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Abstract: (1) Background: Extracorporeal membrane oxygenation (ECMO) therapy in intensive care
units (ICUs) remains the last treatment option for Coronavirus disease 2019 (COVID-19) patients
with severely affected lungs but is highly resource demanding. Early risk stratification for the need
of ECMO therapy upon admission to the hospital using artificial intelligence (AI)-based computed
tomography (CT) assessment and clinical scores is beneficial for patient assessment and resource
management; (2) Methods: Retrospective single-center study with 95 confirmed COVID-19 patients
admitted to the participating ICUs. Patients requiring ECMO therapy (n = 14) during ICU stay versus
patients without ECMO treatment (n = 81) were evaluated for discriminative clinical prediction
parameters and AI-based CT imaging features and their diagnostic potential to predict ECMO
therapy. Reported patient data include clinical scores, AI-based CT findings and patient outcomes;
(3) Results: Patients subsequently allocated to ECMO therapy had significantly higher sequential
organ failure (SOFA) scores (p < 0.001) and significantly lower oxygenation indices on admission
(p = 0.009) than patients with standard ICU therapy. The median time from hospital admission to
ECMO placement was 1.4 days (IQR 0.2–4.0). The percentage of lung involvement on AI-based
CT assessment on admission to the hospital was significantly higher in ECMO patients (p < 0.001).
In binary logistic regression analyses for ECMO prediction including age, sex, body mass index
(BMI), SOFA score on admission, lactate on admission and percentage of lung involvement on
admission CTs, only SOFA score (OR 1.32, 95% CI 1.08–1.62) and lung involvement (OR 1.06, 95%
CI 1.01–1.11) were significantly associated with subsequent ECMO allocation. Receiver operating
characteristic (ROC) curves showed an area under the curve (AUC) of 0.83 (95% CI 0.73–0.94) for
lung involvement on admission CT and 0.82 (95% CI 0.72–0.91) for SOFA scores on ICU admission.
A combined parameter of SOFA on ICU admission and lung involvement on admission CT yielded
an AUC of 0.91 (0.84–0.97) with a sensitivity of 0.93 and a specificity of 0.84 for ECMO prediction; (4)
Conclusions: AI-based assessment of lung involvement on CT scans on admission to the hospital
and SOFA scoring, especially if combined, can be used as risk stratification tools for subsequent
requirement for ECMO therapy in patients with severe COVID-19 disease to improve resource
management in ICU settings.

Keywords: COVID-19; respiratory distress syndrome; extracorporeal membrane oxygenation; artifi-
cial intelligence; computed tomography scan
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1. Introduction

Since its onset in December 2019, the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) pandemic has become a global challenge for healthcare systems, particularly
due to limited resources of intensive care units (ICU). In 2020, Coronavirus disease 2019
(COVID-19) disease climbed to the third leading cause of death in the US according to the
Centers for Disease Control [1]. Around 15–30% of COVID-19 inpatients require intensive
care treatment, 15–20% require intubation and a substantial subpopulation of around
three quarters of ICU patients develop respiratory failure such as acute respiratory distress
syndrome (ARDS) [2–8]. In severe hypoxemic respiratory failure, extracorporeal membrane
oxygenation (ECMO) can be a valuable lifesaving bridging technique providing time for
potential organ recovery or, in rare cases, lung transplant [9–12]. Veno-venous ECMO
(VV-ECMO) is indicated in severe hypoxemic respiratory failure refractory to conventional
respiratory support such as low pressure and low tidal volume mechanical ventilation
with optimal positive end expiratory pressure (PEEP), neuromuscular blockade and prone
positioning [13–15]. Patients exhibiting cardiac or circulatory failure might be assigned to
veno-arterial ECMO (VA-ECMO) for additional circulatory support independent of the
extent of respiratory failure.

In severe cases of COVID-19 with refractory hypoxemia the use of ECMO as a rescue
therapy has been advocated [16–18]. Published ECMO mortality rates have ranged widely
from around 40 to as high as 90% or above, whereas increasing evidence suggests that
COVID-19 ECMO mortality might be similar to known ARDS ECMO mortality rates
of around 40–60% and might not be significantly different to overall COVID-19 ICU
mortality [2,8,12,17–23]. Because ECMO therapy might reduce mortality and outcome is
likely to improve when therapy is applied early in severe ARDS, early risk stratification and
patient allocation is crucial [17,24–26]. This might also be applicable for patients with severe
COVID-19 pneumonia. In this study we evaluated the potential of clinical parameters on
ICU admission as well as AI-based CT imaging features on hospital admission for risk
stratification of ECMO therapy in critically ill COVID-19 patients.

2. Materials and Methods
2.1. Patient Data

Our retrospective single-center study was approved by the local institutional review
board. All COVID-19 patients (n = 95) admitted from 03/2020 until 01/2021 and already
discharged or deceased by end of January 2021 with positive SARS-CoV-2 PCR testing and
computed tomography (CT) scans within 48 h of hospital admission to the two participating
ICUs, which have been dedicated to exclusive COVID-19 care during the pandemic, were
included in the study (Figure 1). Patient data were collected retrospectively and extracted
from our digital patient information system (QCare PDMS, Health Information Manage-
ment GmbH, Bad Homburg, Germany), which is routinely used at the corresponding ICUs:
e.g., age, gender, body mass index (BMI), length of stay on ICU, hospital discharge or death,
hours of invasive and non-invasive ventilation, re-intubation, sequential organ failure
(SOFA) score, respiratory data as oxygenation indices, lung compliances and PEEP values.
Chest X-ray (CXR) and chest CTs were extracted from the digital radiologic information
system (RIS) and picture archiving and communication system (PACS).
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Figure 1. Study flow chart. All patients from the participating intensive care units (ICUs) with posi-
tive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR)
test between 2nd of March 2020 and 26th of January 2021, who were discharged or deceased and re-
ceived a computed tomography (CT) scan of the thorax on admission, were included. Extracorporeal
membrane oxygenation, ECMO.

2.2. Image Acquisition

CT scans (n = 91) were performed using CT scanners of our emergency department
(Siemens Somatom Force, Somatom AS+ and GE Optima 660), either as non-contrast
high-resolution scan or with contrast-enhanced pulmonary embolism protocol with the
patient in supine position. Image acquisition was modulated between 80 and 120 kVp
with adaptive tube current (mAS). All images were reconstructed with slice thicknesses of
1.00 mm or 1.25 mm. Multiplanar reconstruction methods were performed on all images.
CT scans for n = 4 patients were performed at external hospitals before transfer to our
hospital for ICU therapy with comparable scanning parameters. The datasets were suitable
for AI-assessment and included in the present study.

2.3. Artificial Intelligence Based Quantification of Lung Involvement

The CAD4COVID CT report tool (Thirona B.V., Nijmegen, The Netherlands) was used
for the quantification of CT lung involvement under the supervision of two radiologists
with 4 and 7 years of clinical experience, respectively. CAD4COVID provides segmentation
of lung lobes and displays them through a colored heatmap. The affected lung volume
is quantified as percentage of the total lung volume (0–100%) and a score is generated
ranging between 0 and 25 which indicates the extent of COVID-19 related abnormalities on
the CT scan (0–5 points per lobe, maximum score 25 overall, Figure 2). The performance of
the CAD4COVID method in the detection of COVID-19 was rated comparable with that
of human readers, as shown in an evaluation study [27]. CAD4COVID is a freely usable
CE-certified tool (class II, CE 0344) and access can be requested via the Thirona website
(URL Thirona website). It is made available free-of-charge to support healthcare facilities
during the pandemic. Axial lung kernel CT scans can be uploaded in DICOM file format
after anonymization.
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Figure 2. Lung involvement of CT scans of the thorax assessed with artificial intelligence. Left: Plain
coronal slice image of the thorax CT scan in a patient with SARS-CoV-2 positive PCR test. Right: AI
analyzed CT dataset with color staining of affected lung tissue (colored areas in each lung lobe). I.
Pre-processing with data anonymization and uploading. II. AI-based analysis of CT dataset.

2.4. Prediction Parameters for the Regression Analysis

The demographic characteristics age, sex and body mass index (BMI) have been
shown to be significant risk factors for disease severity and were therefore included in our
regression model [6,28]. As ECMO represents a rescue therapy for patients with severely
disturbed blood oxygenation capabilities due to lung damage, the oxygenation index on
admission was also selected as an important admission parameter for evaluation. Lactate
on admission as a general parameter for shock and the SOFA score on admission as a
multiparametric indicator of organ failure were included in the analyses. SOFA score
rates six different organ systems on a scale of zero to four points (range 0 to 24 points).
Additionally, the overall affected area as a percentage of the total lung volume of the
CAD4COVID tool was used as imaging features for the prediction model.

2.5. Statistical Analysis

All statistical analyses were performed with SPSS software (version 26.0, IBM). Contin-
uous variables are reported as median with interquartile ranges (IQR). Mann–Whitney-U
for continuous variables and Chi-square test or Fisher’s exact test for categorical variables
were applied to test for differences between the standard ICU therapy and the ECMO
therapy groups. Significance was defined as a two-sided p-value < 0.05. Binary logistic
regression for the prediction of allocation to ECMO therapy was performed adjusting
for multiple covariates. Odds ratios with 95% confidence intervals are shown. Receiver
operating characteristic (ROC) analyses using exact binomial confidence intervals (CI) were
used to compare the predictive performance of parameters and the area under the curve
(AUC) was calculated. Ideal discriminative values were determined using maximization of
the Youden index and sensitivity as well as specificity are reported.

3. Results
3.1. Baseline Clinical Characteristics and Demographic Data

Of the 95 patients, 78% included in the study were male, median age was 66 years
(IQR 55–74), median BMI was 27 (IQR 25–33), median SOFA score on admission was 8
(IQR 5–11), median lactate on admission was 1.3 (IQR 1.0–1.8) and median oxygenation
index on admission was 168 (IQR 112–229). Patients were classified according to the
Berlin definition for ARDS, whereas 2 patients (2.4%) did not exhibit ARDS on admission,
24 (28.9%) presented with mild, 40 (48.2%) with moderate and 17 (20.5%) with severe
ARDS features on admission. Median CT severity score was 15 (IQR 10–20) and median
percentage of lung involvement was 36% (IQR 19–56). All baseline characteristics are
shown in Table 1.
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Table 1. Characteristics of COVID-19 ICU patients. Baseline characteristics for included COVID-19
patients admitted to the participating ICUs. Values presented are count (percentage) for categorical
and median (interquartile range) or mean (± standard deviation) for ordinal or continuous variables.
ICU, intensive care unit; ARDS, acute respiratory distress syndrome; COVID-19, Coronavirus disease
2019; SOFA score, sequential organ failure assessment score; CT, computed tomography; * 5 missing
values; ** 13 missing values.

COVID-19 ICU-patients (n = 95)

Patient Data
Age 66 (55–74)

Male Sex 74 (77.9%)
Body Mass Index 27 (25–33)

SOFA Score on Admission * 8 (5–11)
Lactate on Admission 1.3 (1.0–1.8)

Oxygenation Index on Admission ** 168 (110–229)

Comorbidities
Diabetes 33 (34.7%)

Hypertension 59 (62.1%)
Heart Disease 32 (33.7%)

Pulmonary Disease 19 (20.0%)
Chronic Kidney Disease 9 (9.5%)

Active Malignancy 10 (10.5%)
Immunosuppression 7 (7.4%)

ARDS Type on Admission **
Mild 25 (30.1%)

Moderate 40 (48.2%)
Severe 15 (18.1%)

No ARDS on Admission 3 (3.6%)

CT Features on Admission **
CT-Severity Score 15 (10–20)

CT-Percentage of Lung Involvement 36 (19–56)

3.2. Differences between the ECMO Group and ICU Standard Therapy Group

Fourteen of the 95 COVID-19 patients (14.7%) required ECMO therapy, 12 patients
were allocated to VV-ECMO (86%) and 2 patients to VA-ECMO (14%). Patients treated with
ECMO had a median age of 62 years (IQR 55–68) vs. 68 years (IQR 55–75) in the standard
ICU therapy group, p = 0.164. Sex was equally distributed between the groups with 79.0%
male in the ECMO group versus 71.4% male in the standard ICU group, p = 0.528. BMI
was significantly higher in the ECMO group with a median of 31 (IQR 27–37) vs. 27 (IQR
25–30), p = 0.031. Patients in the ECMO group were significantly more often diagnosed
with severe ARDS according to the Berlin definition, p = 0.029.

Median length of ICU stays for patients receiving ECMO therapy was 22.3 (IQR 8.4–
29.1) vs. 12.5 (IQR 5.5–23.9) days on ICU, p = 0.120. For the survivors of both groups,
median length of stay was significantly longer for ECMO patients with 51.9 (IQR 39.6–
64.2) vs. 12.1 (IQR 5.5–20.6) days on ICU, p = 0.014. In the standard ICU therapy group,
73% of patients received mechanical ventilation, in the ECMO-therapy group 100% of
patients were mechanically ventilated. Hours on the ventilator were significantly longer
for patients in the ECMO group compared to the standard care group (median hours
on the ventilator 516.0 (IQR 192.9–698.5) vs. 157.6 (IQR 0.0–401.1), p = 0.003) as well as
only including survivors from both groups with 1012.4 (IQR 946.7–1078.1) vs. 113.9 (IQR
0.0–327.2), p = 0.014). Hours of non-invasive ventilation (NIV) were significantly shorter
for ECMO patients compared to the control group (0.8 (IQR 0.0–25.3) vs. 3.3 (IQR 0.0–12.3),
p = 0.006). Significantly more patients were treated with hemodiafiltration in the ECMO
group (13 patients, 92.9%) vs. the standard ICU group (25 patients, 30.9%; p < 0.001),
median hours on hemodiafiltration were 143.5 (IQR 41.7–346.5) in the ECMO group vs.
90.5 (IQR 34.0–280.2), p = 0.361. In the ECMO group 8 patients (57.1%) were treated with
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prone positioning for lung recruitment with a median of 22.5 h (IQR 18.0–56.4) vs. 25
patients (30.9%) with a median of 23.5 h (IQR 15.5–36.0) in the standard ICU therapy group,
no statistically significant differences were detected. In the ECMO group, SOFA score on
admission, mean SOFA score during stay and maximum SOFA score during stay were
significantly higher than in the standard ICU therapy group (12 (IQR 10–14) vs. 8 (IQR
4–11), p < 0.001, Figure 3A; 14.5 (IQR 12.5–18.8) vs. 7.5 (IQR 5.1–10.6), p < 0.001 and 18
(IQR 15–22) vs. 12 (IQR 8–15), p < 0.001, respectively). Further, the oxygenation index
was significantly lower in the ECMO group on admission (110 (IQR 90–161) vs. 178 (IQR
121–232), p = 0.009). Imaging on hospital admission showed a significantly higher severity
score (21 (IQR 19–22) vs. 14 (IQR 10–19), p < 0.001) and significantly higher lung volume
involvement (66% (IQR 49–72) vs. 30% (IQR 17–53), p < 0.001, Figure 3B) in the AI based
CT assessment.

Figure 3. SOFA score on admission and lung involvement on admission CT scans assessed with
artificial intelligence for COVID-19 patients with standard ICU therapy vs. ECMO therapy. (A)
Comparison of SOFA scores on admission between patients with standard ICU therapy vs. ECMO
therapy, p < 0.001 (B) comparison of lung involvement on admission CT scans between patients with
standard ICU therapy vs. ECMO therapy, p < 0.001.

Patients in the ECMO therapy group exhibited a significantly longer time interval
from admission to the time point of maximum SOFA score (13 days (IQR 2–15) vs. 2 days
(IQR 1–8) in the standard ICU therapy group, p = 0.012). This might be explained by a
longer disease progression reaching significantly higher SOFA scores during the course
of the disease for patients in the ECMO therapy group. The increase of SOFA score per
day until reaching the maximum SOFA score did not differ significantly between groups
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(p = 0.836). Time from admission to death did not differ significantly between groups for
non-survivors (p = 0.932). Median time from admission to ECMO allocation and placement
was 1.4 days (IQR 0.2–4.0). The in-hospital mortality differed significantly between groups
with 85.7% non-survivors in the ECMO therapy group vs. 29.6% non-survivors in the
standard ICU therapy groups, mirroring the significant clinical differences on admission
and confirming the use of ECMO therapy as a last resort for patients with the most severe
COVID-19 disease progression. In multivariate binary logistic regression for mortality, the
ECMO group was not significantly associated with a higher mortality after adjustment
for clinical and demographic parameters (Supplementary Table S1). All results of the
comparison between groups with corresponding p-values can be obtained from Table 2.

Table 2. COVID-19 ARDS patients with standard care vs. ECMO-therapy. Comparison of baseline parameters, clinical
parameters during ICU stay and outcome parameters between the standard ICU therapy group and the ECMO therapy
group. Values presented are count (percentage) for categorical and median (interquartile range) or mean (± standard
deviation) for ordinal or continuous variables. ICU, intensive care unit; ARDS, acute respiratory distress syndrome; COVID-
19, Coronavirus disease 2019; SOFA score, sepsis-related organ failure assessment score; CT, computed tomography; ECMO,
extracorporeal membrane oxygenation; * 6 missing values in standard ICU therapy group; ** 5 missing values in standard
ICU therapy group; *** 13 missing values in standard ICU therapy group.

Standard ICU
Therapy (n = 81)

ECMO Therapy
(n = 14) p Value

Comparison of Patient Characteristics
Age 68 (55–75) 62 (55–68) p = 0.164
Male Sex 64 (79.0%) 10 (71.4%) p = 0.528
BMI 27 (25–30) 31 (27–37) p = 0.031

ARDS Type
Mild 7 (9.3%) 0 (0.0%) n/a
Moderate 34 (45.3%) 2 (14.3%) p = 0.006
Severe 34 (45.3%) 12 (85.7%) p = 0.029

Patient Data during ICU Stay
Days on ICU (including external ICUs) 12.5 (5.5–23.9) 22.3 (8.4–29.1) p = 0.120
Days on ICU (Survivors) 12.1 (5.5–20.6) 51.9 (39.6–64.2) p = 0.014
Number of Patients on Mechanical Ventilation 59 (72.8%) 14 (100%) p = 0.026

Hours on Ventilator 157.6 (0.0–401.1) 516.0 (192.9–
698.5) p = 0.003

Hours on Ventilator (Survivors) 113.9 (0.0–327.2) 1012.4 (946.7–
1078.1) p = 0.014

Hours on NIV 3.3 (0.0–12.3) 0.8 (0.0–25.3) p = 0.006
Number of Patients with HDF 25 (30.9%) 13 (92.9%) p < 0.001
Hours on Hemodiafiltration 90.5 (34.0–280.2) 143.5 (41.7–346.5) p = 0.361
Prone Position 25 (30.9%) 8 (57.1%) p = 0.057
Hours of Prone Position 23.5 (15.5–36.0) 22.5 (18–56.4) p = 0.636
SOFA mean* 7.5 (5.1–10.6) 14.5 (12.5–18.8) p < 0.001
SOFA max** 12 (8–15) 18 (15–22) p < 0.001
SOFA on Admission* 8 (4–11) 12 (10–14) p < 0.001
Oxygenation Index on Admission*** 178 (121–232) 110 (90–161) p = 0.009
CT Severity Score on Admission*** 14 (10–19) 21 (19–22) p < 0.001
CT Percentage of Lung Involvement on Admission*** 30 (17–53) 66 (49–72) p < 0.001
Disease Progression
Time from Admission to SOFA max 2 (1–8) 13 (2–5) p = 0.012
Time from Admission to Death 17 (5–28) 19 (7–23) p = 0.932
Time from Admission to ECMO Placement (days) n/a 1.4 (0.2–4.0) n/a
Delta SOFA from admission to max per day 0.8 (0.0–4.0) 0.5 (0.3–2.0) p = 0.836
Time from CT to ICU Admission (days) 1 (1–3) 1 (0–1) p = 0.078
Time from CT to ECMO Placement (days) n/a 2.5 (1–5) n/a
Time from Hospital Admission to ICU Admission 1 (1–4) 1 (1–1) p = 0.119
Outcome
In-hospital mortality 24 (29.6%) 12 (85.7%) p < 0.001
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3.3. Risk Stratification for ECMO Therapy

In multivariate binary logistic regression analysis for the prediction of allocation to
ECMO therapy during treatment on ICU including the parameters age, sex, BMI, SOFA
score, lactate, oxygenation index and AI based assessment of CT imaging on hospital
admission, only SOFA score and CT imaging findings on hospital admission were signifi-
cantly associated with ECMO allocation during the subsequent treatment in ICU (odds
ratio for SOFA score 1.32 (95% CI 1.08–1.62), p = 0.008 and for lung involvement on CT 1.06
(95% CI 1.01–1.11), p = 0.011), results are shown in Table 3. Additionally, we performed a
multivariate binary logistic regression analysis for the prediction of allocation to ECMO
therapy excluding the two patients with VA-ECMO yielding similar results (Supplemen-
tary Table S2). We also evaluated the predictive potential of comorbidities for ECMO
therapy allocation but did not find a significant association (Supplementary Table S3).
Using receiver operating characteristic (ROC) curves, we found an area under the curve
(AUC) of 0.83 (95% CI 0.73–0.94) for lung involvement in percent of total lung volume on
CT imaging on admission and an AUC of 0.82 (95% CI 0.72–0.91) for SOFA score on ICU
admission (Figure 4). A combined parameter (multiplication of SOFA score on admission
with percentage of lung involvement on admission CT) yielded the best predictive results
with an AUC of 0.91 (95% CI 0.84–0.97, Figure 4). For a combination score of 435 (best
discriminative value) we calculated a Youden index of 0.77 with a sensitivity of 93% and a
specificity of 84% (Table 4).

Table 3. Predictors for ECMO therapy for COVID-19 ICU-patients. Results from binary logistic
regression with adjustment for multiple covariates. ECMO, extracorporeal membrane oxygenation;
COVID-19, coronavirus disease 2019; ICU, intensive care unit; CI, confidence interval; BMI, body
mass index; SOFA, sequential organ failure assessment; CT, computed tomography; 18 patients not
included in regression analysis due to missing values. * p < 0.05.

ECMO Therapy

Independent Variables Odds Ratio CI p Value

Age 1.003 0.924–1.089 0.936
Sex 0.509 0.064–4.073 0.525
BMI 1.065 0.934–1.214 0.350
SOFA on Admission 1.320 1.077–1.617 0.008 *
Lactate on Admission 0.991 0.528–1.859 0.977
CT Lung Involvement (%) on Admission 1.059 1.013–1.106 0.011 *

Figure 4. ROC curves for SOFA score on ICU admission, lung involvement on admission CT and both
parameters combined for the prediction of subsequent ECMO therapy. ROC curve for assignment to
ECMO therapy according to SOFA score on admission (yellow), AUC = 0.82 (95% CI 0.72–0.91), lung
involvement in % of total lung volume (grey), AUC = 0.83 (95% CI 0.73–0.93) and SOFA score on ICU
admission combined with lung involvement on admission CT (blue), AUC = 0.91 (95% CI 0.84–0.97).
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Table 4. ROC analysis for the prediction of ECMO therapy with Youden index, sensitivity and specificity. ICU, intensive care
unit; ECMO, extracorporeal membrane oxygenation; AUC, area under the curve; Y-index; Youden index; SOFA, sequential
organ failure assessment score; CT, computed tomography. n = 81 Standard ICU therapy, n = 14 ECMO therapy.

Standard ICU Therapy (n = 68) vs.
ECMO Therapy (n = 14) AUC (95% CI) Y-Index Discriminative Value Sensitivity Specificity

SOFA Score on Admission 0.82 0.72–0.91 0.50 8.5 0.93 0.57

Standard ICU Therapy (n = 76) vs.
ECMO Therapy (n = 14)

Lung Involvement on CT (%) 0.83 0.73–0.93 0.54 55.7 0.71 0.82

Standard ICU Therapy (n = 64) vs.
ECMO Therapy (n = 14)

SOFA Score on Admission and Lung
Involvement on CT (%) combined 0.91 0.84–0.97 0.77 435 0.93 0.84

4. Discussion

Early identification of ECMO therapy requirements for COVID-19 patients with
insufficient oxygenation capacity might reduce mortality and improve outcome after
hospitalization, especially when applied timely during disease progression [17,24–26].
Accessible and reliable risk stratification as early as possible is crucial for further ICU
therapy planning and effective resource management to assure optimal treatment for
severely affected COVID-19 patients. However, as ECMO is an immensely resource-
intensive approach and requires scarce capacities in specialized maximum care centers at
high expenses, adequate triage of patients is of utmost importance and must meet high
requirements [29,30].

We analyzed clinical data and quantitative CT imaging features of 95 SARS-CoV-2
PCR-positive ICU patients at our hospital. AI-based quantification of lung involvement
as percentage of the total lung volume in COVID-19 ICU patients on admission CT could
predict ECMO requirement with an AUC of 0.83 (CI 0.73–0.94). Further, the SOFA score
on admission as a parameter for organ failure showed a substantial predictive power
yielding an AUC of 0.82 (95% CI 0.72–0.91). As ECMO is a bridging technique for patients
with severe oxygenation impairment and severe COVID-19 often manifests with ARDS
it is comprehensible that lung involvement is a decisive factor. When the SOFA score on
admission, as a measure for multi organ function, was taken into account and severity of
lung involvement was weighted with the SOFA score in a combined prediction model,
predictive capability could even be improved. The combined parameter (multiplication
of SOFA on ICU admission and lung involvement on admission CT) showed the best
discriminative potential with an AUC of 0.91 (95% CI 0.84–0.97) and a sensitivity of 0.93
and a specificity of 0.84 was calculated with a Youden index of 0.77. While lung involvement
alone showed a high specificity whereas SOFA scoring alone displayed a high sensitivity,
specificity could substantially be increased by quantitative CT imaging features in the
combined model while a high sensitivity was preserved. Other parameters included in the
analyses that have previously been associated with increased risk for a severe course of the
disease such as age, gender and body mass index did not show discriminative power for
allocation to ECMO therapy [6,28].

The role of CT in diagnosis, triage and allocation purposes for COVID-19 patients
was acknowledged early in the pandemic [31]. CT scans as a noninvasive and widely
available tool have been shown to be of value in risk stratification in COVID-19 [32–35].
However, reading of CT scans is often done manually by radiologists which is time con-
suming, especially if segmentation and quantitative evaluation needs to be done, and is
subjective with an inter- as well as intra-observer variability. Artificial intelligence (AI) is
therefore increasingly important for supporting radiologic workups and has been shown
to promisingly derive quantitative CT imaging features. In previous studies AI has been
shown to accurately predict lung cancer [36,37] and outcomes of ARDS [38]. In COVID-19
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pneumonia, deep learning was used to differentiate COVID-19 disease from community-
acquired pneumonia [39] and CT quantification of pneumonia lesions in COVID-19 CT
features was used to predict severe disease course based on changes in chest CT scans
from day 0 to day 4 [40]. However, risk stratification for ECMO therapy based on chest CT
scans on hospital admission in combination with clinical features has not yet been reported
and seems promising, as AI-derived features from CTs at an early stage of COVID-19 can
be used to predict progression to severe oxygenation impairment with the requirement
of a potentially lifesaving bridging therapy. A recent multi-center study with a larger
VV-ECMO COVID-19 patient cohort (exclusively investigating VV-ECMO patients) found
that the SOFA score was not predictive for survival of patients when collected right before
initiation of the VV-ECMO and thus at a very critical stage of the disease course with
severe oxygenation impairment [41]. In our study, the SOFA score on admission was not
predictive for in-hospital mortality in the overall group. However, our results indicate
that the SOFA score on admission to ICU is valuable for the assessment of the COVID-19
patient’s risk for ECMO therapy.

Limitations

First, this study is a retrospective analysis with a limited sample size due to a finite
number of COVID-19 patients with severe disease that could be treated in our hospital on
the participating ICUs. Furthermore, discharged patients were not followed up beyond
their hospital stay. Nevertheless, our hospital represents one of the largest maximum care
university hospitals in Europe and 95 patients with severe COVID-19 disease were included
in this single center analysis. The study results need further investigation, ideally on larger
external validation cohorts. Second, the overall in-hospital mortality and particularly for
patients allocated to ECMO therapy was very high in this study. This might be explained
by a cohort with unusually high disease severity (high clinical scores for disease severity on
admission). In order to transfer results from our study to other ICU settings and hospitals,
an external validation cohort including less severe COVID-19 ICU patients is desirable.

5. Conclusions

AI-based quantitative assessment of lung volume involvement on admission CT,
particularly if combined with the sequential organ failure assessment score, is a non-
invasive and easily accessible tool to support risk stratification of ECMO requirements
in severely ill COVID-19 patients upon ICU admission and can assist in early patient
assessment and resource management.
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