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A two-parameter continuous distribution, namely, power-modified Lindley (PML), is proposed. Various structural properties of
the new distribution, including moments, moment-generating function, conditional moments, mean deviations, mean residual
lifetime, and mean past lifetime, are provided. The reliability of a system is discussed when the strength of the system and the stress
imposed on it are independent. Maximum-likelihood estimation of the parameters and their estimated asymptotic standard errors
are derived. Bayesian estimation methods of the parameters with independent gamma prior are discussed based on symmetric and
asymmetric loss functions. We proposed using the MCMC technique with the Metropolis-Hastings algorithm to approximate the
posteriors of the stress-strength parameters for Bayesian calculations. The confidence interval for likelihood and the Bayesian
estimation method is obtained for the parameter of the model and stress-strength reliability. We prove empirically the importance

and flexibility of the new distribution in modeling with real data applications.

1. Introduction

Modeling and evaluating lifespan data are critical in many
practical fields, including medical, engineering, and finance,
to name a few. To model such data, a variety of lifetime
distributions, such as the exponential, Weibull, gamma, and
Rayleigh distributions, for example, and their generaliza-
tions, have been used (see, e.g., Gupta and Kundu [1] and
Nadarajah and Kotz [2]). Because of the form of the failure
rate function, which can be monotonically declining, in-
creasing, or constant in behavior, as well as nonmonotone,
bathtub-shaped, or even unimodal, each distribution has its
unique peculiarities.

The Lindley distribution was introduced by Lindley [3]
as a new distribution useful to analyze lifetime data,

especially in applications modeling stress-strength reliabil-
ity, earthquakes, floods, engineering, physics, quality con-
trol, and medicine as well as for modeling lifetime data.
Ghitany et al. [4] investigated the Lindley distribution’s
properties using a rigorous mathematical approach. They
also demonstrated that the Lindley distribution models’
waiting periods and survival times are better than the ex-
ponential distribution in a numerical example. Mazucheli
and Achcar [5] investigated the Lindley distribution’s ap-
plications to competing hazard lifetime data. The Lindley
distribution also has some useful qualities for lifetime data
analysis, including closed forms for the survival and hazard
functions and strong fit flexibility.

The cumulative distribution function (cdf) and probability
density function (pdf) of Lindley distribution are given by
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Recently, Chesneau et al. [6] have introduced a general
family of Lindley, called modified Lindley (ML) distribution
based on the use of a new tuning function, which aims at
modulating the polynomial term in the definition of the cdf
given by (1). The cdf and pdf of the ML distribution are given
by

G(x;e)=1—e‘9"[1+ bx e_ex],x>0, (3)
0+1
0 —20x Ox
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0+1

Using power transformation of a random variable may
offer a more flexible distribution model by adding a new
parameter. Mazucheli et al. [7] proposed the power Lindley
(PL) as a new extension of the Lindley distribution based on
(1) and by using the transformation X = TV, This model
provides more flexibility than the Lindley distribution in
terms of the shape of the density and hazard rate functions as
well as its skewness and kurtosis. The cdf and pdf of the PL
distribution are given by

B
G(x,@,ﬂ)=l—e_6xﬁ|il+%:|, (5)
2
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respectively, where 6 >0 is a scale parameter and § >0 is a
shape parameter. In this present work, an attempt to propose
a new flexible distribution by the transformation technique.
The proposed distribution is called the power-modified
Lindley (PML). The rationality of considering the PML
distribution is that it equips the most famous extensions of
the ML.

In statistics, inferring stress-strength reliability is an
important issue of study. It has a wide range of practical
applications. R=P (Y < X) is a measure of component re-
liability in stress-strength modeling. When X equals Y, the
component fails or malfunctions, where X is subject to Y. In
electrical and electronic systems, R might also be considered.
The estimation of the stress-strength reliability
R =P(Y <X), where X and Y follow the power-modified
Lindley distribution, is the topic of this study.

The power-modified Lindley distribution’s derivation is
largely focused with its usage in data analysis, making it
valuable in a variety of fields, particularly those involving
lifespan analysis. This model has not been investigated be-
fore, as far as we know, despite the fact that we feel it plays a
significant role in reliability analysis. The likelihood esti-
mator (LE) is obtained. An asymptotic confidence interval is
created using the asymptotic distribution. The Bayesian
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estimator of stress-strength R and its accompanying credible
interval are obtained using the Gibbs sampling technique.
Finally, we discuss the flexibility of the proposed model for
three different applications of real data.

The rest of the article is organized as follows. In Section
2, we introduce a new distribution. In Section 3,we provide
some basic statistical properties of this distribution, in-
cluding moment, moment-generating function, incomplete
moments, and mean deviations. In Section 4, Bayesian and
likelihood methods of parameters are derived. In Section 5,
the reliability parameter related to the stress-strength model
is derived. In Section 6, we use the different methods of
confidence intervals for model parameters. Some simula-
tions to investigate the accuracy and reliability of the
maximum likelihood estimators are performed in Section 7.
Three applications to real datasets prove empirically the
flexibility of the new model introduced in Section 7. Finally,
Section 9 offers some concluding remarks.

2. Power-Modified Lindley Distribution

A new extension of the modified Lindley distribution is
proposed by considering the power transformation
X =TV* The distribution of X is referred to as power-
modified Lindley (PML) distribution. The cdf of the PML is
defined by

o 9 o o
F(x,0a0)=1-¢ ™ [1+xe9" ],x>0. (7)
0+1

The corresponding pdf and hazard rate function are,
respectively, given by

f(x60) = %e‘wx“‘l [(1+0)e™ +20x~1], (8
Qorxc® ! [(1 +0)e™ +20x - 1]
h(x,6,a) = 9

6+ 1)e™ [1 +0x"/0 + le-exa]’

where 0>0 is a scale parameter and « >0 is a shape pa-
rameter. Hereafter, a random variable X that has the pdf
given in (8) is denoted by X-~PML (0, ).

Figure 1 explains how the behavior of pdf and hazard
rate of PML distribution is affected for shapes by increasing
the value of parameters a and 0.

3. Statistical Properties

Moments, moment-generating function, conditional mo-
ments, mean deviation, and moments of residual and re-
versed residual lifetimes are some of the essential statistical
properties of the MPL distribution presented in this section.

3.1. Moments and Associated Measures. Moments can be
used to investigate some of the most essential properties and
characteristics of a distribution. The r" moment of X
denoted as y, can be obtained from (8) as follows:
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FIGURE 1: The pdf and hazard rate with different effects of parameters.
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Set r=1, and we have

E(X) =, = T(1/a+1)/6"*[1 + 1/a/2"*' (1 + §)]. The ny,
central moment of X is given by
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Also, the skewness and kurtosis coeflicients of X are,
respectively, defined by Sy = p3 — 3 + 2u3/ [uy — u?13/2
and k,, = py — 4psp + 6psp® — 3u’/ [ps — p?1°. The moment-
generating function M y (t) given by (8) can be obtained as
follows:
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3.2. Conditional Moments. The incomplete moments, the
mean residual lifetime function, and the mean inactivity
time function are also useful properties for lifetime models.
The Bonferroni and Lorenz curves are the most common
applications of the first incomplete moment. In economics,
dependability, demographics, insurance, and medical, these
curves are extremely valuable. It is useful to know the s

lower and upper incomplete moments of X in lifetime
models, which are defined by 9,(t)=E(X°|X>t)
=[x f(x)dx and y,(5) = E(X* | X<t) = [ x*f (x)dx,
respectively; for any real s>0, the s; upper incomplete
moment of PML distribution is

9, (t) = J-jo X f (x)dx
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where I'(s,t) = '[fo x*le”*dx denotes the upper incomplete
gamma function. The first incomplete moment of X, marked
by, 9, (¢), is computed using (15) by setting s = 1 as

1 1 1
0,0 = 1Cree) L
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Similarly, the s, lower incomplete moment of PML
distribution is

(13)

(14)
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where &(s,t) = I; x* e~ *dx is the lower incomplete gamma
function. The first incomplete moment of X, denoted by,
v, (t), is computed using (15) by setting s = 1 as

(15)
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The mean residual lifetime (MRL) function (or the life
expectancy at age ) represents the expected additional life
length for a unit, which is alive at age . The MRL of PML
distribution is given by

EX|X>t)

(16)
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Also, the mean inactivity time (MIT) represents the
waiting time elapsed since the failure of an item on condition
that this failure had occurred in (0;t). The MIT of X is
defined (for t > 0) by

T () = E(X | X<t)

(17)
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Another application of the conditional moments is the
mean deviation about the mean (¢) and about the median
(M). For the PML distribution, the mean deviation about
the mean and mean deviation about the median, respec-
tively, given by

G = [ 1w —u

= 2uF () — 24 + 29, ().

(18)

(19)

QAM=J?Ix—MWfMMx
=29, (M) -,

(20)

where 9, () and 9, (M) can be determined from equation
(13). In addition, F (u) can be computed from equation (7).

The Bonferroni and Lorenz curves were proposed now.
Bonferroni [8] and the Gini indices have applications in
domains other than economics, such as reliability, de-
mography, insurance, and medicine. The Bonferroni curve is
given by
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3.3. Moments of Residual and Reversed Residual Lifetimes.
The mean residual lifetime and mean past lifetime have very
important to describe the different maintenance strategies.
The ny,-order moment of the residual life is obtained by the
following formula:

ty (1)
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Setting s = 1, we get the MRL. On the other hand, the n,
moment of the reversed residual life (inactivity time) is given
by
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where the mean past lifetime can be obtained using (15) by
setting s = 1.

4. Bayesian and Non-Bayesian Estimation

In this section, the estimation procedures by Bayesian and
non-Bayesian estimation methods of the parameters « and
0 of the PML distribution are obtained. We provided non-
Bayesian estimation for the PML model as maximum
likelihood (ML) and Bayesian estimation by using dif-
ferent loss functions such as square error loss function
(SELF), the LINEX loss function, and the entropy loss
function.

4.1. Likelihood Estimation Method. Let X,,X,,...,X, be a
random sample of size n from PML distribution with pa-
rameters 0 and «. The likelihood function for the vector of
parameters ¢ = (6, a) can be written as

. 9 n B n - n "
L(¢) =« <m) e zez"ﬂ : g'xi '

[(1+6)e™ +20x — 1],

(25)

The log-likelihood function for the vector of parameters
¢ can be written as

log L = nlogf + n log o — n log (1 +0)—292xf‘
i=1

) (26)
+ Y log[(1 + 6)e™ +26x - 1].
i=1

The maximum-likelihood estimate for 0 and « is ob-
tained by solving the nonlinear equations obtained by dif-
ferentiating (26) with respect to 6 and «. The score vector

components, say U, (¢)=0L/d¢ = [0L/06,0L/0a]", are
given by
dlogl n
0 6 (1 +0) Z 5
(27)
+ie" 1+3; +0x]) +2x7 .
= (1+60)e™ +20x7 - 1
ologl n -
e :&—ZGinlog X;
(28)
. i@(l +0)e’ *x“log x; +20x] log X;
=1 (1+ 9) N+ 20x;] —
By solving the nonlinear system U, (¢) = 0, the maxi-

mum LE (MLE) of ¢, say ¢, is obtained. These equations
cannot be solved analytically; however, they can be solved
numerically using statistical software using iterative ap-
proaches. To get the estimate ¢, we can utilize iterative
techniques like a Newton-Raphson algorithm.

4.2. Prior Distribution. We assume that the parameters o
and 0 are independently distributed according to the gamma
distribution for building Bayesian estimation. Let o and 0
have gamma priors with scale and shape parameters q; and
w;, respectively. A proportionate representation of the joint
prior density of a and 6 is the following:

C(a,0) cc 8% 'a " exp

(29)
{~(6g, + ag;)},0,a>0,g;,w;>0;j=1,2.

4.3. Hyperparameter Elicitation. The informative priors will
be used to elicit the hyperparameters. The mean and variance
using the maximum-likelihood estimates of PML distribu-
tion & and 6 will be equated with the mean and variance of
the considered priors (gamma priors) &/ and 6/, where j =
) P ,k and k is the number of samples available from the
PML distribution. We can derive the mean and variance of
alpha and theta by equating them with the mean and var-
iance of gamma priors. We get

%

, (30)
1 &) 1¢ w
— o -=NYao | ==L
—1;< ’221) ai
1& o w
NV =2
kazl 92

5 (31)
1 i<91_1i91> _ﬂ
-1 kj:l q

The estimated hyperparameters can now be stated as
follows after solving the preceding two equations:

(l/k Z]]le (xj)2

k- 121;11 (o = 17k Zl;:l ocj)z’
(32)
_ 1/k 25:1 o
Vk-15%, (o = 1k3E of)
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i j AN
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VkYs, &/
Uk-13%, (6 - Uk3k o)

4.4. Posterior Distribution. The joint posterior distribution
can be expressed as the product of likelihood function
equation (25) and the joint prior function (29). Then, the
joint posterior density function of ¢ is
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In actuality, the posterior density’s normalization con-
stant A is often intractable, requiring an integral over the
parameter space.

4.5. Symmetric Loss Function. The symmetric loss function is
the squared-error loss function (SELF), which is defined by

Ls(9,Q) o (A - Q) (35)

Then, the Bayesian estimator of Q) under SELF is the
average:

Q= E,(Q). (36)

4.6. Asymmetric Loss Function. In this section, we discussed
the LINEX and entropy loss function, which are the most
famous loss functions.

4.6.1. LINEX Loss Function. Varian and Savage [9] pre-
sented a highly useful asymmetric loss function, which has
lately been employed in different works [10, 11] and [12].
This function is known as the LINEX loss function,
according to linear exponentially. The LINEX loss function
can be stated as follows, assuming that the minimal loss
occurs at Q = Q:
~L

LL(ﬁ,Q)ocec(Q 70) —C(QL—Q>—1;C=/=O, (37)
where Q is any estimate of the parameter Q) and c is the shape
parameter. The value of ¢ determines the shape of this loss
tunction. Then, the Bayes estimator of () under entropy loss
function is

. -1 .
QL=7ln[EQ(e M. (38)

After studying the LINEX loss function, and from
Figure 2 which displays LINEX loss with different values of c,
we note that the function is fairly asymmetric for ¢ =1,
with (Q Q)>0 and the function is asymmetric for
¢ = -1, with (Q -Q)<0.

4.6.2. Entropy Loss Function. In many practical cases, it
appears that expressing the loss in terms of the ratio Q/Q is
more realistic. James and Stein initially proposed the entropy
loss function by ratio for estimating the variance-covariance
(i.e., dispersion) matrix of the multivariate normal distri-
bution. The entropy loss function is a good asymmetric loss
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Figure 2: LINEX loss function with different values of c.

function, according to Calabria and Pulcini [13]. The en-
tropy loss function of the form is considered as follows:

—~ b —
_ Q Q
L;(Q,Q — | =bln| =)-1, 39
whose minimum occurs at Q = Q. Then, the Bayes estimator
of Q under entropy loss function is

0 = [Ea(070)] " (40)

Many authors discussed Bayesian estimation under en-
tropy loss function as Dey et al. They [14] used this loss
function for the simultaneous estimation of scale parameters
and their reciprocals. Singh et al. [15] used this loss function for
Bayesian estimation of the exponentiated gamma parameter.

Figure 3 shows that the Bayesian estimate for the entropy
loss function is the same as the Bayesian estimate for the
weighted squared-error loss function Q — Q/Q when b = 1.
The Bayesian estimate under the entropy loss function with
b = —1 and the Bayesian estimate under the squared-error loss
function are identical. A positive error (Q>Q) has more
serious repercussions than a negative error when b >0 and
vice versa when b < 0. When both Q) and Q are measured in a
logarithmic scale, the function is virtually symmetric for small
|b| values, (see Calabria and Pulcini [13] and Schabe [16]):

2

L (9, Q) oc%(ln(()) ~In(Q))*. (41)

4.7. Markov Chain Monte Carlo. The MCMC approach will
be utilized because these integrals are difficult to solve an-
alytically. Gibbs sampling and more generic Metropolis-
within-Gibbs samplers are two prominent subclasses of
MCMC algorithms. Gibbs sampling and more generic
Metropolis-within-Gibbs samplers are key subclasses of
MCMC algorithms. This algorithm was first introduced by
Metropolis et al. [17]. For more information, see Soliman
et al. [18], Okasha et al. [19], Han [20], Singh et al. [21], and
Haj Ahmad et al. [22]. The Metropolis—-Hastings (MH) al-
gorithm [23] is similar to acceptance-rejection sampling in
that it considers a candidate value derived from a proposal
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distribution as normal for each iteration of the process [24].
The MH algorithm uses two steps to compute a suitable
transition starting at ¢; = ¢:

(1) Draw ¢ from a proposal density as normal distri-
bution as g(¢*[¢).

(2) Either retain the current sample ¢,,, = ¢ or transi-
tion to ¢;,, = ¢* with acceptance probability:

(42)

. min[l G(¢'1x)9(¢) ]

"G(¢lx)q(¢"1¢)

This well-defined transition density not only ensures that
the target density remains invariant, but also that the chain
converges to its unique invariant density starting from any
initial condition under the right conditions ¢.

5. Stress-Strength Reliability Computations

In this section, we investigate the reliability parameter related
to the PML distribution. Let X is the strength of a system and
Y is the stress acting on it has aroused wide concern. If X
follows PML («, 0,) and Y follows PML (e, 8,) provided X
and Y are the independent random variables. Then, reliability
R =P(Y <X). Many engineering concepts, such as struc-
tures, rocket motor deterioration, static fatigue of ceramic
components, fatigue failure of aircraft structures, and the
aging of concrete pressure vessel reliability, all benefit from it:

R=P(Y <X

_ J:o F, (), (x)dx

(00 0, x4
:1—J el"[1+
0

[(1+ 0,)e"™" +260,x" - 1]dx.

61“ —20x% a-1
C x
0, +1

sza 0%
0,+1

(43)

Setting ¢ = x*, we get

0 [® _(20,40,) 0,
R:l—mjo e (00 (1 4 9,)e + 26,1 - 1]dt

6162 -2 0,+6,)t 0,t
O el IR CRTD SR
61 91 +1 291 1
=1- + _
6,+110,+6, (20, + 62)2 20, + 0,
— 6162 01 +1 + 61 B 1
(61 + 1)(62 + 1) 0, + 20, 2(91 4 92)2 2(91 + 92) .

(44)

The reliability stress-strength model of PML is shown in
Figure 4 with different values of 0,, and 0,.

Many authors have recently used likelihood and
Bayesian estimation approaches to estimate R=P (Y <X =
x) for various life testing schemes based on various distri-
butions [25-31].

In MLE of the stress-strength model, let x,,x,,...,x,
and y,,¥,,...,,, be random samples from PML with
o, 0, and a, 0,, respectively. The likelihood function of the
stress-strength model for PML distribution can be
expressed as

L((D) L 61 " 92 me— 2912:‘:1&?‘—262 ::lyfx
0,+1) \06,+1

n

i=1

m
X+ 0,)e™ 420, % - 1] [Ty
i=1

[(1+ 0,)e™" +26,y% - 1],
(45)
where O is the vector of parameter as («, 0,, 0,). The log-
likelihood function of stress-strength model of PML

distribution for the vector of parameters ¢ can be written
as



stress—strength model of PML

FIGURE 4: Reliability stress-strength model of PML.
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The maximum-likelihood estimate for 6,,6,, and « is
obtained by solving the nonlinear equations obtained by
differentiating (46) with respect to 0,,0,, and a. The score
vector components, say Uy (®) =o0log L/0D = [0
log L/06,,0log L/06,,0log L/oa]", are given by
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(47)
Oolog L m m S
36, 6, (1+6,) le
e (Ll +0,y]) + 27
S (1+6,)e™ +20,y7 -1
olog L n+m LA 2o
| a -26, ;xilog Xi _292;)’;‘108 Vi
. i (1 +6,)e"™ x*log x; + 26, x"log x;
P (1+6,)e"™ +20,x% -1
. ZG ,(1+6,)e™ y%log y; +26,y%log Ji
P (1+6,)e™ +20,y" 1

(48)
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6. Confidence Interval

In this section, the asymptotic confidence interval for the
MLE method, and credible confidence interval for the
Bayesian estimation method has been obtained.

6.1. Asymptotic Confidence Interval. The Fisher information
matrix (FIM) of a three-dimensional vector @ = («a, 6,, 6,)
looks like this:

2 2 2
E 810%L E olog L E 0log L ’
ou Oa 00, Ow 00,
d’log L d’log L
I(a,0,,0,)=—| E 30,00 ) E & ) 0,
1
2 2
EalogL, 0, EalogzL.
00,00 00,

(49)

Assume that @ represents the MLE of ®. Then, as
n — 00, and m — 0o,

Vi (® - @) = N(0,17"). (50)

The inverse matrix of the FIM I is I"!. This is where we
define
- ’00,° 00, )

Then, using the delta approach (for further information,
see Ferguson [32]), the asymptotic distribution of R is shown
to be as follows:

V(R - R) = N(0,02), (52)

where 0% = B'T"'B is the asymptotic variance of R. The
approximate 100 (1 — y)% confidence interval for R can be
expressed as (R — Z)20R R+ Z,,0g), where z, , is the upper
y/2 percentile of the standard normal distribution.

6.2. Credible Confidence Interval. The highest posterior
density (HPD) confidence intervals are used to discuss
credible confidence intervals of parameters of this model for
the results of the MCMC. The HPD intervals: Chen and Shao
[33] demonstrated how to use this technique to produce
HPD ranges for unknown benefit distribution parameters.
To construct time-lapse estimates in this work, samples
drawn with the proposed MH method should be employed.
For example, a (1 —y%) HPD interval with two points for
the 2" parameters of this model can be constructed using the
MCMC sampling outputs and the percentile tail points.
According to Chen and Shao [33], the BCIs of the pa-
rameters of PML distribution «,0,,0, can be obtained
through the following steps:
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Step (1): Sorted @, 9~1, and 6~2 as (@M <all < ... <@l

~[1 ~ [2 ~ [A ~[1 ~ [2
(61”s91”s...sel[ ]) and (02”362[]s

S@[A]), where A denotes the size of the
generated of MCMC results

Step (2): The 100(1 — y)% symmetric credible intervals

of a, 0,,0, are obtained as (1], glt(1-v/2),

FLy2] R[L(1-y/2)] FLy2] F[L(1-y/2)]
6,7, 8, ) and (6, B, )

7. Simulation

In this part, we simulate to see how each estimate of the
vector parameter () performs numerically for each method
in terms of bias, mean-squared error (MSE), and confidence
interval length (L.CI). The following steps are used to create
the simulation algorithm of a simple case of PML distri-
bution based on a complete sample.

(i) The values of the PML distribution parameters Q) =
(a, 0) are as follows:

Table 1 shows the constant & = 0.5 and the changes
in 6 to 0.5, 2, and 5. Table 2 shows the constant
a = 2 and the changes in 0 to 0.5, 2, and 5. Table 3
shows the constant « = 5 and the changes in 6 to
0.5, 2, and 5.

(ii) The sample size, n, is determined. The sample sizes
of n=35, 70, and 140 are being considered.

(iii) In LINEX, we consider ¢ = —1.5and 1.5. In entropy,
we consider b = —1.5and 1.5.

(iv) The number of replications is determined, that is,
L =5000.

(v) A uniform distribution (U) over the interval is used
to create random samples of size n (0, 1). Then,
using the inverse of the distribution function in
equation (7), we transform them into samples with
a PML distribution with the parameters « and 6.

(vi) Estimate the parameter of PML distribution; we
used the Newton-Raphson algorithm for MLE, and
we used MH algorithm in MCMC for Bayesian
estimation methods.

(vii) Calculate different measures of performance as
bias, MSE, and L.CI for each method.

The following steps are used to create the simulation
algorithm of the stress-strength model of PML distribution:

(i) The values of stress-strength model of PML dis-
tribution parameters (a, 0,,0,) are as follows:

Table 4 shows the constant « = 2 and 6, = 0.75 and
the changes in 0, to 1.5 and 3.

Table 5 shows the constant & = 0.5 and 0, = 2 and
the changes in 0, to 3 and 5.

(ii) The sample sizes, n for strength and m for stress, are
determined. The sample sizes of (n,m)=(30, 30),
(45, 50), and (70, 60) are being considered.

(iii) In LINEX, we consider ¢ = —1.5and 1.5. In entropy,
we consider b = —1.5and 1.5.
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(iv) The number of replications is determined, that is,
L =5000.

(v) Generate two uniform distribution (U) with in-
terval (0, 1), which is used to create random
samples of PML distribution size n and m. Then,
using the inverse of the distribution function in
equation (7), we transform them into samples with
a PML distribution with the parameters « and 0, for
strength variable and « and 0, for stress variable.

(vi) Estimate the parameter of PML distribution; we
used the Newton-Raphson algorithm for MLE and
the Metropolis-Hastings (MH) algorithm in
MCMC for Bayesian estimation methods.

(vii) Calculate different measures of performance as
mean, MSE, and L.CI for each method.

From the simulation results in Tables 1-5, the conclusions
of simulation results are as follows: in all scenarios investi-
gated, the bias, MSE, and L.CI of all estimators drop as sample
size increases, indicating an increasing precision in model
parameter estimation. In all of the examples studied, Bayesian
estimators generated under the assumption of gamma prior
are superior to MLE estimators. When compared to Bayesian
estimates based on symmetry, asymmetry loss function, and
ML estimates, Bayesian estimation based on asymmetry loss
function yields more exact results. Also, Bayesian estimates
based on the symmetry loss function perform better than the
ML estimates. Bayesian estimation under LINEX loss gives
best estimators or smaller MSE, minimum L.CI, and mini-
mum bias as compared to the others.

8. Applications of Real Data

The derivation of the PML distribution is primarily con-
cerned with its application in data analysis purposes, which
makes it useful in a variety of domains, notably those in-
volving lifetime analysis. In this section, we discuss the
flexibility of the proposed model for three different appli-
cations of real data. This feature is illustrated by taking:
firstly, the dataset related to COVID-19 epidemic. Secondly,
the analysis of two real datasets of the strength-stress model
is described in this section for illustrative purposes.

8.1. COVID-19 Data. This is a COVID-19 dataset from the
Republic of Moldova that spans 28 days, from October 25
2020 to November 21, 2020. These data formed of the
mortality rate of 10000. The data are as follows: 2.0167,
2.2917,2.1395, 1.4134, 2.6539, 2.4832, 2.5873, 2.5588, 2.0058,
2.4013, 2.6438, 1.6959, 1.9305, 2.0351, 1.1280, 0.2486, 2.3525,
2.2042,2.4167,2.2600, 2.1084, 2.1898, 1.4898, 1.8222, 2.1382,
1.9901, 2.0681, and 2.1443.

In this subsection, we compare the fits of the inverse
Weibull (IW), Weibull (W), Lomax, PL, generalized Lindley
(GL) [34], exponentiated power Lindley (EPL) [35], and
PML models in Table 6. Figure 5 shows the fitted PML, pdf,
cdf, and PP plot of these datasets. Table 7 presents the
Bayesian estimation method with different loss functions for
parameters of the PML distribution. Figure 6 shows
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TaBLE 6: MLE, CvMS, ADS, and KST for different alternative models of PML distribution.

15

Estimates SE KSTDV KSTPV CVMS ADS
loi 3.7674 0.5197
PML 9 0.0562 0.0246 0.1332 0.6545 0.2066 1.2336
B 1.3247 0.1494
w 2 1.6520 03131 0.3645 0.0008 1.0667 5.6951
B 5.2397 0.8497
W 2 22112 0.0821 0.1877 0.2446 0.2858 1.4193
B 18597045.81 36.1753
Lomax 3 38134939 97 10,5566 0.4266 0.0000 0.4855 2.7928
B 3.8650 0.5334
PL ) 0.0947 0.0421 0.1723 0.3375 0.2642 1.3997
y 6.7549 2.2383
GL A 15801 01978 0.2644 0.0323 0.5405 3.0780
o 0.21173 0.05778
EPL 0 0.00018 0.00049 0.1534 0.4783 0.2726 1.3950
B 9.98403 0.02596
P-P plot PML
1.0 4 . 1.0 4
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FIGUre 5: Estimated pdf and cdf and PP plot for PML distribution for the COVID-19 dataset.
TABLE 7: Bayesian for parameters of PML distribution with different loss functions.
SELF LINEC ¢=-1.5 LINEC c=1.5 Entropy b=-1.5 Entropy b=1.5
Estimates SE Estimates SE Estimates SE Estimates SE Estimates SE
« 3.7586 0.4156 3.8948 0.4921 3.6364 0.0022 3.7700 0.4877 3.7016 0.4194
0 0.0592 0.0194 0.0594 0.0262 0.0589 0.0216 0.0607 0.0352 0.0509 0.0171
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FIGURE 6: MCMC trace and histogram with normal curve of proposed distribution for PML distribution.
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TaBLE 8: MLE with SE and KST with p value for the first data.
X Y
Estimates SE KSTDV KSTPV Estimates SE KSTDV KSTPV
o 1.0274 0.0328 0.8626 0.0792
0 0.0025 0.0004 0.1188 0.7470 0.0073 0.0035 0.1325 0.6204
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FiGure 8: Estimated pdf and cdf and PP plot for PML distribution for first data set: strength.
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FIGURE 9: Estimated pdf and cdf and PP plot for PML distribution for first dataset: stress.
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FIGURE 11: Existence for the log-likelihood for the first dataset: stress.

TaBLE 9: MLE and Bayesian for parameter and reliability of the strength-stress model of PML distribution: first dataset.

MLE SELF LINEC c=-1.5 LINEC c=1.5 Entropy c=-1.5 Entropy c=1.5
Estimates SE Estimates SE Estimates SE Estimates SE Estimates SE Estimates SE
« 0.9353 0.0412 0.9273 0.0407 0.9290 0.2363 0.9257 0.0143 0.9279 0.0973 0.9244 5.1811
0, 0.0044 0.0011 0.0048 0.0010 0.0048 0.0018 0.0048 0.0011 0.0049 0.0013 0.0042 0.0062
0, 0.0047 0.0012 0.0052 0.0011 0.0052 0.0020 0.0052 0.0020 0.0053 0.5020 0.0045 0.0061
R 0.6284 0.6303 0.6303 0.6303 0.6309 0.6260

convergence plots of MCMC for parameter estimates of
PML distribution.

By fixing one parameter and adjusting the other, we
sketched the log-likelihood for each parameter as shown in
Figure 7. The COVID-19 dataset behaves quite well, as the
two roots of the parameters are global maximums, as shown
in the figures.

8.2. Application of Strength-Stress Model. The numerical
results of stress-strength reliability estimation for PML
distribution for two real datasets are presented in this
subsection.

8.2.1. First Data Set. The breaking strengths of jute fibre at
two different gauge lengths are shown here. Xia et al. [36]
and Saragoglu et al. [37] employed these two datasets in their
study.

The notations used were as follows: breaking strength of
jute fibre of gauge length 10 mm can be denoted as x “693.73,
704.66, 323.83,778.17,123.06, 637.66, 383.43, 151.48, 108.94,
50.16, 671.49, 183.16, 257.44, 727.23, 291.27, 101.15, 376.42,
163.40, 141.38, 700.74, 262.90, 353.24, 422.11, 43.93, 590.48,
212.13, 303.90, 506.60, 530.55, 177.25)” and breaking
strength of jute fibre of gauge length 20 mm can be denoted
as y “71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85,
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FIGURE 12: MCMC trace and histogram with normal curve of proposed distribution for PML distribution for the first dataset.
TasLE 10: MLE with SE and KST with p value for the first data.
X Y
Estimates SE KSS p value KS Estimates SE KSS p value KS
a 1.0525 0.0681 0.9461 0.0812
0.1216 0.1041 0.1431 0.1709
0 0.0904 0.0163 0.1715 0.0315
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FIGURE 13: Estimated pdf and cdf and PP plot for PML distribution for the second dataset: strength.
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FIGURE 14: Estimated pdf and cdf and PP plot for PML distribution for the second dataset: stress.
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TaBLE 11: MLE and Bayesian for parameter and reliability of strength-stress model of PML distribution: the second dataset.

MLE SELF LINEC ¢=-1.5 LINEC c=1.5 Entropy c=-1.5 Entropy c=1.5
Estimates SE Estimates SE Estimates SE Estimates SE Estimates SE Estimates SE
o 1.0102 0.0522 1.0066 0.0541 1.0088 0.3028 1.0044 0.0147 1.0073 5.3167 1.0030 5.3488
0, 0.1002 0.0144 0.1023 0.0166 0.1025 0.0239 0.1021 0.0174 0.1030 24.8112 0.0990 0.2491
0, 0.1510 0.0209 0.1543 0.0264 0.1548 0.0413 0.1538 0.0253 0.1554 15.8021 0.1489 0.3689
R 0.6940 0.6937 0.6940 0.6934 0.6937 0.6940
1.2 4 -
. 0.14 0.25 4
1 0.20 4
“ 10+ & 0.10 - b2
0.15 4
0.9 b
0.06 0.10
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FIGURE 15: MCMC trace and Histogram with normal curve of proposed distribution for PML distribution for the second dataset.

688.16, 662.66, 45.58, 578.62, 756.70, 594.29, 166.49, 99.72,
707.36, 765.14, 187.13, 145.96, 350.70, 547.44, 116.99, 375.81,
581.60, 119.86, 48.01, 200.16, 36.75, 244.53, 83.55.”

By estimating PML distribution parameters and using
the Kolmogorov-Simon test (KST), it was first determined
whether or not the PML distribution could be employed to
evaluate these datasets. The KST distance values (KSTDV)
are small, and the associated p values (KSTPV) are larger
than 0.05 (see Table 8. Based on the KSTPV, the possibility
that the data are from PML distributions cannot be ruled
out. Figures 8 and 9 confirm this concluding results of first
real data. Figures 10 and 11 confirm that the estimations of «
and 0 have global maximum point.

MLE and Bayesian estimation for parameters and reli-
ability value of the strength-stress model of PML distribu-
tion are shown in Table 9. We note that the Bayesian
estimation methods have the largest reliability value of the
strength-stress model of PML distribution and the smallest
SE in some loss functions. Figure 12 shows convergence
diagnostics by trace plot and kernel density estimation of the
parameters with the normal curve, for 10,000 MCMC
iterations.

8.2.2. The Second Data Set. We used real datasets of con-
sumers’ waiting times before receiving service from two
banks, A and B. Al-Mutairi et al. [28] reported these datasets
simultaneously for evaluating the stress-strength reliability
in the Lindley distribution. The following are the data:
waiting time (in minutes) before customer service in Bank A:
xis“0.8,0.8,1.3,1.5,1.8,1.9,1.9,2.1,2.6,2.7,2.9,3.1,3.2,3.3,

3.5,3.6,4.0,4.1,4.2,4.2,4.3,4.3,4.4,44,4.6,4.7,4.7,4.8,4.9,
4.9,5.0,5.3,5.5,5.7,5.7,6.1,6.2,6.2,6.2,6.3,6.7,6.9,7.1, 7.1,
71,71,7.4,7.6,7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5,
9.6,9.7,9.8,10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9,
12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4,
15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3,
21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5,” and waiting time (in
minutes) before customer service in Bank B: y is “0.1, 0.2, 0.3,
0.7,09,11,1.2,1.8,1.9,2.0,2.2,2.3,2.3,2.3,2.5,2.6,2.7,2.7,
29,3.1,3.1,3.2,3.4,34,3.5,3.9,4.0,4.2,4.5,4.7,5.3, 5.6, 5.6,
6.2, 6.3, 6.6, 6.8,7.3,7.5,7.7,7.7, 8.0, 8.0, 8.5, 8.5, 8.7, 9.5,
10.7, 10.9, 11.0, 12.1, 12.3, 12.8, 12.9, 13.2, 13.7, 14.5, 16.0,
16.5, 28.0.”

By estimating PML distribution parameters and using
the KST, it was first determined whether or not the PML
distribution could be employed to evaluate these second
datasets. The KSTDV is small, and the associated KSTPV is
larger than 0.05 (see Table 10). Based on the KSTPV, the
possibility that the data are from PML distributions cannot
be ruled out. Figures 13 and 14 confirm this concluding
results of the second real data.

Table 11 shows the results of MLE and Bayesian esti-
mation for parameters and the reliability value of the
strength-stress model of the PML distribution. In the
strength-stress model of the PML distribution, Bayesian
estimation approaches have the highest reliability value and
the least SE in some loss functions. Convergence diagnostics
by trace plot and kernel density estimate of the parameters
with the normal curve are shown in Figure 15, for a total of
10,000 MCMC iterations.
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9. Conclusions

In this article, we introduced a new Lindley distribution
that can be abbreviated as PML distribution, and we ob-
tained different properties as moments, moment-gener-
ating function, conditional moments, mean deviation, and
moments of residual and reversed residual lifetimes.
Bayesian and non-Bayesian estimation parameters have
been obtained, which the non-Bayesian is a maximum-
likelihood estimation. In the case of Bayesian estimation,
we perform the approximation using the MCMC technique
based on symmetric and asymmetric loss functions. The
Bayesian estimator based on gamma priors has been
proposed. The confidence intervals have been done for
MLE and Bayesian for parameters of model and reliability
stress-strength by using the delta method. To test the
performance of the different estimators, extensive simu-
lations are run, and it is discovered that all estimators react
similarly. In terms of the performance of simulation,
Bayesian estimation outperforms MLE in terms of esti-
mating parameters and R, according to the simulation
study. A comparative study of real datasets shows that PML
distribution is well fitted to the considered datasets due to
minimum values of KSTDV, CVM, and ADS. Compared
with previous studies, we obtained the highest value for R
compared to previous studies, which indicates the effi-
ciency of the model used and the strength of its inter-
pretation of different data.

In future work, we intend to discuss ranked set sample
for PML distribution as Sabry et al. [38], Sabry and
Almetwally [39], Hassan et al. [31], Noor-ul-Amin et al. [40],
and Esemen et al. [41]. Also, we intend to discuss the in-
ference of PML distribution based on censored sample as
Hassan and Ismail [42], Almongy et al. [43] Cho and Lee
[44], and Almetwally et al. [45].
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