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Multilayer Aggregation with 
Statistical Validation: Application 
to Investor Networks
Kęstutis Baltakys1, Juho Kanniainen1 & Frank Emmert-Streib2,3

Multilayer networks are attracting growing attention in many fields, including finance. In this paper, 
we develop a new tractable procedure for multilayer aggregation based on statistical validation, which 
we apply to investor networks. Moreover, we propose two other improvements to their analysis: 
transaction bootstrapping and investor categorization. The aggregation procedure can be used to 
integrate security-wise and time-wise information about investor trading networks, but it is not 
limited to finance. In fact, it can be used for different applications, such as gene, transportation, and 
social networks, were they inferred or observable. Additionally, in the investor network inference, 
we use transaction bootstrapping for better statistical validation. Investor categorization allows for 
constant size networks and having more observations for each node, which is important in the inference 
especially for less liquid securities. Furthermore, we observe that the window size used for averaging 
has a substantial effect on the number of inferred relationships. We apply this procedure by analyzing 
a unique data set of Finnish shareholders during the period 2004–2009. We find that households in the 
capital have high centrality in investor networks, which, under the theory of information channels in 
investor networks suggests that they are well-informed investors.

Scientific literature on multilayer networks has recently started to gain more attention1–3, having important appli-
cations in the financial area4,5. Recent empirical evidence has triggered a disagreement over conventional tracta-
ble financial models6. In finance, complex network theory7,8 has mainly been applied to gauge the systemic risk 
posed by interconnected banks6,9–12, but recently, multiple network inference methods have been developed to 
investigate trading behavior13,14 and portfolios15 in investor network research.

An investor network is a representation of a real-world complex system where institutional and private inves-
tors indirectly interact with each other by trading or owning securities. In general, network science methods 
allow for analyzing and gaining a clearer understanding of the intricate relationships between the components of 
this system, and a key advantage of such an approach is that it allows for visualizing the resulting networks16,17. 
However, estimating investor networks is not straightforward, as links between investors are not directly observa-
ble. Instead, a link represents the abstract distance of a pair of investors in terms of trading behavior or portfolios. 
Therefore, the analysis requires investor-level transaction or portfolio data and an appropriate statistical inference 
method for inferring such networks from the data. Even though complex network methods have begun attracting 
attention to investor-level data18, many methodological challenges remain, several of which we aim to address in 
this paper. For our analysis, we use data from a large shareholder registry to investigate the trading networks of 
different investor categories.

First, the main challenge in investor trading networks is considering multiple securities leading to a multi-
layer network representation. What if we wanted a simple network representation, which would have statistically 
significant relationships over multiple securities? Ever-changing investor behavior poses difficulties for correctly 
inferring their relationships. Most likely, performing network inference for a whole period will not reveal the 
whole picture, as localized relationships between investor categories occurring at different periods might be 
diluted when we look at longer horizons. At the same time, static networks inferred over a whole period do not 
provide information on how node relationships evolve over time. In order to analyze the varying associations 
between investor categories, we use a simple, window-based analysis to recover the time-evolving networks of 
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investor category interactions. Moreover, having a sequence of network snapshots, one might want to summarize 
the most important reoccurring relationships over the whole period. Therefore, we propose a multilayer aggrega-
tion approach that can address this challenge by integrating an ensemble of networks, resulting in a network that 
captures the most significant consistencies in investor relationships over multiple estimation periods and many 
securities. We also consider the influence of window size on the resulting aggregated networks19. As we show, this 
approach allows for producing robust network structures using all of the transaction data over multiple securities 
and estimation periods without discarding a single transaction.

Second, we can think of investor trading as a data generation process that produces observations (transaction 
data) based on unobservable trading mechanisms. For example, trading algorithms have specific trading rules, 
and household investors with more or less intuitive trading strategies can have certain (stochastic) mechanisms, 
which are impossible to observe directly. The point is that the data set of observable transactions is just one real-
ization of the underlying data generation process driven by certain mechanisms. Therefore, one might wonder 
which data sample to use for the network inference–all the transaction data together or one or more sub-samples 
of the full set of trading data. In addition, in our case, the investor category consists of many investors, and we 
want to prevent cases where a couple of active investors or investors who trade large volumes overshadow the 
behaviors of other investors in the category. In our approach, we address these problems by performing the lowest 
resolution bootstrapping at the investor transaction level. An empirical demonstration shows that the results 
clearly differ between the conventional approach of using the full data set directly and our data bootstrapping 
approach.

Third, the transaction data for network inference suffers from a high-dimension, low-sample size problem20, 
as the number of investors exceeds the number of trading days. Estimating investor networks based on trading 
patterns requires long observation periods and sufficient data for each investor13. Since the majority of household 
investors are rather inactive, only a fraction of investors–the active ones–can be included in the analysis. The 
exclusion of inactive investors leads to the description of a sub-system; therefore, the conclusions can be difficult 
to generalize at the market level. In this paper, we solve this problem by assigning investors to categories accord-
ing to investor attributes that are available in the data set. Such a categorization allows us to reduce the number 
of variables in the system significantly, but we do not exclude data, as the categories contain aggregated data from 
the whole system. Importantly, this approach allows for considering inactive investors and less liquid stocks with 
fewer trading events. The size of such a categorized network remains the same over time, whereas the size of a 
network of individual investors can change over time, depending on the activeness of the investors. Since investor 
categories are based on real attributes, we can characterize the nature of each category.

We contribute to the methodological research literature by introducing three building blocks that can be used 
together or separately: the investor categorization, transaction data bootstrapping and network aggregation. The 
main contribution of this paper is that we propose the use of a tractable multilayer and multistep aggregation 
procedure, by which we aggregate information from multiple layers using statistical validation. Methodologically, 
this approach can be used for different non-financial applications, with various network estimation methods, even 
for observable networks. Multilayer aggregation procedure can be used standalone in cases when the underlying 
networks are either directly observable of the input is a network. In that case, no data bootstrapping is necessary.

In contrast to our paper, none of the existing procedures provide tractable procedure for the aggregation of 
binary network layers using statistical validation. The paper that mostly closely resembles ours regarding its topic, 
proposes an ensemble-based network aggregation21 method that leverages the rank-product method22 to improve 
the accuracy of gene network reconstruction. However, the algorithm is intended to integrate gene networks 
inferred using different methods and genomics data sets. Other trivial network ensemble aggregation procedures 
include maximum and mean rules23. Another recent paper24 proposes a method for reducing the complexity of 
multilayer networks by aggregating the redundant layers while retaining the pertinent information about the 
whole system. In practice, the goal of their method is to combine similar layers and keep dissimilar layers apart. 
The objective of our research is different from ref.24; we are looking for the most important relationships that span 
multiple layers, rather than keeping information about different layers. The principal of our procedure is con-
sistent with that of ref.25; however, we are aggregating layers whereas ref.25 is for the inference of unlayered data.

Secondly, we contribute the literature on investor networks by introducing transaction bootstrapping, which 
improves the inference of the networks. Additionally, in the investor network inference, we consider investor cat-
egories, instead of individual investors. This makes the system interpretable in economic and sociological terms. 
As a fourth building block, we use already existing network inference methods to identify links between investors. 
In addition to the methodological contribution, this is the first paper that provides investor network graphs over 
multiple securities and time-windows. We provide empirical evidence that households in Helsinki are the most 
central investor category that, under the theory of information channels in investor networks14, this category is 
shown to represent well-informed investors.

Overall, our framework can be summarized as follows (in chronological order):

•	 Investor categorization, where all investors in the analyzed data set are assigned to only 99 categories based 
on their economic and social attributes. Categorization allows to keep the number of nodes in the network 
constant, with sufficient transaction data for each one of them. (Investors → Investor Categories).

•	 Transaction data bootstrapping, where the analyzed data is uniformly resampled into multiple data sets for 
better statistical validation in the network inference. The advantage of the bootstrap is that it does not require 
any assumptions about the data distribution and it addresses the issue of finite observations. (Dataset → Resa-
mpled Datasets).

•	 Network inference, where a selected inference method is used to identify edges between investor categories 
for each resampled data set to produce an ensemble of networks. In this regard, we use two existing methods: 
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Conservative Causal Core Network (C3NET)26 and Minimum Spanning Trees (MST). In fact, any network 
inference method27–31 that produces or can be converted into binary, non-weighted networks could be applied. 
(Dataset → Network).

•	 Network aggregation, where by using statistical validation, a network ensemble is aggregated to identify 
significant relationships that appear across the set of networks. In our demonstration, we employ the aggre-
gation procedures in three different ways revealing the most important relationships: during bootstrapping, 
where relationships arise for the same security during the same time period; in the time-wise aggregation, 
where the relationships are observed for the same security in different time periods; and in the security-wise 
aggregation, where the relationships are observed in the same time period over multiple securities. (Network 
Ensemble → Aggregated Network).

To demonstrate our multilevel aggregation approach, we use an investor-level transaction data set obtained 
from Euroclear Finland Ltd for our analysis. It includes transactions from 2004-01-01 to 2009-12-31 of all domes-
tic investors that traded stocks listed on the Nasdaq OMX Helsinki Exchange. Each transaction also contains 
meta-data about the investors (the same data set is used, for example, in refs13,32,33, while ref.14 uses a similar data 
set of trades on the Istanbul Stock Exchange). In this data set, the attributes used to categorize investors include 
gender, year of birth, and postal code for households and sector code for institutions. These attributes allow us to 
define 99 investor categories on which our analyses are performed.

Before providing results on our data set, let us elaborate the main principle of aggregation, while leaving the 
technical details of statistical validation into Methods section. Figure 1 demonstrates how the ensemble of indi-
vidual networks is aggregated. Overall, we have two different layers in investor networks. The first layer indicates 
securities and the second one indicates time. Interestingly, there are two different ways to integrate over these 
variables, indicated by the blue and red arrows. We show in the following that the results highlight different char-
acteristics of the data.

For each time step and each security, we want to extract a network. These networks cannot be directly observed, 
but they are estimated using the transaction data set. By bootstrapping this data set, we generate B bootstrap data 
sets. Network inference is applied to each of these B data sets, resulting in an ensemble of B networks. The aggrega-
tion of the B networks results in one network, indicated by (1) (see Fig. 1). Adjacent networks in the main matrix are 
similarly inferred for other time steps and securities. Each column is an ensemble of networks that contains infor-
mation about trading relationships for different securities during the same time step, while each row is a network 
ensemble that contains information about trading relationships in individual securities over different time steps. In 
the following, we first describe the security-wise integration and then the time-wise integration.

Initially, we integrate the security-wise information for each time step contained in the columns. Network (2) 
represents an aggregated network for time step 1 over all securities. Repeating a similar analysis for each of the T 
different time steps results in further networks for the corresponding cases. To combine these T networks, we per-
form aggregation again, resulting in one final network, indicated by (3) in the figure. The blue arrows in the figure 
represent the aforementioned steps. Alternatively, one can perform a time-wise integration first in a similar way. 
This type of integration follows the red arrows in the figure and applies 2 times the aggregation method because 
two integration steps are required. This leads to the final network indicated by (5). Interestingly, even though the 

Figure 1.  Aggregation of ensemble of individual networks. A set of networks in the main matrix containing two 
information layers–time and securities (networks adjacent to network (1)). Each of these networks is a result of 
applying a chosen network inference algorithm for the corresponding transaction data sets. Two information 
integration approaches are possible: one-layer integration of either securities (2) or time (4), for each period and 
security, respectively, or a multilayer approach, where both information layers are fully integrated, leading to 
networks (3) and (5).



www.nature.com/scientificreports/

4SCIEnTIFIC REPOrtS |  (2018) 8:8198  | DOI:10.1038/s41598-018-26575-2

final networks (3) and (5) summarize the same information, because of the different aggregation order, the cap-
tured relationships might be different, as shown in the results section.

In the next section, we present the results from the method application to our data set. We begin by applying 
our proposed techniques to single security networks. We investigate the impact of transaction bootstrapping on 
the network inference problem and compare a network inferred over the whole period to an aggregated network 
from a set of network snapshots. Next, we investigate multiple security networks. First, we use the aggregation 
technique to summarize information about trading in multiple securities and then we perform a two-layer aggre-
gation, summarizing the information given by a series of network snapshots for a set of securities.

Results
In this section, we describe the network inference and aggregation process over single and multiple securi-
ties by performing the analysis over the whole period of analysis and multiple non-overlapping sub-periods. 
Mutual information (MI) values are estimated from daily net volume time series for each investor group pair. 
Any methods that produce or can be converted into binary, non-weighted networks can be used and in this 
paper we employ two existing algorithms. As a main algorithm, we employ Conservative Causal Core (C3NET) 
(see Methods for details) for network inference from the MI estimates in order to demonstrate our aggregation 
method. Moreover, we compare the results for single security trading networks obtained using C3NET and the 
minimum spanning tree (MST).

Single Security Networks.  We investigate single security networks using data on the most liquid security 
in the Helsinki stock exchange–namely, Nokia. In this section, we aim to demonstrate transaction bootstrapping 
impact on network inference and the aggregation of multiple networks inferred from different time periods. Also, 
we compare results obtained using two inference algorithms, C3NET and MST.

Network inference.  We begin our results section by comparing inferred networks using C3NET algorithm with 
and without transaction bootstrapping. By definition, C3NET allows for establishing as many links as there are 
nodes in the network, if each investor group has at least one statistically significant MI estimate with some other 
group. In our data set for Nokia from 2004-01-01 to 2009-12-31, using C3NET, we infer 90 links. Interestingly, 
even after completing the categorization, some investor categories do not have a sufficient number of Nokia trans-
actions to estimate relationships. For the bootstrapped version of network inference, we perform 100 transaction 
sampling iterations and form a network for each of them using the C3NET algorithm. The resulting ensem-
ble of 100 networks contains 8853 links with 1195 different relationships. As a statistical null model for our 
ensembles, we choose the canonical Erdös–Rényi G(n, p) model, with a fixed number of nodes and an ensemble 
probability of a random link (see the methods section for more details). A fully connected ensemble would have 
n × (n − 1)/2 × B = 485 × 100 links; therefore, the probability of having a random link in the ensemble is esti-
mated to be p = 8853/485100 = 1.82 × 10−2. By choosing significance of α = 0.01 and adjusting it by the number 
of tests we perform (1195), we conclude, that a relationship must be observed in at least 10 networks for it to be 
considered non-randomly occurring. The bootstrapped version identifies a total of 197 relationships that are sta-
tistically significant. Hence, the topology is no longer limited to one link per node. Almost all relationships from 
the non-sampled C3NET network are found also in the bootstrapped version–that is, 77 out of 90.

The two networks are depicted in (a) and (b) sub-plots of Fig. 2. Both networks identify the same nodes as 
most connected, and the four most connected nodes represent households. Specifically, the most connected node 
represents mature Helsinki households, followed by the same age group of western Tavastians, then middle-aged 
western Tavastians, and finally, mature northern Finnish households. The most connected non-household groups 
in the bootstrapped version are non-profit organization from eastern Tavastia, non-financial company from 
Ostrobothnia, and financial insurance company from northern Savonia, with six relationships each.

Time-wise network aggregation.  The third and fourth networks for Nokia security in Fig. 2(c,d) are obtained 
by aggregating two 12-network ensembles inferred from non-overlapping 6-month periods covering the whole 
6-year period analyzed. As in the previous section, we compare Nokia networks inferred with and without 
transaction bootstrapping. The number of relationships in the non-bootstrapped version ensemble varies from 
63 to 80 and from 182 to 216 in the bootstrapped version. A total of 1420 different relationships are observed 
throughout the 12 networks in the transaction bootstrapped network ensemble and the total number of links 
in the ensemble is 2361, while in the non-bootstrapped version, the numbers of relationships and links are 
673 and 858, respectively. Each network contains 99 nodes, and therefore, the total possible number of links 
in the ensemble is equal to 12 × 4851 = 58212 and the probabilities of having a random link are estimated to be 
p = 2361/58212 ≈ 4.05 × 10−2 and p = 858/58212 ≈ 1.47 × 10−2. Again, by choosing the statistical significance of 
α = 0.01 and adjusting for the number of tests performed, a link must appear at least 5 times in order to be aggre-
gated into the final network for the bootstrapped version and 4 times for the non-bootstrapped version. From 
Table 1, we see that in the bootstrapped version, 54 links appear at least 5 times in the 12 networks, and Fig. 3 
shows the link occurrence in the ensemble. In the latter figure, we can see that some relationships are accumulated 
in consecutive periods while others are more scattered over time.

From Fig. 4 we can see that 43 links overlap with the bootstrapped version of C3NET for the whole period 
under analysis. Further, for the non-bootstrapped version, 14 relationships are inferred after time-wise aggrega-
tion. Of those 14 relationships, 14 also appear in the bootstrapped version. All nodes, but two non-financial inves-
tor groups that have relationships, are households. A visual inspection of all four networks in Fig. 2 reveals that 
the most important set of nodes in both networks inferred from the whole transaction data set is also identified 
as central in networks aggregated from various time window analyses.



www.nature.com/scientificreports/

5SCIEnTIFIC REPOrtS |  (2018) 8:8198  | DOI:10.1038/s41598-018-26575-2

Choice of network inference method.  The multilayer aggregation framework works independently of the choice 
for network inference, because it is applied to an ensemble of networks and not the underlying data. Here we pres-
ent Table 2 to compare the obtained aggregated Nokia networks using the C3NET and MST network inference 
algorithms. In the table, we can see that the two similarly strict network inference algorithms yield highly similar 
results. We can also see that once we use network aggregation, the resulting aggregated network does not comply 
the definitions of respective algorithms. For example, in the aggregated networks MST no longer has (n − 1) links, 
where n is the number of nodes in the network (here n = 95). Also, C3NET is no longer limited to at most n links.

Multiple Security Networks.  In the extant literature, investor trading networks have estimated for sin-
gle securities (see ref.13). In this paper, we show how to aggregate the networks of 100 securities into one. The 
security-specific networks are inferred using the whole 6-year period with transaction bootstrapping. Next, we 
examine the aggregation of networks with respect to securities and time-periods. Particularly, we explore how 
different the resulting aggregated networks are if we first integrate security-wise and then time-wise information 
versus in other way around. For simplicity, we present results for the bootstrapped version of C3NET and results 
for MST are available upon request.

Figure 2.  Four networks of investor group trading relationships in Nokia security. Investor group positions are 
fixed in all four plots. Node sizes depend on node degrees in each network. The first network (a) is inferred using 
the C3NET algorithm on the original data set. The second network (b) is inferred by bagging C3NET. For the 
third (c) and fourth (d) networks, the whole six-year period is divided into 12 six-month sub-periods. For each of 
those 12 sub-periods, a C3NET and bagged C3NET networks are inferred. Then those 12 networks are aggregated 
into a final network that covers the whole 6-year period.  - Households,  - Non-profit organizations,  

 - Other companies  - Financial and insurance companies,  - Government institutions.

Number of 
occurrences 12 11 10 9 8 7 6 5 4 3 2 1

Links 3 0 2 6 6 11 12 14 38 96 312 920

Cumulative 3 3 5 11 17 28 40 54 92 188 500 1420

Table 1.  Number of link occurrences in the Nokia ensemble inferred over non-overlapping six-month periods 
using the bootstrapped version of C3NET. We can see that only one link appears in all 12 networks, while 992 
links appear only once.
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Security-wise aggregation.  Here, we aim to incorporate information about investor group trading relationships 
in 100 securities over the whole 6-year period. The number of inferred relationships across different securities 
ranges from 88 to 261 while the total number of detected relationships in the ensemble is 3218. Subsequently, for 
the ensemble of 100 security networks, we apply the same aggregation procedure as before. From the observed 
number of links in the ensemble and total possible number of links in a fully connected ensemble of this size, we 
estimate the probability of random links to be p = 20229/485100 = 4.17 × 10−2. Then, for a significance level of 

Figure 3.  54 most re-occurring links in 12 Nokia networks estimated over non-overlapping 6-month periods. 
 - inferred relationship, □ - no relationship.

Figure 4.  Link overlap in variously inferred networks for Nokia. 6y. is the network inferred using transaction 
bootstrapping over the whole period. All the other networks are inferred on shorter windows (1, 2, 3, 4, 6, 12, 24 
months) and then aggregated into a network that covers the whole period under analysis. From the figure, we 
can observe that most of the relationships inferred over the longer observation windows are also found in the 
shorter window analyses.

Without transaction bootstrapping With transaction bootstrapping

Length of (sub-)periods 6 y. 6 y. 1 m. 2 m. 3 m. 4 m. 6 m. 12 m. 24 m.

Panel A: Links

MST 94 215 333 137 97 84 59 39 28

C3NET 90 197 247 93 78 60 54 41 29

MST ∩ C3NET 90 177 219 83 67 53 49 32 25

Panel B: Nodes

MST 95 96 51 42 38 40 38 35 28

C3NET 95 96 48 41 36 33 37 36 29

MST ∩ C3NET 95 96 48 37 32 32 36 33 26

Table 2.  Here we compare the number of estimated links and nodes having a link in the aggregated networks 
for Nokia security. As the length of time period, “6 y.” is the network inference algorithms applied to the whole 
6-year period. “1 m.”, “2 m.”,… are the bootstrapped versions of network inference algorithms applied over 1, 
2,… month periods and then aggregated over all respective periods to cover the whole 6 years.
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α = 0.01, we apply Bonferroni adjustment in 3218 tests and end up with a threshold of 16 link occurrences in the 
ensemble, which leaves 236 links in the aggregated network. Households represent the majority of groups with 
relationships over multiple securities. Furthermore, two of the most central nodes are mature and middle-aged 
household investor groups from Helsinki, with 49 and 30 relationships, respectively. The two most central 
non-household investor groups are financial and non-financial companies in Helsinki, both with 9 relationships 
to other investor groups.

Here we leverage the previously introduced time-wise and security-wise network aggregation procedures. 
Our goal is to produce a single network that can summarize the trading relationship information inferred for 100 
securities over multiple and various sizes time windows. We investigate networks inferred over seven different 
non-overlapping time windows–that is, 1, 2, 3, 4, 6, 12, and 24 months. Each security respectively has 72, 36, 24, 
18, 12, 6, and 3 such networks, covering the whole 6-year period under analysis. Our starting point is a set of net-
work ensembles inferred using bootstrapped C3NET algorithm for 100 securities for all analyzed time window 
sizes. For instance, in the case of the 6-month window, we have 12 networks for each of the 100 securities–that 
is, an ensemble of 12 × 100 = 1200 networks (corresponding to the networks in the main matrix of Fig. 1). We 
must also keep in mind that the aggregated network will differ depending on the order of information aggrega-
tion–that is, if relationship time-wise or security-wise information is summarized first. Accordingly, we describe 
the results of using both approaches and compare the final results. By performing the time-wise aggregation first, 
we end up with a 100-network ensemble, with one network for each security. Links in each network represent the 
most important reoccurring relationships in corresponding securities. Conversely, if we start with security-wise 
aggregation, we end up with an ensemble of 12 networks. Each of the 12 networks contains the most important 
relationships that are present over multiple securities, but this might be a different set of securities in each period. 
Next, for the two ensembles stemming from the first aggregation procedure, we perform the final aggregation, 
yielding a network summarizing the relationships of investor groups in their trading behavior over 100 securities 
for the whole period under analysis. However, the two final networks are not the same (see the networks in Fig. 5). 
Table 3 compares the links and nodes in the final networks for various window sizes. For each of the seven time 
windows, we obtain two networks, depending on the order of the aggregation procedure; thus, together with 
the security-wise aggregated network for the whole period from the previous section, we compare 15 networks. 
Figure 6 summarizes the node degrees in all 15 final networks. Node degree sequences are highly correlated, 
with Spearman’s correlation ranging from 0.65 to 0.99. Similar to the whole period security-wise aggregated 
network, networks in Fig. 5 identify mature and middle-aged household investor groups from Helsinki as the 
most central groups, while financial and non-financial company investor groups from Helsinki are most central 
non-household investor groups.

Financial interpretations.  The networks are designed to reflect associations in investors’ trading behavior 
and hence the high centrality reflects that there are many other groups of investors that behave in a mutually 
predictable way. Conversely, if an investor category is measured to have low centrality, then investors in this 
category are trading differently compared with other investor categories. From the point of view of information 
networks in financial markets14, high centrality of a node indicates that investors in the node have many private 
information channels from other investors. Therefore, given that association between investors trading patterns 
reflects information transfer, high centrality reflects good access to private information. In this paper we con-
sider both positive and negative linkages to represent information transfer, that is two investors can employ the 
mutual information channel to trade in the same or opposite directions. Technically, we have used three centrality 

Figure 5.  Networks summarizing investor group trading similarities in 100 securities over 6 years. The starting 
point for both networks is a set of 1200 networks inferred for each security over 12 six-month, non-overlapping 
periods. The difference between networks comes from the aggregation order. The first network is first 
aggregated security-wise and then time-wise while the third network is aggregated in reverse order. Network (3) 
in Fig. 1 represents network (a), while network (5) in the same figure represents network (b).  - Households, 

 - Non-profit organizations,  - Other companies  - Financial and insurance companies,  - Government 
institutions.
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measures: Degree (fraction of nodes it is connected to), load centrality (fraction of shortest paths that include the 
given node), and closeness (1 divided by the average shortest-path distance for a given node).

Regarding the networks of investors over all the securities and 12 half-year periods (see Fig. 5, the two most 
central investor categories are Middle-Age and Mature Household investors located in Helsinki. This result is 
robust across all the measures, i.e. degree, load centrality and closeness. A deeper investigation of the results 
shows household traders trade in a rather mutually predictable way between each other, though links to financial 
and non-financial companies exist, too. From the point of view of information propagation, these investors, i.e. 
households in the capital, are well-connected to other investor groups across the country. Potentially, this can be 
explained by rather strong and long-lasting internal migration and industrial changes in Finland to urban cen-
tres and especially to the capital of Helsinki (see, for example, ref.34). Particularly, such work-related migration 
can strengthen the social ties between different regions of the country. In addition, top-10 central nodes include 
not only household investors of different age groups and regions, but also Financial and Insurance Companies 
and Non-Financial Companies, which are among 3–7 most central nodes (the rank depends on the centrality 
measure). This can be seen also from Fig. 5, where the node of Financial and Insurance Companies is with blue 
color and Non-Financial Companies in green. This means that the investment behavior of financial institutions 
is not very different from the behavior of other investor groups. In fact, this result does not support some earlier 
findings that institutional investors and households (all households collected together) exhibit different trading 
strategies (see ref.32). Rather, based on our findings, there are large groups of households whose trading patterns 
are strongly associated with financial institutions, which we can observe from validated networks, aggregated 
over multiple stocks.

Discussion
The advantage of our aggregation approach is that no arbitrary link-filtering threshold is needed. Instead, the 
algorithm adjusts this itself depending on a chosen significance level and the properties of the investigated net-
work ensemble. We found that networks aggregated over multiple time-periods and inferred over the whole 
period significantly differed in the number of relationships inferred and the number of nodes having relation-
ships. However, a similar set of nodes was identified as central in both cases. Second, when the networks are 
aggregated over multiple securities and time-windows, two-layer aggregation yields different network descrip-
tions depending on the order of information aggregation. It is worth mentioning that the aggregation of time-wise 
and security-wise trading relationships could be performed in a single step, in which case there would be no 
confusion about the aggregation order. However, in that case, the meaning of network relationships would be 
obscure. We would be neither certain that investor categories were similarly trading over a significant number 
of the same securities nor that they were trading similarly over a significantly large number of the same periods; 
further, the definition of a single step aggregation would be somewhere in-between, in some cases perhaps failing 
to meet both criteria. This question will be addressed in the future research.

Second, to the best of our knowledge, we are the first to propose the use of lowest resolution–that is, 
transaction-level–bootstrapping as the means for statistically validating investor network relationships. The 
advantage of transaction bootstrapping is that it enables network inference over shorter time windows to provide 
insight into the dynamics of these relationships. Most of the research has been focused on inferring static or 
time-invariant investor networks, and much less has been done to infer the dynamic relationships that are con-
stantly evolving over time. Indeed, over the course of time, multiple interchanging processes may determine the 
behavior of investor categories, and such processes can be dynamic and stochastic. Therefore, investor behavior 
at each time point is dependent on these processes, and investor networks can undergo significant topological 
changes, rather than being invariant over time. Transaction bootstrapping is a viable strategy for network infer-
ence because it not only allows for assigning statistical significance to link existence but also enhances the robust-
ness of the relationships to specific realizations of the trading outcome.

Finally, we introduced investor grouping into categories based on their attributes. This approach allows for 
performing any analysis by discarding less information. Also investor category networks based on investor 
attributes have not been investigated previously in the literature. The vulnerability of the investor categorization 
approach is that the ensuing analysis is ultimately dependent on the category definition.

In the results section, we observed that Helsinki households represented the most connected investor cat-
egory. Under the theory of information channels in investor networks14, this category is shown to represent 

Window 
size

Nodes Links

ST\TS ST ∩ TS TS\ST Jaccard ST\TS ST ∩ TS TS\ST Jaccard

1 0 34 4 0.8947 1 264 85 0.7543

2 0 40 1 0.9756 19 282 15 0.8924

3 1 39 0 0.9750 40 263 7 0.8484

4 0 42 2 0.9545 46 259 8 0.8275

6 3 42 0 0.9333 86 233 3 0.7236

12 13 38 0 0.7451 132 176 4 0.5641

24 5 42 0 0.8936 62 93 20 0.5314

Table 3.  Summary of node and link overlap in various window size final networks. ST stands for the network 
where the first aggregation layer is security-wise (network (3) in Fig. 1) and TS is the network where the first 
aggregated layer is time-wise (network (5) in Fig. 1).
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well-informed investors. In fact, the important role of household investors has been identified in the litera-
ture35–38. For example, according to38, households are contrarian traders, leading them to serve as liquidity pro-
viders to institutional investors.

In our future research, we will employ this framework to analyze the relationships between buyers and sellers 
under different market conditions. Additionally, we expect that in the future research this framework will be 
exploited with non-financial applications, too, such as social networks39, different communication channels40–42, 
transportation43, and co-authorship44 networks.

Methods
Dataset and categorization.  We use an investor-level transaction data set covering the period from 2004-
01-01 to 2009-12-31 of all trades executed by domestic investors on the Helsinki Stock Exchange. The data set 
is composed of transactions belonging to 443556 investors trading in 100 securities over 6 years. The analyzed 
security list includes the top 100 securities ranked by number of investors and transactions. Each investor in the 
data set is assigned to a sector group: Financial and Insurance, Government, Non-Financial, and Non-Profit 
companies, and Finnish Households. Households are further divided into five age groups: Under-Aged (0, 18], 
Young (18, 30], Middle-Aged (30, 50], Mature (50, 64], and Retired (64, +∞]. Age attributes are derived for each 
transaction separately, taking into account the difference between the transaction date and the year of birth of 
the corresponding investor. All of these groups are also distributed geographically by assigning investor postal 
codes to 11 regions: Helsinki, Rest-Uusimaa, Eastern-Tavastia, South-West, Western-Tavastia, Central-Finland, 
South-East, Ostrobothnia, Northern-Savonia, Eastern-Finland, Northern-Finland. Together, these assignment 
rules form 99 investor categories. Each transaction in the dataset is assigned to one of these categories.

In terms of the number of investors, the largest categories are households in various regions and of different 
age. For example, the category “Helsinki households, Middle-Age” includes 58 124 individual household inves-
tors. In contrast, there are 343 members in the category “Helsinki financial-insurance companies”. The smallest 
categories are these ones for General Government, having 6–84 members, depending on the location.

In terms of the average number of trading days, the most active investor category is middle-age individuals 
(households) in Helsinki area with approx. 1 229 trading days/security over this data period. This is a high num-
ber, because this category trades a security on average in ∼80% of all the unique trading days. Mature individuals 
(households), Financial and Insurance Institutions, and Non-Financial Companies, all in Helsinki area, followed 
with 1.097, 974, and 929 average trading days/securities, respectively. In contrast, general government investors 
categories located elsewhere than in Helsinki traded just on a few days over the whole period. On the other hand, 
if activity is measured by the number of transactions, then the most active category is “Helsinki financial-insurance 
companies” traded over 11 million times over the six-year period. Non-financial Companies and mature house-
hold investors, both in Helsinki, followed, having around 3.5 million and 2.3 transactions over the same period. 
Again, the categories for General Government located elsewhere than in Helsinki were inactive in terms of the 
number of transactions, having just a few transactions over the whole period.

The data that support the findings of this study are available from Euroclear Finland Ltd., however, are not 
available from the authors under the non-disclosure agreement signed with the data provider.

Transaction bootstrapping.  For network inference, we perform B bootstrap iterations. For each bootstrap 
iteration, we uniformly re-sample with replacement the whole transaction data set under investigation, yielding a 
replica dataset of the same size as the original, but with randomly chosen transactions. More specifically, some 
transactions from the investigated dataset might appear more than once, while others might not be included at all, 
but the total number of transactions in the bootstrapped dataset will equal the number in the original dataset. 
Then, for each sampled transaction set b, we aggregate daily transaction records for each category, resulting in a 
net traded volume matrix  b, where b ∈ {1 … B} and the columns of the matrix w t( )i

b  are the net traded volume 
time-series of investor group i.

Mutual information (MI) estimation.  We estimate the MI values using net volume matrix. For simplicity, 
we assume that the joint distribution of net traded volumes is normal. Then we can calculate the MI analytically 

Figure 6.  Node degree comparison in final networks aggregated over 100 securities and non-overlapping time 
windows covering the whole 6-year period. T{W}_{O}, where W stands for the window size and O stands for 
aggregation order, either security-wise or time-wise first. The row with 6 y. inference strategy stands for the 
network aggregated from networks that were inferred using the whole six-year data set for each security.
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from Pearson’s correlation. If wj(t) are the net traded volume time-series in some security of investor group j, then 
the correlation coefficient between investor categories i and j is defined as ρij = [〈wi(t) × wj(t)〉 − 〈wi(t)〉 × 〈wj(t)〉]/
[σi × σj], where 〈·〉 and σ• denote the mean and standard deviation. Then MI is defined as =I i j( , ) ρ− −log(1 )ij

1
2

2 .

Network inference.  We apply a chosen network inference method to MI estimates obtained from the net 
traded volume matrix  b. A specific requirement for the inference method is that it is computationally efficient 
for handling a large bootstrap ensemble. For this reason, we have chosen the C3NET26 inference method as our 
main network inference method, and MST as a comparison example. C3NET is intended to infer a significant 
maximum MI network. This algorithm comprises three basic steps:

	 1.	 MI values are estimated for each investor category pair.
	 2.	 Each MI value estimate is tested against a null hypothesis of vanishing MI. The null-hypothesis H0:I(i, 

j) = 0, i.e. the MI between investor group i and j is zero.
In order to test the statistical significance of the MI estimates, we need to procure an appropriate null 
distribution. To do that, we independently resample with replacement dates, traded volumes, and 
categories completely eliminating any relationship between them. Then we aggregate daily transaction 
records for each category, resulting in a net traded volume matrix 

∼b
. We do this multiple times and each 

time we estimate MI values between pairs of investor groups. These values result in an estimate of the null 
distribution, which we use to find statistically significant MI values.

	 3.	 From statistically significant MI values each investor group is allowed to keep a single link, with the strong-
est statistically significant MI value. The resulting binary network has at most M relationships in a system 
of M nodes.

MST is another strict network filtering algorithm. It keeps the subset of edges, that connect all nodes, while 
at the same time having the smallest possible total sum of edge weights. In order to use MST together with MI 
estimates, we transform MI values by multiplication with −1, then the network construction is straightforward:

	 1.	 Sort pairwise MI estimates in a ascending order.
	 2.	 Take the node pair with the lowest −1 × MI value and add a link between them in the network if it doesn’t 

create a cycle in the network.
	 3.	 Remove the previously chosen MI value from the queue.
	 4.	 Repeat steps 2 and 3 until all nodes are connected and there are still unused MI values in the queue.

Network aggregation.  The aggregation procedure takes an ensemble of N independent undirected binary 
networks =G{ }k k

N
1 as an input and gives a single network G as an output. Our procedure is methodologically similar 

with ref.25, where the inference was improved by aggregating bootstrap ensemble of gene regulatory networks, 
though we use the principle to aggregate layers, not bootstrap ensemble. In our demonstration, the number of 
networks in the ensemble N takes the values of B when aggregating the bootstrap ensemble, T when aggregating 
over non-overlapping time periods and S when aggregating over securities.

	 1.	 The network ensemble is aggregated into a weighted network →=G G{ }k k
N

w1 , where the edge weights in the 
network Gw correspond to the number of particular edge occurrences in the ensemble. For example, the 
weight of an edge between investor groups i and j is defined as

∑= =
=

n G i j G i j( , ) ( , ),
(1)ij w

k

N

k
1

where nij may assume integer values between 0 and N.
	 2.	 We conduct a statistical hypothesis test to remove the need for an arbitrary link threshold parameter:

H n
0

ij: The number of networks nij in the ensemble with an edge between i and j is less than n0(α), where α is 
the significance level.
We define p as the probability of two investor groups being randomly connected. We estimate the probabil-
ity p, for two groups to be connected by chance in an N network ensemble, as the fraction of the actual 
number of edges in the ensemble ∑ > G i j{ ( , )}i j k k,  to the number of all possible links in the ensemble 
N × (n(n − 1)/2), where n is the number of investor groups. Then nij follows a binomial distribution, 

p N( , )  and

 ∑= ≥ = −
=

−( )p n n N
n p p( ) (1 )

(2)
ij ij

n n

N
n N n

ij

is the probability of observing by chance the link between investor groups i and j more than nij times.
	 3.	 In order to control the family-wise error rate, we leverage the strict Bonferroni multiple hypothesis test 

correction (MTC) procedure. Following the Bonferroni procedure, we adjust the chosen significance level 
α by the number of tests (ntests) we perform: αadjusted = α/ntests. Therefore, nodes in the aggregated network 
G are connected if pij < αadjusted, where αadjusted is the significance level.
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Multilayer aggregation procedure. 

	 1.	 For a set of securities S and a number of non-overlapping inference periods T, we infer S × T networks 
{Gst}(S×T). For all security × inference period combinations, we perform transaction bootstrapping, network 
inference and bootstrap network ensemble aggregation, yielding the {Gst}(S×T) ensemble. Each network 
represents significant relationships between investor groups for specific securities at periods.

	 2.	 Then we apply the network aggregation procedure over securities for each period t, 
∀ ∈  →  =t T G G: { }st s

S
t1

networkaggregation
, we end up with an ensemble of networks =G{ }t t

T
1. Each of the {Gt} 

networks represents significant relationships between investor groups that occur over multiple securities 
during period t. Similarly, if we apply the network aggregation procedure over time for each security s, 
∀ ∈  →  =s S G G: { }st t

T networkaggregation
s1 , we end up with an ensemble of networks =G{ }s s

S
1, where each of the 

networks {Gs} represents the most important over time reoccurring relationships between investor groups 
in security s.

	 3.	 Finally, we aggregate the second layer of information.  →  =
G G{ }t t

T
1

networkaggregation
 and 

 →  =
ˆG G{ }s s

S
1

networkaggregation
 appropriately. Both aggregation sequences lead to unique networks.

⇒ ∀ → ⇒  →

⇒ ∀ → ⇒  →
≠× =

. .
=

. .

× =
. .

=
. .





ˆ
ˆG t G G G G

G s G G G G
G G

{ } { } { } { }

{ } { } { } { }
,

(3)

st S T st s
S

t t t
T

st S T st t
T

s s s
S

( ) 1
n agg

1
n agg

( ) 1
n agg

1
n agg

Both G and Ĝ are accordingly equivalent to the illustrated networks (3) and (5) in Fig. 1.
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