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Abstract
Background Multiple myeloma (MM) is the most aggressive and prevalent primary malignant tumor within the 
blood system, and can be classified into grades RISS-I, II, and III. High-grade tumors are associated with decreased 
survival rates and increased recurrence rates. To better understand metabolic disorders and expand the potential 
targets for MM, we conducted large-scale untargeted metabolomics on plasma samples from MM patients and 
healthy controls (HC).

Methods Our study included 33 HC, 38 newly diagnosed MM patients (NDMM) categorized into three RISS grades 
(grade I: n = 5; grade II: n = 19; grade III: n = 8), and 92 MM patients post-targeted therapy with bortezomib-based 
regimens. Simultaneously, MM cell lines were employed for validation studies. Metabolites were analyzed and 
identified using ultra high liquid chromatography coupled with Q Orbitrap mass spectrometry (UPLC-HRMS), followed 
by verification through a self-built database.

Results Compared with HC participants, a total of 70 metabolites were identified as undergoing significant changes 
in NDMM. These metabolites were significantly enriched in citrate cycle, choline metabolism, glycerophospholipid 
metabolism, and sphingolipid metabolism, etc. Notably, a panel of circulating plasma metabolite biomarkers, 
including lactic acid and leucine, has emerged not only as diagnostic indicators but also as valuable tools for 
tumor surveillance, aiding in the assessment of disease stage and prognostic evaluation. Moreover, 14 differential 
metabolites were identified in both MM cell lines and MM patients. Among these, intracellular levels of lactate and 
leucine significantly decreased in vitro, aligning with the plasma results.

Conclusion Our findings on key metabolites and metabolic pathways provide novel insights into the exploration of 
diagnostic and therapeutic targets for MM. A prospective study is essential to validate these discoveries for future MM 
patient care.
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Introduction
Multiple myeloma (MM) ranks as the second most prev-
alent hematological malignancy, characterized by the 
accumulation of plasma cells in the bone marrow, lead-
ing to bone destruction and marrow failure [1]. Globally, 
approximately 155,688 new cases of MM are diagnosed 
each year [2], with male patients accounting for 54.3% 
(estimated range 70,924–94,910). The median age at 
diagnosis is 69 years, with 37%, 26%, and 37% of MM 
patients falling under the age categories of under 65, 
between 65 and 74 years, and over 75 years, respectively 
[3, 4]. Despite a 5-year survival rate of 56% [5], MM is 
deemed incurable due to its recurrent relapsing course, 
necessitating diverse treatment options [6].

Over the past few decades, numerous efforts have 
focused on identifying markers related to the pathogen-
esis, diagnosis, and risk stratification of MM patients, 
including serum β2-microglobulin (β2M), lactate dehy-
drogenase (LDH), creatinine (Cr), and genomic features 
t(4;14), t(14;16), del17p, et al. [7–9]. These markers have 
significantly improved the diagnosis and treatment of 
MM. Despite advancements in early molecular diagnos-
tics, most patients are still diagnosed in intermediate or 
late disease stages [10, 11]. Existing prognostic stratifi-
cation methods, such as the revised International Stag-
ing System (RISS), face limitations in predicting actual 
clinical outcomes due to the high heterogeneity of MM 
[12]. Concurrently, patients with newly diagnosed MM 
(NDMM) are typically treated with multi-drug chemo-
therapy based on bortezomib or lenalidomide, but only 
a subset of them derive clinical benefits from this treat-
ment [13]. Therefore, there is a pressing need to develop 
biomarkers or algorithms that can facilitate early diag-
nosis and risk prediction in NDMM patients, as well as 
identify chemo-sensitive patients benefiting from tar-
geted therapy.

Metabolic reprogramming, a hallmark in non-solid 
tumors like lymphoma [14, 15], MM [16], and leukemia 
[17], has spurred the use of metabolomics, a systemic 
tool focusing on endogenous metabolites. Metabolomics 
has significantly contributed insights into cancer biology, 
aiding in the understanding of molecular disease bases 
and uncovering new pathways for diagnosis, classifica-
tion, and treatment [18–21]. Previous studies primarily 
concentrated on MM diagnosis, revealing potential utility 
in differentially profiling key metabolites such as choline, 
creatinine, leucine, tryptophan, and valine to discrimi-
nate MM patients from healthy controls [22–24]. Only 
few studies have identified biomarkers for both diagnosis 
and progress monitoring [25], or for treatment response 
and prognosis in MM patients [26]. However, none of 
these studies have revealed abnormal metabolites that 
can be used to simultaneously assess diagnosis, grading, 
and therapeutic response of MM patients simultaneously.

To address these gaps, we aimed to identify poten-
tially minimally-invasive metabolic biomarkers for MM 
diagnosis, severity, and treatment response, advanc-
ing our understanding of MM-associated metabolites. 
Ultra-performance liquid chromatography coupled with 
high-resolution Orbitrap mass spectrometry, Q Exac-
tive TM (UPLC-HRMS) was used to profile the samples 
of NDMM patients, on-chemotherapy MM patients, 
healthy controls and MM cells. Principal component 
analysis (PCA) and orthogonal partial least squares dis-
criminant analysis (OPLS-DA) characterized the differ-
ences in the metabolomics data. Finally, we examined 
MM-induced metabolite alterations, shedding light on 
the entire MM process, including diagnosis, severity, and 
treatment response, offering insights into pathogenesis 
and new prognostic factors for MM.

Materials and methods
Patients and samples
A total of 176 plasma samples from 166 subjects, includ-
ing 133 MM participants and 33 healthy volunteers, 
were used in this study. They were obtained from Bei-
jing Chao-yang Hospital between 2019 and 2021, and 
each patient provided written informed consent before 
their participation. The diagnosis and response crite-
ria were based on the International Myeloma Working 
Group (IMWG) diagnostic criteria [1]. Symptomatic 
MM patients were newly diagnosed and received che-
motherapy with a bortezomib-based regimen for one 
to six cycles, with an average of four to six cycles. For 
patients who achieved a complete response (CR) or par-
tial response (PR), the regimen was repeated for two to 
four cycles, or autologous stem cell transplantation was 
completed as consolidation therapy.

Peripheral blood samples of 2–4 mL were collected at 
preset time points, including baseline and during chemo-
therapy (on-CT). Longitudinal time points were taken 
at every cycle starting from the first on-CT time point. 
Blood was collected in EDTA-coated tubes and plasma 
separation from the blood was achieved by centrifug-
ing samples at 1500×g for 5 min within 2 h. The plasma 
was then stored at -80 ℃ until metabolite extraction and 
analysis.

Cell culture
The EB virus transformed human B lymphocyte line 
KM932, human myeloma cell lines (HMCLs) RPMI-
8226, AMO-1, MM.1R, MM.1  S and LAMA-84 were 
purchased from the Cell Resource Center, IBMS, CAMS/
PUMC. All cells were cultured in RPMI-1640 medium 
containing 10% fetal bovine serum, under meticulous 
conditions of 5% CO2 at a constant temperature of 37 °C. 
These cells are mycoplasma-free.
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Sample preparation
For metabolite extraction of plasma samples, 50 µL 
plasma of each patient was mixed with mixture of metha-
nol and acetonitrile (v/v, 1:1) with the addition of 200 ng/
mL propranolol and tolbutamide as internal standards 
(IS). The mixture was vortexed for 1 min and centrifuged 
at 15,000 ×g for 10 min at 4 °C. A 200 µL aliquot of the 
resulting supernatant was subsequently transferred to a 
new tube and kept at 4 °C until LC-MS analysis.

For metabolite extraction of cell samples, each cell 
sample was subjected to a mixture of methanol and water 
(v/v, 1:1) at a 1:10 weight-to-volume (w/v) ratio. The cell 
sample was vigorously vortexed for 1  min, followed by 
30  min of ultrasonic treatment. Subsequently, the mix-
ture was centrifuged at 15,000 ×g for 10  min at 4  °C to 
separate the supernatant from the cellular debris. A 50 
µL aliquot of supernatant was subsequently transferred 
to a new tube and added 450 µL mixture of methanol and 
acetonitrile (v/v, 1:1) with the addition of 200 ng/mL pro-
pranolol and tolbutamide as internal standards (IS). The 
mixture was vortexed for 1 min and centrifuged at 15,000 
×g for 10 min at 4 °C. A 200 µL aliquot of the final super-
natant was transferred to a fresh tube and stored at 4 °C 
until further analysis by LC-MS.

Mass spectrometry analysis
The LC-HRMS analyses were conducted via an Ultimate 
3000 LC system coupled with a Q Orbitrap mass analyzer 
(Q Exactive, Thermo Fisher Scientific, USA). Chromato-
graphic separation was performed via an ACQUITY BEH 
C18 column (Waters, 2.1 × 50 mm, 1.7 μm) at a flow rate 
of 0.25 mL/min, maintained at 30 ℃. Mobile phase A 
consisted of water with 0.1% formic acid and 2.5 mmol/L 
ammonium formate, while mobile phase B was acetoni-
trile. The gradient conditions were as follows: 0–1.0 min, 
95% A; 1.0–5.0  min, 95%-40% A; 5.0–8.0  min, 40%-0% 
A; 8.0–11.0  min, 0% A; 11.0–14.0  min, 0-40% A; 14.0–
15.0 min, 40-95% A; 15.0–18.0 min, 95% A. The spectro-
metric settings for positive/negative ion modes were as 
follows: scan mode, full MS over the m/z scan range of 
70-1050; resolution, 70,000; spray voltage (+/-), 3.0  kV; 
capillary temperature, 350 ℃; S-lens RF, 50; full MS/
dd-MS2 over the resolution of 17,500; AGC target, 1e5; 
maximum TT, 50 ms; NCE, 20, 40, 60.

Metabolite identification and statistical analysis
Metabolite identification was performed via Compound 
Discoverer 3.3 (ThermoFisher, CA, USA). The identifi-
cation criteria involved exact mass, retention time, frag-
mentation spectra and isotopic pattern. An in-house 
library [27, 28] and the online library mzCloud were uti-
lized for this purpose. The final output data included the 
compound name and peak area.

Pattern recognition analysis, including principal com-
ponent analysis (PCA), orthogonal partial least squares 
discriminant analysis (OPLS-DA), and topology analysis, 
were carried out to identify key metabolic features via 
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/). The 
differentially abundant metabolites were screened (vari-
able importance for the project, VIP > 1.0 and p < 0.05). 
Metabolic pathway analysis was conducted via the 
“MS Peaks to Pathways” of MetaboAnalyst 5.0. Signifi-
cant pathways were computed on the basis of the spec-
tral features with an impact greater than 0.1. SPSS 16.0 
(Armonk, New York, USA) was used for t-test analysis. 
All the data were expressed as mean ± standard deviation 
(mean ± SD). One way ANOVA was used to analyze the 
differences between multiple groups, and Tukey’s test 
was employed for pairwise comparisons. * represents 
P < 0.05, ** denotes P < 0.01, ***denotes P < 0.001.

Results
Metabolic fingerprint of plasma from newly diagnosed MM 
patients
To analyze the metabolic changes between newly diag-
nosed MM patients and normal control (HC) group, 
untargeted metabolomics analysis was carried out using 
UPLC-Orbitrap-MS in both ESI positive (ESI+) and neg-
ative (ESI-) ion modes. PCA, an unsupervised model, 
was performed to reveal differences in the metabolic 
profiles of samples across groups. The workflow of our 
work is depicted in Fig.  1. The PCA score plots clearly 
demonstrated a distinct separation between the NDMM 
and HC groups (Fig. 2A). For a more detailed analysis of 
metabolic profiling discrepancies between the NDMM 
and HC groups, we employed the supervised pattern rec-
ognition method, OPLS-DA. The OPLS-DA score plot 
illustrated a marked separation between the NDMM 
and HC groups (Fig.  2D). To screen potential biomark-
ers, VIP values were calculated for each metabolite using 
the OPLS-DA models. Meanwhile, fold change (FC) and 
P values were obtained by assessing the magnitude and 
statistical significance of the variations between different 
groups, respectively. Intriguingly, our analysis yielded a 
total of 70 differentially abundant metabolites (VIP > 1.0 
and p < 0.05) when comparing NDMM to the HC. To 
offer a more intuitive visualization, we crafted a volcano 
plot, illustrating log2 FC against -log10 (p-value). High-
lighted within this plot are 23 pivotal metabolites, which 
not only exhibited remarkable statistical significance 
(p < 0.0001) but also have been frequently implicated in 
MM (Fig. 2B). To provide a visual representation of the 
differentially expressed metabolites identified through 
LC-MS analysis, a heatmap was generated (Fig.  2C). 
These data confirmed that significant differences in 
metabolites exist between NDMM patients and the HC 
group.

https://www.metaboanalyst.ca/
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Performance of plasma metabolites for the early diagnosis 
of MM patients
Given that the majority of MM patients are diagnosed in 
advanced stages, early detection significantly improves 
the likelihood of successful MM treatment. In contrast 
to the traditional bone marrow aspiration method used 
for screening, a blood-based test is minimally-invasive 
and relatively cost-effective. Thus, we examined the 
clinical application value of metabolite detection in MM 
diagnosis, with a particular emphasis on early MM. To 
evaluate the discriminatory capacity of the 70 aforemen-
tioned differentially abundant metabolites significantly 
altered in the MM cohort, ROC analyses were employed 
to calculate the area under the curve (AUC). Among 
these metabolites, 6 exhibited high diagnostic value in 

distinguishing plasma samples of the MM group from 
those of the HC group. As illustrated in Fig. 3, the AUC 
values for pyroglutamic acid, arginine, lactic acid, cho-
line, acetylcholine, and leucine were 0.999, 0.999, 0.994, 
0.984, 0.935, and 0.852, respectively. These values clearly 
indicated the ability to differentiate early MM patients 
from healthy controls.

Metabolic biomarkers associated with disease risk in MM 
patients
To gain precise insights into biomarkers associated with 
the severity of the disease, patients with NDMM were 
categorized into R-ISS-I (n = 5), R-ISS-II (n = 19), and 
R-ISS-III groups (n = 8), according to the IMWG diagnos-
tic criteria [9]. First, we identified statistically differential 

Fig. 1 Outline of the workflow for untargeted metabolomics and bioinformatics analysis. MM, Multiple myeloma; NDMM, newly diagnosed multiple 
myeloma; CT, Chemotherapy; CSG, Chemotheray sensitive group; CIG, Chemotheray insensitive group
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metabolites (p < 0.05) between R-ISS-III group samples 
and healthy group samples, with FC exceeding 2.0 or 
falling below 0.5. Second, the abundance of metabolites 
needed to be positively or negatively correlated with risk.

As depicted in Fig. 4A, the levels of acetylcholine sig-
nificantly increased, whereas the levels of lactic acid and 
leucine markedly decreased in the R-ISS groups (R-ISS-I, 
R-ISS-II, R-ISS-III) compared with those in the healthy 
group. Notably, the substantial increase in acetylcholine 
and decrease in lactic acid and leucine in the R-ISS I/II/
III group compared with those in the healthy group align 
with previous findings indicating that the levels of ace-
tylcholine, lactic acid, and leucine allow discrimination 
between NDMM patients and healthy controls. Further-
more, the panel of acetylcholine/lactic acid/leucine could 
serve as both diagnostic and risk biomarkers for MM. 
These findings underscore the potential of metabolo-
mics for biomarker discovery, enabling more precise and 
accessible early detection of MM.

Metabolic biomarkers associated with chemotherapy 
sensitivity in MM patients
We identified two subtypes among MM patients under-
going 3 cycles of chemotherapy: the chemo-sensitive 
group (CSG) and the chemo-insensitive group (CIG). 
Correlation analysis between the aforementioned 70 
candidate metabolites and 7 common clinical indexes 
was further performed (Fig.  4B). The clinical variables 
included hemoglobin (Hb), M protein, clonal plasma 
cells, immature plasma cells, plasma cells, serum 

creatinine (Scr) and lactic dehydrogenase (LDH). The 
level of lactic acid was significantly positively corre-
lated with Hb and negatively correlated with Scr, imma-
ture plasma cells and plasma cells. On the other hand, 
the abundance of leucine was positively correlated with 
only Hb, whereas cholesterol sulfate was negatively cor-
related with the level of the M protein. Furthermore, in 
MM patients undergoing chemotherapy for both 3 and 
4 cycles, the levels of lactic acid, leucine, and cholesterol 
sulfate were significantly greater in the CSG group than 
in the CIG group (Fig. 4C and D). Surprisingly, lactic acid 
and leucine demonstrated utility for diagnosis, severity 
assessment, and prediction of chemotherapy sensitivity 
(Fig. 4E).

Metabolic pathway analysis
The metabolic networks, based on the statistically and 
functionally integrated metabolomics data, were visual-
ized via Cytoscape software. The observed state of identi-
fied metabolites in NDMM are shown in the metabolic 
networks (Fig.  5). To explore the metabolic pathways 
involved in MM development, the differentially abun-
dant metabolites were enriched for the related metabolic 
pathway analysis via the MetaboAnalyst online tool. As 
depicted in Fig.  6 and Supplementary Fig.  1, differen-
tially abundant metabolites were significantly enriched 
in multiple metabolic pathways, including central car-
bon metabolism in cancer, choline metabolism in cancer, 
citrate (TCA) cycle, glycerophospholipid metabolism, 
valine, leucine and isoleucine biosynthesis, sphingolipid 

Fig. 2 Multivariate statistical analysis of untargeted metabolomics. The red dot represents the healthy control group (HC). The green dots represent the 
newly diagnosis MM group before treatment, namely NDMM. (A) It represents the difference between NDMM and HC in PCA score plot. (B) Volcano 
plots of the significantly differential metabolites in HC group versus NDMM were shown, with the top 20 compounds in AUC annotated. (C) Heatmap 
of metabolite alterations from NDMM and HC. Two-sided Kruskal-Wallis tests with P < 0.05. (D) It represents the difference between NDMM and HC in 
OPLS-DA score plot
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metabolism, phenylalanine metabolism, purine metabo-
lism, arginine and proline metabolism, thermogenesis, 
and biosynthesis of amino acids. Glycolysis and the 
TCA cycle, as two major energy metabolism pathways, 
attracted our attention. Additionally, we observed a sub-
stantial reduction in lactic acid levels, a marker associ-
ated with glucose metabolism, in patients with MM.

Metabolic reprogramming of MM cells
Untargeted metabolomics studies were conducted on 
human MM cell lines, which included RPMI-8226, 
AMO-1, MM.1R, MM.1 S, and LAMA-84, in comparison 
with the control group, KM932, a human B cell line. The 
PCA score plots clearly demonstrated a distinct separa-
tion between MM cells and control group (Fig. 7A). The 
OPLS-DA score plot illustrated a marked separation 
between the MM cells and control group (Fig.  7B). 80 
differentially abundant metabolites (VIP > 1.0, |log2 FC| 
> 1, and p < 0.05) were identified in MM cells versus the 
control group (Fig.  7C). In keeping with the metabolic 

analyses of MM patients, human MM cells exhibited 3 
identical metabolic pathways, including citrate (TCA) 
cycle, sphingolipid metabolism, and g lycerophospholipid 
metabolism (Fig. 7D).

Lactic acid and leucine are downregulated in MM cells
A total of 14 differential metabolites were identified as 
overlapping between MM cells and MM patients, as 
depicted in Fig. 8A. To provide a visual representation of 
the 14 differential metabolites, a heatmap was generated 
(Fig. 8B). This heatmap substantiated the significant dis-
parities in metabolite profiles between MM cells and the 
control group. Intriguingly, the marked decrease in lac-
tic acid and leucine in MM cells is consistent with prior 
finding that plasma levels of those allows discrimination 
between MM patients and healthy control. Moreover, 
Fig.  8C highlights a remarkable decline in the levels of 
the 2 crucial metabolites, lactic acid and leucine, in the 
majority of MM cells compared to the control group. 

Fig. 3 The alteration of circulating metabolites in plasma between NDMM and HC. The receiver operating characteristic (ROC) curve and abundance of 
pyroglutamic acid, arginine, lactic acid, choline, acetylcholine and leucine (HC, n = 33; NDMM, n = 38). AUC, Area Under Curve
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These findings underscore the potential of lactic acid and 
leucine as diagnostic biomarkers for MM.

Discussion
Early detection and intervention play crucial roles in 
enhancing the clinical outcomes of MM patients [5, 
29], emphasizing the pressing need to identify potential 
minimally -invasive biomarkers. Considering the intra-
tumoral heterogeneity and systemic changes induced by 
hematological malignancy, the analysis of blood samples 
offers insights into the overall phenotype of MM. More-
over, in comparison to invasive detection methods such 
as bone marrow puncture or biopsy, an ideal biomarker 
for MM clinical diagnosis should exhibit optimal sen-
sitivity and specificity when obtained from patients 
through minimally invasive means, such as blood.

Prior studies have explored metabolic biomarkers of 
MM in blood [24, 30, 31], indicating that molecular pre-
dictive classifiers could offer valuable insights for future 
targeted MM therapy. However, these studies focused 
primarily on identifying and describing the metabolic 
landscape of MM on the basis of single or specific clini-
cal factors. In this retrospective metabolomics analysis of 
MM, we sought to address three key questions: (i) which 

patients could be screened early, (ii) which patients could 
be precisely staged, and (iii) which patients could benefit 
from chemotherapies. Notably, we observed a consistent 
decline in lactic acid and leucine levels in the plasma of 
MM patients at diagnosis, staging, and prognosis, sug-
gesting that these metabolites are potential plasma bio-
markers associated with active MM disease. Amazingly, 
the same phenomenon was also observed in vitro within 
MM cells.

To the best of our knowledge, this is the most com-
prehensive analysis demonstrating the extent of meta-
bolic reprogramming in MM. Importantly, the samples 
included in this study are real-world samples without 
strict enrollment criteria, demonstrating the robustness 
of our analysis. Following univariate analyses, we iden-
tified a biomarker panel that includes lactic acid and 
leucine.

Lactic acid is often considered a marker of the “War-
burg effect” in tumor cells [32, 33]. Warburg’s observa-
tion revealed that, unlike most normal cells, tumor cells 
tend to ferment glucose to lactate even in the presence 
of sufficient oxygen to support mitochondrial oxidative 
phosphorylation. The acidic microenvironment formed 
by lactic acid is conducive to the rapid growth and distant 

Fig. 4 (A) The violin plots of the screened biomarkers (lactic acid, leucine, and acylcholine) expressions in MM patients of ISS stages and healthy controls. 
(B) Pearson’s correlation coefficient between candidate metabolites and potential risk indexes in clinic. The heatmap showed the correlation coefficients 
between candidate metabolites (leucine, lactic acid, and cholesterol sulfate) and risk factors (Hb, LDH, Scr, M protein, and PCs) in plasma. (C) The violin 
plots of the screened biomarkers (lactic acid, leucine, and cholesterol sulfate) expressions of CSG & CIG in the circle 3. (D) The violin plots of the screened 
biomarkers (lactic acid, leucine, and cholesterol sulfate) expressions of CSG & CIG in the circle 4. (E) Venn diagram showed that 2 metabolites (leucine, and 
lactic acid) were overlapped when comparing MM with HC
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metastasis of tumor cells. Wiled et al. [33] reported that 
lactate is also supplied to cancer cells from the surround-
ing environment, referring to this phenomenon as the 
reverse Warburg effect. Our observation of a decline in 
lactate levels in MM patients and cells suggests that the 
reverse Warburg effect might be applicable to the micro-
environment in MM, as previously reported [34]. Fur-
thermore, in patients with MM who achieve complete 
remission, the increase in lactate concentration is par-
ticularly pronounced [22]. Notably, the elevated level of 
lactate dehydrogenase (LDH), the enzyme catalyzing the 
conversion of pyruvate to lactate, serves as a marker of 
poor prognosis at the time of MM diagnosis. An increase 
in LDH is associated with worse overall survival (OS), 

progression-free survival (PFS), aggressive disease, and 
a higher tumor burden [35, 36]. Correspondingly, our 
research demonstrates that a decreased lactate level is 
closely related to MM initiation and progression, and it is 
expected to become an important biomarker for clinical 
diagnosis and treatment of MM in the future.

Another biomarker, leucine, one of the branched 
chain amino acids (BCAAs), is an important amino acid 
that plays crucial roles in the body. Compared with the 
HC group, MM patients presented lower levels of leu-
cine, and a similar downward trend was also observed 
in MM cells in vitro. In another related study, the amino 
acid profiles of MM presented relatively low concentra-
tions of leucine [31]. Furthermore, the concentration 

Fig. 5 Metabolic activity network of plasma metabolites in early MM. Red/blue names represent higher/lower intensity in NDMM. Metabolites that had 
no direct relationship were linked by dotted lines
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Fig. 7 Multivariate statistical analysis of untargeted metabolomics in human myeloma cell lines (HMCLs). (A) It represents the difference between HMCLs 
and control group in PCA score plot. The red dot represents control group, the green dots represent HMCLs. (B) It represents the difference between 
HMCLs and control group in OPLS-DA score plot. The red dot represents control group; the green dots represent HMCLs. (C) The alteration of intracel-
lular metabolites between HMCLs and control group. Red/blue names represent higher/lower intensity in HMCLs. (D) Kyoto Encyclopedia of Genes and 
Genomes (KEGG) metabolic pathways enriched by significantly differential metabolites in HMCLs versus control group

 

Fig. 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways enriched by significantly differential metabolites in HC versus NDMM
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of essential amino acids, especially leucine, was signifi-
cantly decreased in MM patients [37], which was consis-
tent with our findings. Therefore, leucine appears to be 
a potential biomarker that should be evaluated in future 
studies addressing the diagnosis, staging, follow-up, 
prognosis, and treatment of MM.

Interestingly, a recent study identified genes related to 
lactic acid and BCAAs metabolism as potential prognos-
tic biomarkers independently associated with the overall 
survival of MM patients [38], which strongly supports 
our conclusion. Overall, we hypothesize that the diagnos-
tic value may be improved by combining the examination 
of clinical indicators, lactate, and leucine levels.

Metabolic pathways constitute a highly organized net-
work of sequential chemical reactions in an organism, 
playing a vital role in maintaining the energy and mate-
rial balance necessary for life processes. Deeper insights 
into how these abnormalities disrupt normal metabolic 
pathways will aid in better prevention, diagnosis, and 
treatment of associated diseases. Gonsalves et al. [31] 
reported that BCAAs metabolism, tryptophan metabo-
lism, phospholipid metabolism, and nucleotide turnover 
were potentially affected by MM, whereas Chanukuppa 
et al. [24] reported alterations in pyrimidine metabo-
lism, purine metabolism, amino acid metabolism, nitro-
gen metabolism, sulfur metabolism, and the citrate cycle. 
Wei et al. reported significant serum metabolic disorders 

in 46 pairs of pre- and post-therapy MM patients, spe-
cifically in arginine, proline and glycerophospholipid 
pathways [26]. These findings confirmed the vital role of 
certain metabolites and metabolic pathways in the patho-
genesis of MM.

The citric acid cycle (TCA cycle), also known as the 
Krebs cycle, is a crucial biochemical pathway that occurs 
in the mitochondria of eukaryotic cells. It generates 
energy in the form of ATP by coupling the breakdown of 
substrates to the phosphorylation of ADP. The TCA cycle 
is a highly regulated process that responds to changes in 
nutrient availability and energy demand [39]. It can be 
upregulated during periods of high energy demand or 
downregulated during periods of nutrient abundance or 
energy excess. We found that isocitric acid, malic acid, 
pyruvic acid, and cis-aconitic acid in the TCA cycle were 
significant downregulated in MM patients, possibly sug-
gesting that the TCA cycle was inhibited. This finding 
is consistent with Warburg’s suggestion that even when 
oxygen is sufficient, tumor cells rely on massive glucose 
uptake, converting it to lactate for energy [34].

Lipids serve not only as essential components of cell 
membranes and energy storage systems but also as cru-
cial signaling molecules that regulate biological pro-
cesses under both normal and diseased conditions. In 
our study, we observed significant disturbances in cho-
line metabolism, glycerophospholipid metabolism, and 

Fig. 8 (A) Venn diagram showed that 14 differential metabolites were overlapped between MM cells and MM patients. (B) Heatmap of the 14 differential 
metabolites in control group versus HMCLs were shown. (C) Changes in intracellular lactic acid and leucine of each HMCL and control group
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sphingolipid metabolism in MM patients. Choline, an 
integral part of acetylcholine synthesis and a precursor 
to phospholipid synthesis [40], undergoes transforma-
tion into phosphocholine, which is coupled with diac-
ylglycerol to form phosphatidylcholine (PCs), a major 
component of cell membranes. Therefore, choline is 
considered to reflect the intensity of cell membrane syn-
thesis. Our findings revealed a significant increase in 
choline and acetylcholine in the MM group compared 
with those in the HC group, whereas the abundances of 
PC(16:1(9Z)/20:3(8Z,11Z,14Z), PC(18:1(9Z)/20:4(5Z, 
8Z, 11Z, 14Z), and PC(16:1(9Z)/22:5) were notably 
decreased in the MM group compared with those in 
the HC group. High choline uptake and downregulated 
PCs are believed to lead to the hydrolysis necessary for 
forming lipid messengers, responsible for the replica-
tion of clonal plasma cells and tumor dissemination [40]. 
Members of the lysophosphatidylcholines (LPCs), includ-
ing LysoPC(16:0), LysoPC(18:2(9Z, 12Z)), LysoPC(18:0), 
LysoPC(20:4(8Z,11Z,14Z,12Z)), LysoPC(18:1(11Z)), 
LysoPC(16:1(9Z)), LysoPC(20:3(5Z,8Z,11Z)), and 
LysoPC(20:2(11Z, 14Z)), exhibited decreased levels in 
MM patients, consistent with previous research [41]. 
LPCs are crucial LDL/bioactive lipids that contribute to 
the inflammatory impact of oxidized LDL on endothelial 
cells. They are involved in inflammatory stimuli, and pro-
mote the release of IL-6 and other inflammatory factors, 
ultimately contributing to the development and progres-
sion of MM [25, 39]. Sphingolipids (SPs), another fam-
ily of bioactive lipids with a structural role in the plasma 
membrane, have products of their metabolism (sphin-
gosine, sphingosine-1-phosphate, ceramides, ceramide-
1-phosphate) that play crucial roles in MM migration 
and adhesion, survival and proliferation, as well as angio-
genesis and invasion [42]. In our study, most SPs exhib-
ited significantly decreased levels in plasma, suggesting 
that SPs’ hydrolysis can be part of the systemic metabolic 
regulation/reprogramming of MM.

Amino acids play an essential role in the synthesis of 
various biomolecules necessary for cell proliferation [43]. 
Moreover, targeting amino acid metabolism has been 
proposed as a potential cancer therapy, highlighting the 
importance of amino acid metabolism in cancer [44, 45]. 
Alterations in plasma amino acid profiles are relatively 
common in MM processes [23–26, 40]. Consistent with 
previous findings, we also discovered the main perturbed 
amino acid metabolism pathways in MM plasma, includ-
ing valine, leucine, and isoleucine biosynthesis, phenylal-
anine metabolism, and arginine and proline metabolism 
[26].

Leucine, valine and isoleucine, classified as branched-
chain amino acids (BCAAs), are crucial for human life 
and are particularly involved in stress, energy and mus-
cle metabolism [45]. BCAAs follow different metabolic 

routes, with valine exclusively contributing to carbohy-
drates (glycogenic), leucine solely to fats (ketogenic) and 
isoleucine being both a glucogenic and a ketogenic amino 
acid. The catabolism of valine begins with the removal 
of the amino group by transamination, producing alpha-
ketoisovalerate, an alpha-keto acid, which is converted to 
isobutyryl-CoA through oxidative decarboxylation by the 
branched-chain alpha-ketoacid dehydrogenase complex. 
This is further oxidized and rearranged to succinyl-CoA, 
which can enter the TCA cycle. The elevated level of 
valine in MM patients may be due to the inhibited TCA 
cycle, as previously demonstrated.

Arginine and proline metabolism was significantly 
enriched in MM. Furthermore, our findings revealed 
notable elevations in both arginine and creatinine lev-
els, accompanied by a conspicuous decline in proline 
levels. This pattern of alterations underscores the intri-
cate metabolic shifts occurring within the MM group, 
particularly focusing on arginine metabolism, which 
has garnered significant attention in prior research [26]. 
Arginine, a fundamental amino acid, plays a pivotal role 
in the urea cycle, serving as a precursor for protein syn-
thesis, polyamine production, creatine synthesis, and 
nitric oxide (NO) biosynthesis. Arginine deprivation has 
been demonstrated to have a direct pro-survival effect 
on myeloma cells, with potential therapeutic implica-
tions. Renal failure is a frequent clinical feature in MM 
patients. Creatinine, a key end product of arginine and 
proline metabolism, is transported to the kidneys via 
blood plasma, and serum creatinine is commonly used 
as an indicator of renal function. Previous studies have 
reported an obvious up-regulation of serum creati-
nine and arginine levels in MM patients compared with 
healthy controls [22, 25, 46], which is consistent with our 
findings. The elevated levels of creatinine in the plasma of 
MM patients may be attributed to impaired renal func-
tion during the progression of MM, thereby impeding the 
elimination of toxins [47].

Hydrovalerylcarnitine, butyrylcarnitine, L-acetylcar-
nitine, and L-carnitine, which play key roles in thermo-
genesis and fatty acid oxidation (FAO), were significantly 
elevated in MM patients compared with healthy controls. 
Acylcarnitines play a primary role in the FAO process 
within mitochondria, converting fatty acids into energy. 
When the body requires energy, fatty acids undergo 
β-oxidation reactions, breaking down into shorter groups 
and eventually transforming into acetyl-CoA to enter the 
tricarboxylic acid cycle, generating substantial energy for 
the cell. Carnitine and acetylcarnitine have been recog-
nized as novel biomarkers for active diagnosis, relapse, 
and mediators of disease-associated pathologies in MM 
[48]. Additionally, carnitine may enhance plasma cell 
immunoglobulin (Ig) secretion, promoting B lympho-
cytes to differentiate into plasma cells and participate in 
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antibody-mediated immune responses [49, 50]. There-
fore, the increased levels of plasma carnitine and, to a 
greater extent, acetylcarnitine and hydrovalerylcarnitine 
in MM patients could entail increased lipid oxidation in 
highly metabolically active myeloma cells.

In conclusion, a deeper understanding of the metabolic 
profiles of MM could aid in identifying cases resistant to 
specific agents, preventing repetitive errors and cumula-
tive toxicity, and exploring new experimental strategies 
for these cohorts.

Despite these insights, the study has several limitations. 
While we summarized differentially abundant metabo-
lites and explored their value in MM, more functional 
validations in vivo and animal models are necessary. 
Additionally, the patient sample size is relatively small, 
validation and further investigation in a larger, indepen-
dent cohort are warranted to better comprehend the 
mechanisms of MM. Further research is essential to sup-
port these results and verify the underlying biological 
functions of key amino acid metabolites through large-
scale and mechanistic studies.
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