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Abstract: Adjuvants improve host responsiveness to co-delivered vaccines through a variety 

of mechanisms. Agents that trigger cells expressing Toll-like receptors (TLR) activate an 

innate immune response that enhances the induction of vaccine-specific immunity. When 

administered in combination with vaccines designed to prevent or slow tumor growth,  

TLR agonists have significantly improved the generation of cytotoxic T lymphocytes. 

Unfortunately, vaccines containing TLR agonists have rarely been able to eliminate large 

established tumors when administered systemically. To improve efficacy, attention has 

focused on delivering TLR agonists intra-tumorally with the intent of altering the tumor 

microenvironment. Agonists targeting TLRs 7/8 or 9 can reduce the frequency of Tregs 

while causing immunosuppressive MDSC in the tumor bed to differentiate into tumoricidal 

macrophages thereby enhancing tumor elimination. This work reviews pre-clinical and 

clinical studies concerning the utility of TLR 7/8/9 agonists as adjuvants for tumor vaccines.  
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1. Introduction 

Adjuvants are immunological agents that function to enhance the magnitude, breadth, quality and/or 

longevity of specific immune responses generated against co-administered antigens (Ag). Adjuvants are 

also used to reduce the dose and frequency of immunizations required to achieve protective immunity. 

Historically, vaccines were produced from live attenuated or heated inactivated organisms. While not 

appreciated at the time, those original vaccines contained bacterial contaminants that served as adjuvants [1].  

There are several ways in which an adjuvant can promote immunity including: 

(1) Stabilizing or entrapping the Ag to extend release and thus prolong immune stimulation; 

(2) Promoting an inflammatory response at the site of Ag deposition thereby attracting activated 

macrophages and dendritic cells to improve Ag uptake and presentation; 

(3) Presenting co-stimulatory signals to T and B cells to enhance induction of Ag-specific immunity. 

There is considerable interest in identifying safer and more effective adjuvants to enhance the utility 

of novel vaccines targeting infectious pathogens, allergy and cancer.  

In support of these goals, immunologists and microbiologists have sought to elucidate the mechanism(s) 

of action of adjuvants. Notable success was achieved in the discovery of Toll like receptors (TLRs)  

and their role is promoting innate and adaptive immune responses, leading to a Nobel prize for  

Drs. Hoffmann and Beutler in 2011 [2,3]. 

2. Background Information Concerning TLRs 

TLRs are an important component of the host’s pathogen sensing mechanism [4,5]. TLRs are 

typically classified into two families based on their localization: TLRs 1, 2, and 4–6 are expressed on 

the cell surface and sense bacterial cell wall components whereas TLRs 3 and 7–9 are expressed in 

endosomes and sense viral or bacterial nucleic acids [6]. The molecular structures recognized by TLRs 

have been evolutionarily conserved, are expressed by a wide variety of infectious microorganisms, and 

are termed pathogen-associated molecular patterns (PAMPs) [4,5]. The innate immune response elicited 

by TLR activation is characterized by the production of pro-inflammatory cytokines, chemokines, type I 

interferons and anti-microbial peptides. This innate response promotes and modulates the adaptive 

immune system. A common result is the expansion of Ag specific B cells that produce high affinity 

antibodies and of cytotoxic T cells including long-lasting memory cells that protect against subsequent 

infection through enhanced cytotoxic function targeting the effector phase [7,8]. 

Although several TLRs utilize similar signaling pathways, there are reproducible differences in the 

cytokine profile and adaptive immune response each elicits. Understanding which elements of the 

immune response are best supported by which TLR ligands should enable the development of adjuvants 

specifically tailored to enhance desired vaccination outcomes. 

3. CpG ODN and TLR9 

TLR9 recognizes and is activated by CpG motifs (consisting of a central unmethylated CG 

dinucleotide embedded within specific flanking regions) present at high frequency in bacterial  

DNA [9,10]. TLR9 molecules differ between species, with the structure of human versus mouse TLR9 
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varying by 24% [9]. There is also variation between species in terms of which cell types express TLR9. 

For example, the TLR9 receptor is present in rodent but not in primate macrophages and myeloid 

dendritic cells (DC). In humans, TLR9 is expressed primarily by plasmacytoid DC and B cells [11–14]. 

Reflecting their utility as vaccine adjuvants, B lymphocytes exposed to TLR9 agonists become more 

susceptible to activation by Ag [15–17] while TLR9 stimulated pDC produce type I interferons and more 

efficiently present Ag to T cells [18–20]. The signaling pathway triggered when CpG interacts with 

TLR9 proceeds through the recruitment of myeloid differentiation factor 88 (MyD88), IL-1R-associated 

kinase (IRAK), and tumor necrosis factor receptor-associated factor 6 (TRAF6) [5]. This signaling 

cascade subsequently leads to the activation of several mitogen-activated kinases (MAPK) and 

transcription factors (such as NF-kB and AP-1), culminating in the transcription of pro-inflammatory 

chemokines and cytokines [5]. 

In humans, four distinct classes of CpG ODN have been identified based on differences in structure 

and the nature of the immune response they induce. Although each class contains at least one motif 

composed of a central unmethylated CG dinucleotide plus flanking regions, they differ in structure and 

immunological activity. “K”-type ODNs (also referred to as “B” type) contain from one to five CpG 

motifs typically on a phosphorothioate backbone. This backbone enhances resistance to nuclease 

digestion and substantially prolongs in vivo half-life (30–60 min compared with 5–10 min for 

phosphodiester) [21]. K-type ODNs trigger pDC to differentiate and produce TNFα and stimulate B cells 

to proliferate and secrete IgM [22,23]. Unless otherwise mentioned, the studies described below reflect 

the activity of K ODN as these have been studied most extensively in pre-clinical and clinical trials. 

“D”-type ODNs (also referred to as “A” type) have a phosphodiester core flanked by phosphorothioate 

terminal nucleotides. They carry a single CpG motif flanked by palindromic sequences that enables the 

formation of a stem-loop structure. D ODN also have poly G motifs at the 3' and 5' ends that facilitate 

concatamer formation. D-type ODNs trigger pDC to mature and secrete IFNα but have no effect on B 

cells [22,24]. C-type ODNs resemble K-type in being composed entirely of phosphorothioate nucleotides 

but resemble D-type in containing palindromic CpG motifs that can form stem loop structures or dimers. 

This class of ODN stimulates B cells to secrete IL-6 and pDC to produce IFNα [25,26]. P-Class CpG 

ODN contains double palindromes that can form hairpins at their GC-rich 3' ends as well as 

concatamerize due to the presence of the 5' palindromes. These highly ordered structures are credited 

with inducing the strongest type I IFN production of any class of CpG ODN [27,28]. 

4. Effect of CpG ODN on Human pDC and B Cells 

In humans, TLR9 is expressed primarily by B cells and plasmacytoid DC (pDC) [29]. By comparison, 

multiple cells of the myeloid lineage including conventional DCs, monocytes and macrophages express 

TLR9 and respond to CpG ODN in mice [30]. pDC contribute to the initiation of many immune responses: 

they promote the generation of protective immunity to viral infection via their rapid and massive 

production of type I IFNs that support the generation of strong CTL responses [31–33]. Human pDC 

express TLRs 7 and 9 whereas myeloid DC (mDC) recognize TLRs 2, 3, 4, 5, 6 and 8 [29]. These divergent 

patterns of TLR expression support the hypothesis that distinct DC subsets generate unique/tailored 

responses optimized for the elimination of different pathogens [34,35]. Thus, CpG ODN should be 
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particularly useful as adjuvants for vaccines targeting viral infections and cancer, both of which require 

the type of strong CTL response elicited by pDC activation [36,37].  

TLR9 activation also induces human memory B cells to proliferate, undergo class switching to IgG2a 

and secrete antibodies in a T cell independent manner [38]. By comparison, naive human B cells express 

low levels of TLR9 and do not respond directly to CpG ODN [14]. Ag stimulation via the B cell receptor 

induces naive B cells to up-regulate TLR9 expression and acquire responsiveness to CpG DNA. The 

requirement that naive B cells interact with cognate Ag before acquiring responsiveness to CpG prevents 

polyclonal B cell activation and reduces the risk of autoimmunity [39]. This synergy between BCR 

ligation and CpG ODN stimulation was verified in studies using CpG-Ag complexes to enhance  

Ag-specific class switching in vivo and supports the use of CpG ODN as adjuvants for vaccines designed 

to induce strong humoral responses [39].  

5. CpG ODN as Vaccine Adjuvants: Importance of CpG-Ag Co-Delivery 

A number of preclinical (murine) studies examined the immunogenicity of CpG-adjuvanted vaccines. 

Most reported that CpG ODN enhanced both the humoral and cellular (Th1 cells and CTL) immune 

response elicited by vaccines against pathogens, allergens and/or tumors [40]. To optimize the efficiency 

of Ag presentation by DCs requires that they encounter CpG ODN in the presence of vaccine Ag.  

Co-delivery of ODN plus Ag to the same APC accelerates the induction, increases the maximal level 

and extends the duration of the induced immune response [41]. It also supports modulation of Ab isotype 

and increases the immunogenicity of weak Ags [42]. Examples include studies in which ovalbumin or 

the hepatitis B surface antigen vaccine were administered with CpG ODN in which co-delivery to the 

same site significantly enhanced humoral protective immunity [21,43,44].  

Based on such findings, a number of delivery strategies were examined to optimize the co-delivery of 

CpG ODN plus Ag to the same APCs. These approaches included the preparation of CpG-Ag conjugates, 

co-encapsulation in liposomes or on biodegradable microparticles, and the use of multicomponent 

nanorods [40,45,46]. Murine studies show that conjugating CpG ODN directly to Ag can boost immunity 

by up to 100-fold over that induced by simply mixing CpG ODN with immunogen [47,48]. The 

mechanisms by which CpG ODN-Ag conjugates enhance immunogenicity include insuring that both Ag 

and TLR agonist are taken up by the same APC and improving such uptake via DNA-binding receptors 

on the APCs (the latter effect is independent of the nature of the ODN but requires physical conjugation 

of DNA to target antigen).  

While early murine studies focused on administering CpG ODN with defined vaccine Ags,  

their ability to support immunity when combined with complex vaccines expressing multiple tumor  

Ags has also been examined. One such endeavor examined the effect of conjugating CpG ODN to 

apoptotic tumor cells [49]. Whole mouse tumor cells were used because they expressed all possible 

tumor-associated Ags, allowing the host’s immune system to select the most immunogenic determinant 

based on presentation in the context of self MHC. Apoptotic tumor cells alone lack a TLR signaling 

moiety and thus fail to trigger the innate immune system in support of tumor specific immunity. To 

overcome this limitation, CpG was conjugated directly to tumor cells. The resultant adjuvant/vaccine 

combination triggered the expansion of tumor-specific CTL in the periphery that reduced the growth of 

small tumors and prevented their metastatic spread in murine experiments [49]. 
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There is concern that inclusion of CpG ODN may increase the risk of vaccine-induced autoimmunity. 

CpG ODN and immune complexes that contain nucleic acids interact with TLR9 to increase the 

production of type I IFNs. While IFNa and IFNb can induce/exacerbate autoimmune disease [50–53], 

whether CpG based adjuvants have such an effect remains controversial, having not been observed in 

clinical vaccine trials [40,54]. We conclude that when a vaccine against cancer capable of overcoming 

tolerance to tumor Ags is required, the benefit of including a strong adjuvant (such as CpG ODN) 

outweighs the potential risk. 

6. Effect of CpG DNA on MDSC and Macrophages in the Tumor Microenvironment 

The anti-tumor activity of CpG-adjuvanted tumor vaccines was initially examined by delivering the 

vaccines systemically (by i.m. or s.c. routes) [55]. In murine studies, CpG-adjuvanted vaccines were 

effective against small tumors (<300 mm3) but were unable to eliminate large established tumors (of the 

size typical present in humans when first diagnosed). Whether delivered to mice with large or small 

tumors, the CpG-adjuvanted vaccines continued to induce tumor-specific CTL that were readily detected 

in the peripheral circulation. The problem was that immunosuppressive leukocytes present in the 

microenvironment of large tumors down-regulated the activity of these CTL. To overcome this 

limitation, CpG ODN were injected directly into the tumor bed with the goal of activating intratumoral 

DCs and facilitating tumor Ag presentation in situ. 

Unexpectedly, local delivery interfered with the function of tolerogenic cells in the tumor milieu. 

Intra-tumoral injection of CpG ODN reduced the number and suppressive activity of tumor infiltrating 

monocyte-derived suppressor cells (MDSC) [56]. This was true of both free and vaccine associated CpG 

ODN, and led to a re-interpretation of data from clinical trials in which CpG ODN were delivered 

intratumorally to treat skin tumors or lymphoma. For example, Hofmann et al. induced complete or 

partial tumor remission in half of all patients with basal cell carcinoma or melanoma by intra-tumoral 

CpG injection [57]. Molenkamp et al. showed that intratumoral CpG increased the frequency of  

tumor-specific CD8 T cells in half of patients with melanoma [58]. Brody et al. showed that intratumoral 

CpG administration combined with radiation therapy induced systemic tumor regression (including at 

untreated sites) and tumor-reactive CD8 T cells in patients with low-grade B-cell lymphoma [59].  

Kim et al. showed intratumoral injection of CpG ODN combined with radiation induced the regression 

of distal tumors, significantly decreased the frequency of FoxP3+ regulatory T cells (Tregs) and increased 

the frequency of CD123+ pDC at the site of CpG administration in patients with lymphoma [60].  

These strategies are referred to as “in situ tumor vaccination” as they do not require the use of a 

customized vaccine.  

These findings are consistent with animal studies showing that local CpG ODN treatment increased 

the number of tumor infiltrating T and NK cells while decreasing the frequency and inhibitory activity 

of tumor resident MDSC. The monocytic MDSC studied in that work expressed TLR9 and exposure to 

CpG ODN (i) triggered their rapid production of Th1-type cytokines (including IL-6, IL-12 and TNFa); 

(ii) impaired their ability to secrete arginase 1 and nitric oxide (factors critical to their suppression of  

T cell activity) and (iii) induced them to differentiation into tumoricidal macrophages [56]. These results 

suggest the existence of additional mechanisms through which CpG ODN could promote tumor regression. 

Unfortunately, human mMDSC do not express TLR9 or respond to CpG ODN, limiting the clinical 
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applicability of the murine findings. However, we find that the suppressive activity of mMDSC isolated 

from cancer patients can be reversed by treatment with TLR 7/8 agonists which induce them to 

differentiate into tumoricidal M1-like macrophages in a manner very similar to CpG ODN in mice [61]. 

7. TLR 7 and TLR8 Agonists as Cancer Vaccine Adjuvants 

TLR7 and TLR8 are closely related receptors. They have similar structures and trigger a similar 

signaling cascade but differ in their pattern of cellular expression and thus the array of cytokines they 

elicit. In humans, TLR7 receptors are present on B cells and pDC which when activated secrete IFNa. 

TLR8 receptors are prevalent on neutrophils, monocytes and mDC which when triggered secrete TNFa, 

IL-12 and MIP1a [62,63]. Most ligands that interact with TLR7 also bind to TLR8. These include 

synthetic imidzaquinolines (such as resiquimod/R-848), and the natural ligand ssRNA containing  

GU-rich sequences. Imiquimod and the guanosine analogue loxoribine are considered selective for 

TLR7 [64–66]) and a new generation of TLR8 selective agents has been described [63]. 

8. Trials Utilizing TLR 7/8 Agonists 

The utility of TLR 7/8 ligands as vaccine adjuvants was evaluated in pre-clinical studies. Smorlesi et al. 

used transgenic mice expressing the HER2/neu oncogene that spontaneously develop mammary  

tumors [67]. When immunized with a DNA vaccine plus imiquimod, the incidence and growth rate of 

breast tumors was reduced when compared to DNA vaccination alone. Ab titers in mice receiving the 

imiquimod adjuvanted vaccine were higher and biased towards IgG2a and the number of CD8 T cells 

producing IFNg was also increased [68]. Narusawa et al. evaluated imiquimod as an adjuvant when used 

in combination with GM-CSF plus a gene-transduced tumor vaccine (GVAX). This vaccine combination 

significantly reduced the rate of tumor growth while increasing the number of pDC [69]. It should be 

noted that neither of these studies examined the effect of TLR 7/8 adjuvanted vaccines on large 

established tumors, limiting the ability to draw conclusions concerning their utility under conditions 

similar to those found in patients with cancer.  

The TLR7/8 agonists currently approved by the FDA are designed for topical administration and are 

used primarily to treat HPV-induced warts, lentigo maligna, actinic keratoses, and basal or squamous 

cell carcinoma [70–73]. Clinical studies therefore routinely relied on topical administration to evaluate 

TLR 7/8 ligand activity. In a trial of patients with prostate cancer characterized by rising PSA titers 

(indicative of tumor growth), a prostate-specific peptide vaccine was combined with one of several 

adjuvants or immunomodulatory treatments. Patients receiving topical imiquimod over the vaccine 

injection site had the best clinical outcome with the slowest rise in PSA when compared to other 

modalities (including GM-CSF, hyperthermia, and mucin-1-mRNA/protamine complex) [74]. 

The ability of imiquimod to act as a topical adjuvant was also evaluated in patients with melanoma. 

When administered in conjunction with a variety of melanoma specific peptides plus Flt3 ligand, 

imiquimod stimulated an increase in the frequency of peptide-specific CD8 T cells [75]. When used  

in combination with a vaccine containing the NY-ESO-1 cancer Ag, four out of nine patients with 

melanoma developed specific Abs while seven out of nine developed CD4 T cell responses. CD8 T cell 

responses were not enhanced in these subjects nor did disease progression correlate with the induction 

of the types of immunity observed [76]. In an effort to improve outcome, resiquimod was substituted for 
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imiquimod based on animal studies showing that this TLR 7/8 agonist was better at generating Ag 

specific CD8 T cells [77,78]. A clinical study of NY-ESO-1 immunized melanoma patients found that 

the addition of resiquimod improved CD8 T cell responses in 25% of patients. No change in Ab or CD4 

T cells was observed nor was time to progression improved (interestingly CD8 T cell responders also 

expressed the TLR7 SNP rs179008) [79]. 

9. Trials Utilizing CpG ODN 

Agonists targeting TLR9 have been studied more extensively than those against TLR7/8. CpG ODN 

showed activity in murine models as monotherapy, in combination with cancer vaccines, and when 

paired with other modalities including radiotherapy, cryotherapy and chemotherapy. Numerous 

preclinical studies showed that including CpG ODN increased CTL frequency and that this effect 

correlated with slower tumor progression. For example, the immunogenicity of DC-based tumor 

vaccines was improved by the addition of CpG ODN as characterized by a marked improvement in CD8 

T cell activity [80]. Most such studies delivered the CpG adjuvanted vaccines before or shortly after 

challenge and thus targeted tumors that were relatively small [81–86]. However, recent studies indicate 

that CpG ODN adjuvanted vaccines can eradicate even large established tumors. In one report, 

combining CpG ODN with a peptide vaccine targeting HPV16 E7 resulted in the elimination of tumors 

up to 250 mm3 in size. The growth of even larger tumors was significantly delayed although eradication 

was not achieved [87]. Eradication of very large tumors (1.2 cm in diameter) was observed in 50% of 

mice using a fusion protein vaccine targeting the E7 epitope in combination with CpG ODN plus a 

chemotherapeutic agent [88]. 

Several clinical trials examined the use of CpG ODN combined with peptide-based vaccines targeting 

tumor antigens. These studies commonly evaluated additional immunostimulatory agents such as 

Montanide ISA-51, GM-CSF and IFA. Phase I trials of the MART-1 peptide vaccine in patients with 

melanoma reported that the inclusion of CpG ODN increased the number of Ag-specific CD8 T cells by 

10-fold [89,90]. Higher levels of IFNg, TNFa, and IL-2 were also detected [91]. In another trial using a 

multi-epitope peptide vaccine that included MART-1, gp100, and tyrosinase 40%–50% of patients 

developed IFNg secreting CD8 T cells and two-thirds of these had stable disease or partial regression. 

Unfortunately, these benefits lasted only 2–7 months and did not result in a significant difference in 

outcome when compared to other therapies in patients with stage IV or recurrent melanoma [92]. 

Expansion of CD8 T cells was also observed in studies utilizing the NY-ESO-1 peptide. In two trials, 

three out of three and nine out of 18 patients responded [93,94]. Elevated CD8 T cell responses were 

also observed against cancers expressing the NY-ESO-1 or LAGE-1 tumor Ag, and such responses were 

associated with improved clinical outcomes [95]. 

CpG ODN were also evaluated in combination with a vaccine targeting the Wilms’ Tumor-1 Ag  

(WT-1). Among patients receiving the CpG adjuvanted vaccine, 60% had stable disease compared to 

15%–20% of those lacking the CpG component [96]. A study of patients with metastatic esophageal 

squamous cell carcinoma used a vaccine targeting the cancer-testis Ag peptides LY6K and TTK. 

Inclusion of CpG ODN led to an increase in CD8 T cells and secretion of IFNa. More patients receiving 

the CpG vaccine had stable disease compared to patients who did not (33% vs. 66%) although no 

complete or partial remissions were induced [97]. 
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A reasonable conclusion from these human trials is that the addition of TLR adjuvants modestly 

boosts vaccine induced immunity but rarely results in tumor eradication. One explanation for this limited 

success is the ability of established tumors to evade immune elimination. The microenvironment in 

which tumors reside is rich in factors that support growth and contains Tregs and MDSCs that  

down-regulate tumor-specific immunity [98,99]. Tregs aid the host by suppressing autoreactive T cells 

and thus prevent autoimmunity [100–102]. However, when present in the tumor milieu they disrupt the 

host’s ability to destroy cancer cells [100,103,104]. Many tumors actively secrete factors such as CCL2 

that recruit Tregs or that induce naive T cells to differentiate into Tregs [105–107]. Myeloid-derived 

suppressor cells are also present at high frequency in established tumors. They inhibit the tumoricidal 

activity of T and NK cells by interfering with l-arginine metabolism through the production of Arg-1 

and iNOS or ROS [108,109]. Tregs and MDSC within the tumor microenvironment thus block the 

effector function of immune cells generated by TLR adjuvanted vaccines [110,111]. 

One way to limit the activity of these immunosuppressive cells is to induce their differentiation. For 

example, TGFb, IL-10 and other factors can induce Tregs to differentiate while IL-6, IL-10 and TNFa can 

drive MDSC to differentiate into macrophages [100,112–114]. Intratumoral delivery of CpG ODN has 

been shown to slow tumor growth by altering the balance between suppression and immunity. While TLR9 

stimulation increases systemic production of NK and CD8 T cells [55,115–117], local delivery improves 

tumor infiltration by such cells. Moreover, murine studies show that local delivery reduces the frequency 

of immunosuppressive Tregs and monocytic MDSCs in the tumor microenvironment [55,115–117]. In vitro 

studies demonstrate that MDSCs lose their immunosuppressive activity when treated with CpG DNA in 

association with reduced expression of NO and Arg-1 [56,118,119]. These effects were driven by the 

differentiation of mMDSC into tumoricidal M1 macrophages (as characterized by decreased expression 

of Ly6c and Gr-1 and increased expression of F4/80). Transferring these differentiated cells into  

tumor-bearing animals significantly slowed tumor growth, indicating that intra-tumoral delivery of CpG 

ODN (alone or in conjunction with vaccine) might profoundly alter the balance between tumoricidal and 

immunosuppressive cells [118,119]. 

Recent reports suggest that TLR 7/8 agonists also trigger MDSC maturation. Resquimod induces 

murine MDSC to differentiate into F4/80+ macrophages and CD11c+/I-Ad+ dendritic cells that support 

the expansion of CD4 and CD8 T cells [120]. Our group found that mMDSCs isolated from the 

peripheral blood of normal volunteers and cancer patients differentiated into M1-like macrophages when 

exposed to several TLR7 and TLR8 agonists. Interestingly, this was not a universal effect of all TLR 

agonists. PAM3, a ligand for TLR1/2, causes mMDSC to differentiate into M2-like macrophages  

that support tumor growth [61]. TLR7 agonists have additional effects on immune cells. For example, 

loxorubin can inhibit tumor growth by promoting CD4 T cell proliferation and modulating the 

suppressive activity of Tregs [121].  

10. TLR Agonist Combinations 

Many strategies have been identified that enable the immune system to eliminate small tumors in 

animal models (including the intra-tumoral delivery of TLR agonists). Such strategies become 

increasingly less effective as larger cancers are targeted, in part because large tumors are infiltrated by 

immunosuppressive cells that inhibit the activity of tumoricidal CLT and NK cells [113,122,123].  
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Our group examined the effect of combining a novel TLR7/8 agonist (3M-052) with CpG ODN. While 

each TLR agonist alone slowed tumor growth, neither prevented the eventual outgrowth of established 

CT26 cancers. In contrast, the combination of both agonists cleared large established tumors in 87% of 

mice [119]. Mechanistically, this combination of TLR agonists reduced the number of mMDSCs and 

increased the number of CD8 T cells much more effectively than either agent alone. Intra-tumoral 

delivery of this TLR agonist combination up-regulated the expression of IL12, IFNg and granzyme B 

while lowering levels of Arg-1, Nos 2, CTLA-4 and TGFb [119]. The effect of combining TLR7 plus 

TLR9 agonists was evaluated in a single clinical trial. A virus-like nanoparticle containing CpG ODN 

plus the melanoma protein MelQbG10 was used in conjunction with imiquimod. The MelQbG10/CpG 

vaccine elicited tumor specific CD8 T cell responses. Inclusion of the TLR7 agonists significantly 

increased the magnitude of that response and improved the generation of memory T cells [124]. 

TLRs 7, 8 and 9 are all endosomal receptors, are expressed on overlapping cell types, and utilize 

similar signaling pathways [62,63,125]. What then accounts for their synergistic anti-tumor activity 

(particularly since TLR7 triggering may inhibit cytokine secretion induced by TLR9 agonists) [126,127]? 

A recent report shows that the expression of receptors by individual cells is stochastic and that cells with 

high levels of one receptor can have much lower levels of another [128]. We postulate that a greater 

fraction of APCs are activated by the combination of TLR7 plus TLR9 agonists than by either alone. 

Consistent with such a conclusion, the fraction of MDSC activated to differentiate and secrete cytokines 

was significantly increased when these cells were stimulated with both agonists vs. either one singly [119]. 

First generation TLR7/8 agonists were short acting agents designed for topical use. A new generation 

designed for in vivo administration and use as vaccine adjuvants is now available. Preliminary studies 

indicate that they are safe and persist at the injection site [63]. Delivering these agents in combination 

with CpG ODN into the tumor microenvironment as adjuvants for tumor vaccines thus represents a 

promising approach to the immunotherapy of large established cancers. 

11. Conclusions 

TLR agonists have complex and pleiotropic effects on the immune system. When used as adjuvants, 

TLR agonists boost Ag-specific cellular and humoral immunity. Stimulating endosomal TLRs is 

particularly effective at promoting the generation of CTL capable of eliminating viral pathogens and 

cancer. Simultaneous activation of multiple TLRs further improves the breadth and efficacy of such 

responses. When targeting cancer, intra-tumoral delivery of agonists against TLRs 7, 8 and 9 provides 

the added benefit of altering the tumor microenvironment. Such treatment reduces the frequency of 

immunosuppressive Tregs, MDSC and M2 macrophages while increasing the frequency of tumoricidal 

M1 macrophage. We believe that intra-tumoral delivery of vaccines that include TLR agonists should be of 

considerable benefit in the immunotherapy of cancer. 
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