on a time scale much longer than STDP, there is no significant change in the network structure
during and shortly after stimulation®’. Thus, the pivotal factor for the desynchronization by RVS CR stimulation
is the network structure in the synchronized state, obtained either with STDP + SP or with STDP only.

We parametrize the RVS CR stimulus by its intensity and duration. For both plasticity schemes, a strong
and long enough stimulation robustly desynchronizes the network, as demonstrated in Fig. 4b. A long-lasting
desynchronization requires shifting the network to the basin of attraction of the desynchronized state, however.
On the basins of attraction maps in Fig. 5a,c, this corresponds to a shift from a point in the red region to the blue.

The difference in the robustness of the synchronized states realized with the two plasticity schemes is demon-
strated by an example in Fig. 11. Using RVS CR with specific duration and intensity, it is only possible to achieve
long-lasting desynchronization in the network with STDP alone, while this is not possible in the network with
STDP + SP. The order parameter, %, the mean synaptic weight, (W), and the mean In-NDD, g, are identical
for the initial synchronized states in both plasticity schemes. RVS CR stimulation (shaded region in Fig. 11)
desynchronizes the network, indicated by a prompt reduction in %, reducing (W). By the time the stimulus is
removed, the network with STDP alone enters the basin of attraction of the desynchronized state while the one
with STDP + SP remains in the basin of attraction of the synchronized state. Accordingly, # and (W) remain
close to 0 for the network with only STDP, while these measures re-approach the maximum values, # ~ 1and
(W) =~ 1, for the network with STDP + SP.

Varying the stimulus parameters reveals that the synchronized state obtained with STDP + SP is more robust
against desynchronizing stimulation, as it requires stronger and longer stimulation, as shown in Fig. 12. The
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Figure 12. The efficiency of RVS CR stimulation in inducing long-term desynchronization in an initially
synchronized network of identical oscillators in the two plasticity schemes—STDP (a) and STDP + SP (b).
Colors indicate the order parameter 100 h after the cessation of stimulation for a given pair of stimulus intensity
and duration. The red indicates synchrony and the blue desynchrony. Parameters area = 0.3, = 3,and

F, = 10Hz.

1 —

—~ — STDP

[ =

=05 — STDP+SP
0 T T 1T =
1 B .

54
0 T T 1T |
-5 0 5 10 100 105

Time (h)

Figure 13. Synchronization of a network of desynchronized identical oscillators by a periodic stimulus in the
two plasticity schemes, STDP and STDP + SP. The mean synaptic weight, (W), (top) and the order parameter,
AR, (bottom) show the synchronization of a network with STDP while the network with STDP + SP goes back
to desynchrony upon cessation of stimulation. The shaded region highlights the time interval of stimulation.
Parameter are: a = 0.3, = 3; stimulus parameters are duration = 3 h, I; = 100, and F; = 10 Hz.

blue areas in that figure correspond to the RVS CR stimulus parameters that result in complete and long-term
desynchronization. We confirmed the enhanced robustness of the synchronized state obtained with SP by using
a sequential CR stimulus. The ordered stimulation of sites with sequential CR makes the sites fire in a fixed order
in every cycle, causing a quicker potentiation of synaptic contacts going from the prior stimulated site to the
later and depression of the others. In order to prevent excessive pruning during and soon after stimulation with
sequential CR, we reduced the rate of pruning (and hence, SP) to 19 = 1.667 x 105! from 1.667 x 10™*s~!
used with RVS CR. We further verified the role of the network structure obtained with SP in increasing the
robustness of the synchronized state by turning the SP off during and after stimulation, for both sequential CR
and RVS CR, so that the difference in response to stimulation arose exclusively from the difference in the network
structure in the synchronized state obtained with or without SP. Furthermore, a change in the stimulus frequency
produces similar results with both RVS CR and sequential CR. We tested F; = 7 Hz and 18 Hz for this purpose.

External kindling stimulation can bring a desynchronized network to synchrony***. A synchronizing stimu-
lus potentiates the synaptic weights, eventually leading to global synchronization. However, the desynchronized
states realized with SP are characterized by significantly lower number of synaptic contacts than the network
with STDP only. Global synchronization requires the building up of synaptic contacts due to SP, which is a
slow process. Consequently, a significantly longer and stronger stimulus is required for the synchronization of
a desynchronized network with STDP + SP. A representative example is shown in Fig. 13. The desynchronized
network with STDP only is amenable to global synchronization by simultaneous stimulation of the sites with a
periodic stimulus. However, the stimulus of the same intensity and duration is not adequate for synchronizing the
network with STDP + SP. At the cessation of stimulation, the network with STDP only settles in a synchronized
state while that with STDP + SP goes back to the desynchronized state.
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Stable synchronized and desynchronized states of the network can be thought of as local minima of an effec-
tive potential, separated by a barrier. Our results on stimulation of synchronized or desynchronized states of
the identical oscillator network suggest that SP deepens both potential wells, rendering both states more robust
against stimulation.

For a network of non-identical oscillators, a similar comparison is not as straight forward as above, because
SP dramatically alters the average node degrees in both synchronized and desynchronized states. If the network
with STDP only is given the same average node degree as that of the network with STDP + SP in its steady
synchronized state, then the network with STDP only may possess an order parameter significantly lower than
that of the network with STDP + SP, as exemplified in Fig. 7a. Therefore, the network with STDP + SP is harder
to desynchronize, compared to the network with STDP only, similar to the case of identical oscillators. How-
ever, if the network with STDP only is given a higher average node degree than the network with STDP + SP
in a synchronized state such that the order parameters of the two are equal (cf. Figs. 6 and 9), we observe that
a synchronized network with STDP + SP, owing to a much smaller average node degree, requires a shorter and
weaker stimulation to get desynchronized than that with STDP only. The resynchronization of a desynchronized
network of non-identical oscillators shows the same tendency as for identical oscillators. A desynchronized
network with STDP + SP may require significantly longer stimulation since the network would need to develop
a large number of contacts before it can enter the basin of attraction of a synchronized state.

Discussion

We studied the dynamics of networks of phase oscillators with two types of plasticity mechanisms that adaptively
shape coupling weights and the network structure, modeled by STDP and SP, respectively. With STDP alone,
the network can settle in a synchronized or a desynchronized state depending on the initial conditions'>**. We
consider this system as a minimal model of the neuronal networks where one state corresponds to the physi-
ological mode of operation while the other is associated with abnormal function. For instance, an abnormal
synchronization of neurons in cortico-STN networks is observed in patients with PD, while these networks
remain in a desynchronized state during normal function®?. On the contrary, in AD, the desynchrony is linked
to disease progression while synchrony is desired for normal behavior®?>-%.

STDP induces weight adaptation on a longer time scale than the spiking period of the neurons'>*. SP adds
yet another time scale, which is much longer than that of STDP'>*. In this study, we focused on the effects on
the steady states caused by adding SP to neuronal phase oscillator networks with STDP. To model key SP features
in the framework of a reduced model, we used a simple stochastic model of network rewiring that combined
Hebbian weight-dependent pruning with homeostatic pruning and the addition of synaptic contacts, constrained
by bounds on the network’s In-NDD.

We showed that SP rewires the network to optimize the synchronized states. The weight-dependent prun-
ing removes the weakest contacts so that they cannot get potentiated by being exposed to random fluctuations.
The addition of new contacts that can get potentiated due to STDP, e.g. those going from the faster to slower
oscillators, also strengthens synchronization. In the case of identical oscillators, SP leads to a sharp In-NDD
distribution, where each oscillator tends to develop the maximum number of presynaptic partners, as demon-
strated in Fig. 8c. In the case of non-identical oscillators, SP builds node degree correlations from an initially
completely random structure, whereby oscillators with higher natural frequencies tend to have more outgoing
and fewer incoming contacts in a synchronized state, as shown in Fig. 10a. As a result, synchronization can be
achieved with a smaller number of contacts, i.e., in a sparser network. Consequently, the basins of attraction
of synchronized states in Figs.5, 6¢ extend towards smaller values of initial In-NDD, illustrating the effect of
enhanced synchronization for sparser networks due to SP. In the desynchronized state, the SP leads to a network
with a minimal number of synaptic contacts, constrained by the lower bound of In-NDD. Self-organization of
network structure and the emergence of node degree correlations due to activity-dependent SP were reported
in Refs.”"*2 Our results on optimization of the synchronized state and the emergence of degree-frequency cor-
relations are in agreement with a recent study' that also used a Kuramoto model but with different rules for
weight and structural plasticities. A study that employed pruning of low-use connections revealed optimization
of distributed routing networks®. An examination of the directed network of the suprachiasmatic nucleus (SCN)
revealed that the core of SCN has a small incoming and a large outgoing degree, and drives the other neurons
in SCN for synchronization®.

From PD it is known that abnormally strong neuronal synchrony need not be associated with abnormally
up-regulated numbers of synaptic contacts. In fact, the opposite holds, for instance, for the hyperdirect pathway
from cortex to STN®®. Increasing evidence shows that the cortico-STN hyperdirect pathway plays a crucial role
for the generation of abnormal neuronal synchrony in PD and displays highly correlated activity between cortex
and STN?-1%', However, the abnormally strong cortico-STN coherence was combined with a significant reduc-
tion of the number of cortico-STN synapses®. Hence, fewer contacts were associated with strongly coherent
neuronal activity.

Studying the spontaneous dynamics and stimulus responses of plastic neuronal networks is relevant for the
computational development of stimulation techniques for the treatment of brain disorders characterized by
abnormal neuronal synchrony, such as PD*%19-1%4 or by lack of synchrony, such as AD**?>-?”. In PD, a top-down
approach started with comparably simple models, such as phase oscillator networks®, in turn advancing to mod-
els of increasing complexity®®*37°. Already the studies in simpler models like phase oscillator networks enabled
to reveal key predictions, such as long-lasting®'%° and cumulative’® desynchronization effects as well as optimal
stimulation patterns®*'°® and related parameter ranges'””. In addition, these computational studies revealed
stimulus-response characteristics of plastic neuronal networks, highlighting the importance of acute effects
(during stimulation), acute after-effects (shortly after cessation of stimulation) and long-term after-effects>*8710

Scientific Reports |

(2022) 12:15003 | https://doi.org/10.1038/s41598-022-19417-9 nature portfolio



www.nature.com/scientificreports/

as well as the differential effects of desynchronizing vs. decoupling stimulation protocols®”. These effects and
phenomena were very different from what was known about regular deep brain stimulation. In particular,
the computationally derived findings were key to the development of appropriate study protocols for animal
experiments'®~112 and clinical studies*>'1>114,

Plastic phase oscillator and neuronal networks are typically bistable or multistable with different amounts
of synchrony'>%, representing physiological and abnormal states in brain disorders characterized by abnormal
extent of neuronal synchrony. A bistable neuronal network that can exist in either of the stable synchronous or
desynchronous states can be represented by an effective double well potential, where the wells correspond to
the two stable states, such as the one shown in Fig. 2 of Ref.%. Our results obtained in the model presented here
indicate that SP may deepen both the wells, forming more robust synchronous and desynchronous states. This
may have a significant impact on the design of therapeutic stimulation and dosage protocols. Specifically, our
findings demonstrate that the amount of desynchronization achieved during stimulation need not be sufficient for
predicting the dosage required to induce long-term desynchronization by shifting the system to a desynchronized
attractor (Fig. 11). In fact, in comparison to a synchronized state of a network of identical oscillators with STDP
only, a synchronized state formed with STDP + SP required stronger or longer stimulation to achieve long-lasting
desynchronization, see Figs.11, 12. However, once a desynchronized state is achieved with STDP + SP and the
network becomes sparser, a stronger and longer synchronizing stimulation is needed to bring the network back
to synchrony. More sophisticated dosage regimens, e.g., involving the spacing (pausing) principle!!® or dedicated
test stimuli, might enable us to reduce and/or predict the amount of stimulus dosage required for effective long-
term desynchronization. In a previous computational study in a single-compartment conductance-based model
of the subthalamic nucleus (STN) and globus pallidus external (GPe) with STDP, an SP mechanism was included
that homeostatically adapted the STN neurons’ firing rates to a set point-type target firing rate by generating
or pruning synapses®. In that study, an epoch of CR stimulation was assumed to favorably decrease the target
firing rate, which in turn, made SP decrease the number of synaptic contacts and, hence, ultimately increased
the desynchronizing effects of CR stimulation after long epochs without stimulation. The increase of desynchro-
nizing CR effects after sufficiently long stimulation-free periods reflected clinical observations®. Although the
target-frequency based SP mechanism in that study*® and the connectivity-based SP mechanism presented here
were very different, in both cases, SP induced significant changes in the network’s spontaneous structure and
dynamics as well as its responses to synchronizing and desynchronizing stimulation.

Our results with the phase oscillator model and abstract plasticity rules require further verification. In par-
ticular, a spiking neuron model, such as leaky integrate and fire, would allow for a more realistic account of STDP
with axonal and dendritic delays and, most importantly, with a significant dependence of network firing rate on
network connectivity”. Further, conductance-based models, such as the model of subthalamopallidal network!'®
could be implemented to study neurodynamics of PD networks, including responses to stimulation®®+7377:117,
Spiking neuron models for nodes would allow the implementation of different activity-dependent SP mecha-
nisms, regulating the firing rates of individual neurons***, as opposed to SP primarily reflecting connectivity
constraints used in the current study. In addition, future studies should also take into account neurons in burst-
ing mode, which is a characteristic feature of PD''%. In a first approximation, in the context of bursting, a phase
oscillator may correspond to a slowly varying current controlling a fast spike generator and, hence, inducing the
bursting, see, e.g., Refs.!?*"121. Bursting entails more complex neuronal dynamics and also more complex STDP
rules. In a first approximation, motivated by Ref.'?, in computational studies the timing difference of the burst
onsets was used for the STDP-based synaptic weight update'?!. However, the synaptic weight update does not
only depend on spike pairs but also, e.g., on the timing of preceding spikes, hence, requiring more complex STDP
rules'?*712*, Furthermore, a spatial organization of the network, not considered in the present study, is necessary
to consider the dependence of structural changes on the distance between neurons®. We predict that SP will
tend to enhance synchronization for networks of excitatory periodically firing spiking neurons, as shown here
for the phase oscillator model. We also expect the emergence of node degree correlations due to SP. The effect of
SP on the efficacy of desynchronization and synchronization stimulation requires further comprehensive study.
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