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Abstract: Acute Myeloid Leukemia (AML) is the most common form of leukemia in adults with
an incidence of 4.3 per 100,000 cases per year. Historically, the identification of genetic alterations
in AML focused on protein-coding genes to provide biomarkers and to understand the molecular
complexity of AML. Despite these findings and because of the heterogeneity of this disease, questions
as to the molecular mechanisms underlying AML development and progression remained unsolved.
Recently, transcriptome-wide profiling approaches have uncovered a large family of long noncoding
RNAs (lncRNAs). Larger than 200 nucleotides and with no apparent protein coding potential,
lncRNAs could unveil a new set of players in AML development. Originally considered as dark
matter, lncRNAs have critical roles to play in the different steps of gene expression and thus affect
cellular homeostasis including proliferation, survival, differentiation, migration or genomic stability.
Consequently, lncRNAs are found to be differentially expressed in tumors, notably in AML, and
linked to the transformation of healthy cells into leukemic cells. In this review, we aim to summarize
the knowledge concerning lncRNAs functions and implications in AML, with a particular emphasis
on their prognostic and therapeutic potential.
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1. Introduction

Acute myeloid leukemia (AML) is an aggressive malignancy of the hematopoietic system caused by
malignant transformation of hematopoietic stem- or progenitor cells. AML is the most common form of
acute leukemia in adults with an incidence of 4/100,000 cases per year [1]. Hallmarks of Acute Myeloid
Leukemia are an uncontrolled proliferation and subsistence of myeloid progenitors that are blocked in
differentiation stages. Even though one-half of patients have chromosomal abnormalities, the other
half are cytogenetically normal (CN-AML), carrying recurrent somatic mutations in several oncogenes
(NPM1, FLT3, CEBPA) [2]. Historically, the identification of genetic alterations in AML focused
on protein-coding genes to provide prognostic tools and to understand the molecular complexity
of AML [3]. Despite these findings and because of the heterogeneity of this disease, questions as
to the molecular mechanisms underlying AML development and progression remained unsolved.
High throughput technologies (tilling arrays, next-generation sequencing) demonstrated pervasive
transcription and estimate that up to 90% of the Human Genome may be transcribed as noncoding RNAs
(ncRNAs) [4–6]. Even though small ncRNAs were extensively characterized (rRNAs, tRNAs, snoRNAs,
miRNAs), profiling also highlighted long noncoding RNAs (lncRNAs). Increasing evidence indicates
that lncRNAs play an important role in various cellular processes by regulating the different steps of
gene expression [7–11]. LncRNAs deregulation has been associated with malignant transformation and
identified as potential biomarkers in various cancers [12]. Their implications in AML have only been

Cancers 2019, 11, 1638; doi:10.3390/cancers11111638 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
http://www.mdpi.com/2072-6694/11/11/1638?type=check_update&version=1
http://dx.doi.org/10.3390/cancers11111638
http://www.mdpi.com/journal/cancers


Cancers 2019, 11, 1638 2 of 24

highlighted recently but are steadily on the increase. Herein, we review the current understanding of
lncRNAs deregulation in AML with an emphasis on their putative therapeutic potential.

2. Background on lncRNAs

Arbitrary defined as transcripts of over 200 nucleotides without coding potential, lncRNAs were
originally considered as dark matter due to their low expression and poor conservation across species
compared to their messenger RNAs counterparts [13–16]. However, lncRNAs are tightly controlled
and exhibit higher tissue and development specific expression than proteins—including lineage
determining transcription factors—which support their biological functions [17,18]. Mostly transcribed
by RNA Polymerase II, lncRNAs mimic mRNAs in their biogenesis and regulation: most of them are
capped, polyadenylated, and spliced via canonical genomic splice site motifs [16]. Their transcription
is also regulated by chromatin modifying complexes and specific transcription factors. Nevertheless,
we also observe diversity with some non-polyadenylated or unspliced lncRNAs, lncRNAs transcribed
by RNA Polymerase III [19,20] and snoRNA-related lncRNAs (sno-lncRNAs) expressed from introns
via the snoRNP machinery [21].

Because of their heterogeneity, much debate remains to find the best classification system for
lncRNAs that are currently defined according to their genomic location. Indeed, lncRNAs can be
divided into sense [22] or antisense [23] lncRNAs when the lncRNA sequence overlaps with the sense
or antisense strand of a protein coding gene, respectively. They can also be defined as intronic lncRNA
when it is derived entirely from an intron of another gene, as bidirectional when the transcription of
the lncRNA is initiated in close proximity (<1kb) and opposite orientation to a protein coding gene [24],
or as intergenic when the lncRNA is not located near any other protein coding genes [25]. In addition,
lncRNAs can also be produced from enhancer (eRNAs) or promoter regions (pRNA or PROMPTs) [26].

As illustrated in Figure 1, lncRNAs are also a multifaced family in terms of compartmentalization
and mechanisms of action. It is well now established that lncRNAs functions are directly associated
with their subcellular fates [27]. They can be nuclear, cytoplasmic, or both, located in subcellular
compartments such as nuclear bodies [28] or excreted into exosomes [29]. They positively or negatively
regulate the different steps of gene expression by their ability to bind DNA, RNA, and proteins.

Nuclear lncRNAs are implicated in epigenetic and transcriptional regulations by recruiting
activator or repressor chromatin-modifying complexes and transcription factors onto target genes [30,31].
Most of the studies have been focused on lncRNAs and Polycomb repressive complex 2 (PRC2) showing
that several lncRNAs such as Xist were able to recruit and guide PRC2 to regions of interest. However,
the lncRNAs field is moving away from this perspective and some paper delivered contradictory
results [32]. LncRNAs can act at their transcription site affecting the expression of nearby genes (cis) or
can be relocated on different chromosomes to regulate the expression of distal genes (trans). LncRNAs
can form a DNA-RNA duplex/triplex that anchors associated effectors to active chromatin sites such as
promoters or enhancers [33]. Of note, the lncRNA chromatin binding pattern is not restricted to these
regions and lncRNAs can also be found linked to 3’ part of genes [34]. LncRNAs are also involved in
chromatin remodeling by forming inter/intra chromosomal loops [31,35]. LncRNAs are implicated in
post-transcriptional modifications regulating either splicing or editing in the nucleus, and stability
or translation of targeted messengers for cytoplasmic lncRNAs (Figure 1) [36]. Indeed, cytoplasmic
lncRNAs can be microRNA sponges also called competitive endogenous RNAs (ceRNAs), containing
microRNA binding sites [37]. MicroRNA sponges are able to sequestrate microRNAs and to keep them
away from their messengers RNA targets leading to the stabilization of their targets. Finally, proteomic
analyses revealed that a subset of transcripts annotated as lncRNAs may encode small micropeptides
that may be functional [38–41].

Regulation of gene expression is crucial during hematopoietic differentiation [42]. LncRNAs
seem to be key players controlling these different steps, from the maintenance of hematopoietic stem
cells (HSC), the determination of their fate to the differentiation of progenitor and precursor blood
cells [43,44]. Their expression seems to be specific to distinct hematopoietic cell types [45]. Due to
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their impact on these crucial steps, we understand that lncRNAs deregulation could contribute to the
development and progression of hematological malignancies such as acute myeloid leukemia (AML).
This is supported by the fact that lncRNAs have already been found as upregulated or downregulated
in several types of tumors and could exert oncogenic or tumor suppressor functions [46]. Moreover,
lncRNAs expression has already been correlated with diagnostic and prognostic factors and their
incorporation in clinical routine is starting to be considered. Cancer biomarkers currently available
in the clinic for cancer treatment are mostly based on protein coding genes, immunohistochemistry
methods allowing easy detection of deregulated protein levels or oncogenic proteins between normal
and cancer cells. However, high specificity and non-invasive detection of lncRNAs in tissues, serum,
plasma, urine, and saliva support the fact that they could be promising predictive biomarkers and
potential therapeutic targets in cancer.
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Figure 1. Long Noncoding RNAs: a truly large and multifaced family. Nuclear lncRNAs are implicated
in (A) Epigenetic regulations, leading to the recruitment of activator/repressor chromatin modifying
complexes on their target promoters, (B) Transcriptional regulations, guiding or preventing the
recruitment of transcription factors on the promoters of their targets or on other active chromatin sites,
(C) Splicing regulations regulating recruitment of spliceosome partners. Cytoplasmic lncRNAs also
affect post-transcriptional steps regulating (D) mRNA stability modulating degradation, positively or
negatively or acting as (E) small regulatory RNA sponges. Finally, they regulate (F) mRNA translation.
LncRNAs can also be (G) small peptide producers.

Concerning the potential role of lncRNAs as diagnostic biomarkers, the most inspiring example
is PCA3 (Prostate Cancer Antigen 3) for prostate cancer diagnosis. It is a prostate specific lncRNA
overexpressed in prostate cancer patients. Found in the urine of most cancer patients compared to
healthy patients, it is undetectable in other tumor types [47,48]. Although its biological function
is unclear, a urinary PCA3 detection kit was developed and approved by the US Food and Drug
Administration (FDA) for prostate cancer diagnosis [49,50]. Several other lncRNAs have been proposed
for the diagnosis of various cancer types [51]. The upregulation of HULC which occurs in hepatocellular
carcinomas has also been observed in patient blood serum [52]. LncRNA HOTAIR was strongly



Cancers 2019, 11, 1638 4 of 24

proposed as a peripheral blood diagnostic biomarker in thyroid cancer [53]. However, no other
lncRNA-based diagnostic tool has been developed for widespread use, nor for AML diagnosis.

3. Regulatory Roles of lncRNAs in AML

In AML, several lncRNAs have been characterized and described as oncogenes (Table 1) or
tumor suppressors (Table 2). To exert their functions, lncRNAs have multiple mechanisms of action.
Over the past decades, the growing characterization of lncRNAs in leukemogenesis highlighted the
diversity of lncRNA mechanisms. Non-exhaustive, this review summarizes the functions of the best
characterized lncRNAs that have been shown to be deregulated in AML and play regulatory roles in
AML pathogenesis. (Figure 2)
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Figure 2. LncRNAs control cell survival and myeloid differentiation leading to AML development.
Several examples of lncRNA-controlled pathways are illustrated in this picture, showing known
lncRNA targets and how they are regulated.

The best described function of lncRNAs is their involvement in epigenetic and transcriptional
regulation. They are known to act as guides, leading to the recruitment of proteins or complexes to
chromatin sites to regulate downstream gene expression [30,31].

For example, Pasmant et al. identified ANRIL (Antisense ncRNAs in the INK4 locus) as an antisense
lncRNA from the p15INK4b locus [54]. Kotake et al. demonstrated that ANRIL silenced in cis p15INK4b

by recruiting the repressive complex PRC2 on its promoter [55,56]. ANRIL has been shown to be
up-regulated in various cancers, namely in AML primary samples [57]. In AML, ANRIL promotes
malignant cell survival and AML progression by regulating glucose metabolism. ANRIL represses
the expression of Adiponectin receptor (AdipoR1), a key regulator of the glucose metabolism which
regulates AMPK and SIRT1 phosphorylation level [57]. Unfortunately, the underlying mechanisms
have not been studied.

Other examples of lncRNAs involved in epigenetic regulation are lncRNAs located in the HOX
gene cluster. Indeed, numerous lncRNAs transcribed within the HOX cluster have been discovered to
tightly cooperate and regulate the expression of this region [58]. The deregulation of the HOX gene
cluster has long been regarded as an important mechanism of leukemogenesis [59].

HOTAIR (HOX Transcript Antisense RNA), a lncRNA expressed from the HOXC locus on
chromosome 12, is historically recognized as a trans-acting repressor of genes in the HOXD locus,
by guiding PRC2 complexes on their target promoters. Its overexpression has been documented in
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various human solid tumors [60,61]. HOTAIR is also upregulated in various AML cell lines [62,63].
In vitro knock-down of HOTAIR inhibited cell growth, induced apoptosis, and reduced the number of
colony formation units. HOTAIR represses in trans p15 expression through H3K27 tri-methylation
of its promoter mediated by PRC2 in AML [63]. HOTAIR also recruits DNMT3B to increase HOXA5
promoter methylation. Knock-down of HOTAIR and consequently upregulation of HOXA5 were
found to induce apoptosis and reduce the proliferation of AML cells in vivo [64].

Transcribed from the intergenic and antisense region of the HOXA cluster gene, HOTAIRM1
(HOXA Transcript Antisense RNA Myeloid-Specific 1) is also one of the most studied myeloid
lncRNA and its expression seems to be restricted to myeloid cells [65]. It is upregulated during
ATRA-induced-granulocytic differentiation of NB4 promyelocytic leukemia cells and primary human
hematopoietic cells [65]. HOTAIRM1 enhances in cis the expression of its neighboring HOXA1-4
genes and crucial myeloid differentiation CD11b,c and CD18 markers after ATRA treatment through
the recruitment of the UTX/MLL epigenetic complex on their promoters [65,66]. Knocking down
HOTAIRM1 in the NB4 cell line retarded induced granulocytic differentiation, resulting in a significantly
larger population of immature and proliferating cells that maintained cell-cycle progression from G1 to
S phases [67]. These data suggest an oncogenic role of HOTAIRM1 in AML by regulating a switch
from a proliferative phase toward granulocytic maturation.

LncRNAs are also able to manage chromatin conformation and 3D shape of chromosomes to
regulate gene expression.

For example, RUNX1, a major transcription factor in hematopoiesis, is frequently disrupted by
mutations or chromosomal translocations in AML. One of the most common is the t(8;21) translocation
found in 30–40% of AML cases producing a RUNX1-ETO chimeric protein [68,69]. However, the specific
molecular mechanism underlying the high frequency of chromosomal translocations of RUNX1 in
human malignancies is unknown. An RNA-guided Chromatin Conformation capture has cleverly
identified RUNXOR (RUNX1 overlapping RNA), a lncRNA overlapping the RUNX1 promoter [70].
Wang et al. proposed that RUNXOR could use its 3’-terminal fragment to orchestrate the formation of
an intra-chromosomal loop between the RUNX1 promoter and enhancer (in cis), but also to participate in
long-range interchromosomal interactions (in trans) with chromatin regions that are involved in multiple
RUNX1 translocations and may influence translocation formation. The authors also showed that
RUNXOR lncRNA could bind and regulate PRC2 complex and RUNX1 activity [70]. This could unveil
a candidate involved in the formation of chromosomal translocations in hematopoietic malignancies.

Sun et al. also cleverly identified IRAIN (IGF1R antisense imprinted non-protein coding RNA),
an antisense lncRNA originating from an intron of insulin-like growth factor type I receptor (IGF1R) [71].
IGF1R is a receptor tyrosine kinase abundantly activated in leukemic cells, giving them proliferative and
treatment resistance capacities, through IGF1R receptor-mediated activation of the PI3K/Akt signaling
pathway. However, molecular mechanisms underlying IGF1R gene deregulation in cancer remain
unclear. IRAIN is involved in the formation of long-range intrachromosomal interaction between the
IGF1R promoter and a distant intragenic enhancer. Overexpression of the IRAIN lncRNA inhibits
tumor cell migration, suggesting its tumor suppressor function. However, underlying mechanisms
need to be further studied [72].

LncRNAs are also implicated in post-transcriptional and translational regulations. UCA1 (Urothelial
Cancer Associated 1) was firstly described by Hughes et al. who studied the effects of a dominant negative
isoform of CEBPA, known as CEBPA-p30 [73]. Genome-wide transcriptome analysis of K562 cells with
inducible CEBPA-p30 identified the lncRNA UCA1 as the most upregulated transcript. In vitro, UCA1
promotes cell viability, migration, invasion, and reduces apoptotic processes suggesting its oncogenic
functions in CN-AML [73]. In this study, the authors show evidence that UCA1 lncRNA acts at the
translational level to regulate gene expression. It seems to titrate the hnRNP1 protein, which normally
facilitates translation of p27kip1. However, UCA1 can also act as microRNA sponge by titrating the
miR-125a [74]. UCA1 consequently leads to the upregulation of its messenger RNA targets: the glycolysis
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regulator HK2 and HIF1α, and participate to chemoresistance. It has also been proposed that UCA1
enhances cell proliferation and survival by sponging mir-126 which regulates RAC1 GTPase [75].

CCAT1 (Colon cancer-associated transcript-1) is another example of a microRNA sponge in
AML [76]. By reducing miR-155 availability and consequently upregulating c-MYC expression in
AML cells, CCAT1 inhibits monocytic differentiation and promotes cell growth in vitro [76]. During
the past year, the number of publications depicting lncRNAs as microRNA sponges has significantly
increased [77–88].

Finally, because of their ability to bind DNA, RNA and proteins, the same lncRNA can exert
multiple functions and mechanisms of action to coordinate multilevel gene regulation.

For example, despite its proven role as an epigenetic regulator, H19 was recently described as
miR-19a-3p and miR-29a-3p sponges in hematopoiesis and AML context [81,89]. By trapping these
microRNAs, H19 sustains leukemic cell proliferation and limits apoptosis by respectively regulating
the expression of IDH2 [89] and Wnt/βcat effectors [81]. H19 is also able to impede telomerase activity
in ATRA-treated APL cells by disrupting the telomerase complex assembly [90].

As multilayer regulators, HOTAIR and HOTAIRM1 are also microRNA sponges. HOTAIR is
able to titrate miR-193a which targets c-KIT [62], while HOTAIRM1 sponges miR-20a, miR-106a and
miR-125b which targets ULK1, E2F1, and DRAM2 respectively. This role of HOTAIRM1 leads to
the degradation by autophagy of the PML-RARα chimeric oncoprotein found in APL [91]. In fine,
the PML-RARα proteolysis induced by HOTAIRM1 restores promyelocytic differentiation.

Lastly, NEAT1 (Nuclear paraspeckle assembly transcript 1) that plays a major role in the formation of
sub-nuclear paraspeckles, is overexpressed and associated with poor survival in many solid tumors where
it influences the expression of downstream effectors by interacting with PRC2, acts as miRNA sponges and
suppresses the expression of miR-129 by promoting its promoter DNA methylation [92]. Paradoxically,
NEAT1 is dramatically downregulated in PML-RARαAPL samples compared to healthy donors suggesting
its role as a tumor suppressor [93]. In AML, NEAT1 downregulation has been demonstrated in vitro to be
caused by PML-RARα and can be restored by ATRA treatment. In NB4 cells, in vitro silencing of NEAT1
blocks ATRA-induced differentiation [93]. Consistently, NEAT1 is highly expressed in stem and progenitor
cells and significantly reduced in granulocytes [94]. Recently, Zhao et al. also demonstrated in vitro that
NEAT1 competitively binds miR-23a-3p to regulate SMC1A expression in AML that consequently inhibits
AML cell proliferation and induces cell-cycle arrest and apoptosis [95].

Table 1. Oncogenic lncRNAs in Acute Myeloid Leukemia.

LncRNA Clinical Significance Mechanisms of Actions Functions in
Leukemogenesis Ref

H19

—Upregulated in AML
—Correlated with WBC
count/karyotypic
classifications/FLT3-ITD and
DNMT3a
mutations/chemotherapy
response/OS; high at
diagnosis/relapse

—Maternal imprinting of
IGF2 gene
—miR-19a-3p and 29a-3p
sponges
—Promoter methylation of
hematopoietic transcription
factors (RUNX1/SP1)

—Sustain Adult
HSC quiescence,
leukemic cell
proliferation
—Limit apoptosis

[96,97]
[98]

HOTAIR

—Upregulated in AML
—Correlated with
OS/DFS/drug resistance
—Downregulated after
treatment

—Repress p15 expression
(PRC2)
—Regulate c-KIT expression
by sponging miR-193a

—Sustain Cell
growth —Inhibit
apoptosis

[62–64]
[99–101]
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Table 1. Cont.

LncRNA Clinical Significance Mechanisms of Actions Functions in
Leukemogenesis Ref

TUG1

—Upregulated in AML with
monosomal
karyotype/FLT3-ITD
mutation/ poor-risk patients
—Correlated with high WBC
count/shorter OS/lower rate
of CR
—Implicated in Adriamycin
resistance

Target Aurora Kinase

—Promote cell
proliferation
—Inhibit Apoptosis
—Doxorubicin
resistance

[85]
[102–104]

UCA1

—Upregulated in CN-AML
with dominant negative
C/EBPα
—Upregulated in
Adriamycin resistant
pediatric AML cases

—Inhibit p27kip1 translation
by titrating hnRNPI factor
—miR-125a and miR-126
sponges

—Sustain AML cell
proliferation,
migration, invasion
—Inhibit Apoptosis
—Doxorubicin
Resistance

[73–76]

PANDAR

—Upregulated in AML
—Associated with higher
AML blasts/older
patients/poor
karyotypes/lower OS and
CR

[105]

RUNXOR
—Upregulated in t(8;21)
AML and after ARA-C
treatment

—Intrachromosomal loop
between RUNX1 promoter
and enhancers
—Interacts with PRC2 and
RUNX1 protein to regulate
RUNX1 expression

[70]

SNHG5

—Upregulated in AML
patients
—Associated with advanced
FAB classification and
unfavorable cytogenetics,
Shorter OS

—miR-205-5P sponge [106]

ANRIL
—Upregulated in AML at
diagnosis and
downregulated after CR

—Silencing of p15INK4B by
scaffolding PRC2
—Regulate expression of
AdiR1

—AML cell
maintenance
—Implicated in
Glucose
metabolism

[57]

PVT-1

—Upregulated in APL and
t(8;21) AML
—Associated with high-risk
criteria/shorter OS and DFS

—miR-200 sponge: c-MYC
regulation

—Sustain
proliferation of
promyelocytes

[107]
[108]

CCAT1
—Upregulated in AML
patients (mostly in M4-M5
subtypes)

—miR-155 sponge: c-MYC
regulation

—Repress
monocytic
differentiation
—Promote cell
growth

[107]

HOTAIRM1

—High expression
associated with shorter OS
and DFS/higher incidence of
relapse in IR-AML, mostly in
NPM1 mutated patients

—Activate expression of
proximal HOXA1-4, HOXA4,
CD11b, c, and CD18 genes
—miR-20a/106b and
miR-125b sponges

—Regulate
myeloid
differentiation, cell
cycle, and
autophagy
pathways

[65–67]
[109]
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Table 1. Cont.

LncRNA Clinical Significance Mechanisms of Actions Functions in
Leukemogenesis Ref

CCDC26

—Upregulated at diagnosis
and relapse
—Associated with age,
anemia, risk stratification,
remission, shorter OS

Repress c-Kit expression

—Sustain AML cell
proliferation
—Resistance to
anticancer drugs
(ATRA treatment)

[110–112]

XLOC_
109948

—Low expression indicates
a good prognosis, especially
for NPM1-mutated AML
patients

Apoptosis/ drug
resistance [113]

DANCR

—Knock-down in
LSCs resulted in
decreased stem-cell
renewal and
quiescence

[114]

Table 2. Tumor Suppressor lncRNAs in Acute Myeloid Leukemia.

LncRNA Clinical Significance Mechanisms of
Actions

Functions in
Hematopoiesis Ref

IRAIN

Downregulated in AML cell
lines;
Lower in patients with high-risk
AML
—Associated with higher WBC
counts/shorter OS and
DFS/Refractory response to
chemotherapies/relapse

—Intrachromosomal
enhancer/promoter
loop of IGF1R gene

—Inhibit tumor cell
migration [71,72]

NEAT1
—Downregulated in AML
patients with PML-RARα
translocation

—miR-23a-3p
sponge

—Regulate myeloid
differentiation
—Inhibit AML cell
proliferation, induce
cell-cycle arrest and
apoptosis

[93–95]

MEG3

—Hypermethylation of MEG3
promoter in AML
—Downregulated in AML
—Associated with longer OS and
DFS

—Positive
regulation of p53
expression

—Regulate cell cycle,
apoptosis [115–118]

CASC15

—Upregulated in
RUNX1-rearranged AML
—Highest level found in AML
with the t(8;21) translocation
—Associated with a good
prognosis

—CASC15 activates
expression of SOX4
gene, by regulating
the activity of the
YY1 transcription
factor

—Increase apoptosis and
myeloid cells number [119]

4. LncRNAs as Biomarker Candidates among Acute Myeloid Leukemia

4.1. Specific lncRNA Signatures among AML Subtypes

The large-scale analysis highlighted distinct lncRNAs expression patterns associated with specific
AML subtypes, reflecting the heterogeneity of this disease. A pioneering study came from Garzon et al.
in 2014, who investigated lncRNAs expression in a cohort of 148 older Cytogenetically Normal AML
(CN-AML) patients using a custom microarray. They found distinctive lncRNAs profiles associated
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with recurrent mutations such as FLT3-ITD, NPM1, CEBPA, IDH2, ASLX1 or RUNX1 [120]. They
identified signatures of lncRNAs associated with the mutational status of NPM1 and the presence of
FLT3-ITD. In agreement with these results, De Clara et al. deciphered the lncRNAs transcriptome
associated with recurrent AML mutations by performing RNA sequencing on CN-AML patients [113].
These results improved the overall knowledge of lncRNAs, as their RNAseq approach uncovered more
than 8000 new lncRNAs. A major finding of this study was the discovery and the validation of a minimal
set of 12 lncRNAs able to discriminate NPM1-mutated from NPM1 wild type patients. In addition,
Diaz-Beya et al. studied lncRNAs expression by microarray in various AML cases associated with
chromosomal abnormalities, with an emphasis on the t (8;16) translocation. They found a signature of
lncRNAs differentially expressed in t(8;16) positive cases, in particular the upregulated linc-HOXA11,
HOXA11-AS, HOTTIP, and NR_038120 [121]. Zhang et al. also uncovered a subset of lncRNAs enriched
in Acute Promyelocytic Leukemia patients harboring the PML-RARα translocation [122]. Recently,
Schwarzer et al. reported specific fingerprints of lncRNAs in various subgroups of pediatric AML
and identified stem cell signatures in normal HSCs that were upregulated in AML blasts, highlighting
stemness patterns of AML blasts [123].

Most of these profiling studies also intended to correlate these lncRNA signatures with treatment
response and survival hoping to highlight putative prognostic biomarkers. Garzon et al. established
a signature of 48 lncRNAs associated with event free survival (EFS) and were able to build
a prognostic score based on the expression of these 48 survival-associated lncRNAs [120]. Patients with
an unfavorable lncRNA score were found to have reduced complete remission (CR) rates following
intensive chemotherapy, a reduced disease-free survival (DFS) and overall survival (OS) compared
to patients with a favorable lncRNA score. Remarkably, the prognostic value of lncRNAs remained
independent from other prognostic biomarkers in a multivariate analysis, suggesting that lncRNAs
could refine risk stratification of CN-AML patients [113].

Concerning the rare population of leukemic stem cells (LSCs) assumed to be responsible for relapse
because of their abnormal self-renewal capacity and increased chemotherapy resistance, Bill et al.
identified an LSC-specific signature of 111 lncRNAs that correlated with a previously identified coding
gene expression signature associated with LSCs [114].

Tsai et al. go further and propose the incorporation of lncRNA profiles in the 2017 EuropeanLeukemiaNet
(ELN) risk classification [124,125]. They formulated a lncRNA scoring system based on the expression of
five significant prognosticator lncRNAs. They validated this scoring system on 275 newly diagnosed AML
patients. Patients with high scores had less favorable-risk cytogenetics and presented more gene mutations at
diagnosis than low score patients. High score patients had lower CR, a trend of higher relapse rates, shorter
OS and DFS. In the intermediate-risk subclass, they observed that patients with lower lncRNA scores had OS
and DFS similar to favorable-risk cytogenetics patients, while patients with higher lncRNA scores had OS
and DFS similar to those with unfavorable-risk cytogenetics. They also showed that hematopoietic stem cell
transplantation did confer a benefit to the ELN intermediate-risk patients with higher lncRNA scores, but not
to those with lower scores. The lncRNA scoring system could help to stratify the 2017 ELN intermediate-risk
patients and provide guidance for the choice of treatment strategies.

The benefits of these extensive profiling studies were to identify new lncRNAs and highlight
their prognostic potential. The functional and molecular characterization of these candidates could
unravel their interactions with known driver events and to provide a better understanding as to how
each factor can influence the development and progression of AML in order to unveil new potential
therapeutic targets.

4.2. Prognostic lncRNA Biomarker Candidates

Most of in vitro characterized lncRNAs in AML has been investigated in patient samples to
determine if they were associated with good or poor prognosis and drug resistance (Tables 1 and 2).
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4.2.1. Good Prognostic lncRNA Biomarkers

As in leukemia cell lines, IRAIN expression is downregulated in AML patients. Lower IRAIN
is associated with high-risk AML patients and higher IRAIN with the low-risk group [71,72].
Low expression of IRAIN is independently associated with an adverse prognosis: higher WBC and
blast counts and shorter OS and DFS [72]. Besides, patients with refractory response to chemotherapies
and those with relapse were more likely to show a lower initial IRAIN expression.

The lncRNA CASC15 (cancer susceptibility candidate 15) is upregulated in pediatric
RUNX1-rearranged AML, with the highest level found in AML with the t(8;21) translocation and is
associated with a good prognosis [119]. Overexpression of CASC15 increased apoptosis, myeloid
differentiation and decreased engraftment of primary bone marrow cells in the hematopoietic system,
suggesting its antileukemic role. Paradoxically, CASC15 positively regulates expression of its adjacent
gene, SOX4, thought to function as an oncogene in AML.

The maternally expressed 3 lncRNA (MEG3) is a tumor suppressor lncRNA downregulated
in various solid tumors [126–128]. In AML, Benetatos et al. found that MEG3 hypermethylation
occurred in 48% of AML cases and conferred a significantly reduced OS rate in these patients [115].
Hypermethylation of the MEG3 promoter was confirmed by several studies [116,117]. However, Sellers
et al. examined mononuclear cells of AML patients and determined that patients with increased
methylation at this locus had a significantly longer OS than patients with lower methylation at this
locus. The authors explained this disparity by differences in methodology and CpG site selection
across studies. Merkerova et al. also confirmed that MEG3 hypermethylation was associated with
longer DFS [118]. Further studies of MEG3 in AML is imperative for a greater understanding of its role
in pathogenesis.

4.2.2. Poor Prognostic lncRNA Biomarkers

Located upstream of the CDKN1A promoter, PANDAR (Promoter of CDKN1A Antisense DNA
Damage Activated RNA) is involved in cell proliferation, migration, invasion, and apoptosis of cancer
cells and are widely overexpressed in solid tumors [7,129–131]. Zhou et al. edited a systematic review
of PANDAR deregulation in cancer and proposed it as a biomarker [132]. Yang et al. profiled its
expression in 119 AML patients and found PANDAR to be upregulated in various AML subtypes.
High levels of PANDAR in patients is significantly associated with higher AML blasts, older patients,
and poor karyotypes, but was not correlated with common gene mutations. PANDARhigh patients had
an adverse prognosis with lower CR rates and shorter OS compared to PANDARlow patients [105].

SNHG5 (Small Nucleolar RNA Host Gene 5) is upregulated in the bone marrow and plasma of
AML patients compared to healthy controls [106]. SNHG5 upregulation seems to occur more frequently
in AML patients with advanced FAB classification and unfavorable cytogenetics. Patients with high
plasma SNHG5 expression have significantly shorter OS, and multivariate analysis suggested SNGH5
expression as an independent factor to predict prognosis in AML.

Dias Beya et al. profiled HOTAIRM1 expression in 241 AML patients with diverse cytogenetic
subtypes and observed that HOTAIRM1 is differentially expressed depending on the AML
subtypes [109]. The lowest expression level was observed in APL. The most diverse expression of
HOTAIRM1 was found in the intermediate risk subgroup (IR-AML) where the prognostic heterogeneity
was also the most evident. Amongst this subgroup, the highest levels of HOTAIRM1 were found
in NPM1-mutated patients and not significantly associated with other mutations (DNMT3A, IDH1
or IDH2) or any specific clinical feature (age, WBC, FAB subtype). In IR-AML, higher HOTAIRM1
expression is independently associated with shorter OS and DFS, a higher incidence of relapse, mostly
for NPM1-mutated patients [109]. These data suggest an oncogenic role of HOTAIRM1 in IR-AML.
However, HOTAIRM1 expression levels were neither associated with the probability of attaining CR,
nor the frequency of allogeneic hematopoietic stem-cell transplantations (alloHSCT) performed in first
CR. They validated these results using arrays from the Leukemia gene Atlas repository [109]. Thus,
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determination of HOTAIRM1 level provided relevant prognostic information in IR-AML and allowed
refinement of risk stratification based on common molecular markers.

CCAT1 and PVT1 (Plasmacytoma Variant Translocation 1) lncRNAs are located on chromosome
8q24, at the proximity of the well-known oncogene C-MYC. CCAT1 and PVT1 upregulation are
positively correlated with up regulation of C-MYC in t(8;21) positive AML patients and associated
with high-risk criteria, shorter OS and DFS [107]. Moreover; high expression levels of PVT1 and
CCAT1 were linked to high minimal residual disease in the t(8;21) positive patients, suggesting their
implication in chemoresistance. Interestingly, supernumerary copies of 8q24 chromosomal region is
the most common secondary alteration in human APL [133] which might lead to an increase in the
number of copies of these lncRNAs. PVT1 is also upregulated in APL patients compared to healthy
donors [108]. Both PVT1 and C-MYC expression decreased during ATRA-induced differentiation
treatment and knocking either PVT1 or C-MYC reduced the expression of the other.

H19 is upregulated in AML patients compared to healthy donors and correlates with White Blood
Cell (WBC) count, intermediate karyotype classifications, FLT3/ITD and DNMT3a recurrent mutations
in AML patients [98]. It is an independent prognostic predictor, its overexpression correlating with
lower CR rates and shorter OS. The similar results obtained with TCGA and GEO data confirmed the
robustness of their study [3,134]. Finally, H19 was proposed as a relapse predictive biomarker, as its
expression level is higher at diagnosis, decreased at CR phase but high again on relapse.

4.2.3. LncRNAs Involved in Resistance to Treatments

Significant upregulation of HOTAIR was observed in AML patients at diagnosis compared to
healthy donors and its expression is markedly decreased in post-treatment compared to pre-treatment
patients [99]. The high expression of HOTAIR is correlated with shorter OS and DFS [62]. Consistent
results were observed in additional studies, suggesting its robustness [99–101]. High-expression of
HOTAIR is also associated with Chronic Myeloid leukemia and bladder cancer with resistance to
antileukemic drugs (doxorubicin, immatinib), making this lncRNA a potential therapeutic target to
limit drug-resistance [135,136].

TUG1 is highly expressed in AML cell lines, and in vitro overexpression promotes cell proliferation
and decreases apoptosis rate, suggesting its oncogenic role in AML [102]. Higher expression of TUG1
is also recurrent in AML patients with a monosomal karyotype, FLT3-ITD mutation, poor-risk patients
and is correlated with higher WBC count [103]. Luo et al. also demonstrated that AML patients with
higher TUG1 expression had shorter OS, lower CR rates and overall response than those with lower
TUG1 expression [104]. According to Li et al. TUG1 is also high in doxorubicin-resistant leukemia cells
and confers doxorubicin (adriamycin) resistance through PRC2 epigenetic silencing of mir-34a [85].

The UCA1 lncRNA also promotes doxorubicin chemoresistance in pediatric AML cases [74].
Indeed, UCA1 expression is upregulated following doxorubicin-based chemotherapy.

Hirano et al. observed that CCDC26, which seems to be restricted to hematopoietic tissue,
negatively regulates the expression of KIT. Downregulation of CCDC26 induces a lower growth rate of
cells, suggesting that CCDC26 acts as an oncogene to control cell proliferation [110]. Paradoxically,
CCDC26-downregulated cells proliferated faster under low serum conditions in vitro and survived
longer compared to non KD cells. This observation indicates that suppression of CCDC26 enables
leukemia cells to survive and proliferate despite a severe shortage of growth factors. Others suggest
resistance of AML cells to anticancer drugs (ATRA treatment) after CCDC26 knock-down by integration
of retroviral DNA into the CCDC26 locus, suggesting its putative impact in AML [137]. Paradoxically,
Hirano et al. observed that CCDC26 expression is abundant in AML cell lines [110]. Part of CCDC26
is amplified in AML cells harboring double minute chromosomes and the most common copy
number alteration found in AML patients appeared in a region within the CCDC26 locus [110,111].
CCDC26 expression level is upregulated at diagnosis and relapse and associated with age, anemia, risk
stratification, and remission. Patients with a high CCDC26 expression level had a shorter OS [112].
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5. From Fundamental to Clinical Research: Incorporation of lncRNAs

5.1. Detection and Quantification of lncRNAs In Clinic

Since lncRNAs exhibit high tissue- and disease-specificity, they are ideal candidates for cancer
diagnosis and prognosis stratification of patients [138]. In the last years, attention has been dedicated
to the detection of such biomarkers in body fluids (Figure 3) [139]. Indeed, lncRNA molecules
can be found in different body fluids, such as blood, plasma/serum or urine. They can be derived
from apoptotic/necrotic cells, or from living cells which can secrete molecules through exosomes for
instance [29,140,141]. Exosomes are released membrane vesicles responsible for trafficking various
molecules (proteins, RNAs) throughout biological fluids and are assumed now to be screening
biomarker and potential therapeutic target in leukemia [29,141].
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Figure 3. LncRNAs in clinic: (A) lncRNA biomarkers. High throughput technologies are used
to quantify lncRNAs and highlight their prognostic potential. LncRNAs are promising predictive
biomarkers as their expressions can be highly tissue and/or cancer specific. Some of them are even
present in biofluids allowing an easy and non-invasive detection method. (B) LncRNAs as a therapeutic
tool. Highly cancer-specific, lncRNAs can be used as tools to selectively kill tumor cells. For example,
a plasmid containing diphtheria toxin under the control of H19 regulatory sequences has been designed
to selectively target tumor cells which overexpressed H19 compared to normal cells. Diphtheria toxin is
massively produced and selectively kills H19-overexpressing tumor cells. (C) LncRNAs targeted cancer
therapies. Oncogenic LncRNAs as target: silencing of its expression: (1) Small interfering RNA (siRNA)
are double-stranded RNA oligonucleotides antisense and complementary to target lncRNA sequences.
They induce degradation of their target by recruiting the RISC (RNA-induced silencing) complex. (2)
An antisense oligonucleotide (ASO) is a single-stranded DNA oligonucleotide that is complementary to
the target RNA and able to induce its degradation by recruiting RNase H. (3) Ribozymes (Ribonucleic
acid Enzymes) are single-stranded RNA. By adopting specific conformations, they are able to bind
RNA targets and catalyze their degradation. Oncogenic LncRNAs as target: silencing their activity:
Small molecules are also able to hide partners’ interaction sites (DNA, RNA, proteins) to suppress their
activities. (4) Aptamers are single stranded DNA folded into secondary and tertiary structures that can
bind specific structural regions of the target lncRNAs. (5) Small molecule Inhibitors can also disrupt
lncRNA interactions. Tumor suppressor lncRNAs as target: Rescue of its expression: It can be provided
by common gene therapy strategies, packaging the whole transcript into viral or non-viral delivery
tools. Future promising tool: (J) New Genome editing strategies such as CRISPR/Cas9 are developing
very fast to knock-in/out lncRNA candidates.
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The techniques currently used to identify and measure lncRNA biomarkers in biopsies are mostly
RNA sequencing, microarrays, and qRT-PCR. However, these approaches require many fine-tuning to
be used routinely in the clinic. Therefore, there is a need for development of a fast, standardized and
clinically applicable tool that would enable the translation of lncRNAs profiling from the bench to
the bedside. Bloomfield et al. proposed a probe-assay based on the nCounter platform (providing
RNA measurements in a single reaction without amplification) that is designed to produce targeted
measurements of prognostic lncRNAs [142]. It is supported by the fact that this technology is already
used in an FDA approved assay to quantify the expression of RNA molecules for risk stratification
of breast cancer patients [143,144]. To evaluate the robustness of this technique they performed
outcome analysis to examine whether the lncRNA score they had previously identified, had retained
its prognostic value, and obtained satisfactory correlations [120].

5.2. Development of lncRNA-targeted Cancer Therapies

Compared to protein coding transcripts, targeting lncRNAs is challenging. Lack of protein
products means that only RNA-based tools are usable. Also, unlike proteins that have specific domains
that are easy to target with small molecule drugs, lncRNA conformations are poorly understood,
making structure-based strategies difficult to develop. However, as illustrated in Figure 3, several
approaches have been proposed to re-establish the homeostatic levels of messenger RNA and could be
extended to lncRNAs.

5.2.1. Targeting Oncogenic lncRNAs

Given their ease of dosage control, low immunogenicity and no danger of genome integration,
one of the most explored methods to inhibit up-regulated oncogenic lncRNAs is the delivery of
synthetic oligonucleotide-based molecular products (Figure 3) [145]. Prior knowledge of lncRNAs
cellular localization is critical for selecting the appropriate strategy to achieve robust lncRNAs
modulation [146]. Small interfering RNAs (siRNAs) are double-stranded RNA oligonucleotides,
antisense and complementary to target lncRNAs. They induce the degradation of their target by
recruiting the RISC (RNA-induced silencing) complex. Very efficient on cytoplasmic targets, these
molecules showed a variable success in targeting nuclear lncRNAs. Not yet proposed for the treatment
of AML, they have been employed for phase I/II trials for several diseases: PF-04523655, TKM-080301,
SYL040012, SYL1001, siG12D-LODER; and others for phase III trials, such as QPI-1002, QPI-1007, and
patisiran [147–150]. SiRNA targeting lncRNA HOTAIR has been shown to suppress the progression
of endometrial carcinoma in vivo demonstrating that targeting lncRNA HOTAIR can be a novel
therapeutic strategy for endometrial cancer [151]. As HOTAIR is upregulated in AML, the same siRNA
strategy could be considered for AML treatment.

Amongst the top upregulated LSC-associated lncRNAs, Bill et al. identified the promising
lncRNA DANCR whose knock-down in LSCs resulted in decreased stem-cell renewal and quiescence,
suggesting its oncogenic role. The delivery of nanoparticles containing siRNAs against DANCR
prolonged the survival of AML mouse model even after serial transplantation [114].

Another supportive case of targeting lncRNAs by siRNAs is UCA1, where molecular evidence
has established that there is a close relationship between UCA1 and Adriamycin resistance in pediatric
AML cases [74]. By using siRNA against UCA1, the authors showed that knock-down of UCA1 plays
a positive role in overcoming the chemoresistance of AML cells, through suppressing glycolysis by the
miR-125a/HK2 pathway [74].

Another synthetic oligonucleotide-based molecular product used to knock-down lncRNA expression
has been developed: the Antisense oligonucleotide (ASO). ASO (as GapmeRs) are single-stranded DNA
oligonucleotides duplexing by base complementarity their target lncRNAs to promote their degradation
by RNase H [152,153].

For example, ASO has been used in De Clara et al. study to knock-down the newly identified
XLOC_109948 lncRNA. In this study, they showed that low XLOC_109948 expression is correlated
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with a good prognosis especially for NPM1-mutated AML patients and that its downregulation using
ASO in NPM1-mutated AML cells treated with Ara-C or ATRA enhances apoptosis suggesting a role
for XLOC_109948 in drug sensitivity [113].

Targeting lncRNAs implicated in chemoresistance with interference strategies could improve drug
response and outcome. Curna Inc., MiNA Therapeutics, RaNA Therapeutics Inc. and others are taking
steps towards the development of oligonucleotide-based strategies [154]. The great challenge is now
to improve efficient delivery and long-lasting effects in patients. SiRNAs and ASOs can be modified
to overcome their stability and interferon induction effects [155]. To increase intracellular uptakes,
various chemical and physical delivery methods are under investigation and were overviewed by
Pahle et al. [155] In preclinical studies, these oligonucleotide-based products have been delivered to the
heart by intravenous, intraperitoneal, subcutaneous and intracardiac injection or directly administered
with catheters. Recombinant viral systems such as adenoviruses, lentiviruses and adeno-associated
viruses (AAVs) are commonly used to deliver genetic material such as shRNA and miRNA sponge
into a target cell.

Catalytic degradation is another therapeutic strategy. Ribozymes are single-stranded RNA
able to target and cleave RNA in a site-specific manner [156,157]. Anti-VEGFR-1/2 ribozymes are
under preclinical studies for the inhibition of liver metastasis obtained in colon cancer models [158].
However, secondary structures of lncRNAs often disrupt the binding efficiency of these molecules to
specific targets.

Aptamers could also provide greater specificity. These single stranded DNA folded into secondary
and tertiary structures are able to bind a wide range of molecules, hiding specific-binding structures to
limit activity. The chemical structure of aptamers could be modified to enhance their stability and
half-life. Aptamer-based -therapeutics are undergoing clinical trials for different indications (non-small
cell lung cancer, renal cell carcinoma, and AML) [159]. In 2004, an anti-VEGF aptamer (Eyetech
Pharmaceutics/ Pfizer) was approved by the FDA for macular degeneration.

Through their ability to bind proteins to regulate chromatin organization, transcription, and
translation, Fatemi et al. proposed innovative therapeutic strategies based on Small molecule Inhibitors
able to disrupt lncRNA-protein interactions [160,161]. A study found that 5916 lncRNAs responded
to 1262 small molecule drugs [162]. As a matter of fact, LM1070/Branaplam small molecule is under
clinical trial for the treatment of Spinal Muscular Atrophy. As it is able to bind the SMN2 pre-mRNA,
Branaplam increases SMN2 splicing and translation, antagonizing the disease [163]. This promising
study shows that mRNA (and by extension lncRNAs eventhough no studies were reported yet) could
be druggable-like proteins. Connelly et al. have identified lncRNAs as promising druggable molecules
in the development of new treatments for leukemia [164].

5.2.2. Targeting Tumor Suppressor lncRNAs

Re-expression of the specific tumor suppressor lncRNA may be induced by common gene therapy
strategies, packaging the whole transcript into viral or non-viral delivery tools. Recombinant viral
systems used in gene therapy have been extensively reviewed previously [165]. However, due to
the lack of insertion control of viral vectors into the genome, non-viral delivery tools have also been
proposed [155,166].

Even though its implication as AML clinic target was not proposed yet, HOTAIRM1 lncRNA
seems to be a promising candidate in APL treatment. Indeed, as aforementioned, enhanced HOTAIRM1
expression induces degradation of PML-RARα oncoprotein in APL cells and restores the process of
myeloid differentiation in those cells [91]. Restoring its expression may be a promising therapeutic
target for APL patients.

New Genome editing strategies such as CRISPR/Cas9 are developing very fast and seem to
be a powerful tool to knock-in or knock-out lncRNA candidates [167]. Modified CRISPR systems
could also generate the substitution of cytidine into uridine in order to correct oncogenic SNPs,
knowing that numerous single nucleotide polymorphisms (SNPs) have been associated with potential
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predictive biomarkers for the risk of cancer, including SNPs in ANRIL, MALAT1, HULC, and PRNCR1
lncRNA [168,169].

5.3. LncRNAs as Tools

A great challenge in cancer therapy is to selectively kill tumor cells without harming healthy
cells. As H19 lncRNA is highly upregulated in several cancers, a plasmid containing diphtheria toxin
under the control of H19 regulatory sequences has been designed to selectively target tumor cells
which overexpressed H19 compared to normal cells. Diphtheria Toxin is massively produced and
kills H19-overexpressing tumor cells selectively. This construct leads to an overall reduction in tumor
size and is under clinical trials for ovarian (NCT00826150), pancreatic (NCT00711997) and bladder
cancers (NCT00595088) [170]. This construct has been granted FDA Fast Track designation for two
Phase III confirmatory studies in September 2015. Since H19 is also upregulated in some AML cases,
this strategy could be used to treat AML patients.

Finally, given their tissue specific expression, using the same strategy with the promoter of
a myeloid specific lncRNA could lead to the development of a new tool to target selectively myeloid
lineage to treat AML patients.

6. Conclusions

There is no doubt as to the role of lncRNAs in leukemia development, progression, and drug
resistance. However, due to the limited number of studies in AML, their application as therapeutic agents
in clinical routine is still at its beginnings. Few results have been replicated across cohorts, probably
due to no-standardized sample collection and quantification techniques, but also as a consequence of
AML biological complexity, characterized by spatio-temporal relationships between the coding and
non-coding genome. Adequate sample sizes, well-designed cohort studies, and validation of the results
in independent cohorts are needed to confirm their clinical usefulness. The functional and molecular
characterization of lncRNAs is also needed to select the most promising lncRNA targets and to design
the best IncRNA therapeutic tool with appropriate efficacy and safety profile. Translating this knowledge
into clinical practice still represents a tremendous challenge.
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