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Metabolic syndrome (MS) is a group of clinical abnormalities characterized by central or
abdominal obesity, hypertension, hyperuricemia, and metabolic disorders of glucose or
lipid. Currently, the prevalence of MS is estimated about 25% in general population and is
progressively increasing, which has become a challenging public health burden. Long-
term metabolic disorders can activate the immune system and trigger a low-grade chronic
inflammation named “metaflammation.” As an important organ involved in metabolism,
the kidney is inevitably attacked by immunity disequilibrium and “metaflammation.”
Recently, accumulating studies have suggested that the complement system, the most
important and fundamental component of innate immune responses, is actively involved in
the development of metabolic kidney diseases. In this review, we updated and
summarized the different pathways through which the complement system is activated
in a series of metabolic disturbances and the mechanisms on how complement mediate
immune cell activation and infiltration, renal parenchymal cell damage, and the
deterioration of renal function provide potential new biomarkers and therapeutic options
for metabolic kidney diseases.
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INTRODUCTION

Metabolic Syndrome
Metabolic syndrome (MS) is a group of clinical abnormalities, which is characterized by central or
abdominal obesity, hypertension, hyperuricemia, and metabolic disorders of glucose or lipid (1).
According to the Center of Disease Control and Prevention (CDC), the United States witnessed an
increase in the prevalence of metabolic syndrome by more than 35% from 1988 to 1994 and 2007 to
2012 (2). Additionally, as a disease previously thought to be associated with western lifestyle and
habits, the incidence of metabolic syndrome is now on the rise in developing countries, leading to an
estimated prevalence of 25% in the general population (3), which has become a challenging public
health burden. Currently, the etiology of MS is still unclear; in addition to genetic and epigenetic
factors, overnutrition and sedentary lifestyles are usually thought to be related to its occurrence.
Besides abdominal obesity and insulin resistance (IR), the core manifestations of the syndrome (4),
MS is also considered to be an important risk factor for multiple diseases, such as cardiovascular
disease (CVD), type 2 diabetes mellitus, chronic kidney disease (CKD), arthritis, and even several
types of cancer (5–7).
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As an important organ involved in metabolism, the kidney is
inevitably attacked by various metabolic abnormalities. It has been
suggested that individuals with MS has an increased risk for
developing renal damage, clinically expressed in the form of
microalbuminuria and/or chronic renal dysfunction (8). According
to a study based on a large, representative sample of the U.S. general
population, metabolic syndrome is a strong and independent risk
factor for chronic kidney disease. In addition, the more abnormal
metabolic components are, the higher is the risk of renal impairment
(9). After excluding the effects of glycemic and blood pressure, MS
remainedan independent risk factorcontributingtothedevelopment
of CKD (10). Among patients receiving kidney transplants, those
with pre-transplant metabolic syndrome have an increased
probability of de novo post-transplantation diabetes mellitus
(PTDM), chronic graft dysfunction, and even graft loss (11, 12).
Compared with controls, kidney lesions in patients with metabolic
syndrome are characterized by tubularatrophy and interstitial
fibrosis, as well as described as microvascular and obesity-related
glomerular changes (13).

Therefore, exploring the pathogenesis of metabolism-related
kidney diseases is an important part of the prevention and
treatment of CKD. It has been reported that inflammation,
insulin resistance, inappropriate activationof the renin–
angiotensin–aldosterone system (RAAS) are involved in the
progression of metabolism-related kidney diseases, while the
association between complement system and these diseases has
not been reviewed. In this review, we updated and summarized
the mechanisms on how the complement system causes renal
damage in different metabolic disorders and discussed possible
biomarkers and potential therapeutic targets.

Complement System and Kidney Diseases
The complement system, a fundamental component of innate
immune responses, was traditionally considered as the “first line
of defense” against microbial intruders (Figure 1). Today, the
complement system is recognized as a connecting link between
innate and acquired immunity, participating in various processes,
such as synapse maturation, clearance of immune complexes,
angiogenesis, tissue regeneration, and lipid metabolism (14).
Studies have shown that the activation of complement system is
implicated in various kidney diseases. In non-immune complex-
mediated kidney diseases, uncontrolled complement activation is
the primary driver of atypical hemolytic uremic syndrome (aHUS)
and C3 glomerulopathy. And in those immune complex-mediated
kidney diseases, complement also plays a prominent role in anti-
glomerular basement membrane (GBM) disease, lupus nephritis,
membranous nephropathy, and IgA nephropathy. Additionally,
after renal transplantation, abnormal activation of complement in
ischemia-reperfusion and antibody-mediated rejection (ABMR)
may lead to inflammation and graft dysfunction (15, 16).
Therefore, therapeutic agents which target complement pathways
are essential and urgent for these diseases. Eculizumab, a
monoclonal anti-C5 antibody, has been proven effective in the
treatment of aHUS (17–19), reducing complement activation,
endothelial damage, thrombosis, and inflammation, improving
renal function in adult patients. In patients with C3
glomerulopathy, the results of eculizumab were mixed (20, 21),
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requiring more rigorous and multicentric clinical trials.
Furthermore, new anti-complement drugs are on the way.
Inhibitors of C5a receptor1 (C5aR1), C3, factor B (FB), and factor
D (FD), as well as an anti-MBL-associated serine protease 2
(MASP2) monoclonal antibody are under investigation (22). In
IgA nephropathy and lupus nephritis, clinical trials which targets
MASP2 and C3 are also ongoing (23). Inhibitors of C3 and C5
convertases, together with drugs that target the classical and lectin
pathways of the complement system, are highly prospected to
improve graft function after transplantation (15). Therefore,
exploring the mechanisms on how the complement system
mediates renal damage in different metabolic disorders will
provide new options for the treatment of metabolic kidney diseases.
COMPLEMENT SYSTEM IN METABOLIC-
ASSOCIATED KIDNEY DISEASES

Diabetic Kidney Disease
Diabetes mellitus (DM), a group of metabolic disorders, is
characterized by high blood glucose levels. People living with
diabetes continue to increase rapidly all over the world, from 108
million in 1980 to 463 million in 2019, and it is estimated that this
number will rise to 700 million by 2045 (24, 25). Microvascular
damage is one of the severe complications of persistently high
blood glucose levels, which involves several organs including the
heart, eyes, kidneys, and even the nervous system. Approximately
40% of diabetic patients will develop diabetic kidney disease
(DKD) (26), mainly manifested by glomerular hyperfiltration,
progressive albuminuria, declining glomerular filtration rate
(GFR), and eventually end stage renal disease (ESRD).
Originally, metabolic and hemodynamic factors were thought to
be the main causes of renal damage (27), while recently, there is
increasing evidence of the involvement of immune system in the
development and progression of DKD (28–31). The complement
system, an important component of immune system, has also
been shown to be engaged in this disease.

Proteomic analysis of laser capture microdissected glomeruli
confirmed that C3 and the membrane attack complex (MAC,
C5b-9) showed increased in patients with DKD (32).
Immunohistochemical staining also revealed high expression of
complement factor B, C3d, C5aR, and MAC (33). What is more,
it is reported that the urinary excretion of C3b, Bb, and MAC are
increased in DKD patients and is demonstrated that the presence
of complement split products in the urine is associated with
accelerated ESRD and death (34, 35).

It is now believed that increased glycation of proteins, which
activates the lectin pathway, and the dysfunction of complement
regulatory proteins led by hyperglycemia are the main
mechanisms to implicate complement in the development of
DKD. In vitro experiments have demonstrated that glycation
product fructoselysine, whose structure is analogous to mannose,
may act as a ligand for MBL and bind to it, initiating complement
activation (36). Animal models of DM have also affirmed the role
complement lectin pathway played in disease pathogenesis. In
the streptozotocininducedtype 1 diabetes mellitus (TIDM)
models, mannose-binding lectin (MBL) levels increase (37) and
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are paralleled with increasing plasma glucose (38). The estimated
half-life of recombinant human MBL injected intravenously into
diabetic mice was also significantly prolonged (38), suggesting
that the elevated MBL in the diabetic models may be due to a
combination of increased MBL production and decreased
catabolism. Compared to controls, MBL-knockout mice
induced by streptozotocin attenuate glomerular hypertrophy,
urinary albumin excretion, and renal fibrosis (39). But ficolins,
pattern-recognition molecules (PRMs) that cancombine with
MASPs to trigger the lectin pathway, may not have a role in
the pathogenesis of DKD (40). In type 2 diabetes mellitus
(T2DM) rats, the expression of MASP2, a key factor to activate
the lectin pathway, is upregulated in renal tubular cells (41).
These experimental studies need to be validated in clinical DM
patients. In several clinical trials involving patients with T1DM
or T2DM, it was confirmed that serum MBL levels were
significantly higher in patients with DKD than those DM
patients without renal lesions and that high baseline MBL
along with CRP levels could be used as a predictor for the
development of proteinuria in DM patients (39, 42, 43). And H-
ficolin was found to be associated with renal progression,
including microalbuminuria, in patients with T1DM (44, 45).
Although elevated MASP has been reportedin T1DM (46) and
T2DM (47), the potential relevance of MASP and renal damage
still requires further investigation in DM patients.

CD59 is a key inhibitor of MAC formation, which is
universally expressed in cells. Hyperglycemia induces the
dysfunction or inactivation of CD59 after glycation, which
proposed the deposition of MAC in renal parenchyma, thereby
activating pathways of intracellular signaling, and in turn
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proinflammatory cytokines and growth factors are released
(48). A recent study identified low abundance of urinary CD59
was a significant independent predictor of faster eGFR decline as
well as higher risk of progression to ESRD (49).

More components of complement system have also been
shown involved in the pathogenesis of DKD. C3a and C5a are
well-defined cytokine-like polypeptides that are generated during
the activation of the complement system. Li et al. showed that the
upregulation of C3a/C3aR and C5a/C5aR was associated with
endothelial–myofibroblast transition (EndMT) and fibrosis in
glomerular endothelial cells of DKD patients and diabetic rats,
and the specific receptor antagonists C3aRA/C5aRA could
ameliorate EndMT and renal fibrosis via the inhibition of the
Wnt/b-catenin pathway both in vitro and in vivo (50). Decay-
accelerating factor (DAF/CD55) is a complement C3 convertase
regulator expressed in podocyte. In STZ-induced DKD models,
the DAF-deficient mice showed more C3b glomerular deposition
and exhibit a more severe disease phenotype and increased
histological lesions compared to wild-type mice (51).
Additionally, transcriptomic profiling of kidney has also
revealed a pivotal role of the C5a/C5aR1 axis in the
development of DKD by disrupting mitochondrial agility,
which can be restored after inhibiting C5aR (52). What is
more, C5aR blockade also alleviated renal dysfunction, ECM
deposition, macrophage infiltration, and proinflammatory factor
expression in DKDmice, downregulating the expression of many
immune response-related genes, such as STAT3 (53). High
glucose could also upregulate the expression of factor B and
enhance activation of the alternative pathway through mTORC1
activation, which in turn promotes podocyte injury and DKD
FIGURE 1 | The complement activation pathways: classical, alternative, and lectin pathway. The classic pathway is triggered by binding of antigen–antibody
complexes to C1q. The lectin pathway begins with signal recognition by oligomeric structures of MBL, ficolins, and collectins, which active MASP1 and MASP2, thus
in turn mediate the production of C4b. Both pathways then lead to the formation of common C3 convertase, C4b2a complex. In the alternative pathway, a small
fraction of the C3 molecules is hydrolyzed, exposing new binding sites and then combined with factor B protease. After cleaved by factor D, another C3convertase
(C3bBb) is formed, leading to cleavage of further C3, and this process is perpetuated through an amplification loop. All three pathways ultimately result in the
cleavage of C3 and C5, leading to the formation of MAC, which inserts into membrane and then induces cell lysis.
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(33). In clinical trials, plasma levels of C1q, MBL, Bb, C4d, C3a,
C5a, and C5b-9 in DKD patients are significantly higher than in
diabetes patients without renal involvement (54), and urinary
excretion of C3b, Bb, and MAC are also noted (34). A clinical
study involved 79 T2DM patients showed that higher
concentration of serum C4 level and intensity of glomerular
C4c deposits predicted unfavorable renal outcome (55). In a
gene-expression analysis of postmortem human kidneys, an
upregulation of the expression of C7 in kidney tissue and
blood are observed in early DKD, which may be used as a
molecular target for detection and/or treatment (56).

As described above, the activation of complement system is
involved in the development of renal damage in DM patients,
thereby pathways involving reactive oxidative species (ROS),
nuclear factor-kB (NF-kB), and protein kinase C (PKC) are
triggered (57). Therefore, complement targeting therapies are
gradually becoming a horizon for DKD (Figure 2). MBL shares
relevant structural and functional homologies with C1q (58); both
can be inhibited by C1 esterase inhibitor (C1-INH). As such, C1-
INH might be a possible therapeutic approach by suppressing the
lectin pathway. Although C1-INH has not been validated in DKD
patients, a randomized and placebo-controlled trial indicated
patients at a high risk of delayed graft function (DGF) after
kidney transplantation required fewer dialysis sessions and had a
higher glomerular filtration rate at a 1-year follow-up after treated
with C1-INH (59). Another inhibitor of lectin pathway, OMS721,
which targets MASP-2, may also provide a new insight about
inhibiting the lectin pathway in DKD. Given that the glycation of
CD59 leads its inactivation, which enhances complement activity,
upregulating the CD59 is regarded as a potential mechanism to
inhibit MAC complex formation. Targeting anaphylatoxins C3a
and C5a is considered as a promising option, too. Morigi et al.
reported that a C3a receptor antagonist improves the podocyte loss,
albuminuria, and glomerular injury in T2DM mice (60). Similarly,
an inhibitor of the complement cascade (K-76 COONa) also
reduced proteinuria and glomerulosclerosis in diabetic rats (61).
Although validated in animal models, the safety and efficacy of the
Frontiers in Immunology | www.frontiersin.org 4
inhibitors in humans are still unproven. Eculizumab has proved to
be effective in paroxysmal nocturnal hemoglobinuria and atypical
hemolytic–uremic syndrome (17).However, considered there is still
no data on eculizumab in DKD, more prospective cohort studies
are needed.

Hypertensive Kidney Disease
Hypertension is a major cause of premature death worldwide,
with approximately 1.28 billion adults aged 30–79 years
worldwide suffering from it, most (two-thirds) living in low-
and middle-income countries (62). Nowadays, several large
cohort studies have reported that hypertension is an important
risk factor for CKD and ESRD (63–65). Hypertensive kidney
disease still lacks a clear definition, while it is considered to be the
second most common cause of CKD and ESRD, after diabetic
kidney disease. Compared to DKD patients, patients with
hypertensive kidney disease have less proteinuria, but still
accompanied by decreased GFR and increased serum
creatinine. Besides oxidative stress in glomerular endothelial
cells induced by mechanical injury and activation of RAAS
were traditionally known as the main factors of renal damage
in hypertension (66), substantial evidence has implicated that
several components of the complement system are involved in
hypertensive kidney disease (HKD).

We have observed the deposition of complement components in
renal biopsy from patients and animals with hypertensive kidney
disease in both previous clinical practice and literature reports (67,
68). And clinical trials have shown that serumC3are paralleledwith
systolic blood pressure (69, 70). In renal biopsy, studies have found
C3c and C5b-9 activated in hypertension-associated TMA, with
disordered levels of factor B, D, P, and H while normal C4 level in
those patients (71–73). Since C4 is a molecule involved in both
classical and lectin pathways, researchers tend to believe that the
alternative pathway (AP) is primary in the pathogenetic process of
hypertensive kidney disease.

Complement disorders in HKD patients may be a result of
multiple conditions. Békássy et al. demonstrated that renin, a
FIGURE 2 | Potential mechanisms and targets of complement activation in diabetic kidney disease. In diabetes, increased glycation of proteins leads to the
activation of lectin pathway through MBL and the dysfunction of complement regulatory proteins. Hyperglycemia induces the inactivation of CD59, which is the key
inhibitor of MAC formation, thus predisposing to MAC deposition. Anaphylatoxins C3a and C5a are also proved to participate in the pathogenesis of DKD. Potential
complement-targeted therapeutics for DKD in red boxes include C1-INH, OSM721, C3aR inhibitors, C5aR inhibitors, and CD59 agonists.
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kidney-specific enzyme, cleaves C3 into C3a and C3b in amanner
identical to the C3 convertase, thus triggering the alternative
pathway. And the cleavage can be inhibited by the renin inhibitor
aliskiren in vitro (74). However, this intriguing possibility still
needs to be proven in vivo relevance. Factor H is an important
negative regulator of AP and can bind to heparin sulfate (HS) in
the GBM to protect host cells from complement attack. In
patients with hypertensive kidney disease, the GBM is
destroyed and exhibits lower HS levels, then the AP would be
overactivated (75–77).More importantly, the kidney is a potential
complement source (78–81). Tubular epithelial cells can
synthesize all complement AP proteins in vitro. Glomerular
endothelial cells (GECs) also synthesize more CFD and
properdin than brain microvascular endothelial cells (BMECs)
and human umbilical vein endothelial cells (HUVECs) (82, 83).
Hence, the kidney is vulnerable to AP activation because of the
altered levels of local complement.

Considering that the complement AP acts as an important role
to aggravate kidney tissue damage, targeting the complement
system seems to be an optional therapy. Raij et al. reported that
DOCA-salt hypertensive C5-sufficient mice showed more severe
renal insufficiency and proteinuria than C5-deficient mice and
presented more glomerular cell proliferation, cell necrosis, and
glomerulosclerosis, extracapillary proliferation morphologically
(84). In angiotensin II-induced hypertensive model, C5a
receptor 1-deficient mice have lower renal mRNA expression of
NGAL and CCL2, as well as less severe albuminuria (85). In
spontaneously hypertensive rats (SHR) which show stronger
immunohistochemical expression of C3 in glomerulus than
controls, after a given inhibitor of C3a receptor, the synthetic
phenotype in mesangial cells (MCs) and the production of matrix
Gla and collagen IV are suppressed (86, 87). These all remind us
that complement inhibition may improve kidney damage caused
by hypertension in animal models. Nevertheless, in the Dahl SS
rat-fed high-salt diet, after 21 days of treatment with the inhibitor
of C3 and C5 convertases CR1, no significant improvement of
proteinuria was detected, although C3a production was
suppressed (88), which seems to remind us that complement
activation in the circulation might not be a critical factor for the
kidney damage due to an increased sodium intake caused
hypertension. Presently, the use of complement inhibitor in
patients with hypertension is limited. A clinical study
demonstrated that early treatment with eculizumab can restore
renal functionand reduce TMA recurrence in subjects with
malignant hypertension (89), while medication targeting C3aR
is still not available in the clinic. More research is urgently needed
to confirm the feasibility and efficacy of this new treatment.

Obesity-Related Nephropathy
Obesity is defined as body mass index (BMI) over 30. Statistics
from WHO suggest that 650 million adults were obese
worldwide in 2016, nearly tripled in 1975. Although obesity
has been identified as an independent risk factor for ESRD after
adjustment for multiple epidemiologic and clinical features
including the presence of diabetes mellitus and hypertension
Frontiers in Immunology | www.frontiersin.org 5
(90), the specific pathogenesis of obesity-related nephropathy is
not fully understood. Insulin resistance, inappropriate activation
of RAAS, inflammation, and structural changes of kidney are
generally regarded as possible explanation (91).

Studies of the complement system in obesity-related
nephropathy are limited. Gauvreau et al. reported that mice-
deficient in properdin (PKO), which upregulates the alternative
pathway by stabilizing the C3bBb complex, had increased body
fat mass, as well as a greater excretion of b2 microglobulin and
mesangial cell proliferation when fed a high-fat diet compared to
controls (92, 93). Reports have also revealed that C3a receptor
and C5a receptor contribute to obese adipose tissue
inflammationand insulin resistance through macrophage
accumulation and M1 polarization (94, 95). Once macrophages
are activated, the downstream molecules including the
proinflammatory cytokines, chemokines and cellular adhesion
molecules are produced, which stimulate subsequently kidney
injury and renal fibrosis (96, 97). Lim et al. reported that
targeting the receptors of anaphylatoxin C3a and C5a can
improve visceral adiposity and inhibit the macrophage
signaling, suggesting that it may be a new strategy for treating
metabolic dysfunction in animal models (98). Accumulated
evidence indicated that serum C3 levels might be a biomarker
for insulin resistance in obesity (99) and nonalcoholic fatty liver
disease (100). Furthermore, a cross-sectional observational study
enrolled 1,191 Chinese adolescents identified that serum C1q
was positively related to MS, and may represent a biomarker for
predicting obesity or MS in adolescents (101). However, more
studies are needed to determine whether complement
components can be biomarkers for obesity-related nephropathy.

Hyperuricemia-Induced Kidney Disease
Uric acid is the end product of purine metabolism, with
approximately two-third of urate elimination occurs in kidney
(102), whose excessive accumulation leads to hyperuricemia,
gouty arthritis, and kidney injury. Uric acid was reported to
induce glomerulosclerosis, tubular injury, and interstitial fibrosis,
which is suspected to be related with abnormal activation of
RAAS and immune system. Although the pathogenesis of
hyperuricemia-induced kidney disease is precisely unknown,
hyperuricemia has been an independent risk factor for CKD.

Increased urate concentrations result in the deposition of
monosodium urate (MSU) crystals in articulations and kidneys,
thus leading to structural and functional damage. In a study
including 2,731 non-diabetic adults, C3 and C-reactive protein
(CRP) was reported to increase positively related with stimulation
of uric acid (103). Of note, CRP binds to MSU, thus recruits and
activates C1 and MASP1, resulting in the fixation of MAC (104).
Additionally, a functional C5 convertase complex assembles at the
surface of MSU crystals, leading to the generation of active C5a and
C5b (105). C5a then activates the NLRP3 inflammasome
in macrophages (106) and promotes the release of IL-1b, which in
turn regulates neutrophil recruitment (107), thereby participates in
the inflammation caused by hyperuricemia. Nevertheless, there are
still no reports about the interaction between renal parenchymal
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cells and components of the complement system in hyperuricemia.
Whether complement system could provide a novel target for
hyperuricemia-induced kidney disease needs further investigation.
DISCUSSION

Various metabolic disorders especially DM and hypertension have
become the key factors for the progression of renal damage, which
in turn aggravates metabolic disturbances. The mechanisms how
complement components interactwith kidneys are related to poorly
controlled primary diseases, insulin resistance, and chronic
inflammation. As we mentioned above, as the most important
and fundamental component of innate immune responses, the
complement system participates in the metaflammation and tissue
damage in kidneys through several pathways (Table 1), so that parts
of complement components are considered to be novel biomarkers
formetabolic kidney diseases. At the same time, therapeutic options
targeting the complement system attract the attention of the
researchers. Given the important role complement components
Frontiers in Immunology | www.frontiersin.org 6
played in protective immunity against pathogens, long-term
blockade of them may lead to potential adverse consequences
especially infection. Therefore, more clinical trials are needed to
identify the safety and effectiveness of these new inhibitors.
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