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Computational ligand design in enantio- and
diastereoselective ynamide [5þ 2]
cycloisomerization
R.N. Straker1, Q. Peng1, A. Mekareeya1, R.S. Paton1 & E.A. Anderson1

Transition metals can catalyse the stereoselective synthesis of cyclic organic molecules in a

highly atom-efficient process called cycloisomerization. Many diastereoselective (substrate

stereocontrol), and enantioselective (catalyst stereocontrol) cycloisomerizations have been

developed. However, asymmetric cycloisomerizations where a chiral catalyst specifies the

stereochemical outcome of the cyclization of a single enantiomer substrate—regardless

of its inherent preference—are unknown. Here we show how a combined theoretical and

experimental approach enables the design of a highly reactive rhodium catalyst for the

stereoselective cycloisomerization of ynamide-vinylcyclopropanes to [5.3.0]-azabicycles. We

first establish highly diastereoselective cycloisomerizations using an achiral catalyst, and then

explore phosphoramidite-complexed rhodium catalysts in the enantioselective variant, where

theoretical investigations uncover an unexpected reaction pathway in which the electronic

structure of the phosphoramidite dramatically influences reaction rate and enantioselectivity.

A marked enhancement of both is observed using the optimal theory-designed ligand, which

enables double stereodifferentiating cycloisomerizations in both matched and mismatched

catalyst–substrate settings.
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D
emand for higher efficiency, economy and selectivity in
the synthesis of novel molecular scaffolds drives organic
chemistry1,2. In this context, cycloisomerizations

represent ideal methods for the formation of cyclic organic
molecules, as they can fulfil all of these criteria. Despite much
research into transition metal-catalysed cycloisomerization3,4,
and reports where high enantioselectivity is achieved for the
cyclization of prochiral substrates to enantioenriched products5,6,
this important field of synthetic methodology has neglected
the development of enantiospecific diastereoselective trans-
formations, where single enantiomer starting materials are
subjected to asymmetric cycloisomerization to give specific
diastereomer products (that is, double stereodifferentiation,
where catalyst and substrate stereocontrol compete)7–10. In
an age where absolute control of molecular substitution
and stereochemistry is paramount for applications, the
realization of such processes would represent a major advance
in the sustainable synthesis of precision-manufactured target
molecules.

Here we describe rationally designed cycloisomerization
catalysts that address these challenges. The reaction selected for
this study was the [5þ 2] cycloisomerization of ynamide-
vinylcyclopropanes to [5.3.0] azabicycles (1-2, 3, Fig. 1).
Although [5þ 2] processes have a rich history in the field of
alkyne-vinylcyclopropanes11–22, the development of this process
using ynamides—or indeed any asymmetric cycloisomerization of
ynamide-tethered enynes—has not been explored either
experimentally or theoretically23–27. More generally, we
question whether a catalyst system optimized to achieve an
enantioselective cyclization (1-2, Fig. 1b) can translate to a
double stereodifferentiating setting (1-3 or epi-3, Fig. 1c),
particularly should the catalyst be required to overcome
powerful substrate stereocontrol. Intrinsic to these studies
is a combined theoretical and experimental approach to
optimize catalyst design28–30, which in the event reveals an
unexpected mechanistic pathway for rhodium-catalysed [5þ 2]
carbocyclizations (Fig. 1a). This work demonstrates the powerful
role of density functional level of theory (DFT) computations in
understanding asymmetric catalysis, leading to quantitative
computational-led design of new, highly selective ligands.

Results
Substrate synthesis and reaction optimization. A selection of
ynamide cycloisomerization substrates 1 were readily accessed

from allylic esters 4 (Fig. 2) by an Ireland-Claisen/Curtius
rearrangement/ynamide formation sequence. Substituents could
be introduced at one or both of the carbon atoms on the
ene-ynamide backbone, and by incorporating an enzymatic
resolution into this synthesis, enantioenriched ynamides could
be prepared. Ynamide formation (6-1) was achieved using
copper-catalysed coupling of the sulfonamide with a bromoalk-
yne32, or via formation of an intermediate dichloroenamide33.
Initial screening of ruthenium14 and rhodium20,34 catalyst
systems (Table 1) revealed that only the latter afforded high
yields of azabicycle 7a from ynamide 1a; using
[Rh(cod)naphthalene]SbF6 (5 mol%) as the catalyst35,36, the
cycloisomerization could be effected within 3 h at room
temperature, giving 7a in 91% yield (Entry 6).

Substrate scope. A variety of ynamides 1a–s were now examined
in the cycloisomerization using these optimized conditions
(Fig. 3). Aryl-substituted ynamides 1b–d reacted with high
efficiency, and revealed a clear electronic effect on the reaction
rate, with electron-deficient ynamides 1b and 1c showing reduced
reaction times. Alkyl-substituted ynamides 1e–g also displayed
enhanced reactivity compared with phenyl ynamide 1a, affording
the corresponding [5.3.0]-azabicycles 7e–g in excellent yields
within 15 min at ambient temperature. Similar efficient reactivity
was observed for the cyclization of the heteroaryl-substituted
ynamides 1h and 1i to the indolyl- and pyrrolyl-substituted
products 7h and 7i. The mild conditions of the reaction are
emphasized by the cyclization of the aniline-derived ynamide
1j, which led to tricycle 7j in 74% yield—notably, this 1,4-diene
did not undergo in situ isomerization to the indole.

Of clear interest was the level of substrate stereocontrol that
might be achieved using ynamides 1l–s. Excellent levels of
substrate stereoinduction were observed, with products 7l–s
afforded in high yield and as single diastereomers for substrates
featuring an allylic stereocenter; and, for 7s, as a single
regioisomer as well as diastereoisomer14. Cyclization of
substrates containing homoallylic stereocenters proved less
selective; however, good stereoselectivity (dr¼ 12:1) could be
achieved using [Rh(cod)Cl]2. These collected results are
significant in the wider context of [5þ 2] cycloisomerization,
where high levels of substrate stereocontrol have previously been
generally interpreted to arise from an ‘inside alkoxy effect’ from
oxygen-bearing stereocenters allylic to the vinylcyclopropane37,38.
In this work, it is apparent that such stereoelectronic effects are
not a prerequisite for high stereoselectivity.
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Figure 1 | A reaction blueprint for enantioselective and/or double stereodifferentiating diastereoselective ynamide-vinylcyclopropane

cycloisomerization. (a) We show that mechanistic calculations are crucial in the design of an enantioselective cycloisomerization catalyst.

(b) Enantioselective higher order ynamide cycloisomerization is realized. (c) Despite high levels of substrate stereocontrol, the computationally designed

catalyst is able to define product stereochemistry.
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Enantioselective cycloisomerization. In targeting an asymmetric
version of the cyclization, we were mindful of the excellent
asymmetric [5þ 2] Rh-catalysed cycloisomerization of alkyne-
vinylcyclopropanes described by Shintani et al.39,40, which
employed the versatile phosphoramidite ligand L1 (Fig. 4a)41.
A preliminary screen of a range of phosphoramidite ligands
L1–L4 revealed that L1 indeed seemed optimal for the enantio-
selective cycloisomerization of ynamide-vinylcyclopropane 1a,
delivering product (–)-7a in excellent yield and enantioselectivity
(96%, 98% ee) after just 15 min at room temperature (see Supple-
mentary Information for assignment of absolute stereochemistry).
However, forays with other substrates suggested that this
ligand might not meet our expectations in more challenging
settings, and we realized that any further advance would
require a combined theoretical and experimental design
approach.

To this end, we conducted a computational exploration of the
reaction pathway, which began with investigation of the empirical
model adopted by Shintani et al. to explain the enantioselectivity

of vinylcyclopropane-alkyne cycloisomerization. This model
(Fig. 4b) is based on an X-ray crystal structure of [Rh(L1)
norbornadiene]BF4 reported by Mezetti (8) (ref. 42), which
reveals an Z2-complexation of one of the a-methylbenzylamine
arenes to the rhodium cation—the phosphoramidite thus acting
as a bidentate ligand. The Shintani–Hayashi model docks the
vinylcyclopropane-alkyne onto this ligated rhodium framework
as in structure 9, such that the alkyne coordinates trans to the
phosphorous atom of the phosphoramidite ligand, and the
vinylcyclopropane coordinates trans to the Z2-complexed arene,
with an orientation that minimizes steric interactions between the
cyclopropane ring and naphthyl group.

Computational study and ligand optimization. Computation,
particularly at the DFT level, has emerged as a powerful tool for
assessing the feasibility of mechanistic steps involved in
catalysis43. Our theoretical work first explored eight possibilities
for the binding of ynamide-vinylcyclopropane 1a to the [Rh(L1)]
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Figure 2 | Synthesis of ynamide-vinylcyclopropanes 1. (a) The synthetic route employed uses an Ireland-Claisen rearrangement of esters 4a–e to

construct the vinylcyclopropane and install up to two backbone substituents; subsequent Curtius rearrangement / sulfonylation converts the carboxylic

acids 5 to sulfonamides 6; ynamide formation is then achieved using copper-catalysed coupling with a bromoalkyne or, for hindered or aniline-derived

ynamides, a two step route via a dichloroenamide. For the preparation of enantioenriched esters 4b, 4d and 4e, and ynamides 1q and 1s, see

Supplementary Fig. 4. (b) Ynamide-vinylcyclopropanes prepared using this strategy.

Table 1 | Optimization of the [5þ 2] cycloisomerization reaction.

TsN

Ph

Reaction conditions

(see table)a N
Ts

Ph

1a 7a

Entry Catalyst (mol%) Solvent Temp. (�C) Time (h) Yield (%)

1 [CpRu(MeCN)3]PF6 (10) acetone 50 20 – b

2 [RhCl(cod)]2 (10) toluene 110 20 – b

3 RhCl(PPh3)3 (10) toluene 110 1 72
4 [(C10H8)Rh(cod)]SbF6 (10) 1,2-dichloroethane rt 1.5 92
5 [(C10H8)Rh(cod)]SbF6 (10) CH2Cl2 rt 1.5 94
6 [(C10H8)Rh(cod)]SbF6 (5) CH2Cl2 rt 3 91

aReactions performed at 0.1 M substrate in the solvent stated. bReaction gave a complex mixture of products.
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cation (Table 2). In contrast to the Shintani–Hayashi model, this
suggested that the lowest energy complex of [Rh(L1)1a] positions
the ynamide proximal to the naphthyl ring and trans- to the
arene ligand, and the vinylcyclopropane trans- to the
phosphorous atom (10, Fig. 5, P-trans-ene/Up). The next
lowest energy structure maintains this positional selectivity of
substrate binding, but inverts its orientation (that is, P-trans-ene/
Down). Next, calculations were carried out to explore the two
widely accepted mechanisms for [5þ 2] cycloisomerization,
which initiate either with an oxidative addition into the

vinylcyclopropane, followed by alkyne insertion into the
resultant s/p-allyl rhodium(III) complex 11 to give eight-
membered rhodacycle 12 (vinylcyclopropane pathway), or via
oxidative cycloaddition of Rh(I) with the alkyne and alkene
to give rhodacyclopentene 13, followed by ring expansion
into the cyclopropane to give the same intermediate 12
(metallacyclopentene pathway). Where investigations by Yu,
Houk and Wender on Rh-catalysed [5þ 2] cycloisomerizations
suggest that oxidative addition into the vinylcyclopropane is the
first step on the catalytic pathway17,21, our DFT calculations
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(Fig. 5) suggest that oxidative coupling of the alkene-ynamide to
form metallacyclopentene 13 appears to be the preferred reaction
pathway for an ynamide-vinylcyclopropane to give 12, followed
by ring expansion of the cyclopropane. Notably, this mechanism
has also been calculated to be the preferred pathway in
ruthenium-catalysed [5þ 2] cycloisomerization17. The preference
for this pathway over vinylcyclopropane oxidative addition is in the
range of 4–12 kcal mol� 1, depending on the orientation with
which 1a binds to the [Rh(L1)] cation; notably, the transition states
for both pathways favour Re-face binding of the alkene in a
P-trans-ene/Down orientation. This sequence of steps is favoured
in this intramolecular reaction due to additional stabilization of the
forming Rh(III) intermediate in the oxidative coupling step by the
electron-rich ynamide. The free energy profile for the catalytic
cycle is exergonic by more than 40 kcal mol� 1, and product
inhibition is predicted to be minimal, since the reactant
preferentially binds to the catalyst by 6.2 kcal mol� 1; taken

together with a turnover and selectivity determining barrier of
17.0 kcal mol� 1 for the metallacyclopentene pathway, our
computations are consistent with the short reaction times
observed at room temperature for the conversion of 1a–7a
using L1.

The lowest energy transition state for the oxidative
coupling of this metallacyclopentene pathway (TS3) is illustrated
in Fig. 4c. This transition state leads to a calculated
enantioselectivity for cyclization with ligand L1 of 97.9% ee
(DDGzRe/Si¼ –2.69 kcal mol� 1), which is in excellent agreement
with the experimental value (R, 98% ee). The calculated
enantioselectivity for phosphoramidite L4 (9.3% ee,
DDGzRe/Si¼ –0.11 kcal mol� 1) also correlates well with the poor
selectivity we had already observed experimentally with this
ligand (7% ee), supporting the mechanistic model, and implying
that the naphthyl ring plays a crucial role—likely related (for aryl
ynamides) to a stabilizing dispersive (p� p) interaction between

N
Ts

Ph

TsN

Ph

H
[RhCl(C2H4)2]2 (2.5 mol%)

L* (6 mol%)
NaBArF4 (6 mol%)

1a 7a

*

O

O
P N

Ph

Me

Ph

Me

L2: 20 h, 79%, 55% ee

O

O
P N

Ph

Me

Ph

Me

L1: 15 min, 96%, 98% ee

O

O
P N

Ph

Ph

L4: 20 h, 91%, 7% ee

Me

MeO

O
P N

Ph

Ph

L3: 20 h, 88%, 92% ee

H

O

O
P

N

Me

Rh

Me
R3

H

O

O
P N

Ph

Ph

L4: 9.3% ee

Me

MeO

O
P N

Me

Me

L1: X = H: 97.9% ee
L5: X = F: 99.9% ee
L6: X = OMe: 96.7% ee

X

X
O

P

O

N

Ts
N

ligand backbone 
Important

Rh-arene interaction
important

Rh

X

X

H

O

PNMe
Rh

Me

O
H

CH2Cl2, rt

a b

e

Theoretical
reaction
analysis

9

8

Mezetti-Hayashi model

Transition state model

c

d

rCipso-Rh 2.40

rCortho-Rh 2.46

Si face

TS3TS3

(S)

rC-Rh 2.01
rC-Rh 2.09

rC-C 2.08

rC-Rh 2.08 rCortho-Rh 2.79
rCipso-Rh 3.20

rPh  3.74

rnap  3.82

Re face

TS3TS3

(R)

rC-Rh 1.99
rC-Rh 2.11

rC-C 2.07

rC-Rh 2.08
rCortho-Rh 2.69

rCipso-Rh 3.12

rPh  3.69

rnap  3.53

Activation barriers for Re/Si 
face selectivity

4.56 2.69
2.42

Re face
Si face

Dearomatized
L4

MeO-Ph
L6

Ph
L1

F-Ph
L5

20

ΔG
 (

kc
al

/m
ol

)

18

16

14

12

10

0.11
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the ynamide substituent and the naphthyl group in TS3.
Although partial saturation of the naphthyl backbone (that is,
in L4) leads to higher activation barriers, it is notable that the
erosion of enantioselectivity for this ligand results from a greater
increase (by 2.58 kcal mol� 1) to the activation barrier for Re-face
addition compared with Si-face addition; this supports the
existence, and importance, of stabilizing non-bonding (disper-
sion) interactions because of the aromatic backbone of L1 in
favouring the major enantiomer. Alkyl substituents are expected

to experience similar attractive non-bonding interactions
(CH–p); these interactions are further evident from an analysis
of the computed non-covalent interaction index (Supplementary
Fig. 68).

The oxidative coupling (TS3) is the rate-limiting and
enantioselectivity determining step in this rhodacyclopentene
mechanism. As observed in the Mezetti norbornene crystal
structure (Fig. 4b)42, one of the ligand benzylamine groups acts
as 2p-electron donor (2.6–2.7 Å) in these transition states.
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Table 2 | Eight possible orientations of enynamide docking onto the L1-Rh cation are explored.
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P trans to yne

Orientation Metallacyclopentene Pathway Vinylcyclopropane pathway

Re-selectivity (R) Si-selectivity (S) Re-selectivity (R) Si-selectivity (S)

1 18.7 31.3 23.0 22.0
2 17.0 19.7 21.9 24.8
3 23.6 23.9 29.3 24.5
4 23.2 30.7 35.3 41.7

Transition state energies (SMD-oB97XD/6-311þG(d,p)/Lanl2TZ//oB97XD/6-31G(d)/Lanl2DZ Gibbs free energies, shown in kcal mol� 1) associated with each mode of binding are tabulated.
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We hypothesized that variation of the electronic character of this
Z2-complexed arene could dramatically influence both the rate,
and selectivity, of the reaction. Calculations on the effect of
electronically-biasing methoxy and fluoro groups at the
para position of these arenes suggested that decreasing the
electron density on the arene (p-F, L5, Fig. 4d,e) would lead to an
increase in reaction rate (DDGzL5/L1¼ � 0.47 kcal mol� 1) and
enantioselectivity (DDGzRe/Si¼ –4.56 kcal mol� 1, 99.9% ee), while
an electron-donating substituent (p-MeO, L6) would have the
opposite effect (DDGzL6/L1¼ þ 0.76 kcal mol� 1, DDGzRe/Si¼
–2.42 kcal mol� 1, 96.7% ee). This computed trend in reactivity
and enantioselectivity, namely L54L14L6, results from a
weakened metal-arene interaction in the TS leading to the major
enantiomer, which is compensated for through stronger
coordination of the alkynyl and alkenyl groups (see Supple-
mentary Information for further details and discussion). These
ligand structural modifications also modulate the Lewis basicity at
phosphorus, however preferential stabilization of the major
enantiomeric pathway confirms that the predominant effect is
not inductive in nature, but rather depends on through-space
interactions involving the Rh-coordinating aryl group.

Substrate scope in the asymmetric cycloisomerization. While
phosphoramidite L6 is known, (ref. 44) L5 is not, but could be
readily synthesized using standard methods45. Both were
evaluated in the enantioselective cyclization alongside L1
(Fig. 6a). To our delight, experiment correlated well with the
predicted outcomes of these cyclizations; the p-fluorobenzyl ligand
L5 indeed showed a dramatic enhancement of rate and selectivity
in the cyclization of 1a compared with the parent ligand L1,
affording 7a in under 5 min with 99% ee (calc. 99.9% ee), while the
p-methoxybenzyl ligand L6 exhibited a much reduced rate of
reaction, and also lower enantioselectivity (1 h, 97% ee, calc. 96.7%
ee). The cyclization of alkyl-substituted ynamides 1e–g to give
enantioenriched azabicycles 7e–g also showed a rate and selectivity
enhancement between L1 and L5. The potent reactivity of the latter
ligand was extended to a variety of aryl-substituted ynamides,
where the marked rate difference between electron-poor (1b) and
electron-rich (1d) ynamides supports the hypothesis that the
ynamide is intimately involved in the rate-determining step (that is,
a metallacyclopentene pathway). In all cases using ligand L5, these
reactions proceeded in under 30 min with excellent levels of
enantioselectivity (94–99% ee); furthermore, the synthesis of 7e
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Figure 6 | Enantioselective and double stereodifferentiating, ynamide [5þ2] cycloisomerizations. (a) Enantioselective cyclization is tested against a

range of ynamide-vinylcyclopropanes, showing an excellent correlation of computation and experiment for the theory-designed ligands L5 and L6. The

synthesis of 7e was performed on 1 mmol scale (1.25 mol% catalyst). (b) 1H NMR spectroscopic monitoring of reaction progress emphasizes the rate

enhancement between ligands L6, L1 and L5, also predicted theoretically. (c) Matched double stereodifferentiating cycloisomerizations proceed with high

selectivity and rate. (d) Mismatched double stereodifferentiating cycloisomerizations proceed successfully under catalyst stereocontrol using the

enantiomers of ligands L1, L5 and L6 (that is, (R,S,S)-L stereochemistry); the major diastereomer is shown. The a signifies reaction conversion, as judged by
1H NMR spectroscopic analysis.
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could be achieved on a 1 mmol scale in less than 5 min with
1.25 mol% catalyst loading. Monitoring of reaction conversion by
1H NMR spectroscopy (in CDCl3, Fig. 6b) emphasizes the
dramatic rate difference between these three ligands, with the
reaction using L5 complete in under 4 min, compared with the
slower cyclizations with L1 and L6 (addition of the catalyst
solution to the substrate followed by NMR spectroscopic analysis
necessitated a four minute delay between reaction initiation and
acquisition of the first NMR spectrum. The reaction catalysed by
[L5Rh] was complete by this time).

Finally, the performance of these ligands was tested against the
challenge of cyclizations that proceed with high levels of substrate
stereocontrol, to address the question of how a high enantios-
electivity-inducing catalyst would cope with mismatched sub-
strate-catalyst diastereoselective cycloisomerization scenarios.
Three substrates were chosen for this challenge: ynamides 1l,
1q and 1r, which gave 420:1, 1.8:1 and 420:1 dr, respectively
when cyclized using [Rh(cod)naphthalene]SbF6 (Fig. 3). As
expected, these single enantiomer substrates cyclized rapidly,
and with high efficiency and selectivity, with the matched
substrate-catalyst combination (that is, (S,R,R)-L5, Fig. 6c). To
our delight, we found that cycloisomerization of substrate 1l
using the enantiomeric catalyst system ((R,S,S)-L1) successfully
overturned this powerful substrate stereoselectivity, giving 14l in
up to 1:8 dr. Interestingly, it was ligand L1—and not L5—which
performed optimally in this challenging situation, albeit requiring
an extended reaction time. In the case of 1q, the catalyst (with
either L1 or L5) was able to achieve an equivalent (reversed) level
of selectivity to that achieved in the matched sense—in this
instance, a modest level of inherent substrate stereocontrol being
completely overturned. Finally, the most challenging setting of
the reinforcing substituents in 1r proved a hurdle that could also
be partly overcome, again demonstrating significant catalyst
influence.

These observations may suggest that tighter substrate-Rh
complexation in the case of L5 (a consequence of a slightly
weaker ligand-metal interaction observed in our calculations
(see Supplementary Information for details), which improves rate
and enantioselectivity), enhances unfavourable (that is, mis-
matched) steric effects in a double stereodifferentiating setting
such that it effectively increases the stereocontrolling influence of
the substrate relative to that of the ligand. The most reactive/
selective catalysts for enantioselective cyclizations could thus
suffer from higher than expected transition state energies in
diastereoselective cyclizations, where such steric effects are
enhanced compared with ‘less enantioselective’ catalysts (looser
substrate binding); and that different considerations are therefore
needed in the development of double stereodifferentiating
reactions, with more ‘promiscuous’ catalysts potentially giving
superior selectivity.

Discussion
In summary, the first example of an enantioselective ynamide-
tethered cycloisomerization has been achieved, with a series of
highly enantio- and diastereoselective cyclizations giving a range
of substituted/enantioenriched [5.3.0] azabicycles. Theoretical
reaction analysis crucially influenced ligand design, leading to a
catalyst system that displayed enhanced rate and enantioselec-
tivity in the cycloisomerization. The demonstration of the
first successful examples of enantiospecific diastereoselective
transition metal-catalysed cycloisomerizations in a significantly
mismatched substrate-catalyst environment illustrates that
cycloisomerization can assemble functionalized ring systems
with tuneable selectivity. These studies set the stage for the
development of further computationally guided catalyst systems.

Methods
Racemic [5þ 2] cycloisomerization. To an oven-dried vial containing the
ynamide vinylcyclopropane (1.0 equiv.) under Ar was added a solution of
[(C10H8)Rh(cod)]SbF6 (5 mol%) in degassed CH2Cl2 (10 ml mmol� 1 of ynamide).
The reaction mixture was stirred at room temperature under Ar until consumption
of the ynamide was observed by thin layer chromatography (see Fig. 3 for
reaction times). The reaction mixture was then concentrated, and the
resulting material was purified by flash chromatography (SiO2, petroleum ether/
ethyl acetate eluent) (Fig. 3).

Asymmetric [5þ 2] cycloisomerization. A solution of [RhCl(C2H4)2]2

(2.5 mol%), NaBArF
4 (6 mol%) and phosphoramidite ligand (6 mol%) in degassed

CH2Cl2 (10 ml mmol� 1 of ynamide) was stirred for 20 min under Ar. The solution
was filtered (through a PTFE filter-tipped syringe) into an oven-dried vial
containing ynamide vinylcyclopropane (1.0 equiv.) under Ar. The reaction mixture
was stirred at room temperature under Ar until consumption of the ynamide was
observed by thin layer chromatography (see Fig. 6 for reaction times). The reaction
mixture was then concentrated, and the resulting material was purified by flash
chromatography (SiO2, petroleum ether/ethyl acetate eluent) (Fig. 6).

Computational methods. Molecular geometries were fully optimized at the DFT
theory level in Gaussian 09 (rev. D.01), using the dispersion-corrected o-B97XD
functional46 without symmetry constraints. The effective core potentials (ECPs) of
Hay and Wadt47 with a double-z basis set (LanL2DZ) were used for Rh, S and P,
and the 6-31G(d) basis set was used for H, C, N and O(BS1). The energies were
further estimated using a larger basis set (6-311þG (d, p) basis set for H, C, N, O,
S and P) and triple-z basis set (LanL2TZ)48 for Rh (BS2) by single-point
calculations, in implicit solvent CH2Cl2 treated with the SMD universal solvation
models49. The structures of the ynamide substrate and a series of phosphoramidite
ligands were computed in full, while the toluenesulfonamide p-tolyl group was
modelled as a methyl group in the interests of computational tractability. See
Supplementary Methods for further details.
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