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Abstract

We present OpenAWSEM and Open3SPN2, new cross-compatible implementations of

coarse-grained models for protein (AWSEM) and DNA (3SPN2) molecular dynamics simu-

lations within the OpenMM framework. These new implementations retain the chemical

accuracy and intrinsic efficiency of the original models while adding GPU acceleration and

the ease of forcefield modification provided by OpenMM’s Custom Forces software frame-

work. By utilizing GPUs, we achieve around a 30-fold speedup in protein and protein-DNA

simulations over the existing LAMMPS-based implementations running on a single CPU

core. We showcase the benefits of OpenMM’s Custom Forces framework by devising and

implementing two new potentials that allow us to address important aspects of protein fold-

ing and structure prediction and by testing the ability of the combined OpenAWSEM and

Open3SPN2 to model protein-DNA binding. The first potential is used to describe the

changes in effective interactions that occur as a protein becomes partially buried in a mem-

brane. We also introduced an interaction to describe proteins with multiple disulfide bonds.

Using simple pairwise disulfide bonding terms results in unphysical clustering of cysteine

residues, posing a problem when simulating the folding of proteins with many cysteines. We

now can computationally reproduce Anfinsen’s early Nobel prize winning experiments by

using OpenMM’s Custom Forces framework to introduce a multi-body disulfide bonding

term that prevents unphysical clustering. Our protein-DNA simulations show that the binding

landscape is funneled towards structures that are quite similar to those found using experi-

ments. In summary, this paper provides a simulation tool for the molecular biophysics com-

munity that is both easy to use and sufficiently efficient to simulate large proteins and large

protein-DNA systems that are central to many cellular processes. These codes should facili-

tate the interplay between molecular simulations and cellular studies, which have been
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hampered by the large mismatch between the time and length scales accessible to molecu-

lar simulations and those relevant to cell biology.

Author summary

The cell’s most important pieces of machinery are large complexes of proteins often along

with nucleic acids. From the ribosome, to CRISPR-Cas9, to transcription factors and

DNA-wrangling proteins like the SMC-Kleisins, these complexes allow organisms to rep-

licate and enable cells to respond to environmental cues. Computer simulation is a key

technology that can be used to connect physical theories with biological reality. Unfortu-

nately, the time and length scales accessible to molecular simulation have not kept pace

with our ambition to study the cell’s molecular factories. Many simulation codes also

unfortunately remain effectively locked away from the user community who need to mod-

ify them as more of the underlying physics is learned. In this paper, we present OpenAW-

SEM and Open3SPN2, two new easy-to-use and easy to modify implementations of

efficient and accurate coarse-grained protein and DNA simulation forcefields that can

now be run hundreds of times faster than before, thereby making studies of large biomo-

lecular machines more facile.

This is a PLOS Computational Biology Software paper.

Introduction

In recent decades, experimental methods for studying biological systems have made great

strides providing dynamic and structural information across a range of scales. Nevertheless,

most experimental probes are still very indirect, with a wide gap between what can be mea-

sured directly and what scientists actually want to understand and visualize. Modern theoreti-

cal frameworks for organizing our thinking along with computational simulation codes begin

to allow the detailed mechanisms of biomolecular assemblies to be laid bare. The development

of physical simulation models allows mechanistic ideas that are often only inferred indirectly

from structural biology to be tested rigorously in a quantitative way rather than remaining

attractive but qualitative hypotheses. Biomolecular simulations, in fact, are now beginning to

uncover previously unforeseen mechanisms on the molecular level.

When writing down a mathematical description of the forces acting on biomolecules, an

important first decision to make is what degree of detail is needed to represent the relevant

motions of the biomolecules within their environment. In particular, one must decide which

of the atomic degrees of freedom should be kept and which can be averaged over. Retaining all

of the atomic degrees of freedom gives rise to the popular all-atom models of biomolecules

immersed in a solvent which is also described in atomic detail. While these models are compu-

tationally costly to simulate, they can be quite accurate and have recently been used success-

fully to fold small proteins and even now begin to allow study of the dynamics of larger

systems. [1, 2] The great amount of detail in the all-atom representation often leads us to forget

that all-atom models today still make physical assumptions like the additivity of the
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intermolecular forces, which may not be fully accurate in all situations. Averaging over the sol-

vent degrees of freedom yields tremendous computational cost savings. The gain in efficiency

arises from two factors: first, when we simulate a solvated biomolecule in full atomic detail, the

vast majority of the atoms belong to the solvent. Eliminating them from detailed consideration

then greatly reduces the number of computational operations needed to follow the dynamics.

Second, as parts of the biomolecule move through the solvent they are constantly buffeted by

collisions with the nearby solvent molecules. These collisions dramatically slow down the large

scale motions that usually are of the most interest, yet in the main these frictional effects do

not change the structural character of the motions.

Averaging over all of the solvent degrees of freedom while retaining a fully atomically

detailed representation of the biomolecule thus already yields significant computational

advantages. While solvent averaging alone increases computational efficiency, additional

computational savings can be had by simplifying the representation of the biomolecule itself.

Here again, there are two ways computational time is saved. First, there is a direct savings

related to the need to compute a still smaller number of forces. Second, one can choose to

intentionally speed up certain internal motions that are otherwise slow in a typical all-atom

model by lowering torsional barriers, such as the rotation of backbone Ramachandran dihedral

angles. Opting for a coarse-grained representation of a biomolecule, by facilitating sampling,

greatly expands the number of biological questions that can be effectively studied.

While it is convenient to average over the solvent and detailed side chain degrees of free-

dom, the thermodynamic effects of the solvent and the side chains are subtle—considerably

more subtle than the buried surface area model. In proteins, it is well known that bulk aqueous

solvent gives rise to an effective hydrophobic attraction between non-polar residues. [3] This

effect motivated the buried surface area approximation. It is less widely known that specifically

bound water molecules also mediate interactions between pairs of polar residues; these give

rise to an effective hydrophilic interaction. [4, 5] These water-mediated interactions are quite

important in protein complexes. One efficient way of handling such phenomena is to alias

such interactions back onto the protein degrees of freedom. Doing this leads to strongly non-

additive forces. It is commonly believed that averaging over any of the degrees of freedom low-

ers the reliability of a model. For biomolecules, however, the all-atom force fields have

themselves generally been parameterized by experimental data just as the coarse grained mod-

els are. The greater freedom of formulating coarse grained models however has long encour-

aged the use of machine learning strategies to determine these parameters. Such machine

learning increases the accuracy of the description. [6] The resulting sophisticated coarse

grained models have proved surprisingly effective in describing biomolecular dynamics both

in folding and function, even in a quantitative sense. [7]

Design and implementation

The coarse-grained protein folding force field known as the Associative memory, water-medi-

ated, structure and energy model (AWSEM) is the latest iteration of a series of coarse-grained

models that have been primarily developed in the Wolynes and Papoian groups over the last

several decades [8]. AWSEM employs a detailed backbone representation along with a single

interaction site for each side chain. The AWSEM force field includes an implicit solvent model

with a hydrophobic burial term along with explicit water-mediated nonadditive interactions

between the residues. AWSEM-MD is an implementation of the AWSEM model in the

LAMMPS molecular dynamics package [9]. AWSEM-MD has been successful in predicting

the structures of globular α-helical proteins [8], both designed and natural α/β proteins [10],

and polytopic α-helical membrane proteins [11]. AWSEM-MD has also been used to study
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protein association [12] and aggregation [13]. Recently, AWSEM-MD has been used to predict

the folds of large proteins by incorporating co-evolutionary information [14] and 3D template

information [15]. It has also performed quite well in recent CASP competitions. [16]

Nucleic acids are important partners with proteins in biology and it is desirable to study

their dynamics with compatible computational tools. 3SPN.2 is a Coarse Grained DNA model

developed by the de Pablo group that models the DNA molecule using 3-sites-per-nucleotide:

a particle for the phosphate group, a particle for the sugar and a particle for the nucleobase

[17]. 3SPN.2 provides a flexible representation for the DNA backbone, and employs a detailed

representation of the base pairing interaction and DNA electrostatics. 3SPN.2C also describes

the DNA sequence dependent curvature [18]. 3SPN.2C has already been used in combination

with AWSEM to study protein-DNA complexes, such as the nucleosome [19] and NF-κB

DNA complexes [20].

As the force fields that are used to model protein and protein-DNA systems become more

complicated, and as the systems being studied become larger, the software used to model these

systems must also evolve. The challenges are clear: for example, in a recent study of chromo-

some organization proteins [21], AWSEM combined with co-evolutionary information was

used to study a protein complex having a total of 3964 residues. For these large systems, even

relatively short simulation runs of 100 ns laboratory time took up to 24 hours to obtain using

LAMMPS code. In the present paper, we will show how the OpenMM framework can be used

to speed up such simulations using GPUs and how OpenMM framework allows one to intro-

duce novel interactions in the simulation force field models with relative ease.

The LAMMPS simulation package employs a parallelization scheme that is based on spa-

tial-decomposition, with each CPU handling a separate contiguous region of space. Informa-

tion about the forces that act across the boundaries of these domains is passed between the

processors at each timestep. This parallelization scheme is relatively simple to implement due

to its nearly universal structure with respect to different forcefields. This approach to paralleli-

zation scales very well for simulations of bulk liquids and solids, where the system has a nearly

uniform density. For simulations of biomolecules with an implicit solvent forcefield, like

AWSEM and 3SPN2, however, spatial decomposition can be inefficient because the systems

have highly heterogeneous local densities. Processors that compute the interactions inside of

the mostly empty boxes will ordinarily then be idle while waiting for the processors that com-

pute the interactions inside of those boxes that are full of atoms. A spatial-decomposition

scheme that dynamically adjusts the sizes of the CPU-domains can only partially compensate

for this effect. For implicit solvent models, the force-based parallelization scheme employed by

OpenMM turns out to be much more efficient, especially when implemented on GPUs. [22]

OpenMM was developed with the intention of being compatible with multiple hardware plat-

forms including GPUs. It provides a high level application programming interface (API) that

removes the burden of writing platform specific codes. Traditionally, computational scientists

have designed forcefields for single CPUs and then only later would spend time modifying

their codes to support simulations on multiple CPUs and even more time on adding GPU sup-

port. With OpenMM, one only needs to write down the equations describing the forcefields

once, and the software automatically compiles optimized code that can be run on all platforms

including a single CPU, multiple CPUs, and GPUs (with both CUDA and OpenCL support).

OpenMM provides various flexible custom force templates to ease the implementation of

forcefields with new functional forms. To implement OpenAWSEM and Open3SPN2, we used

the custom force template that best fits each term in the Hamiltonians. For example, the “Cus-

tomNonbondedForce” is the best choice for the excluded volume term, which acts between

every pair of atoms, while the “CustomBondForce” supports a very wide range of functional

forms and is appropriate for terms that involve only a small subset of the system’s atoms.
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Another interesting situation that OpenMM flexibly encodes is AWSEM’s water-mediated

interaction. Since the water-mediated interactions depend on the local density around each

interacting atom, the local density around each residue has to be computed first before com-

puting the mediated interactions. This two stage feature can be implemented using the “Cus-

tomGBForce” template, which was originally intended to support another two stage energy

term: the Generalized Born-type potentials.

The custom force templates allow for rapid prototyping of new potential terms. For each

new potential, only the energy formula needs to be specified, while its derivatives are automati-

cally computed for the purposes of computing the forces. By automating the derivative calcula-

tion, even non-experts can design and implement new force fields readily. In this paper, we

will illustrate this capability of the OpenMM framework by introducing two new features into

AWSEM. The first new feature is a contact term that depends on the degree of burial of a resi-

due in a biological membrane. This energy can be used to describe proteins that have both

cytoplasmic parts that are surrounded by water, and other parts that are buried in a mem-

brane, which are thus surrounded by lipid primarily. The second new nonadditive potential

we introduce and explore is a many-body disulfide bond term that prevents the unphysical

clustering of Cysteines that can occur when disulfide bonds are modeled using a naïve pair

potential that must per force be very strong. This potential allows us to recapitulate the early

experiments of Anfinsen on ribonuclease that started the experimental study of protein folding

mechanism. [23, 24]

Results

Benchmark 1: Protein-only simulations

When AWSEM was first implemented using LAMMPS 8 years ago, dynamic studies of pro-

teins mostly focused on proteins having less than a thousand residues. This limited focus was

due both to the computational cost of studying larger system, and partly, to the scarcity of

experimentally solved structures of large biological machines. The structures of larger proteins

and their complexes are now being obtained at an unprecedented pace, thanks especially to

the development of Cryo-EM structure determination methods. One recently solved large pro-

tein, gamma secretase has drawn lots of attention due to its role in Alzheimer’ disease. Gamma

secretase contains 1542 residues. [25] Fig 1 shows comparative benchmark results for

Fig 1. Benchmark timing results for AWSEM simulations with the LAMMPS and the OpenMM implementations on a linear scale (left) and on a log scale

(right). The x-axis is the number of residues in the proteins that are being simulated. The y-axis shows the number of computer hours needed to run a 1 million-step

simulation. Each protein was simulated 5 times using each implementation. The lines are quadratic fits. The simulation protein set was chosen to have a wide range

of protein sequence lengths ranging from 164 residues to 3724 residues.

https://doi.org/10.1371/journal.pcbi.1008308.g001
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simulations using OpenAWSEM and using LAMMPS for proteins with various lengths. For a

protein with 3724 residues (PDBid: 4qqw), a simulation of 4 million steps corresponding

roughly to 20μs in laboratory time took more than 200 hours (8 days) using LAMMPS. The

same simulation takes only about 8 hour using OpenAWSEM, thus making millisecond simu-

lations feasible within a few days.

Benchmark 2: DNA-only simulations

To test the scaling of the runtime of Open3SPN2 for nucleic acids, we ran several random

DNA sequences of different lengths using the 3SPN2.C forcefield. The DNA strands were sim-

ulated using LAMMPS and using OpenMM for 1 hour and, from these test runs, we estimated

the time needed to run 1 million steps. As shown in Fig 2, the OpenMM implementation of

3SPN2.C reduces the simulation time of long DNA strands ranging in size from 250 bp up to

1.5kb DNA strands. For short sequences, the GPU is underutilized and the greater overhead

associated with using the GPU results in longer overall simulation times. For the 1.5 kb case,

we found a fourfold improvement in simulation speed. For longer DNA strands, the speedup

will be greater due to better scaling. This improvement in the simulation speed allows the

study of DNA dynamics on much longer timescales even for more complex systems such as

DNA origamis or small sections of chromosomes.

Benchmark 3: Protein-DNA simulations

To assess the speedup of DNA-protein simulations we selected several protein-DNA com-

plexes that have a diverse range of lengths for both the protein and the DNA sequences. We

included in this test set only structures from the PDB that contained a single protein chain and

a single DNA chain. We simulated each complex 5 times for 1 hour using each implementa-

tion and estimated how much time would be required to run 1 million steps. Fig 3 shows an

improvement of the simulation speed of protein-DNA complexes by 1 to 2 orders of magni-

tude. The largest structure that we simulated was RecA, a protein with 2050 amino acids, in

complex with a 18 nucleotides ssDNA (PDBid: 3cmu). In this case, we obtained a 300-fold

speedup.

Fig 2. Benchmark timing results for 3SPN2 simulations with the LAMMPS implementation of 3SPN2 and the OpenMM implementation of 3SPN2 on a linear

scale (left) and on a log scale (right). The x-axis is the number of nucleotides in the DNA that is being simulated. The y-axis shows the number of computer hours

that are needed to run a 1 million-timestep simulation. Each DNA length was simulated 5 times using each implementation. The lines are quadratic fits. The DNA

lengths range from 110 nucleotides to 1580 nucleotides.

https://doi.org/10.1371/journal.pcbi.1008308.g002
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Application 1: Protein-DNA interface prediction

As an example of simulating protein-DNA interactions, we characterized the capability of the

AWSEM-3SPN2 Hamiltonian to predict the correct protein-DNA binding interface of the

sporulation specific transcription factor Ndt80 (PDBid: 1mnn). At a constant temperature of

300K, the protein and DNA in the crystal structure were first pulled 100A� apart and run for

2.5 million steps; following this, a weak, non-specific force was used to pull them back together

while being run for another 2.5 millions steps. Following this, the pulling force was released

and the complex was simulated for another 5 million steps to let it relax. To reduce the effects

of binding to only a short length of DNA, we extended the crystallized DNA by adding DNA

made with 100 A/T base pairs to both ends of the double stranded DNA using the 3DNA pack-

age [26].

The OpenAWSEM-Open3SPN2 cross-interaction is given by electrostatic interactions

between the DNA phosphates and charged residues of the protein, as well as excluded volume

terms. The current implementation lacks specific interactions that depend on the nucleotide

type and amino acid type. Therefore, would it not through indirect DNA conformation-medi-

ated effects, the protein would not be expected to prefer binding to any particular stretch of

nucleotides on the DNA. The part of the protein surface that binds to the DNA and the orien-

tation of the bound protein with respect to the DNA, however, is somewhat specific. To evalu-

ate the quality of the DNA-protein interface, while focusing on finding the native binding

pocket of the protein, we quantified the quality of the docking in terms of the number of con-

tacts that the protein makes with any location along the DNA. A residue in the protein is said

to make such a “symmetrized” contact with DNA when the Cβ atom in the residue is closer

than 1.8 nm to a Phosphate of DNA in the crystal structure and where also, in the predicted

structure, this Cb atom is found within 1.8nm of a Phosphate of the DNA. For PDB ID 1mnn,

there are 135 such native contacts. The interface energy is defined as the sum of protein-DNA

excluded volume energy and the electrostatic interaction energy between the protein and the

Fig 3. Benchmark results for AWSEM-3SPN2 simulations of protein-DNA complexes using the LAMMPS and the

OpenMM implementations of both forcefields on a linear scale (left) and on a log scale (right). The x-axis shows

the PDB ID. The y-axis shows the computer hours needed to simulate for 1 million steps. Each complex was simulated

5 times using each implementation. The protein length ranges from 52 nucleotides to 2050 amino acids, while the

DNA length ranges from 2 to 40 nucleotides.

https://doi.org/10.1371/journal.pcbi.1008308.g003
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DNA. As can be seen in Fig 4, there is a strong correlation between the protein-DNA interface

energy and the quality of the protein-DNA interface, and the orientation of bound protein rel-

ative to the DNA matches that found by experiment.

Application 2: Potentials that depend on locations of residues relative to a

membrane

The water-mediated potential introduced by Papoian et al. [8] acknowledged that residues

interact not only when they are directly in contact but also when they perturb the surrounding

water, which in turn changes the energetics of more distant residues. The parameters for this

potential were optimized using an energy landscape theory inspired machine learning

Fig 4. A scatter plot of the interaction energy between the DNA and the protein versus the fraction of the symmetrized native

contacts formed at each time frame during the last 7.5 million steps of simulations from 10 runs. The average energy as a function of

the number of symmetrized native contacts is indicated with blue line. A simulation snapshot showing the overlap of the crystal structure

(colored in red) and the predicted structure (colored in cyan) that has the lowest interface energy. There is a high correlation between the

protein-DNA interface energy and the number of symmetrized contacts, indicating that the binding process is funneled to the correct

interface. The overlap figure was created by aligning only the protein parts of the crystal structure and the predicted structure. We see

that the DNA in both structures turns out to be aligned quite well, showing good structural agreement between the lowest energy

simulated structure and the experimental structure.

https://doi.org/10.1371/journal.pcbi.1008308.g004
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algorithm [7, 27–30]. Energy landscape theory provides a recipe whereby a transferable energy

function can be learned by searching for the most funnel like landscape in a class of energy

models. The funnel-like character of the landscape is measured by a Z score, Z = (Enative −
Emg)/σ(Emg). This quantity is then maximized while maintaining Emg constant. Emg is the aver-

age energy of a set of misfolded decoy structures. Using this strategy leads to an optimal set of

parameters to discriminate between properly folded and misfolded structures. In the simplest

model these parameters are the strengths of the interactions for different types of residue pairs

at various distances and how these interactions vary with the local density of protein and by

contrast with the local density of solvent water. The AWSEM potential has proved to be very

successful in structure prediction and has allowed exploration of many aspects of protein func-

tional motions [12, 13]. The water-mediated potential was originally designed for globular pro-

teins, but the same optimization scheme was used also to find a transferable energy function

that would fold membrane proteins, [11] in their membrane environment; the residue pair

interactions then are mediated by lipids instead of by water. Following the same procedures as

used for the globular proteins, the parameters for proteins that are found entirely inside the

membrane were optimized to discriminate proper folds. Many proteins, however, have some

of their parts inside the membrane while other parts of the protein remain outside in the cyto-

plasm. To study such systems we need a potential that can dynamically switch from being

water-mediated to lipid mediated based on the position of the residues relative to the bilayer.

Fig 5 shows the schematic of this potential.

Here, we introduce a z-dependent contact term that allows such dynamic switching. The

interactions smoothly transition between the membrane mediated interactions and water-

mediated interactions depending on the location of the interacting residues with respect to the

membrane as measured by a height z. We define the new contact potential term Vcontact

Fig 5. A schematic figure for the Z-dependent contact potential. The residues outside of the membrane, where the

membrane boundary is indicated by the two colored lines, interact using the globular parameters. The residues inside

the membrane interact using the membrane-optimized parameters. If one residue is inside, while another one is

outside, the pair interacts as if they both were in water. In the heat maps on the left side of the figure, red color

indicates a favorable interaction between the pair of residues indicated on the horizontal and vertical axes, whereas

blue color indicates an unfavorable interaction. Separate heat maps are shown for the direct, low-density, and high-

density interaction matrices in the water (globular) and membrane environments.

https://doi.org/10.1371/journal.pcbi.1008308.g005
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through the following equations:

Vcontact ¼
X

j� i>9

Vcontactði; jÞ ð1Þ

Vcontactði; jÞ ¼ ð1 � aiajÞVwaterði; jÞ þ krelativeaiajVmembraneði; jÞ ð2Þ

ai ¼
1

2
ðtanhðZðzi þ bÞÞ þ tanhðZðb � ziÞÞÞ ; ð3Þ

where b = 1.5nm, η = 10nm−1. Vwater(i, j) and Vmembrane(i, j) are the contact terms as defined in

previous paper [8, 11].

Since both sets of parameters in the Hamiltonian were previously optimized without

acknowledging the presence of the other terms, we also need to introduce a new parameter kre-
lative that controls the relative strength of the membrane mediated and the water-mediated

interactions. A high krelative favors forming contacts inside the membrane, while a low krelative
favors forming contacts in water. To determine the optimal value of krelative, we again employ

the energy landscape optimization learning scheme. The decoys for implementing this scheme

were generated by shifting the proteins vertically and rotating them. One then optimizes the

krelative while keeping the previously determined parameters fixed. This machine learning

scheme was employed using a test set obtained by downloading the complete Alpha-helical

polytopic database, a total of 1561 proteins, from the Orientations of Proteins in Membranes

(OPM) database. [31]. The advantage of the OPM database over the traditional RCSB protein

data bank is that it also spatially aligns membrane proteins relative to the membrane. The

training proteins must have significant parts both inside and outside the membrane. There-

fore, for each protein, we computed the fraction of the residues that are found inside the mem-

brane

w ¼
1

L

XL

i¼1

ðabsðziÞ < 15A�Þ ; ð4Þ

where zi is the z coordinate of CA of residue i, L is the protein length. For training we only

kept those proteins with χ between 0.2 and 0.8. We also removed those proteins that have

more than 2000 residues in order to speed up the optimization. This yielded a set of 1116 train-

ing proteins. For each protein, we then generated 240 decoys. These were generated first by

rotating them along the x axis with 12 different orientation at: 0, 15, 30, 45, 60, 75, 90, 105, 120,

135, 150, 165 degrees, and then shifting the structure vertically by 20 different displacements:

-40, -36, -32, -28, -24, -20, -16, -12, -8, -4, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36 angstroms along the

z-axis. To carry out this optimization, the total energies are evaluated using the following
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equations:

E ¼ kwat�wat þ kmem�mem þ kmemburial
�memburial

ð5Þ

�wat ¼
X

j� i>9

ð1 � aiajÞVwaterði; jÞ ð6Þ

�mem ¼
X

j� i>9

aiajVmembraneði; jÞ ð7Þ

�memburial
¼
X

i

AðsiÞYðzi; zm ¼ 15A�Þ ð8Þ

Yðzi; zmÞ ¼
1

2
tanh kmðzi þ zmÞ½ � þ

1

2
tanh kmðzm � ziÞ½ �

� �

ð9Þ

In these expression the values of A(σi) are the amino acid hydrophobicities on the octanol scale

of Wimley and White. [32–35] We include �memburial
here because the membrane burial term

also depends on the position of protein with respect to the membrane. [36] In the machine

learning algorithm thus we want to find the values of kwat, kmem and kmemburial
that maximize the

Z score for the correct positioning and orientations of the proteins with the membrane. Since

some decoys are more similar to the native positioning than are others, we reweighted the

decoys when computing the decoy averages in hϕimg

h�img ¼
1

PN
d¼1
ð1 � ydÞ

XN

d¼1

ð1 � ydÞ�d ð10Þ

where N is the number of decoys. For each decoy, the fraction of residues that have the same

pattern of burial as the native structure is defined to be θd. Two residues are said to have the

same burial assignment when either they are both inside the membrane or they are both in the

cytoplasm. yd ¼
1

L

PL
i¼1
di; di ¼

1 if ðabsðz0
i Þ < 15A�Þ ¼ ðabsðziÞ < 15A�Þ

0 if ðabsðz0
i Þ < 15A�Þ 6¼ ðabsðziÞ < 15A�Þ

(

, where z0
i (zi) is

the z coordinate of CA of residue i in the native(decoy) structure. The optimal values of the

coefficients that maximize the Z score turn out to be 1, 3.3, 3.3 for ϕwat, ϕmem, �memburial

respectively.

To demonstrate the effectiveness of the force field obtained in this way, we selected from

the database 15 proteins that have both membrane and globular parts. The folding of mem-

brane proteins is sometimes thought to have two stages. [37] The first stage is imagined to be

the insertion of the transmembrane helices into the membrane. In vivo this process is some-

times helped by the translocon [38]. The second stage of membrane folding is then the rear-

rangement of the now buried helices inside the membrane. To imitate the first stage, we used

PureseqTM [39] first to provide an initial idea of the topology with respect to the membrane.

Based on the PureseqTM prediction result, we wrote a script to assign each residue to three dif-

ferent regions: cytoplasmic, membrane or extracellular. Each residue is then pulled into its pre-

liminarily predicted region according to the resulting initial assignment using a force field that

only contains the backbone terms. Then, a force is applied to the two ends of the protein while

applying a strong membrane term, so that the helices become well separated but still live

within the membrane. Finally, the residue type dependent membrane potential is introduced

along with the contact terms and an annealing protocol of 8 million steps is followed with the
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temperature decreasing from 800 to 200. The results for the structure prediction runs using

the z-dependent contact term are compared with the results using the original contact poten-

tial in the Fig 6.

Fig 7 shows the aligned structures of the native structures and the predicted structures

using the new membrane burial depth dependent contact potential.

The AWSEM annealing yields an improved assignment of the location of the helices relative

to the purely sequence based method PureseqTM that was used for initial structures. In Fig 8,

we see that for 10 out of 15 proteins tested, the fraction of correctly assigned location is

increased after the folding. In this test set, 3kp9, 5xpd, 1u19 now have more than 10 additional

residues that take on their correct native location assignments compared to what is used ini-

tially based on the PureseqTM results.

Fig 6. Structure prediction results using the three contact potential schemes evaluated using Qwater (left) and Qmem (right). Qwater measures the structural

similarity to the native structure using only the residues that are outside of the membrane, whereas Qmem measures the structural similarity of the structures for those

residues found inside the membrane. The closer the similarity score is to 1.0, the more native like is the prediction. The hybrid potential in general performs better

than either the pure globular protein model or the pure membrane model.

https://doi.org/10.1371/journal.pcbi.1008308.g006

Fig 7. Overlay of the native structures and the best Qwater and Qmem structures using the membrane burial depth

dependent contact potential. For each protein, the upper figure shows the part of the protein that is found buried in

the membrane and the lower part of the figure shows the globular domain.

https://doi.org/10.1371/journal.pcbi.1008308.g007
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Application 3: Describing many-body saturating disulfide bonds

The disulfide bond forms a very strong interaction between two Cysteines. These bonds

restrain the dynamics of the protein and often control protein stability and function. Very

often the smaller extracellular proteins are dominantly stabilized by a large number of disulfide

linkages. If treated as a pair interaction, the strong disulfide bonds tend to condense and clus-

ter. The covalent chemical bond, in contrast to the pair interacting potential, saturates: only

one bond can be formed by each Cysteine, not more. The famous protein ribonuclease A was

originally studied by Christian Anfinsen. It has four disulfide bonds. Monitoring the formation

of these bonds was a key part of Anfinsen’s exploration [24]. Two of the four bonds have been

shown to be important for conformational stability and the other two are needed for catalytic

activity. [40] Because covalent chemical bonds saturate, a simple pair-wise potential cannot

model accurately Anfinsen’s experiment. The saturation effect is critical: when there are only

two cystines, they form a single strong disulfide bond, but when a third Cystine comes near to

the two Cystines that have already formed a bond, the third Cystine shouldn’t feel any strong

attracting force. This is a many body effect. In this study, we tackled this saturation problem

by developing a saturable many body disulfide bond interaction using the openAWSEM

framework. In this potential, displayed in Eq 11, the saturation is accounted for using a density

variable r
cys
i that reflects the number of Cystines around residue i smoothed by a tanh function.

The disulfide interaction term is then a pair interaction that is modulated by two r
cys
i depen-

dent switching functions, y
near
ij and y

small
ij . These two switching functions are defined in Eqs 14

Fig 8. The fraction of correct location assignments of the residues relative to the membrane using a purely sequence-based method (PureseqTM) and that

yielded by running OpenAWSEM simulations (AWSEM).

https://doi.org/10.1371/journal.pcbi.1008308.g008
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and 15.

Vdisulfide ¼
P

Vij ð11Þ

Vij ¼ y
near
ij y

small
ij aðrijÞ ð12Þ

aðrijÞ ¼
1

2
ðtanhðkðrij � rcÞÞ � 1Þ ð13Þ

y
near
ij ¼

1

2
ðtanhðksð0:2 � jr

cys
i � r

cys
j jÞÞ þ 1Þ ð14Þ

y
small
ij ¼

1

2
ðtanhðksð2:2 � r

cys
i � r

cys
j ÞÞ þ 1Þ ð15Þ

r
cys
i ¼

X

jj� ij>1

1

2
ð1 � tanhðkðr � rcÞÞÞ ð16Þ

where i, j label all the Cystine residues, and rij is the Cb distance between residue i and j. κs is

set to 20, so that y
near
ij is 0 when the difference between r

cys
i (the Cystine density around residue

i) and r
cys
j (the Cystine density around residue j) is larger than 0.4, and y

small
ij is 0 when the sum

of those two densities is larger than 2.4. The parameters introduced to quantify the rapidity of

saturation were calibrated using a database search for disulfide bonds in known crystallo-

graphic structures. To determine a reasonable potential well size κ for determining the Cystine

density, our survey showed that the Cb-Cb distances between residues that form disulfide

bonds fall in the range of 3:6A� to 4:1A� . We therefore chose a 0:5A� interval over which to turn

on the interaction by setting k ¼ 10A�� 1 and rc ¼ 4:2A� in Eq 16.

To illustrate the efficiency of using the new nonadditive Cystine density dependent disul-

fide bond term, we simulated the folding of ribonuclease A (1fs3), bovine pancreatic trypsin

inhibitor (1bpi), alpha thrombin (1ppb) and several other cystine rich proteins selected from

[41]. We tested 3 different strengths for the new potential, (k = 0, 2, 5), as well as the model

that has the pairwise additive potential, which we call “original”. We can see from Fig 9 that as

the strength of the saturable disulfide bond term increases, the predictions become closer to

the correct structure (as evaluated by the Q value). The saturable disulfide bond term signifi-

cantly improves the structure prediction quality for ribonuclease A. This improvement is

mainly due to the correct formation of the Cys26-Cys84 bond, which was also shown by exper-

iment to be essential for protein stability. [40]

The new disulfide bond term helps specifically to form the native disulfide bonds, rather

than allow the formation of mispaired Cysteines as shown in Fig 10. Even though in some

cases (1tcg, 1lmm and 1ppb), the prediction quality measured by Q was not significantly

affected by using the saturable disulfide interaction, the fraction of correct disulfide bonds was

improved in all six proteins we tested.

When we follow the annealing trajectories for these disulfide rich proteins, we find that,

consistent with the funneled nature of the energy landscape, disulfide bonds do not always

form in a specific unique order, and indeed non-native disulfide bonds occasionally form and

revert back to being unpaired, finally achieving a native like structure. Of course, we must bear

in mind that in the laboratory this process must involve chemically tuning the oxidation of

these bonds. Fig 11 shows the sequence of formation of disulfide bonds from each frame in a
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simulated annealing trajectory of ribonuclease A. As the extended protein starts to fold from

high temperature, some non-native disulfide bonds do form, but, in the end, the protein is fun-

neled to form the correct native disulfide bonds.

As shown in Fig 12, using the standard AWSEM, only one native disulfide bond (residue 58

and residue 110) ends up being formed in most of the 20 trajectories, while the other native

pairs(26-84, 40-95, 65-72) are rarely formed. In comparison, using the new Cystine density

dependent disulfide bond potential, all the native pairs are finally formed.

Discussion

We have described a new computational simulation framework for carrying out coarse grained

protein-DNA simulations—OpenAWSEM and Open3SPN2. In this new framework, simula-

tions using GPUs can achieve speedups of a factor of thirty for the simulation of proteins that

have more than two thousand residues. Large lengths of DNA also can be studied more effi-

ciently than existing CPU-based implementations. The minimal time scale for protein folding

is at least microseconds [43], which indicates the size of the computational burden required to

study such systems via all-atom simulations. With OpenAWSEM, folding and functional

mechanisms of even very large proteins can be simulated within a reasonable amount of clock

time (hours or days), thereby opening the door for a wide range of functional biomolecular

dynamics studies. The codes are written entirely with Python 3, including the user interfaces.

The computationally costly part of the simulations is handled by the OpenMM library, which

was coded with efficiency in mind. Python 3 provides great code readability and modification

efficiency, and since the codes are automatically compiled while running, the time spent in

Fig 9. Structure prediction results for six disulfide rich proteins using various strengths of the saturable disulfide bond interaction. We plot the best Q from 20

simulated annealing runs that started from different random velocity seeds for each different value of the disulfide interaction strength. As the strength of the disulfide

interactions increases, the best Q increases. 1tcg, 1lmm, 1bpi and 1ppb all have 3 disulfide bond. 1fs3 has 4 disulfide bonds, and 1hn4 has 7 disulfide bonds. The

relatively modest best Q for thrombin (1ppb) probably comes from the fact that we have only modeled the main chain of the molecule, but thrombin also has a short

chain that has been experimentally shown to be important for function [42].

https://doi.org/10.1371/journal.pcbi.1008308.g009
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Fig 10. The fractions of correct disulfide bonds in the predictions of several disulfide rich proteins. These fractions are shown for several different strengths of the

saturable interaction. At full strength, nearly all the pairs form correctly.

https://doi.org/10.1371/journal.pcbi.1008308.g010

Fig 11. The formation of disulfide bonds in a single annealing trajectory with k = 5. Following the trajectory in time, disulfide pairs are darkened in when they are

formed. Red indicates that a native disulfide bond has been formed. Blue indicates that a non-native disulfide bond has formed. The alignment of the best Q structure

from this trajectory with the crystal structure is shown in SI. Its Q value is 0.77.

https://doi.org/10.1371/journal.pcbi.1008308.g011
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compilation of the code is eliminated. Also, using the automatic computation of the derivatives

of the Hamiltonian instead of explicitly coding the forces greatly simplifies the introduction

and implementation of new energy terms to accommodate new physics. To illustrate this fea-

ture of OpenAWSEM, we have designed and implemented two sophisticated potentials for

some specialized folding situations. One of these involves the introduction of a membrane

burial dependent contact potential to describe proteins that are only partially buried in mem-

branes. We have demonstrated that using this potential for structure prediction leads to more

accurate structures than when the proteins are treated as uniformly living in one environment

or the other. Another energy term that was easy to code was a density dependent disulfide

bonding potential that mimicks the saturation of chemical bonds. Introducing this term gener-

ally improved structure predictions and also allowed us to computationally recapitulate Anfin-

sen’s Nobel prize winning experiments on ribonuclease. These two new potentials serve to

illustrate the flexibility and extendability of the OpenAWSEM framework, and will encourage

the design of future coarse grained force fields for large biomolecular simulations using this

computational software framework.

Materials and methods

Simulation setup

The default values of the parameters in the annealing protocol for all the simulations per-

formed in this study are given below. We maintained those values as being consistent with

those typically used in the LAMMPS implementation of AWSEM-MD. (listed in S1 Docu-

ment) We point out that for many problems involving very large systems, these run

Fig 12. The average formation of disulfide bonds as a function of time over the 20 annealing runs, with the patterns from the standard AWSEM shown on the

left and patterns from the nonadditive disulfide potential runs with k = 5 shown on the right. Red indicates that native disulfide bond has formed. Blue indicates

the formation of a non-native disulfide bond. The darker the color, the larger fraction of the trajectories that form this disulfide bond during this time frame. We see

that, occasionally, even with the full strength saturable interactions, sometimes non-native disulfides persist after the rapid annealings.

https://doi.org/10.1371/journal.pcbi.1008308.g012
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parameters should be revised for optimal efficiency. As a default in the structure prediction

runs, we used the langevin integrator with friction of 1ps−1, time steps of nominal 5fs, and tem-

perature going from 800K to 200K during simulated annealing. The simulations were carried

out for 8 million steps. This corresponds roughly to 40 μs of laboratory time. Default forces

included in our study are the connectivity, chain, chi, exclude volume, rama, rama modulated

by proline, rama modulated by secondary structure input file “ssweight”, contact, beta, pap

and fragment memory terms. Each term can be turned on and off and vary in strength and set-

ting in the force_setups.py file. All OpenAWSEM and Open3SPN2 simulations were

carried out with Nvidia V100 and all LAMMPS version simulations were carried out with Intel

Xeon CPU E5-2650 v2 on the Rice NOTS server.

Q-value definition

The Q-value is a measure of how similar a predicted structure is to the correct native structure.

To evaluate the quality of the protein predictions we used the Q value which is defined as:

Q ¼
2

ðN � 2ÞðN � 3Þ

X

i<j� 2

e
�
ðrij � r

N
ij Þ

2

2s2
ij ð17Þ

where N is the total number of residues, i and j are sequence positions, rij is the distance

between the CA of residue i and the CA of residue j. rNij is the distance between CA of residue

i and CA of residue j in native structure, sij ¼ ð1þ ji � jj0:15
ÞA� . For Qwater, N is the number of

residues outside of the membrane, and the sum is taken over all of those residues. For

Qmembrane, N is the number of residues outside the membrane, and sij ¼ 2ð1þ ji � jj0:15
ÞA�

Availability and future directions

OpenAWSEM is available at https://github.com/npschafer/openawsem website, and

Open3SPN2 is available at https://github.com/cabb99/open3spn2 website. We plan to study

protein-protein interactions such as the dimerization or oligomerization of membrane protein

in the future.

Supporting information

S1 Document. OpenAWSEM and Open3SPN2 force field description. Detailed description

of the various term in openAWSEM and Open3SPN2 models along with all the parameter val-

ues.

(PDF)
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