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Osteoarthritis (OA) is one of the most common diseases worldwide, but the pathogenic genes and pathways are largely unclear.The
aim of this study was to screen and verify hub genes involved in OA and explore potential molecular mechanisms. The expression
profiles of GSE12021 and GSE55235 were downloaded from the Gene Expression Omnibus (GEO) database, which contained 39
samples, including 20 osteoarthritis synovialmembranes and 19matchednormal synovialmembranes.The rawdatawere integrated
to obtain differentially expressed genes (DEGs) and were deeply analyzed by bioinformatics methods. The Gene Ontology (GO)
and pathway enrichment of DEGs were performed by DAVID and Kyoto Encyclopedia of Genes and Genomes (KEGG) online
analyses, respectively. The protein-protein interaction (PPI) networks of the DEGs were constructed based on data from the
STRING database.The top 10 hub genes VEGFA, IL6, JUN, IL1𝛽, MYC, IL4, PTGS2, ATF3, EGR1, and DUSP1 were identified from
the PPI network. Module analysis revealed that OA was associated with significant pathways including TNF signaling pathway,
cytokine-cytokine receptor interaction, and osteoclast differentiation. The qRT-PCR result showed that the expression level of IL6,
VEGFA, JUN, IL-1𝛽, and ATF3 was significantly increased in OA samples (p < 0.05), and these candidate genes could be used as
potential diagnostic biomarkers and therapeutic targets of OA.

1. Introduction

Osteoarthritis is a chronic joint disease characterized by
degeneration of cartilage, synovial inflammation osteophytes
formation, and subchondral bone sclerosis. Its typical signs
and symptoms include pain, swelling, and stiffness, often
accompanied by a decrease in function and limitation of
movement [1]. It is a slowly progressive, disabling joint dis-
order that significantly reduces the quality of life. By 2030,
it is predicted that 67 million people in the United States
will be diagnosed with OA [2]. Although there are extensive
studies on the mechanism and etiology in OA formation and
progression, the causes of OA are still not clear.

Epidemiological studies have demonstrated that OA is a
complex polygenic disorder with numerous environmental
and genetic risk factors, in which one of the contributing

factors to disease progression is a genetic component [3].
Over the last 15 years, researches have focused on the
search for susceptible sites of osteoarthritis. Genomewide
association studies (GWAS) could discover potential genetic
variants that could be used as biomarkers for early diagnosis
and targeted therapy [4]. At present, with the develop-
ment of high-throughput sequencing technology, a large
number of studies have been performed on osteoarthritis
gene expression profiles and screened thousands of dif-
ferentially expressed genes. However, the results for the
expressed mRNAs are inconsistent with different gene profile
due to sample heterogeneity or different sequencing plat-
form. Thus, no reliable results have been identified in OA.
However, the integrated bioinformatics methods will solve
the disadvantages and identify the hub genes involved in
OA.
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Table 1: The primers of top 10 hub genes.

Gene name Forward primer Reverse primer
VEGFA GTGAATGCAGACCAAAGAAAGA AGGCTCCAGGGCATTAGAC
IL6 TCAATATTAGAGTCTCAACCCCCA GAAGGCGCTTGTGGAGAAGG
JUN GAGCTGGAGCGCCTGATAAT CCCTCCTGCTCATCTGTCAC
IL1B TGAGCTCGCCAGTGAAATGA AGGAGCACTTCATCTGTTTAGGG
MYC TACAACACCCGAGCAAGGAC GAGGCTGCTGGTTTTCCACT
IL4 CATCTTTGCTGCCTCCAAGAACA GTTCCTGTCGAGCCGTTTCA
PTGS2 GCTGTTCCCACCCATGTCAA AAATTCCGGTGTTGAGCAGT
ATF3 GAGGTGGGGTTAGCTTCAGT TCATTTTGATTTTGGGGCAAGGT
EGR1 CACCTGACCGCAGAGTCTTT GAGTGGTTTGGCTGGGGTAA
DUSP1 CTCAAAGGAGGATACGAAGCGTT CCCTGATCGTAGAGTGGGGT

In this work, we have downloaded two microarray data-
sets GSE12021 [5] and GSE55235 [6] and screened out dif-
ferentially expressed genes (DEGs) between synovial mem-
branes of knee OA patients and normal controls. GO and
pathways enrichment analyses of DEGs were applied and
functional module analysis of the protein-protein interac-
tion (PPI) network was also constructed. The study aimed
to identify hub genes and explore the intrinsic molecular
mechanisms involved in OA.

2. Materials and Methods

2.1. Microarray Data Information. The Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) is a pub-
lic genomics data repository which stores gene expression
datasets and original series and platform records [7]. The
gene expression profiles of GSE12021 and GSE55235 were
downloaded from the GEO database which all based on
GPL96 (Affymetrix HumanGenomeU133AArray) platform.
Themicroarray data of GSE12021 include 10 knee osteoarthri-
tis synovial membranes and 9 normal controls, and the
microarray data of GSE55235 include 10 knee osteoarthritis
synovial membranes and 10 normal controls.

2.2. Data Processing and Identification of DEGs. The pro-
cess of data preprocessing included background adjustment,
normalization, and summarization. The raw data were pre-
processed by affy package [8] in R software and limma
package [9] in R softwarewas used to identify the upregulated
and downregulated DEGs between osteoarthritis synovial
membranes and normal controls. P values were adjusted
using the Benjamini and Hochberg test, and p < 0.05 and
| log FC| > 1 were considered as the cutoff criterion.

2.3. Gene Ontology (GO) and Pathway Enrichment Analyses.
DAVID (the Database for Annotation, Visualization, and
Integrated Discovery) online bioinformatics database inte-
grates biological data and analysis tools to provide systematic
annotation information for biological function of large-scale
gene or protein list [10]. In the present study, Gene Ontology
enrichment and KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway analysis of DEGs were conducted using
the DAVID online tool. GO analysis included categories

of biological processes (BP), cellular component (CC), and
molecular function (MF). Pathway analysis is a functional
analysis that maps genes to KEGG pathways. And gene count
>2 and p < 0.05 were set as the cutoff point.

2.4. Integration of Protein-Protein Interaction (PPI) Network
Analysis. STRING (https://string-db.org/cgi/input.pl) is an
online database resource search tool for the retrieval of
interacting genes, which include physical and functional
associations [11]. In this paper, the STRING online tool was
used to construct a protein-protein interaction (PPI) network
of upregulation and downregulationDEGs, with a confidence
score >0.4 defined as significant. Then we imported the
interaction data into the Cytoscape software [12] tomap a PPI
network. Based on the above data, we used Molecular Com-
plex Detection (MCODE) [13], a built-in APP in Cytoscape
software, to analyze the interaction relationship of the DEGs
encoding proteins and screening hub gene. The parameters
of network scoring and cluster finding were set as follows:
degree cutoff = 2, node score cutoff = 0.2, k-core = 2, andmax
depth = 100.

2.5. qRT-PCR Validation and Statistical Analysis. Quantita-
tive reverse transcription-PCR was used to validate the hub
genes. Total RNA was reverse-transcribed to cDNA using
PrimeScript RT reagent Kit with gDNA Eraser (TaKaRa,
Japan) according to the manufacturer’s instructions. Primer
5.0 software (PREMIER Biosoft, Palo Alto, CA, USA) was
used to design primers, and a QuantStudio� 7 Flex real-time
PCR system (Applied Biosystems, Carlsbad, CA, USA) was
used. Primers formRNAare listed inTable 1. All sampleswere
normalized to GAPDH. And the relative expression levels of
each gene were calculated using 2−ΔΔCt methods. Statistical
analysis was performedwith SPSS software (version 18.0 SPSS
Inc.). P values < 0.05 were considered statistically significant.

2.6. Patients and Controls. Our study was approved by the
ethics committee of the Second Hospital of Jilin Univer-
sity, Jilin University, Jilin, China. 10 healthy donors and 10
knee osteoarthritis patients with knee osteoarthritis (diag-
nosed according to the ACR classification criteria for knee
osteoarthritis) [14] were enrolled, and all gave informed
consent. Osteoarthritis synovial membrane samples were

http://www.ncbi.nlm.nih.gov/geo
https://string-db.org/cgi/input.pl
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Table 2: The significant enriched analysis of DEGs in osteoarthritis.

Expression Category Term Description Gene Count P-Value

DOWN-
DEGs

BP GO:0006911 phagocytosis, engulfment 5 3.11E-05
BP GO:0045087 innate immune response 9 0.001731552
BP GO:0043406 positive regulation of MAP kinase activity 4 0.003542436
BP GO:0006508 proteolysis 9 0.004361459
BP GO:0006956 complement activation 4 0.010412249
CC GO:0005615 extracellular space 24 8.12E-08
CC GO:0005576 extracellular region 23 6.94E-06
CC GO:0042571 immunoglobulin complex, circulating 3 0.003820636
CC GO:0005886 plasma membrane 32 0.005732121
CC GO:0000139 Golgi membrane 9 0.008249883
MF GO:0004252 serine-type endopeptidase activity 7 0.001703259
MF GO:0008144 drug binding 4 0.006434471
MF GO:0034987 immunoglobulin receptor binding 3 0.007358675
MF GO:0008201 heparin binding 5 0.008337436
MF GO:0008083 growth factor activity 5 0.008701217

UP-DEGs

BP GO:0044344 cellular response to fibroblast growth
factor stimulus 7 2.20E-07

BP GO:0045944 positive regulation of transcription from
RNA polymerase II promoter 27 4.77E-07

BP GO:0051591 response to cAMP 7 3.08E-06

BP GO:0000122 negative regulation of transcription from
RNA polymerase II promoter 21 5.86E-06

BP GO:0043066 negative regulation of apoptotic process 16 1.31E-05
CC GO:0005634 nucleus 75 6.25E-07
CC GO:0005654 nucleoplasm 47 2.11E-06
CC GO:0005737 cytoplasm 61 0.002569078
CC GO:0005829 cytosol 43 0.002630227
CC GO:0005667 transcription factor complex 6 0.02296627

MF GO:0001077
transcriptional activator activity, RNA
polymerase II core promoter proximal
region sequence-specific binding

12 1.03E-05

MF GO:0005515 protein binding 106 2.10E-05

MF GO:0000982
transcription factor activity, RNA
polymerase II core promoter proximal
region sequence-specific binding

5 5.02E-05

MF GO:0044822 poly(A) RNA binding 25 7.91E-05

MF GO:0017017 MAP kinase tyrosine/serine/threonine
phosphatase activity 4 1.95E-04

obtained from OA patients upon total knee replacement at
the Second Hospital of Jilin University, and normal synovial
membrane sampleswere obtained from traumatic joint injury
cases upon joint synovectomy at the Second Hospital of Jilin
University.

3. Results

3.1. Identification of DEGs in Osteoarthritis. A total of 20
osteoarthritis synovial membranes and 19 matched normal
synovial membranes were analyzed; taking p < 0.05 and
| log FC| > 1 as a threshold, we extracted 1834 and 1948

DEGs from the expression profile datasets GSE12021 and
GSE55235, respectively. By integrated analysis, a total of 258
DEGs were identified, including 161 upregulated DEGs and
97 downregulated DEGs in osteoarthritis samples compared
with normal samples.

3.2. GO Functional Enrichment Analysis. To acquire the
functions of differential genes, GO function enrichment was
analyzed by DAVID online tool, and the DEGs functions
were classified into three groups as follows: BP, CC, and MF
(Figure 1). As shown in the Figure 1 and Table 2, in the biolog-
ical processes group, the down-DEGs are mainly enriched in
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Figure 1: Gene Ontology analysis classified the DEGs into 3 groups: molecular function, biological process, and cellular component.

phagocytosis, engulfment, innate immune response, positive
regulation of MAP kinase activity, proteolysis, and com-
plement activation, and the up-DEGs are mainly enriched
in cellular response to fibroblast growth factor stimulus,
response to cAMP, and negative regulation of apoptotic
process. In the cellular component group, the down-DEGs are
mainly enriched in extracellular space, extracellular region,
immunoglobulin complex, and circulating, and the up-DEGs
are mainly enriched in nucleus, nucleoplasm, cytoplasm, and
cytosol. And in the molecular function group, the down-
DEGs are mainly enriched in drug binding, immunoglobulin
receptor binding, and growth factor activity, and the up-
DEGs are mainly enriched in transcriptional activator activ-
ity, protein binding, poly(A) RNA binding, and MAP kinase
tyrosine/serine/threonine phosphatase activity.

3.3. Signaling Pathway Analysis. After the pathway enrich-
ment analysis, downregulated genes were mainly enriched
in cytokine-cytokine receptor interaction and glycosph-
ingolipid biosynthesis-globoseries. And upregulated genes

were mainly enriched in TNF signaling pathway, osteoclast
differentiation,MAPK signaling pathway,NF-kappaB signal-
ing pathway, and rheumatoid arthritis (Figure 2, Table 3).

3.4. PPI Network and Modular Analysis. Based on the data
in the STRING database, we constructed a PPI network
through Cytoscape software, containing 155 nodes and 625
edges (Figure 3). Among the 155 genes, the top 10 hub
genes were identified according to connectivity, including
VEGFA, IL6, JUN, IL-1𝛽, MYC, IL4, PTGS2, ATF3, EGR1,
and DUSP1. IL6 and VEGFA showed the highest degree
(degree = 51). In order to further analyze the interaction of
protein, 5 modules were detected using the Cytoscape plugin
MCODE; the top thee module with score >5 were shown
in Figure 4. In addition, functional enrichment analyses
for these modules were performed. Pathway enrichment
analysis showed that Module 1 is mainly associated with TNF
signaling pathway, cytokine-cytokine receptor interaction,
and osteoclast differentiation. Module 2 is mainly associated
with osteoclast differentiation, TNF signaling pathway, and
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Figure 2: Kyoto Encyclopedia of Genes andGenomes (KEGG) enrichment analysis of the pathways.The gradual color represents the P value;
the size of the black spots represents the gene number.
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Table 3: Signaling pathway enrichment analysis of DEGs function in osteoarthritis.

Expression Term Description Gene Count P-Value

DOWN- DEGs hsa04060 Cytokine-cytokine receptor interaction 5 0.036430433
hsa00603 Glycosphingolipid biosynthesis - globoseries 2 0.074364973

UP-DEGs

hsa04668 TNF signaling pathway 13 3.53E-09
hsa04380 Osteoclast differentiation 9 1.61E-04
hsa04010 MAPK signaling pathway 12 2.13E-04
hsa05134 Legionellosis 6 4.41E-04
hsa05132 Salmonella infection 7 4.52E-04
hsa05219 Bladder cancer 5 0.001397716
hsa05144 Malaria 5 0.002719238
hsa05166 HTLV-I infection 10 0.003418411
hsa04064 NF-kappa B signaling pathway 6 0.003787905
hsa05323 Rheumatoid arthritis 6 0.003978832
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Figure 3: PPI network constructed with the upregulated and downregulated DEGs. Red nodes represent upregulated genes, purple nodes
represent downregulated genes, and yellow nodes represent upregulated genes validated by qRT-PCR.

cytokine-cytokine receptor interaction. Module 3 is mainly
associated with Spliceosome.

3.5. Validation of Hub Gene. To validate microarray results,
the expression levels of top 10 hub genes were determined in
synovial membrane samples of knee osteoarthritis and nor-
mal controls using qRT-PCR. The verification result showed
that the expression levels of IL6, VEGFA, JUN, IL-1𝛽, and
ATF3 were significantly increased in osteoarthritis samples
(p < 0.05) (Figure 5). All validations are consistent with the
analytical results in this study.

4. Discussion

OA is the most common degenerative joint disease observed
worldwide. The prevalence of clinical osteoarthritis has
grown to nearly 27 million in the USA [15], and it is a great
burden on people’s health and medical insurance; therefore,
early diagnosis and treatment of osteoarthritis are espe-
cially important. Epidemiological studies have demonstrated
that osteoarthritis is a multifactorial polygenic disease with
numerous environmental and genetic risk factors [16]. It is
important to study themolecular mechanisms of the OA.The
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Figure 5: Validation of the top 10 hub genes by qRT-PCR between the OA group (n = 10) and the control group (n = 10). All samples were
normalized to the expression of GAPDH, and the relative expression levels of each gene were analyzed using the 2−ΔΔCtmethod. ∗∗P < 0.01.

previous study on the pathophysiology of osteoarthritis has
focused on cartilage and periarticular bone and neglecting
the role of synovial tissue in the pathogenesis of osteoarthri-
tis. During OA progression, the synovial membrane is also
a source of proinflammatory and catabolic products, and
there are multiple pathways and mediators that can directly
influence the development and persistence of synovitis [17].

Microarray and high-throughput sequencing technolo-
gies have been widely used to predict potential targets gene
for osteoarthritis, but most studies focus on a single cohort
study or single genetic event. This study integrated two
cohorts profile datasets from different groups, and both sam-
ples are synovial membranes isolated from knee osteoarthri-
tis patients. Bioinformatics methods are applied to analyze
the raw data, and we identify 258 DEGs, including 161
upregulated DEGs and 97 downregulated DEGs. Next, the
258EDGswere classified into three groups byGO termsusing
multiple approaches and further clustered based on functions
and signaling pathways, respectively.

The DEGs in osteoarthritis analyzed by GO functional
enrichment analysis showed that the downregulated DEGs
were mainly enriched in immune response, proteolysis,
positive regulation of MAP kinase activity, and growth factor
activity, while upregulatedDEGswere shown to be concerned
with cellular response to fibroblast growth factor stimulus,

response to cAMP, negative regulation of apoptotic process,
and MAP kinase tyrosine. This conforms to our knowl-
edge that immune response, inflammatory responses, and
response to cAMP are main mechanisms of OA development
and progression [18–22]. According to the previous studies,
the participation of the immune system in the development
and progression ofOA is one of the key elements in the patho-
genesis of the disease [23]. It should be noted that the patho-
physiological processes occurring in OA are largely mediated
by inflammatory cytokines and other anti-inflammatory
cytokines that may modulate an inflammatory response and
act protectively on joint tissue [24]. Themain representatives
of anti-inflammatory cytokines involved in the pathogenesis
of OA are IL-4, IL-10, and IL-13. In our study, the down-
regulated gene IL-4 is enriched in immune response, and
the dysregulated IL-4 may be involved in the pathogene-
sis of OA. Furthermore, the enriched KEGG pathways of
DEGs and modules analysis included the TNF signaling
pathway, MAPK signaling pathway, osteoclast differentiation,
and cytokine-cytokine receptor interaction. Previous studies
showed that these pathways are involved in osteoarthritis
cartilage degeneration and synovial hyperplasia [25–28]. The
PPI network was constructed with DEGs, and the top 10 hub
genes were as follows: VEGFA, IL6, JUN, IL-1𝛽, MYC, IL4,
PTGS2, ATF3, EGR1, and DUSP1. The results validated by
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qRT-PCR show that the expression levels of IL6, VEGFA,
JUN, IL-1𝛽, and ATF3 were significantly increased in OA
samples (p < 0.05).

Module analysis of the PPI network suggested that TNF
signaling pathway, cytokine-cytokine receptor interaction,
and osteoclast differentiation might be involved in OA devel-
opment. Tumor necrosis factor (TNF) is a critical cytokine,
which can induce a wide range of intracellular signal path-
ways including apoptosis and cell survival as well as inflam-
mation and immunity [29]. TNF-𝛼 mediated activation of
NF-𝜅B signaling pathway is known to play an important
role in the pathogenesis of OA [30], and OA was effectively
treated by VIP via inhibiting the NF-𝜅B signaling pathway
[31]. Cytokines which are produced in joint tissues regulate a
broad range of inflammatory processes [32]; the occurrence
and development of OA are driven by various mediators, of
which the key role is attributed to the interactions within
the cytokine-cytokine network. The inflammatory and anti-
inflammatory cytokines play a key role in the pathogenesis
of OA [33]. Proinflammatory cytokines such as TNF-a, IL-
1 𝛽, and IL-17 can enhance osteoclast formation [34]. The
role of osteoclasts in chronic arthritis has emerged in recent
years; osteoclasts may be key players in the erosive and
inflammatory events leading to joint destruction and bone
resorption [35].

According to the recent report, the immune system is
one of the key elements in the pathogenesis of the OA [23].
Inflammatory cytokines, including IL-1𝛽, TNF𝛼, IL-6, and
IL-18, play an important role in the development and pro-
gression of disease [24]. In our study, inflammatory cytokines
IL6 and IL-1𝛽were significantly increased in OA samples. IL-
1𝛽 is one of the representatives of the IL-1 family; the pro-
tein encoding by IL-1𝛽 induces inflammatory reactions and
catabolic effect. The level of IL-1𝛽 has elevated in the synovial
membrane, synovial fluid, cartilage, and the subchondral
bone [36, 37]. The biological activation of synovial cells by
IL-1𝛽 is mediated by the interaction between IL-1R1 and
IL-1R2 receptor; blocking their connection with IL-1𝛽 may
decrease in the activity of IL-1𝛽 [38]. Downregulation of the
production and activity of active proinflammatory and pro-
catabolic IL-1𝛽 is optimal for OAmolecular therapy [39]. IL6
gene encodes a cytokine that strongly activates the immune
system and inflammatory response; the protein is primarily
produced at sites of acute and chronic inflammation, where
it is secreted into the serum and induces a transcriptional
inflammatory response through interleukin 6 receptor, alpha.
The production of IL-6 in the degenerative joint is usually
in response to IL-1𝛽 and TNF𝛼 and is mainly implemented
by chondrocytes and osteoblasts [40], cooperating with IL-1𝛽
and TNF𝛼, activation of osteoclasts formation, and thus bone
resorption [41]. In synergy with another cytokine, IL6 causes
an increase in the production of enzymes and decrease in type
II collagen [42].

VEGFA is the founding member of the VEGF family and
is the most widely studied gene in the molecular mecha-
nism of OA. VEGFA gene encodes a heparin-binding pro-
tein, which induces proliferation and migration of vascular
endothelial cells, and is essential for both physiological and
pathological angiogenesis. VEGF is an important mediator of

bone development [43]. Increased VEGF levels are associated
with OA progression, and it is involved in pathologies
including synovitis, cartilage degeneration, osteophyte for-
mation, and pain [44]. During the advanced stage of OA,
VEGF expression has been found increased in the articular
cartilage and synovium [45]. Synergy with IL-1𝛽, VEGF was
found to significantly reduce the expression of aggrecan and
type II collagen at the gene and protein levels [46]. VEGF
expression increased in synovial macrophages and fibroblast-
like synovial cells, and the expression of TNF-𝛼 and IL-6
[47] increased as well. There is growing evidence suggesting
the pathological involvement of VEGF and its signaling
pathways. Treatments targeting VEGF signaling will be a
supplement of traditional treatments in OA.

The involvement of c-Jun N-terminal kinase (JNK) in
signaling transduction pathways has been well-characterized
in articular chondrocytes [48].The basic leucine zipper tran-
scription factor, ATF-like (BATF), a member of the Activator
protein-1 family (AP-1), promotes transcriptional activation
or repression, depending on the interacting partners (JUN-
B or C-JUN), BATF, which forms a heterodimeric complex
with JUN-B, and C-JUNmay play important roles in OA car-
tilage destruction through regulating anabolic and catabolic
gene expression in chondrocytes [49]. The involvement of
ATF3 in joint disease has not been well studied, the ATF3
gene which belongs to the ATF/cAMP-responsive element-
binding protein family and encodes a member of the activat-
ing transcription factor [50]. ATF3 expression significantly
increased in the OA cartilage, and ATF3 deficiency decreased
cytokine-induced IL6 transcription in chondrocytes through
repressing NF-kB signaling. The deficiency of ATF3 may
alleviate articulfvar degeneration of OA patient; ATF3 and
its related pathways may be a suitable drug target for the
treatment of OA [51, 52].

In summary, by means of data processing and qRT-PCR
validation, the hub genes including IL6, VEGFA, JUN, IL-1𝛽,
and ATF3 may have the potential to be used as drug targets
and diagnostic markers of OA. Although several hub genes
and pathwayswere identified and validated in our study, there
were still some limitations: small sample size was used for the
analyses and there was lack of further experiment. Further
experimental studies with larger sample size are needed to
confirm our analysis result.
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