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Recently deep learning has attained a breakthrough in model accuracy for the classification of images
due mainly to convolutional neural networks. In the present study, we attempted to investigate the
presence of subclinical voice feature alteration in COVID-19 patients after the recent resolution of
disease using deep learning. The study was a prospective study of 76 post COVID-19 patients and 40
healthy individuals. The diagnoses of post COVID-19 patients were based on more than the eighth
week after onset of symptoms. Voice samples of an ‘ah’ sound, coughing sound and a polysyllabic
sentence were collected and preprocessed to log-mel spectrogram. Transfer learning using the VGG19
pre-trained convolutional neural network was performed with all voice samples. The performance

of the model using the polysyllabic sentence yielded the highest classification performance of all
models. The coughing sound produced the lowest classification performance while the ability of the
monosyllabic *ah’ sound to predict the recent COVID-19 fell between the other two vocalizations. The
model using the polysyllabic sentence achieved 85% accuracy, 89% sensitivity, and 77% specificity. In
conclusion, deep learning is able to detect the subtle change in voice features of COVID-19 patients
after recent resolution of the disease.

The COVID-19 pandemic has caused enormous health, social and economic burdens. SARS-CoV-2, the virus
causing the disease, affects multiple body structures and organs. It infects host cells mainly through binding to
ACE2, which has been established as a receptor for the SARS-CoV-2 virus as well as for SARS-CoV-1, enabling
the virus to enter host cells. ACE2 is expressed in multiple tissues. The highest expression levels are reported
in the small intestine and the lowest in blood vessels and muscle'. The respiratory tract is an important site of
SARS-CoV-2 infection and disease morbidity. This may be explained by the high expression of ACE2 in human
epithelium?. Moreover, ACE2 is expressed in oral mucosa® and can also cause loss of smell and taste. Human voice
generation is a coordinated function of multiple body structures, including the lungs, vocal folds and laryngeal
muscle. About a quarter of patients with mild to moderate COVID-19 have been found to have dysphonia, and
interestingly, the expression of ACE2 has also been demonstrated in the vocal folds*. Whether there is a subclini-
cal persistence of voice abnormality after recovery from SARS-CoV-2 infection is currently unknown. These
signal analyses are an emerging noninvasive voice biomarker for COVID-19 infection.

Recently deep learning has attained a breakthrough in model accuracy for the classification of images due
mainly to convolutional neural networks (CNN). Not limited to image classification, CNN has been widely
used in converting non-image datasets into 2D or 3D datasets. For voice classification, successful implementa-
tions include the classification of singing voice®, acoustic scene classification®, and audio events classification’.
In the present study, we hypothesized that subtle voice changes could occur post COVID-19 infection. We
attempted to investigate the presence of subclinical voice feature alteration in COVID-19 patients once the dis-
ease had resolved, and the ability of artificial intelligence using CNN to classify patients based on past history
of COVID-19.
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Variables COVID-19 (n=76) Non COVID-19 (n=40) p value
Age (year) 40.26+1.40 30.08+0.96 <0.001
Female (%) 39 (51.3%) 37 (92.5%) <0.001
BMI (kg/m?) 24.1+£0.5 222+0.7 <0.05

Table 1. Clinical characteristics of participants with past COVID-19 and controls (mean + SE). Participants
with recent COVID-19 were older, had higher BMI and were more likely to be female, than controls.

Materials and methods

Study sample. This was a prospective study of 76 post COVID-19 patients seen at the outpatient clinic at
Chakri Naruebodindra Medical Institutes (CNMI) between May and June 2020. The study was approved by the
Faculty of Medicine Ramathibodi Hospital Institutional Review Board. All methods were performed in accord-
ance with the relevant guidelines and regulations. All participants gave their written informed consent before
participating in the study. All post COVID-19 patients were more than 8 weeks after onset of symptoms at the
time of the study. The exclusion criteria included pregnancy, breastfeeding, uncontrolled hypertension (systolic
blood pressure >160 mmHg or diastolic blood pressure>100 mmHg), acute myocardial infarction or stroke
in past 6 months, history of substance abuse, neurological disorders, current mental health difficulties, active
smoking or having stopped smoking for not more than 6 months, alcohol consumption of more than 7 units of
alcohol per week, and a history of speech and/or voice disorder such as apraxia of speech, functional articulation
disorder, dysarthria, cleft lip/palate, tongue or teeth abnormality, oral occlusion, laryngeal abnormality, or neu-
rological voice disorders. For controls, 40 healthy individuals with no underlying disease were recruited from
back-office staff working at CNMI.

Voice recording. Patients who met the screening criteria were interviewed using a predefined questionnaire
to collect demographic data and determine the duration of the disease. Three voice recordings were collected
from each participant using a plug-in microphone on a mobile phone. The recordings consisted of a persistent
‘aly’ sound for 5 s, a Thai polysyllabic sentence selected by a voice specialist for vocal apparatus analysis, and a
cough sound. The voice recordings were mono-channel and sampled at 44,100 Hz with a maximum duration of
30 s. Both the training and testing set were binary labeled.

Audio preprocessing and train-test split of the dataset. Each voice sample was divided into 100 ms
(ms) subsamples and a log-mel spectrogram was computed using the Python Librosa package. The dimension of
each subsample array was 128 x 32. The 2D data array was then converted to 3D suitable for downstream learn-
ing by adding a dimension containing identical 2D arrays as the original 2D array. Eighty percent of the total
voice records were used as the training set, and the others as the testing set.

Neural network architecture, training and cross validation. Building and training of the neural net-
work was performed on Tensorflow version 2 (Google, Mountain View, California, USA). We used the VGG19
pre-trained neural network for both pre-train transfer learning and model training. The VGG19 is a widely used
CNN, particularly for image classification and computer vision problems due to its in-depth structure and good
performance. For transfer and retraining of the VGG19 CNN, the output layer of the VGG19 was dropped and
two dense layers of 64, 32 fully connected units, each with batch normalization were added. The new output
layer was added with one output unit and a sigmoid activation. A 2D CNN layer was prepended the input of
the pretrained VGG19. The input layer of the full transfer learning model was 128 x32 x 1 in dimension. All lay-
ers of the modified VGG19 were made untrainable except for the last five layers to make the pre-trained CNN
more suitable for the new voice dataset. Three-fold cross validation was used to assess the performance of the
trained neural network. Each fold comprises 78 training samples and 38 training samples. We used a binary
cross entropy loss function as our study was a binary classification problem. ADAM optimization was used for
the gradient descent with a learning rate of 0.01. Parameters used during training were batch size 32, maximum
training epochs 600, percentage of training sample set aside randomly for validation 20% and the matric moni-
tored was area under the curve of the performance of the validation set.

Shannon entropy calculation. Shannon entropy of each voice type in all subjects was calculated using
the Python AntroPy package.

Statistical analyses. Data were expressed as mean+SD unless specified otherwise. Multiple logistic
regression models were used for assessing potential associated factors. A p value less than 0.05 was considered
statistically significant. All analyses were performed using Stata Statistical Software, Release 12 (StataCorp, Col-
lege Station, TX, USA).

Results

Clinical characteristics of study participants are shown in Table 1. In this sample, patients with COVID-19 were
older and had higher BMI than controls. The proportion of males to females was higher in the COVID-19 group
than in the control group. Logistic regression analyses with three-fold cross-validation were used to assess the
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Fold 1 0.77 0.67 1.00 1.00 0.57 0.55

Fold 2 0.67 0.80 0.43 0.71 0.55 0.24

Fold 3 0.72 0.88 0.43 0.73 0.67 0.33
0.72+£0.05 | 0.78+0.11 |0.62+0.33 |0.82+0.16 |0.59+0.06 |0.38+0.16

Table 2. Diagnostic values of clinical characteristics in predicting recent COVID-19.
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Figure 1. Mel-spectrogram of the 3 voice types from a study subject.

diagnostic values of clinical characteristics to predict recent COVID-19. A model with clinical characteristics
including age, sex, and BMI could predict recent COVID-19 with diagnostic values shown in Table 2.

Examples of the mel-spectrogram of the 3 voice types from a study subject were shown in Fig. 1. Table 3
shows the classification performance of CNNs using various voice types. All models were reasonably success-
ful in distinguishing patients with previous COVID-19 from controls. The performance of the model using the
polysyllabic sentence yielded the highest classification performance of all models (Table 3A-C). The coughing
sound produced the lowest classification performance while the ability of the monosyllabic ‘ah’ to predict the
recent COVID-19 was between the other two vocalization types.

We further investigate if the information content of voices as measured by the Shannon entropy may in part
be responsible for the better performance of the polysyllable voice. The boxplot of Shannon entropy of each type
of voice from all subjects is shown in Fig. 2. The entropy of the polysyllable voice and that of the ‘ah’ voice were
significantly higher than that of the cough voice. The entropy of the polysyllable voice was significantly lower
than that of the ‘ah’ voice despite that it showed better classification performance than the ‘ah’ voice.

As clinical characteristics of participants with or without recent COVID-19 were not well-matched, we further
used multivariate logistic regression analyses to investigate if voice can predict recent COVID-19 independently
of age, gender and BMI. Clinical characteristics and the values extracted from the CNN of each fold were shown
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‘ Accuracy ‘ Sensitivity | Specificity | PPV NPV Kappa
A
Fold 1 0.77 1.00 0.44 0.72 1.00 0.48
Fold2 |0.82 0.96 0.57 0.80 0.89 0.58
Fold3 |0.85 0.97 0.50 0.85 0.83 0.54
0.81+0.04 | 0.98+0.02 |0.50+£0.07 |0.79+0.07 |0.91+0.09 |0.53+0.05
B
Fold1 |0.74 0.78 0.69 0.78 0.69 0.47
Fold2 | 0.82 0.88 0.71 0.85 0.77 0.60
Fold3 |0.77 0.76 0.80 0.92 0.53 0.48
0.78+0.03 | 0.81+£0.05 |0.73+£0.05 |0.85+0.05 |0.66+0.10 |0.52+0.26
C
Fold 1 0.71 1.00 0.27 0.68 1.00 0.31
Fold2 |0.56 0.72 0.29 0.64 0.36 0.01
Fold3 |0.73 0.82 0.44 0.82 0.44 0.27
0.67+0.07 | 0.85+£0.12 |0.33£0.08 |0.71+0.08 |0.60+0.28 |0.19+0.13

Table 3. The diagnostic performance of the (A) polysyllabic sentence ‘Hing-Hoy-Hor-Bin-Ha-Dao-Hang), (B)
‘ah’ sound, (C) cough sound and convolutional neural networks (CNN) to classify recent COVID-19.
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Figure 2. Shannon entropy of the 3 voice types.

in Table 4. In most of the datasets in the threefold cross validation, voice characteristics of the polysyllabic
sentence as extracted by the CNN were significantly associated with recent COVID-19 independently of age,
gender and BMI, as shown in Table 5.

Discussion
In the present study, we demonstrated that voice features represented by mel-spectrogram could distinguish
patients with recent COVID-19 disease from controls, particularly with polysyllabic sentences. The results suggest
that the SARS-CoV-2 may affect tissue involved in voice production well beyond the resolution of the disease.
Some unique characteristics of COVID-19 such as loss of smell and taste® have been described. However, to our
knowledge, the alteration in voice has been less reported. It is also important to point out that such alteration
is subclinical, not obvious to either the patients or healthcare providers. For the loss of smell and taste, early
resolution was reported in most patients but the abnormality can persist in some patients up to 4 weeks after
the onset of symptoms®. Our study showed that the subtle change in voice could be present even 60 days after
being discharged from hospital. Recently, it has been increasingly aware that some symptoms of COVID-19 can
persist well beyond the recovery in infected subjects. Long COVID was characterized by symptoms of fatigue,
headache, dyspnea and anosmia and was more likely with increasing age and body mass index and female sex'?
and is thought to occur in approximately 10% of people infected'"'2. However, how soon and for how long the
alteration can be detected is currently unknown. Further studies are warranted, particularly to evaluate the pres-
ence of voice change early in the course of the disease, which, if present and specific, could be developed into a
screening modality for long COVID.

Our results are in keeping with previous studies suggesting that perturbation of voice has recently been sug-
gested as a manifestation of COVID-19 which can occur in up to a quarter of patients with mild to moderate
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‘ Sentence | Ahsound | Cough sound
Fold 1
Age (year) 37.1+10.7
BMI (kg/m?) 22.7+4.3
Female (%) 73.7
CNN extracted feature 0.82+£0.39 | 0.59+0.49 |0.89+0.31
Fold 2
Age (year) 35.7+12.1
BMI (kg/m?) 23.5+4.0
Female 66.7
CNN extracted feature | 0.77+£0.45 | 0.67+0.47 | 0.72+0.45
Fold 3
Age (year) 384+11.5
BMI (kg/m?) 24.4+48
Female 54.1
CNN extracted feature | 0.85+0.37 | 0.62+0.49 | 0.76+0.43

Table 4. Clinical characteristics and features extracted from CNN of each fold.

Sentence Ah sound Cough sound
Coefficient | pvalue | Coefficient | pvalue | Coefficient ‘ p value
Fold 1
Age (year) 0.07+0.05 0.20 0.05+0.05 0.31 0.05+0.05 0.29
BMI (kg/m?) 0.01£0.09 0.93 0.08+0.08 0.31 0.06+0.10 0.56
Female -2.77+£1.23 | <0.05 -2.18+1.00 | <0.05 -2.64+1.37 0.11
CNN extracted feature 3.47+1.70 | <0.05 1.49+0.80 0.06 5.00+2.74 0.10
Fold 2
Age (year) 0.08+0.05 0.12 0.08+0.05 0.14 0.11+0.05 0.03
BMI (kg/m?) —-0.03+£0.10 0.75 —-0.03+0.09 0.74 0.01+0.08 0.88
Female -1.69+0.94 0.07 -1.30+£0.91 0.16 -1.66+0.83 | <0.05
CNN extracted feature 2.24+£0.97 | <0.05 1.91+0.86 | <0.05 -0.41+0.82 0.62
Fold 3
Age (year) 0.19+0.10 0.06 0.20+£0.10 | <0.05 0.19+£0.08 | <0.05
BMI (kg/m?) -0.04£0.11 0.70 0.05+0.10 0.64 0.01+0.10 0.90
Female -4.17+£2.02 | <0.05 -3.86+2.05 0.06 -3.18x1.64 | <0.05
CNN extracted feature 229+1.28 0.07 1.36+1.12 0.22 0.45+1.09 0.68

Table 5. Association of the convolutional neural network’s (CNN) extracted features for various voice types
and recent COVID-19 after controlling for age, BMI and sex.

disease'. There are several factors which potentially can be responsible for the changes in voices in COVID-19.
Besides being a consequence of inflammation of related voice producing organs, SAR-CoV2 can potentially affect
the vocal cords directly. Enriched expression of ACE2, the receptor for SAR-CoV2 has been demonstrated in
the head and neck regions, particularly in sinuses, salivary glands, oral cavity epithelial cells and vocal cords'.
Moreover, post viral vagal neuropathy could occur which can present as persistent shortness of breath despite
normal chest radiograph®®.

Current artificial intelligence models can achieve diagnostic performance comparable to those of medical
experts in various domains'é~'%. In the present study, we demonstrated that voice features such as mel-spectro-
gram can be represented as an image and used as inputs for CNN. For the classification of images, a number of
feature visualizations have been explored to better understand how CNN sees features in images'®. These learned
features are usually hard to identify and interpret from a human vision perspective, causing a lack of under-
standing of the CNN’s internal working mechanism. Similarly, features in the mel-spectrum which distinguish
individuals with past COVID-19 and controls in the present study are unclear. This ‘black box’ nature of deep
neural networks is one of its shortcomings and the deep understanding of features contributing to classification
performance is difficult to attain.

There have been many attempts to use voices as biomarkers for diseases including Parkinson’s disease?, heart
failure?, and diabetes mellitus?’. Currently there is no consensus on which kinds of speech or voice are more
suitable for use as voice markers. For example, voice biomarkers for diabetes are varied in the literature and
include matched fragments of speech?, free speech?® or vowel sounds®. The relative accuracy of using different
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kinds of human voices for such purposes are currently unclear. However, we demonstrated in the present study
that speech utterances of a complex sentence are more accurate for the prediction of previous COVID-19 infec-
tion than simple vowels or a cough sound. The underlying basis for this difference is not clear, but it may be
related to the higher variation in voice features from more complex sounds which render it more effective when
used for classification by machine learning methods. To explore such a notion, we further analyzed the voice
types according to their Shannon entropy. Originated from information theory, Shannon entropy is a measure
to reflect information content of the variable under study*>?’. For the proposed features selection methodology
in machine learning, almost all the information-theoretic approaches are based on Shannon entropy?. Both
the polysyllabic and the ‘ah’ sounds in the present study had higher Shannon entropy than the cough sound
which corresponded with their apparent better performance than the cough sound. Moreover, as participants
were instructed to produce sustained vowels with a continuous phonation over a certain time, it may introduce
discontinuities in the pulmonic airstream in COVID-19 infected participants leading to sporadic, unintended
interruptions of phonation when expressed the polysyllabic and the ‘al’ sounds as compared to the cough
sound®. Interestingly, as far as we know, most of the studies using voice to classify the presence of COVID-19
have utilized cough sounds as the study features®*-*2. It is therefore worthwhile to further explore speeches and
other voice types which may have higher information content and better classification performance than cough
sounds per se. Moreover, it is of note that regardless of different accuracies, all 3 voice types produced higher
sensitivity compared to specificity, this would suggest that the practical use case of voices to classify past COVID
would be more appropriate for screening purpose and caution should be exercised with negative results as false
negative rates could be relatively high.

There are some limitations to the present study. First, the sample size was relatively small. However, we used
transfer learning with a pre-trained model to mitigate this limitation. Second, baseline characteristics were not
well matched across the two participant groups. However, after controlling for unmatched clinical parameters, the
polysyllabic sentence used in this study was effectively used to distinguish patients with recent COVID-19 from
controls. Third, there are a number of neural network architectures suggested for audio classification®**, how-
ever only the VGG19 CNN was explored in this study. Future studies with a larger sample size, better-matched
baseline characteristics between cases and controls, and varying neural network architecture are warranted.

Conclusion
Deep learning is able to detect the subtle change in voice features of COVID-19 patients after recent resolution
of the disease.

Data availability
The datasets generated and/or analysed during the present study are available from the corresponding author
upon reasonable request.
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