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This study was undertaken to evaluate the therapeutic potential effect of pentoxifylline (PTX) against arsenic trioxide (ATO)-
induced cardiac oxidative damage in mice. Thirty-six male albino mice were divided into six groups and treated
intraperitoneally with normal saline (group 1), ATO (5mg/kg; group 2), PTX (100mg/kg; group 3), and different doses of PTX
(25, 50, and 100mg/kg; groups 4, 5, and 6, respectively) with ATO. After four weeks, the blood sample was collected for
biochemical experiments. In addition, cardiac tissue was removed for assessment of oxidative stress markers and
histopathological changes (such as hemorrhage, necrosis, infiltration of inflammatory cells, and myocardial degeneration). The
findings showed that ATO caused a significant raise in serum biochemical markers such as lactate dehydrogenase (LDH),
creatine phosphokinase (CPK) and troponin-I (cTnI), glucose, total cholesterol (TC), and triglyceride (TG) levels. In addition to
histopathological changes in cardiac tissue, ATO led to the significant increase in cardiac lipid peroxidation (LPO) and nitric
oxide (NO); remarkable decrease in the activity of cardiac antioxidant enzymes such as catalase (CAT), superoxide dismutase
(SOD), and glutathione peroxidase (GPx); and the depletion of the total antioxidant capacity (TAC) and total thiol groups
(TTGs). PTX was able to reduce the increased levels of serum cardiac markers (LDH, CPK, cTnI, TC, and TG), cardiac LPO,
and improve antioxidant markers (TAC, TTGs, CAT, SOD, and GPx) alongside histopathologic changes. However, no
significant changes were observed in elevated serum glucose and cardiac NO levels. In conclusion, the current study showed the
potential therapeutic effect of PTX in the prevention of ATO-induced cardiotoxicity via reversing the oxidative stress.

1. Introduction

Arsenic is an environmental contaminant that is widely
widespread in water, soil, and air due to its industrial and
agricultural applications [1]. The epidemiologic evidence
showed that high-chronic arsenic exposure has been associ-
ated with hepatorenal failure and cardiovascular disorders
[2–4]. However, arsenic compounds have been used to treat
various diseases from the past to the present [5].

Arsenic trioxide (ATO) is an effective chemotherapeutic
drug used in the treatment of acute promyelocytic leukemia

(APL), but its usage has been limited because of cardiovascu-
lar side effects, such as ventricular tachycardia, QT prolonga-
tion, torsade de pointes, and sudden cardiac death [6, 7].
These side effects can be caused through mitochondrial dys-
function and excess generation of reactive oxygen species
(ROS) [8], functional changes of ion channels, and disrupted
balance of intracellular and extracellular ions [9].

Phosphodiesterase inhibitors block one or more subtypes
of the phosphodiesterase enzymes (PDEs), thereby prevent-
ing the inactivation of the cAMP and/or cGMP in various
cells. In recent years, the antioxidant and anti-inflammatory
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properties of phosphodiesterase inhibitors have been consid-
ered in several studies [10–12]. For instance, Mohammadi
et al. (2011) showed that selective phosphodiesterase inhibi-
tors could increase survival of Langerhans islets by prevent-
ing free radical formation [13]. Moreover, sildenafil, as
phosphodiesterase 5-selective inhibitor, can have beneficial
role in improvement of toxicities caused via cadmium [14]
and lead acetate [15].

Pentoxifylline (PTX), as a methyl xanthine derivative and
nonselective PDE, is commonly used to treat intermittent
claudication and peripheral vascular diseases, reducing plate-
let aggregation and improving red blood cell deformability
[16]. Recent evidence showed that PTX inhibits ROS genera-
tion and improves capillary circulation and tissue oxygena-
tion in various organs. For instance, Yao et al. (2016)
showed that PTX could prevent intermittent hypobaric hyp-
oxia induced-oxidative stress in testicular tissue by maintain-
ing redox homeostasis [17]. Zhang et al. (2005) reported that
PTX might be beneficial in reducing hydrogen peroxide
induced embryo injury and improve in vitro fertilization
(IVF) outcome [18]. Additionally, the findings of Egin et al.
(2016) indicate the effective effects of PTX on oxidative stress
reduction in the abdominal compartment syndrome animal
model [19].

Despite the antioxidant properties of PTX, there is no
evidence of the therapeutic potential of this drug on ATO-
induced cardiotoxicity. Therefore, the current study was
designed to assess the PTX effects on the oxidative damage
induced by ATO in the heart tissue of mice.

2. Materials and Methods

Pentoxifylline, 2,4,6-tripyridyl-s-triazine (TPTZ), 1,1,3,3-tet-
ramethoxypropane, bovine serum albumin (BSA), sulfanil-
amide, 5,5′dithiobis-2-nitro benzoic acid (DTNB), 2-
thiobarbituric acid (TBA), and N-(1-naphthyl) ethylenedia-
mine dihydrochloride were obtained from Sigma-Aldrich
Chemical Company (St. Louis, MO, USA). Arsenic trioxide
powder was purchased from Merck (Darmstadt, Germany).

2.1. Animals and Experimental Protocol. Thirty-six male
albino mice (25 ± 2:5 g) ranging from 1 to 2 months in age
were obtained from the animal house of Hamadan University
of Medical Sciences (HUMS). The animals were kept in stan-
dard cages at suitable temperature (23 ± 2°C), 12/12 h light/-
dark cycle, and relative humidity 50% and received a
standard diet and water ad libitum. The ethical concerns of
animals’ experiments were considered carefully, and its pro-
tocol was approved by the HUMS ethics review board (Ethi-
cal code number: IR.UMSHA.REC.1397.463).

In this study, the toxic dose of ATO 5mg/kg/day was
used based on the animal model proposed by Li et al.
(2002) [20]. In addition, based on pilot studies, the dosage
range of PTX was considered 25-100mg/kg/day.

Accordingly, the mice were divided randomly into six
groups of six each and treated for four consecutive weeks
by intraperitoneal (i.p.) injection as follows:

Group 1: the mice received normal saline (control group)
Group 2: the mice received ATO (5mg/kg/day)

Group 3: the mice received PTX (100mg/kg/day)
Group 4: the mice received ATO (5mg/kg/day) + PTX

(25mg/kg/day)
Group 5: the mice received ATO (5mg/kg/day) + PTX

(50mg/kg/day)
Group 6: the mice received ATO (5mg/kg/day) + PTX

(100mg/kg/day)
It should be noted that groups 4-6 were treated with dif-

ferent doses of PTX 1h before ATO administration. In addi-
tion, the highest dose of PTX (100mg/kg) was considered to
show its safety in group 3. Twenty-four hours after the com-
pletion of treatment, each animal was weighed and anesthe-
tized by ketamine (50mg/kg) and xylazine (10mg/kg), and
its blood sample was taken through cardiac puncture. Then,
blood sample was centrifuged (at 3000 g, 10min), and its
serum was kept at -20°C for the biochemical analysis. Fur-
thermore, the heart was removed for preparation of tissue
homogenate (10%, w/v). Briefly, half of the heart tissue was
homogenized with phosphate-buffered saline (50mM,
pH7.3) and centrifuged at 3000 g, 10min at 4°C. Finally, its
supernatant was removed for the biochemical experiments.
Another part of tissue was fixed in 10% formaldehyde solu-
tion for histopathological analysis.

2.2. Determination of Glucose and Total Triglyceride and
Cholesterol. Glucose, total cholesterol, and triglyceride serum
levels were determined using commercial kits (Pars Azmoon,
Tehran kit, Iran).

2.3. Lactate Dehydrogenase Assay. Lactate dehydrogenase
(LDH) activity in serum sample was measured by determin-
ing the rate of oxidation of NADH by an enzymatic colori-
metric kit (Pars Azmoon Co., Tehran, Iran). The
absorbance change per minute was detected at 340nm using
spectrophotometric instrument (Analytik Jena Specord 50
Plus), and its results were expressed as U/L.

2.4. Creatine Phosphokinase Assay. The activity of serum cre-
atine phosphokinase (CPK) was assayed by an enzymatic col-
orimetric kit (Pars Azmoon Co., Tehran, Iran). Based on the
kit’s procedure, creatine kinase converts creatine into ADP
and phosphocreatine. The absorbance change per minute
was detected at 340nm, and its data were expressed as U/L.

2.5. Troponin-I Assay. Cardiac troponin-I (cTnI) levels in
serum samples were assayed by Enzyme Linked-Immuno-
Sorbent Assay (ELISA) kit, according to the manufacturer’s
instructions (Shanghai Crystal Day Biotech Co., LTD, China).

2.6. Lipid Peroxidation Assay. Cardiac lipid peroxidation was
measured via the reaction of TBA with active-aldehyde inter-
mediates such as MDA. Briefly, heart homogenate superna-
tant (100μl) was mixed with 500μl reagent containing TBA
(0.2%) in H2SO4 (0.05M) and subsequently heated for
30min at 100°C in boiling water bath [21, 22]. The peak
absorbance was detected at 532 nm against different concen-
tration of MDA as the standard, and its results reported as
nmol/mg protein.
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2.7. Total Antioxidant Capacity Assay. The total antioxidant
capacity (TAC) was determined in the heart homogenate
supernatant by measuring the reduction of Fe3+-TPTZ com-
plex to the Fe2+-TPTZ by a reductant at low pH [22, 23].
Briefly, a reagent was prepared by mixing 20mM FeCl3, ace-
tate buffer (300mM, pH3.6), and TPTZ (10mM) in 40mM
HCL, in the ratio 1 : 10 : 1. In the next stage, 20μl of sample
and 200μl reagent were mixed and incubated for 15min.
The maximum absorbance of Fe2+-TPTZ complex was
detected at 593 nm against standard curve. Results were
reported as nmol/mg protein.

2.8. Determination of Total Thiol Group (TTGs). Total thiol
groups (TTGs) were assayed in heart homogenate superna-
tant using DTNB reagent [24]. Briefly, 200μl of Tris-EDTA
buffer solution (0.25M Tris base, 20mM EDTA, pH8.2)
and 10μl of sample were mixed together in microplate well,
and its initial absorbance was detected at 412nm. Then,
10μl of DTNB reagent (10mmol/l in methanol) was added
and incubated at 37°C for 15min. The final absorbance of
each samples (A2) and also DTNB blank (B) was detected
again at 412nm. The thiol contents were calculated by
reduced glutathione as standard and presented as nmol/mg
protein.

2.9. Nitric Oxide Assay. Nitric oxide (NO) was determined in
heart homogenate supernatant by Griess reagent (1% sulfa-
nilamide, 0.1% NED, and 2.5% phosphoric acid) as described
by Nili-Ahmadabadi et al. [21]. Briefly, 100μl of sample and
100μl reagent were mixed in microplate well and incubated
for 15min at 37°C. The optimum absorbance was detected
at 520nm against different concentration of sodium nitrate
solution as the standard. The results reported as nmol/mg
protein.

2.10. Catalase Assay. The cardiac catalase (CAT) activity was
determined by detecting the rate of decomposition of hydro-
gen peroxide (H2O2) by a UV-Vis spectrophotometric sys-
tem at 240 nm. CAT activity unit (U/mg protein) was
defined as 1μmol of H2O2 disappearance/min/mg protein
[25].

2.11. Superoxide Dismutase Assay. The cardiac superoxide
dismutase (SOD) activity was determined according to the
kit brochure from ZellBio GmbH Company, Germany. In
this experiment, SOD activity unit (U/mg protein) was
defined as the amount of enzyme that catalyzes decomposi-
tion of 1μmole of superoxide radical anions to H2O2 and
oxygen molecules in one minute.

2.12. Glutathione Peroxidase Assay. The cardiac glutathione
peroxidase (GPx) activity was assayed according to the kit
brochure from ZellBio GmbH Company, Germany. In this
experimentation, GPx activity unit (U/mg protein) was
defined as the amount of enzyme that catalyzes the oxidation
of 1μmole NADPH per minute.

2.13. Protein Assay. At the end of each experiment, protein
level of heart homogenate supernatant was measured by

Bradford method that is based on an absorbance shift of
the dye Coomassie Brilliant Blue G-250 at 595nm.

2.14. Histopathological Analysis. The cardiac tissue was fixed
in 10% formaldehyde solution at least 24 h before histopath-
ological examination. The paraffin-embedded block was pre-
pared using automatic tissue processor, and then, samples
cut into 4-6μm thick sections by a rotating microtome
[26]. After staining cardiac tissue by hematoxylin and eosin
(H&E) dye, stained samples were evaluated under light
microscope (Olympus CX31 microscope). After examination
under screening power (40x), we examined at least 20 LPF
(low power field, 100x) of each slide searching for any area
of necrosis, hemorrhage, inflammation, and myocardial
degeneration. Percent of abnormal findings in each LPF
was roughly estimated with eye examination and the final
number considered by taking average of results of different
fields. The abnormal results were confirmed by HPF (high
power field, 400x) examination just in case. It should be
noted that the microscopic observations were scored as 0
(0%), 1 (1–25%), 2 (26–50%), 3 (51–75%), and 4 (76–
100%) according to the percentage of histopathological
changes.

2.15. Statistical Analysis. The data were analyzed by the
GraphPad Prism software, version 6.0, and presented as
mean ± standard error of themean (SEM). The statistical dif-
ferences between values were compared by one-way analysis
of variance (ANOVA) followed by Tukey’s post hoc test for
quantitative variables. The significance degree was set at P
< 0:05.

3. Results

3.1. Animal Body and Tissue Weight. As shown in Table 1, a
significant decrease was observed in weight gain in the ATO
group compared to the control group (P < 0:05). No signifi-
cant changes were found in heart weight/body weight index
in different groups.

3.2. Serum Levels of Glucose, Total Triglyceride, and
Cholesterol. As shown in Figure 1, administration of ATO
significantly raised total cholesterol and triglyceride serum
levels in comparison to the control group (P < 0:001 and P
< 0:001, respectively). PTX was able to reduce the increased
levels of triglyceride at the employed doses of 50 and
100mg/kg (P < 0:05) and total cholesterol serum levels at
the doses of 25, 50, and 100mg/kg (P < 0:05, P < 0:001, and
P < 0:01, respectively). No significant changes were observed
in the glucose serum level in the treatment groups.

3.3. Serum Levels of Cardiac Markers. As shown in Figure 2,
the administration of ATO could remarkably increase cTnI
(P < 0:001), CPK (P < 0:001), and LDH (P < 0:001) serum
levels in comparison with the control group. PTX adminis-
tration could decrease the serum levels of LDH and CPK, at
the doses of 50 and 100mg/kg, in mice exposed to ATO. In
addition, a significant decrease was found in cTnI levels fol-
lowing treatment with all doses of PTX compared to ATO
group.
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3.4. Cardiac Oxidative Stress Biomarkers. Following ATO
administration, the levels of LPO (P < 0:001) and NO
(P < 0:01) were increased, and TAC (P < 0:001) as well as
TTG (P < 0:01) levels were decreased in heart tissues com-
pared to the control group. PTX at dose 100mg/kg signifi-
cantly improved TTGs and TAC of heart tissue compared
to the ATO group (P < 0:05). In addition, PTX could
decrease cardiac lipid peroxidation at doses 50 and
100mg/kg (P < 0:05 and P < 0:01, respectively). No signifi-
cant changes were observed in the cardiac NO level in the
treatment groups compared to the ATO group (Figure 3).

3.5. Cardiac Antioxidant Enzymes. As shown in Figure 4, the
administration of ATO significantly decreased cardiac anti-
oxidant enzymes activity including CAT (P < 0:01), SOD
(P < 0:001), and GPx (P < 0:01) in comparison with the con-
trol group. PTX at dose 100mg/kg significantly increased
CAT activity of heart tissue compared to the ATO group
(P < 0:05). In addition, PTX could improve cardiac SOD
and GPx activity at doses 50 and 100mg/kg.

3.6. Histopathological Changes. As summarized in Table 2,
coagulative necrosis, infiltration of inflammatory cells, focal
hemorrhage, and myocardial degeneration were observed in
cardiac tissue of ATO-treated mice. PTX reduced some path-
ologic changes, such as necrosis and inflammation, in a dose-
dependent manner (Figure 5).

4. Discussion

The present study suggests more evidence to support the
involvement of oxidative stress in the pathogenesis of ATO-
induced cardiotoxicity. Additionally, the results revealed the
link between the antioxidant effects of PTX and its therapeu-
tic potential against cardiac oxidative damage induced by the
ATO.

Dyslipidemia is one of the most important risk factors in
cardiovascular disease that can be characterized by increased
triglyceride and/or cholesterol [27]. In this study, ATO-
induced hypercholesterolemia may be due to increased β-
hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase

Table 1: Body and heart weight changes in studied groups.

Groups
Initial body weight

(g)
Final body weight

(g)
Weight gain

(g)
Heart weight

(g)
Heart

weight/final body weight x 100
Control 25:7 ± 1:6 38:1 ± 1:7 12:4 ± 1:2 0:17 ± 0:01 0:45 ± 0:02

ATO (5mg/kg) 26:1 ± 1:4 31:6 ± 2:1 5:5 ± 1:8# 0:15 ± 0:02 0:47 ± 0:05

PTX (100mg/kg) 24:8 ± 2:1 35:6 ± 2:5 10:8 ± 1:4 0:17 ± 0:01 0:46 ± 0:03
ATO + PTX
(25mg/kg)

26:7 ± 1:6 32:5 ± 1:9 5:8 ± 1:2 0:15 ± 0:02 0:47 ± 0:07

ATO + PTX
(50mg/kg)

24:6 ± 1:3 30:9 ± 1:9 6:3 ± 1:6 0:15 ± 0:01 0:51 ± 0:05

ATO + PTX
(100mg/kg)

27:1 ± 1:7 33:6 ± 2:1 6:5 ± 2:2 0:16 ± 0:01 0:47 ± 0:05

The results are expressed as means ± SEM, n = 6 for each group. ≠P < 0:05 vs. control group. ATO: arsenic trioxide (equal 5mg/kg); PTX: pentoxifylline.
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Figure 1: Effect of PTX on glucose and lipid serum levels in ATO-exposed mice. Statistical analysis used one-way ANOVA with Tukey’s test.
The results are expressed as means ± SEM, n = 6 for each group. ≠≠≠P < 0:001 vs. control group; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 vs.
ATO group. Glucose (a); TC: total cholesterol (b); TG: total triglyceride (c); ATO: arsenic trioxide (equal 5mg/kg); PTX: pentoxifylline.
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activity, as reported by Afolabi et al. (2015) [28]. In addition,
arsenic can inhibit the elimination of cholesterol from the
body by inhibiting enzyme of cholesterol 7α-hydroxylase
and preventing the biosynthesis of bile acids [28, 29]. There
is little evidence regarding the influence of PTX on lipid pro-
file. Previously, Tani et al. have shown that cilostazol, a selec-
tive type 3 phosphodiesterase inhibitor, may decrease serum
triglycerides and increase HDL cholesterol in diabetic rats by
increasing LPL activity. Their findings suggested that raised
cAMP stimulates hydrolyzes triglycerides in lipoproteins by
the release of lipoprotein lipase (LPL) from adipocytes, which
may explain the reduction of serum triglyceride levels [30].

It is documented that increased levels of LDH, CPK, and
cTnI in blood serum are considered as reliable diagnostic
markers of myocardial toxicity [5, 31]. cTnI is cardiac reg-
ulatory protein that controls the calcium-mediated interac-
tion between myosin and actin [32]. This protein is known
as the specific and sensitive marker for the diagnosis of
myocardial dysfunction [31]. LDH is a cytosolic enzyme,
which is existent in various tissues involved in glycolytic
pathway [33].

In the current findings, ATO intoxication caused a signif-
icant increase in the cTnI, LDH, and CPK serum levels that
might due to changes in the plasma membrane integrity of
cardiac myocytes and subsequently their leakage into the
blood serum [34, 35]. In addition, the previous studies
showed that the release of cTnI from myocardial tissue was
proportional to the size and extent of tissue damage and sys-
tolic dysfunction [36, 37]. Administration of PTX signifi-
cantly decreased the cTnI, LDH, and CPK serum levels as
well as necrosis and inflammation in cardiac tissue towards
normal in ATO-treated experimental mice. In agreement
with our pathological observations, the decrease in the
LDH and CPK serum levels showed a dose-dependent pro-
tection. This may be due to the membrane stabilizing effect
of PTX on the myocardium, improving the cardiac damage
and thereby limiting the leakage of these enzymes from the

myocardial tissue. Improvements of capillary circulation
and tissue oxygenation are well-known mechanisms of PTX
that may be involved in preventing cardiac oxidative damage
caused by ATO.

Oxidative stress (OS) is the consequence of an imbalance
between antioxidant systems and reactive oxygen/nitrogen
species (ROS/RNS) involved in cellular damage [38]. Manna
et al. (2008) and Sun et al. (2016) studies showed that
ROS/RNS are generated during inorganic arsenic metabo-
lism in various cells [25, 39]. In this regard, our data revealed
heart LPO and NO production were raised in response to
ATO while cardiac TTG and TAC levels were reduced, which
is in line with Hemmati et al. (2008) and Binu et al. (2017)
studies [5, 40]. Overall, LPO is one of the characteristic fea-
tures of OS related to arsenic toxicity, which is due to oxida-
tive degradation of polyunsaturated acids in the cell
membrane [41]. Arsenic increases the amount of free iron
by releasing iron from ferritin molecule. Free iron through
the Fenton reaction causes excessive production of ROS
and subsequent increase in lipid peroxidation [42]. PTX
was able to reduce the level of LPO in the heart tissue, which
may be related to decrease the ROS generation in cardiac tis-
sue. The part of the antioxidant effects of PTX can be attrib-
uted to its effects on reducing the activation of neutrophils,
because activated neutrophils can produce superoxide radi-
cals through NADPH oxidase [16]. In addition, PTX, an
effective inhibitor of superoxide anion generation, is likely
to affect the initiation and/or propagation of LPO [43]. This
medicine can reduce the production of hydroxyl and super-
oxide radicals by inhibiting xanthine oxidase [19].

NO is an important mediator which plays a key role in
the regulation of various cells. However, actions of NO are
multifaceted, and its excessive production can lead to nitro-
sative stress [44]. Following administration of ATO,
increased NO may be associated with the induction of nitric
oxide synthase, which is in agreement with the findings of
Kesavan et al. (2014) [45]. The reaction of NO and
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Figure 2: Effect of PTX on serum cardiac markers in ATO-exposed mice. Statistical analysis used one-way ANOVA with Tukey’s test. The
results are expressed as means ± SEM, n = 6 for each group. ≠≠≠P < 0:001 vs. control group; ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 vs. ATO
group. TnI: troponin-I (a); CPK: creatine phosphokinase (b); LDH: lactate dehydrogenase (c); ATO: arsenic trioxide (equal 5mg/kg); PTX:
pentoxifylline.
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superoxide anion creates peroxynitrite radicals. These radi-
cals aggravate the cellular damage through lipid peroxida-
tion, necrosis, and apoptosis by nitration of tyrosine
residues on tissue proteins [46]. There is different evidence
regarding the effects of PTX on NO production. Some of
these studies have suggested the inducible effects of PTX,
and some have indicated its inhibitory effects on NO produc-
tion. For instance, Beshay et al. showed that PTX suppress
nitric oxide synthase in macrophages and its changes corre-
lated with cellular cAMP levels [47]. In this study, PTX did
not show any inhibitory effects on ATO-induced nitrosative
stress when the cardiac NO levels were evaluated.

Thiol-based antioxidant system plays the main role of
cellular defense against ROS/RNS-mediated oxidative injury
[25, 38]. Thiol groups, as a catalyst in disulfide exchange
reaction, scavenge the free radicals and detoxifying different
xenobiotics and subsequently convert to oxidized form
[25]. Our findings showed depletion of thiol-based antioxi-
dant system in myocardium due to ATO toxicity, which is

consistent with other reports [48, 49]. Previously, it has been
described that ATO can be bound to the thiol groups and
attenuates the cell antioxidant defense [50, 51]. In addition,
there has been evidence of the arsenic destructive effects on
enzymes affecting the level of the thiol groups, such as gluta-
thione reductase and glutathione-S-transferase [25, 52].

Antioxidant enzymes, such as SOD, CAT, and GPx, are
considered to be the first line of cellular defense against the
destructive effects of free radicals [53]. Among these, the
enzyme of SOD catalytically converts the superoxide radical
anions into hydrogen peroxide (H2O2) and oxygen molecules
while CAT catalyzes the decomposition of H2O2 to oxygen
and water molecules. GPx can also minimize the destructive
effects of H2O2 by using thiol molecules such as glutathione,
as a reductant [54]. As our findings shown, reduced activity
of SOD, CAT, and GPx enzymes can be related to cardiac
oxidative damage induced by ATO which is in line with the
other reports [25, 55]. Inhibition of SOD activity in ATO-
intoxicated mice might be due to the increased generation
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Figure 3: Effect of PTX on cardiac oxidative stress markers in ATO-exposed mice. Statistical analysis used one-way ANOVA with Tukey’s
test. The results are expressed asmeans ± SEM, n = 6 for each group. ≠≠P < 0:01 and ≠≠≠P < 0:001 vs. control group; ∗P < 0:05 and ∗∗P < 0:01
vs. ATO group. LPO: lipid peroxidation (a); NO: nitric oxide (b); TAC: total antioxidant capacity (c); TTGs: total thiol groups (d); ATO:
arsenic trioxide (equal 5mg/kg); PTX: pentoxifylline.
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Figure 4: Effect of PTX on cardiac antioxidant enzymes in ATO-exposed mice. Statistical analysis used one-way ANOVA with Tukey’s test.
The results are expressed as means ± SEM, n = 6 for each group. ≠≠P < 0:01 and ≠≠≠P < 0:001 vs. control group; ∗P < 0:05 and ∗∗P < 0:01 vs.
ATO group. CAT: catalase (a); SOD: superoxide dismutase (b); GPx: glutathione peroxidase (c); ATO: arsenic trioxide (equal 5mg/kg); PTX:
pentoxifylline.

Table 2: Histopathological alterations of cardiac tissue in experimental groups.

Groups Coagulative necrosis Infiltration of inflammatory cells Focal hemorrhage Myocardial degeneration

Control 0 ± 0 0 ± 0 0 ± 0 0 ± 0
ATO (5mg/kg) 1:78 ± 0:21### 2:96 ± 0:33### 2:53 ± 0:27### 2:21 ± 0:14###

PTX (100mg/kg) 0 ± 0 0 ± 0 0 ± 0 0 ± 0

ATO + PTX (25mg/kg) 1:63 ± 0:18 2:91 ± 0:46 2:1 ± 0:37 1:70 ± 0:36

ATO + PTX (50mg/kg) 1:01 ± 0:14∗ 1:94 ± 0:29 1:20 ± 0:42∗ 1:29 ± 0:40

ATO + PTX (100mg/kg) 0:81 ± 0:31∗∗ 1:42 ± 0:18∗∗ 1:41 ± 0:12∗ 1:47 ± 0:23

The results are expressed as means ± SEM, n = 6 for each group. ≠≠≠P < 0:001 vs. control group; ∗P < 0:05 and ∗∗P < 0:01 vs. ATO group. Statistical analysis
used one-way ANOVA with Tukey’s test. The microscopic observations were scored as 0 (0%), 1 (1–25%), 2 (26–50%), 3 (51–75%), and 4 (76–100%)
according to the percentage of histopathological changes. ATO: arsenic trioxide (equal 5 mg/kg); PTX: pentoxifylline.

400x

100x

(a) (b) (c) (d) (e) (f)

Figure 5: Photomicrographs of cardiac tissue in different groups: (a) control group; (b) ATO; (c) PTX (100mg/kg); (d) ATO + PTX
(25mg/kg); (e) ATO + PTX (50mg/kg); (f) ATO + PTX (100mg/kg). The samples were dyed by hematoxylin and eosin. Original
magnification of upper row photomicrographs is 400x and lower row photomicrographs 100x. Cardiac tissue samples of the control and
PTX groups (a, c) did not show pathologic alterations, and normal myocytes with clear nuclei were observed. Coagulative necrosis and
inflammation were detected in the cardiac samples of the ATO-exposed mice (b). In the treatment groups (d–f), some pathologic
alterations, such as coagulative necrosis and inflammation, were decreased in a dose-dependent manner. ATO: arsenic trioxide (equal
5mg/kg); PTX: pentoxifylline.
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of superoxide anions [56]. In addition, NADH coenzyme is
vital to activate CAT from its inactivated form; inadequate
supply of this coenzyme during ATO metabolism may be
due to reason for decrease of CAT activity [57].

PTX noticeably increased SOD, CAT, and GPx activity,
which may be associated with inhibition of superoxide anion
generation and subsequently improvement of oxidant/an-
tioxidant status in cardiac tissue of ATO-intoxicated mice.

Our findings show that PTX is able to increase the level of
TTGs in cardiac tissue, which may be associated with
increased production of active thiols such as glutathione. In
this regard, Duranti et al. suggest that some of the phospho-
diesterase inhibitors, such as tadalafil, may increase glutathi-
one levels by increasing the activity of the enzyme
glutathione peroxidase [58]. In addition, PTX-induced
cAMP levels may induce glutathione-S-transferase expres-
sion and activity via the protein kinase A pathway, which
may regulate detoxification of arsenic [59].

In conclusion, our findings indicated that PTX, especially
at the dose of 100mg/kg, was effective in improving ATO-
induced dyslipidemia and cardiotoxicity. PTX could increase
endogenous antioxidant defense, especially thiol-based anti-
oxidant system, against oxidative destruction to protect heart
tissue. In addition, improving oxidative/antioxidant balance
in heart tissue following PTX administration could be an
important cause of reducing ATO-induced pathogenic
changes such as coagulative necrosis and inflammation.
Therefore, this drug might be a suitable candidate to prevent
cardiac complications caused by ATO in APL patients. How-
ever, these evidences need further studies.
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