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Abstract
Since March, 2020, Coronavirus disease (COVID-19) has been designated as a pandemic by World Health Organization. This 
disease is highly infectious and potentially fatal, causing a global public health concern. To contain the spread of COVID-
19, governments are adopting nationwide interventions, like lockdown, containment and quarantine, restrictions on travel, 
cancelling social events and extensive testing. To understand the effects of these measures on the control of the epidemic 
in a data-driven manner, we propose a probabilistic cellular automata (PCA) based epidemiological model. The transitions 
associated with the model is driven by data available on chronology, symptoms, pathogenesis and transmissivity of the virus. 
By arguing that the lattice-based model captures the features of the dynamics along with the existing fluctuations, we perform 
rigorous computational analyses of the model to take into account of the spatial dynamics of social distancing measures 
imposed on the people. Considering the probabilistic behavioral aspects associated with mitigation strategies, we study the 
model considering factors like population density and testing efficiency. Using the model, we focus on the variability of 
epidemic dynamics data for different countries, and point out the reasons behind these contrasting observations. To the best 
of our knowledge, this is the first attempt to model COVID-19 spread using PCA that gives us both spatial and temporal 
variations of the infection spread with the insight about the contributions of different infection parameters.

Keywords  Mathematical model of epidemiology · Lattice epidemic · Probabilistic cellular automata

Introduction

COVID-19 is emerging as one of the biggest pandemics in 
current times. Affecting 214 countries and territories around 
the world with a death toll surpassing 1,000,000 worldwide 
till September, 2020, COVID-19 is causing a global panic 
and turmoil [11]. SARS-COV2, the causative agent of this 

disease causes respiratory infection including pneumonia, 
cold, sneezing and coughing [20, 29]. It is also found to 
cause diarrhea, upper respiratory maladies, kidney dysfunc-
tion and heart damage in cases of severe infection [9, 17, 
40]. The disease is highly infectious and it transmits from 
person-to-person through close contacts, via respiratory 
droplets produced by infected person while coughing or 
sneezing [37]. Fomites (e.g., such as clothes, utensils, fur-
niture etc.) are also being considered as a significant source 
of transmission, as the virus has been found to persist on 
different surfaces up to 72 h [15]. Mathematical models have 
long been associated with the study of infectious diseases 
and diffusion dynamics [7, 14]. However, choosing the 
appropriate model and proper physically relatable parame-
ters have always been a challenge for understanding and 
predicting the course of a disease. As soon as the person-to-
person infection spreading for COVID-19 has been detected, 
mathematical theory of epidemiological dynamics found its 
application in this particular problem as well. There is vast 
amount of evidence of usage of this modeling methodology 
for interpreting data and estimating effects of past pandemics 
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and similar contagions [2, 3, 5, 6, 19]. In case of modeling 
COVID-19 dynamics through compartmentalized social 
structure [8, 16, 18, 24, 33], the most popular approach is 
following Kermack and McKendrick [21] with an ordinary 
differential-equation (ODE) based SIR (susceptible-infected-
recovered) model. The model assumes that when an infec-
tious disease attacks a community, the disease often parti-
tions the population into three subpopulations: individuals 
who can be infected (susceptible people, denoted by S); 
people who are already infected (and thus, infectious, 
denoted by I); and those who recovered and possess immu-
nity to or got killed by (thus removed, denoted by R) this 
disease. Each infected individual transmits the disease with 
some probability to each susceptible individual they encoun-
ter. The infected people recover at a constant rate. In case of 
COVID-19, some studies have already attempted to gauge 
the true potential of the disease through SIR model [24, 33]. 
However, this simple three compartment model might not 
be sufficient to appropriately understand the actual nature of 
this particular infection spread. There are two major diver-
gences of the SIR picture from the case of COVID-19. 
Firstly, in the case of SARS-COV2, asymptomatic transmis-
sion of the virus remained a controversial topic for some 
time [4, 28]. Asymptomatic proportion is broadly defined as 
the fraction of people, who came in contact with the infected, 
but they do not show any symptoms for some time. For 
COVID-19, there have been reports of exposure to asymp-
tomatic people resulting into transmission during the incuba-
tion period [39]. Thus, it can be appreciated that reliable 
estimate of the asymptomatic proportion can play a notable 
role to control the intensity and range of the disease. This is 
critically desired to direct public health policy and social 
distancing strategies to fight COVID-19. Several studies [4, 
28, 30] reported that the proportion of people, who after 
remaining asymptomatic for an incubation period have 
shown prominent symptoms of the infection, lies between 
18 and 41%. This is a quite significant proportion which 
cannot be ignored for a highly infectious disease. Thus, 
while modeling the dynamics, the asymptomatic proportion 
has to be considered indeed to measure the severity of the 
problem and better evaluate the transmission potential. 
Another important factor that cannot be considered in an SIR 
model structure, is the effect (or lack) of efficient healthcare. 
The governments of most of the countries are allocating 
huge funds and manpower for scaling up the hospital facili-
ties to provide nasal oxygen, mechanical ventilation and, for 
patients with complications, dialysis, as per the clinical 
guideline suggestions [1, 26]. However, for several coun-
tries, where healthcare systems were already overwhelmed 
by the demand prior to the pandemic, providing quick and 
proper testing facility to every infected person is not realisti-
cally possible [34]. Even in countries with outstanding 
health infrastructure (e.g., Italy, Spain etc.) at the peak of the 

pandemic, the testing laboratories, hospitals and quarantine 
facilities were absolutely outnumbered by the number of 
new infections arising every day [27]. Moreover, in several 
countries, a social denial and stigma against testing have 
been observed [22, 36] which make identification of patients 
even more difficult. Thus, it is evident that even with the full 
healthcare efficiency, promptly detecting and quarantining 
all the patients is not feasible. In such a condition, the people 
who have been detected and quarantined, and the people 
outside quarantine facility, will not only have different con-
tact rates with the susceptible class, they might also have 
different recovery rates. While those admitted to hospitals 
and quarantine facilities will have less opportunity meeting 
the susceptible, they will be recovering faster from the dis-
ease. On the other hand, the infected people who are tested 
false negative, not yet tested, or awaiting testing results are 
generally being requested to stay home and self-quarantine 
themselves. These people might recover slowly and meeting 
more susceptible people during their recovery period. 
Beyond these two major divergences, we must also consider 
the stochastic nature of the real-world dynamics. Starting 
from exposure to the virus to the detection of the disease, 
everything is not deterministic, but probabilistic. Moreover, 
in ODE models, the homogeneous mixing assumption 
dilutes all spatial information which is essential for mode-
ling a disease which spreads from close-contacts only. While 
compartmentalised mean-field modeling approaches have 
their own benefits, to take into account of heterogeneity and 
spatial infection spread, cellular automata based lattice mod-
els provide a powerful tool [35, 38]. Despite the ability to 
show extremely complex macroscopic outcomes, this mod-
eling tool based on local interactions trusts on the interaction 
of a multitude of single individuals, giving a direct corre-
spondence to the physical system [10, 32]. In PCA, the tran-
sitions can be considered based on certain pre-defined prob-
abilities [25] which also suits the current dynamics of this 
global pandemic. Thus, PCA based modeling will have rich 
information about the stochastic spatiotemporal spread of 
the infection in a population. With these understanding of 
COVID-19, we proceed to model the spread of this infec-
tious disease using a spatially explicit epidemiological lat-
tice model using PCA. Here the spatial distribution of popu-
lation is characterized by a set of discrete lattice points. 
Specific probabilistic rules are made to define how every 
lattice point will change its state through the possible inter-
actions between the individuals and movement. We use rig-
orous simulations using PCA to understand the effects of 
lockdown implementation, regulatory compliance, testing 
efficiency and availability of healthcare facilities. To the best 
of our knowledge, this is the first attempt to model COVID-
19 using cellular automata keeping spatial population distri-
bution in mind. We exhibit that we are able to produce the 
temporal information about the infection, along with the 
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visualization of the space that is absent in ODE based mod-
eling. The article is organized as follows. In “Model 
Description”, we will define and discuss the PCA model of 
COVID-19 spread. Next, in “Simulation and Analysis”, we 
will present and analyse the simulation results, considering 
probabilistic dynamics in each step of disease progression, 
i.e., exposure, proliferation andquarantining. Finally, in 
“Discussions” major conclusions relating model results with 
the real epidemic data from different countries and future 
scopes will be discussed.

Model Description

In this section, we define a spatially explicit epidemiological 
model through PCA on a square lattice with SEIQR struc-
ture. We consider that, instead of having three subpopula-
tions, COVID-19 has partitioned our society in five different 
subpopulations. While S and R have the same implications 
as before (S: susceptible, R: recovered and removed), the 
I subpopulation is divided into three segments: those who 
are exposed and asymptomatically infected, denoted by E; 
those who have shown symptoms, but are not detected/tested 
positive/quarantined yet, denoted by I; and those who are 
quarantined or hospitalized, Q. Consider a community which 
has been infected by the virus. Let us consider a two-dimen-
sional lattice of dimension L × L , where an SEIQR epidemic 
process is going on. Each small box or ‘cell’ in this lattice 
can be occupied by a person (this however can be general-
ised into a house or residential area) or can remain empty 
(black in Fig. 4). The occupied cells have to belong to any 
one of the states, S (blue), E (green), I (red), Q (cyan) or R 
(yellow). For neighbourhood criteria, in general, a modified-
Moore neighbourhood has been used, which can be physi-
cally interpreted as d -neighbourhood, d being the range of 
interaction with neighbours. For this, a finite subset Ω of 
the total lattice is defined centred around each cell, that has 
a cardinality of 4d(d + 1) . Unless otherwise mentioned, in 
majority of our results d has been taken as 1, which reflects 
the Moore neighbourhood [12]. The main features of the 
epidemic spread on this 2D-lattice environment are as men-
tioned below:

–	 Every person is surrounded by at most eight neighbors 
for d = 1 . If any one of these neighbors are exposed or 
infected (belongs to E or I class), then the person has a 
finite probability to get exposed.

–	 Exposed people (E) have a finite probability to show the 
symptoms of the disease and become infected (I).

–	 Once a person gets infected, depending on the efficiency 
of the testing process in a certain period of time and with 
a certain probability the person gets detected, and thus 
quarantined, depending upon the available health infra-

structures. A quarantined person is restricted to come in 
contact with susceptible further.

–	 No birth or immigration is considered, keeping the total 
number of people in the population constant.

–	 We do not consider death due to the disease separately 
in our model; death is incorporated inside the recovered 
class and considered to be removed from the population.

–	 To capture the effect of intra-cell movement in the model, 
a sphere of influence is implemented for of each of these 
people by d-neighborhood considerations. This criteria 
establishes a boundary in which the person can come 
in direct contact of a maximum 4d(d + 1) number of 
other people, which can finally result in transmission 
of the disease. A susceptible person cannot get infected 
or exposed, if his d-neighborhood does not contain any 
exposed or infected person.

With these features considered, the framework for PCA can 
be established as a combination of transition probability 
model [31] and discrete event model [13] where the disease 
transmission can set in through several subevents or transi-
tion rules. The state of a cell on this L × L lattice can belong 
to a finite state k ∈ � , where A = {0, S,E, I,Q,R} ; the terms 
S, E, I, Q and R denote the particular possible states of infec-
tion as discussed before, and 0 denotes no human occupant 
or an empty space. The transition probability pt

k
 denotes the 

probability of transition at time t to state k from its previous 
state, where k ∈ A . This quantity pt

k
 is defined in general 

as state transitional probability. In this infection diffusion 
model, only the state transitional probabilities pt

e
 , pt

i
 , pt

q
 and 

pt
r
 are considered to be nonzero at certain instance of time; 

rest of the transitions are not allowed. An empty cell does 
not contribute in the infection spread and it remains empty as 
intra-cellular movement is being accounted with neighbour-
hood parameter d. We further associate a transitional delay 
vector � = {te, ti, tq, tr} , that corresponds to the transitions 
to the state k, for each cell � . The transitional probabilities 
are then defined as

where tk ∈ � and tlast is the time instance when the last state 
transition occurred for that particular cell � . These transi-
tional delays could be associated to various physical aspects 
explained through the automaton rules below:

–	 Rule 1, Getting exposed: S ⟶ E , with effective rate 
pe[nE(i) + nI(i)] where pe ∈ [0, 1] is the finite exposure 
probability, or transition probability from state E to 
state E, at time 0 ≥ t ≥ tL;  this transition rate is also 
proportional to the total number of exposed and infected 
neighbors nE(i) and nI(i) within the distance d1 > 0 of 

pt
k
=

{

0 if t < tlast + tk
pk if t ≥ tlast + tk

,
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the ith susceptible site, as a susceptible person will meet 
its exposed/infected neighbors independently. To ensure 
the immediate nature of exposure we set the delay asso-
ciated with this transition tk ∈ � = 0 . For t > tL , lock-
down is imposed and the interaction among the neighbors 
reduced to distance d with same transitional rule, where 
0 < d < d1.

–	 Rule 2, Getting infected, with symptoms: E ⟶ I , 
with transition probability pi ∈ [0, 1] , which estimates 
the probability that the infection will grow and show 
substantial symptoms. A threshold time of ti (∈ �) is 
associated with this subevent to account for the incuba-
tion period, which is a very prominent problem in case 
of COVID-19. Thus, this rule is precisely required as not 
every exposed individual will turn into infected person 
with symptoms at a certain time.

–	 Rule 3, Getting quarantined: I ⟶ Q , takes place after 
a threshold delay of tq and with a probability pq ∈ [0, 1] 
which measures the promptness of testing and efficiency 
of testing methods respectively.

–	 Rule 4, Recovery or removal: I ⟶ R and Q ⟶ R 
takes place after an average time delay of tr with a prob-
ability pr ∈ [0, 1] which takes into account the effective-
ness of health infrastructure and medical facilities.

Figure 1 compiles all these events together in the form of a 
disease spread model. The total population N is fixed while 
the simulation is carried out, but its variations estimate the 
population density of the zone of interest.

Simulation and Analysis

We perform simulations on a homogeneous two-dimensional 
landscape with 400 × 400 cells with 100,000 randomly 
selected cells as residences of people in a society. Figure 2a 
shows a zone of interest at initial condition, where blue cells 
denote susceptible individuals. Considering Moore neigh-
borhood (8 neighborhoods) a synchronous updating for all 

sites is carried out. However, the neighbourhood conditions 
are modified accordingly to estimate the allowed interac-
tions for a person. Parameter d estimates the distance up to 
which the interactions are allowed during the implemen-
tation of simulation. The interaction convention (shown in 
Fig. 2c) has been set as follows: if a person is staying home, 
then d = 0 ; if the sphere of influence includes only the first 
nearest neighbours, then d = 1 ; if the sphere of influence 
includes first as well as next nearest neighbours, d = 2 , and 
so on. For better visualization of the dynamics, we normal-
ize any subpopulation with the total number of people in 
the entire population. We have used lowercase symbols to 
represent normalized subpopulation, e.g. the normalized 
fraction of people infected in the entire population is repre-
sented with ‘i’, whereas the normalized fraction of people 
quarantined in the population is represented with ‘q’ and so 
on. As incubation period for COVID-19 [23], ti is associated 
with the infection itself, so we keep it constant for all our 
experiments with default value of ti = 8 . The simulations are 
run until a saturation is reached.

Effects of Population Density and Movement 
Restriction

The density of a particular place may play a key role in 
the spreading dynamics as it is difficult to implement strict 
social distancing measures in densely populated areas. It can 
be observed that cities with large number of residences have 
often become the hot-spot of infection spread. To understand 
the effect of density, we simulate our model with different 
population densities, and examine how the maximum frac-
tion of infected people in the population depends on it. As 
shown in Fig. 3, the population density has a severe impact 
on the fraction of maximum infection ( imax ). As the popula-
tion density increases, the imax increases exponentially. This 
happens as the person-to-person transmission probability 
increases drastically, and even a very restricted movement 
( d = 1 ) helps to spread the infection in the community. It 
can be observed that for d = 2 , the imax increases much more 

Fig. 1   Flow diagram of the epidemic spread: the state transitions related to the subevents in the epidemic spreading model are shown along with 
the corresponding transitional delays
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rapidly as population density increases. Thus, to stop the 
maximum reach of the infection, it is necessary to admin-
ister strict movement control, or lockdown. In our simula-
tions, lockdown imposes a restriction on movement of every 

person on the lattice. In Fig. 4, we have shown time evolu-
tion of two different communities to demonstrate the effect 
of lockdown implementation with the help of parameter d. 
We assume that for a given d, a person may meet someone 

Fig. 2   Simulation landscape and interaction neighbourhood: a A zone 
of interest with 400 × 400 cells. Density of small blue boxes represent 
population density. b A small sub-zone, denoting the distribution of 
susceptible and empty cells. c Interaction conventions: staying home, 

d = 0 ; sphere of influence includes only first nearest neighbours 
denoted by d = 1 ; sphere of influence includes first as well as next 
nearest neighbours denoted by d = 2 , and so on

Fig. 3   Dynamics of the infection spread: a time evolution of five sub-
populations for d = 2 , pe = 0.5 , pi = 0.5 , pq = 0.1 and pr = 0.12 and 
population density D = 0.46 ; b Effect of population density on the 

fraction of maximum infection, imax . Here population density D = 1 
indicates that all the lattice locations are occupied by people. Other 
parameters are kept same as before
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to the dth neighbourhood but comes back at his original 
place at the end of each step. Thus, the demography does 
not change in each step and the neighbourhood information 
remains constant. In Fig. 4a, a strict lockdown is imposed 
( 0 ≤ d ≤ 1 ), where staying at home or occasional movement 
within d = 1 neighbourhood in urgency is allowed. Here we 
observe that, after saturation, most of the people remain in 
the susceptible state showing a very limited spread of the 
infection. On the other hand, In Fig. 4b, the movement in 
the community was not restricted, and every individual was 
allowed to move as per their habit/choice ( 0 ≤ d ≤ 3 ). In 
this case, it can be observed that almost all the people come 
in the contact of the pandemic. Thus, restricting the move-
ment emerges as a highly impactful strategy for controlling 
the infection spread.

Promptness in Implementing Lockdown

As discussed in “Effects of Population Density and Move-
ment Restriction”, lockdown is necessary to restrict the 
spread of the infection in a community. However, imple-
mentation of a total lockdown is a big challenge for a coun-
try because of several socioeconomic issues. An abrupt 
lockdown may create panic and associated complications 
as well. However, in our studies, by introducing a delay 
time parameter tL , we found that an early implementation 
of lockdown is extremely useful to control the spread of 
the disease. To observe this, members of the populations 
were allowed to interact with 0 ≤ d ≤ 2 initially. If at t0 
time the infection first enters the community with Eint and 
Iint number of initially exposed and infected people, then 

we assume that a lockdown gets implemented at t0 + tL 
time step. For this experiment, we considered Iint = 6 , 
Eint = 200 , pe = 0.5 , pi = 0.5 , pq = 0.1 and pr = 0.12 . For 
a probable infected person, quarantining and recovery 
threshold times are taken as tq = 2 and tr = 18 . As shown 
in Fig. 5a, as tL increases, i.e., as the delay in implement-
ing the lockdown increases, the fraction of people getting 
infected increases drastically. Thus, even with the difficul-
ties of immediate implementation, it is necessary to plan 
for an early lockdown to restrict movements in case of a 
pandemic.

Effect of Initial Infection Level

The number and location of the infected and exposed 
people in the population just before the start of the lock-
down greatly influence the maximum spread of the infec-
tion in the community. As shown in Fig. 5b, as Eint and 
Iint increase, the maximum spread of infection increases 
keeping the duration of the infection almost constant. For 
Fig. 5b, we considered that tL = 0 , i.e., the strict lock-
down is enforced immediately in the population with pe , 
pi , pq , pr , tq and tr as mentioned in “Promptness in Imple-
menting Lockdown”. This experiment depicts that it is 
strongly needed to control the initial infection to make 
the lockdown effective. Any act, e.g. migrant movement, 
social gathering, unhygienic practices in public places etc., 
should be handled carefully to restrict the initial infec-
tion level until the lockdown can be implemented in the 
society.

Fig. 4   Simulation results for the spread of the infection in a popula-
tion at time-step t for different parameters as mentioned in “Simula-
tion and Analysis” for a 0 ≤ d ≤ 1 and b 0 ≤ d ≤ 3 . The colors of 

the subpopulations are same as shown in Fig.  1. All the transition 
probabilities are same as mentioned in “Promptness in Implementing 
Lockdown”
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Effect of Exposure Probability

An effective way to fight a pandemic like COVID-19 is to 
reduce the exposure probability pe as reduction of the expo-
sure probability reduces the chance of getting infected at the 
first place. Our experiment also depicts that pe is an impor-
tant factor in controlling the spread. As shown in Fig. 5c, 
when pe reduces from 0.8 to 0.2, the maximum spread of 
infection imax reduces almost linearly. In this experiment, we 
considered all the parameters, except pe , same as mentioned 
in “Promptness in Implementing Lockdown” with tL = 0 . 
It shows that while an infected person may meet a healthy 
person even in a lockdown condition, social distancing and 
other protective measures like usage of facemask, sanitizer 
etc. reduce the possibility of contamination. Thus, social 
distancing and other precautions may act as social vaccine 
to prevent the disease spread.

Effect of Infection Probability

Depending on the nature of the infectious disease and 
the immunity strength of the members of a community, 

infection probability pi plays a major role in the infection 
spreading. In a pandemic scenario, pi may vary for vari-
ous reasons like mutation of the virus, acquired immunity 
or simply because of the low infection probability of the 
disease. As shown in Fig. 5d, as pi reduces, imax reduces 
significantly. However, the reduction of imax is not linear 
with pi . To understand the effect of pi , we define another 
parameter called the ‘infection lifetime ( � )’ which is 
defined by the time difference between the instances when 
the first person gets infected in the population and the last 
person recovers from the infection. Figure 5d thus suggests 
that � increases as pi decreases. This happens as a per-
son once exposed to the infection remains in the exposed 
state. A lower value of pi reduces someone’s chances to 
get quarantined and also indicates possibility of a delayed 
symptomatic transition from E to I class which increases 
� . In Fig. 5d, we considered all the parameters, except 
pi , same as mentioned in “Promptness in Implementing 
Lockdown” with tL = 0.

Fig. 5   Dynamics of the infection spread in lockdown: a Effect of delay in implementing lockdown; b Effect of different states (initial conditions) 
just before lockdown is implemented; c Effect of exposure probability pe ; d Effect of infection probability pi
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Effect of Testing Efficiency

In a pandemic like COVID-19, SARS etc., detecting the 
infected individuals plays a crucial role in controlling the 
infection spread. Detection of infected people has two major 
factors− governmental initiatives, and the efficiency as well 
as supply of the test kits. Moreover, awareness and coopera-
tion of the community also plays a significant role; though, 
often aware and cooperative infected people are detected in a 
population, but it is always challenging to detect the infected 
individuals with denial and resistance, which increases the 
risk of an outbreak. These three factors are combined in 
the probability term pq . We note that this testing efficiency 
parameter plays a major role in the spreading dynamics. As 
shown in Fig. 6a, as pq increases both imax and � decreases 
which helps to limit the infection. It is important to mention 
that it is the fraction of quarantined population ‘q’ which 
we can observe as the active cases in a pandemic scenario 
as the other subpopulations (e and i) are yet undetected, 
thus not directly observable. As shown in Fig. 6b, the frac-
tion of people quarantined remains quite less if pq is small. 

This signifies that less testing efficiency can be mistaken 
as a smaller spread of the infection. Thus, to get a clear 
picture about the spread of the infection in a community, it 
is recommended to keep pq high, which in turn also helps 
to limit the infection spread. In both these Fig. 6a and b, we 
considered all the parameters, except pq , same as mentioned 
in “Promptness in Implementing Lockdown” with tL = 0.

Effect of Testing Time tq and Recovery Probability pr

Testing time also plays a decisive role in epidemic dynamics. 
The testing time might be dependent on the available facili-
ties and cooperation of individuals to report to the medical 
centers as soon as they get any symptom of the infection. 
As shown in Fig. 6c, as tq increases, both imax and � increase 
as the infected people get more scope to spread the infec-
tion in the community. Thus, early reporting of any viral 
symptom and test kits that can produce test results fast are 
essential to limit a pandemic. In Fig. 6c, we considered all 
the parameters, except tq , same as mentioned in “Promptness 
in Implementing Lockdown” with tL = 0 . Though recovery 

Fig. 6   Dynamics of the infection spread in lockdown: effect of testing probability pq on a the fraction of people infected and b the fraction of 
people quarantined; c Effect of delay in individual quarantine process; d Effect of recovery probability pr
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probability largely depends on the disease itself, but depend-
ing on the medical support and other available health ser-
vices, recovery probability might vary in a population. 
We found that recovery probability pr does not have much 
impact on imax as the spread of an infection is usually faster 
than the recovery time, but, as shown in Fig. 6d, it limits the 
infection lifetime � . Thus, good health facilities and medi-
cal supports are required throughout the pandemic period 
to speed up the recovery process if possible. In Fig. 6d, we 
considered all the parameters, except pr , same as mentioned 
in “Promptness in Implementing Lockdown” with tL = 0.

Discussions

In this prevalence of pandemic COVID-19, ODE based 
kinetic models are being trusted extensively for the purpose 
of predicting time dependent profiles and steady state behav-
iour of the epidemic dynamics. In this paper, we argue that 
cellular automata based simulations can provide a more real-
istic and insightful platform for modeling this dynamics. It 
is undeniable that a substantial variability has been observed 
in the nature of the course of the disease in countries and 
provinces all around the world. While a fully operational 
clinically trialed vaccine can only be expected after a year or 
so for everyone, several countries are struggling hard to find 
a proper mitigation strategy for the disease. It is interesting 
to see that publicly available data of confirmed daily cases 
for different countries are quite different from each other. 
While in some countries the disease has completed its course 
in around 60 days (like, Germany, Switzerland, Singapore 
etc.), in some other countries it is taking more than 80 days 
to reach the peak (like, Italy, India, Brazil etc.). In countries 
like Spain, Portugal and Turkey, a distinct deviation from 
symmetric bell-shaped behaviour of active cases can be 
observed, which is heading towards a saturation, indicating 
a substantial persistence of the disease. For Iran, emergence 
of a second peak is imminent, which cannot be accounted 
for using ordinary differential equation based SIR models. 
Many countries have shown equivalent rise of the epidemic 
in initial stages are showing drastic divergence in the later 
stages. The applicability of strategies like aggressive testing, 
which found their success in countries like Singapore, Hong 
Kong and South Korea, are doubted for the high population 
countries like, India, USA etc. To analyse and interpret this 
data, it must be considered that along with the parameters 
associated with infection itself, the dynamics reflects the 
human interventions and reactions as well, which are highly 
probabilistic. In this paper, we have used a lattice-based PCA 
epidemiological modeling to efficiently mimic a pandemic 
environment and find out the contributions of each major 
parameter associated with the pandemic spread. In com-
parison to the classic SIR model, thus this model is not only 

closer to reality, but also gives us a room to analyze number 
of exposed and quarantined individuals separately, which 
are two very crucial factors for estimating spreading of the 
infection and success of the mitigation strategies. We identi-
fied the role of different factors like probability of exposure, 
testing probability, promptness of implementing lockdown 
etc. which can not only be used to design better strategies to 
control a pandemic like COVID-19, but also can be used as 
analyzing tools to understand and explain proposed initia-
tives like social distancing, usage of facial mask, importance 
of sanitizers etc. Our exhaustive analysis shows that coun-
tries with high population density should handle lockdown 
and migration carefully as they have higher risk of getting 
infected. Using quantities like imax and � , we have also char-
acterised and quantified the independence of rise and fall 
of the distribution, showing the clear influence of human 
intervention strategies. Our model individually associates 
tunable parameters with several practical factors like popula-
tion density, testing efficiency, public awareness, health-care 
facility, general immunity etc. which are implicit to a coun-
try, and can contribute significantly in the country-wise data 
variations. By demonstrating the flexibility of the model, 
we conclude that this is not only capable of explaining the 
reasons behind divergence of epidemic dynamics in differ-
ent countries, but also has the potential to explain unfore-
seen nature of a new data that might depend strongly on 
space information, behavioural probabilities or underlying 
fluctuations. Our study establishes a prescription about how 
the resultant distribution changes its properties (e.g., peak 
position, sharpness of rise, lifetime of epidemic, asymmetric 
long-tailed fall etc.) driven by each of these parameters. As 
this simulation-based study explicitly includes the spatial 
factors into the dynamics, incorporating realistic behavioural 
and demographic features is achievable through this model. 
Thus, our methodology proposes a more accurate and flex-
ible platform to understand the country-wise diversity of the 
observed data than the mean-field models.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan 
E, Oczkowski S, Levy MM, Derde L, Dzierba A, et al. Surviving 
Sepsis Campaign: guidelines on the management of critically ill 
adults with Coronavirus disease 2019 (COVID-19). Intensive Care 
Med. 2020;46(5):854–87.

	 2.	 Althouse BM, Lessler J, Sall AA, Diallo M, Hanley KA, Watts 
DM, Weaver SC, Cummings DA. Synchrony of sylvatic dengue 



	 SN Computer Science (2021) 2:230230  Page 10 of 10

SN Computer Science

isolations: a multi-host, multi-vector sir model of dengue virus 
transmission in senegal. PLoS Negl Trop Dis. 2012;6(11):e1928.

	 3.	 Anderson RM, May RM. Infectious diseases of humans: dynamics 
and control. Oxford University Press; 1992.

	 4.	 Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, Wang M. Pre-
sumed asymptomatic carrier transmission of COVID-19. JAMA. 
2020;323(14):1406–7.

	 5.	 Bauch CT, Lloyd-Smith JO, Coffee MP, Galvani AP. Dynamically 
modeling sars and other newly emerging respiratory illnesses: 
past, present, and future. Epidemiology. 2005;16(6):791–801.

	 6.	 Behncke H. Optimal control of deterministic epidemics. Opt Con-
trol Appl Methods. 2000;21(6):269–85.

	 7.	 Bhattacharya S, Gaurav K, Ghosh S. Viral marketing on 
social networks: an epidemiological perspective. Physica A. 
2019;525:478–90.

	 8.	 Chatterjee S, Sarkar A, Chatterjee S, Karmakar M, Paul R. 
Studying the progress of COVID-19 outbreak in India using 
SIRD model. Indian J Phys. 2020. https://​doi.​org/​10.​1007/​
s12648-​020-​01766-8.

	 9.	 Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Li J, Yao 
Y, Ge S, Xu G. Kidney disease is associated with in-hospital death 
of patients with COVID-19. Kidney Int. 2020;97(5):829–38.

	10.	 Chopard B, Droz M. Cellular automata, vol. 1. Springer; 1998.
	11.	 Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. 

Acta bio-medica: Atenei Parmensis. 2020;91(1):157–60.
	12.	 Davies C. The effect of neighbourhood on the kinetics of a 

cellular automaton recrystallisation model. Scr Metall Mater. 
1995;33(7):1139–43.

	13.	 Dean DO, Bauer DJ, Shanahan MJ. A discrete-time Multiple 
Event Process Survival mixture (MEPSUM) model. Psychol 
Methods. 2014;19(2):251.

	14.	 Diekmann O, Heesterbeek JAP. Mathematical epidemiology of 
infectious diseases: model building, analysis and interpretation, 
vol. 5. John Wiley & Sons; 2000.

	15.	 van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, 
Gamble A, Williamson BN, Tamin A, Harcourt JL, Thorn-
burg NJ, Gerber SI, et  al. Aerosol and surface stability of 
SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 
2020;382(16):1564–7.

	16.	 Ghosh S, Bhattacharya S. A data-driven understanding of Covid-
19 dynamics using sequential genetic algorithm based probabil-
istic cellular automata. Appl Soft Comput. 2020;96:106692.

	17.	 Han C, Duan C, Zhang S, Spiegel B, Shi H, Wang W, Zhang L, 
Lin R, Liu J, Ding Z, Hou X. Digestive symptoms in COVID-
19 patients with mild disease severity: clinical presentation, 
stool viral RNA testing, and outcomes. Am J Gastroenterol. 
2020;115(6):916–23.

	18.	 He S, Peng Y, Sun K. Seir modeling of the covid-19 and its 
dynamics. Nonlinear Dyn. 2020; 1–14.

	19.	 Hethcote HW. Asymptotic behavior in a deterministic epidemic 
model. Bull Math Biol. 1973;35:607–14.

	20.	 Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, Hao SR, 
Jia HY, Cai H, Zhang XL, et al. Epidemiological, clinical and 
virological characteristics of 74 cases of coronavirus-infected 
disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 
2020;69(6):1002–9.

	21.	 Kermack WO, McKendrick AG. A contribution to the mathemati-
cal theory of epidemics. Proc Roy Soc Lond. 1927;115(772):700–
21 (Series A, Containing papers of a mathematical and physi-
cal character).

	22.	 Kumar A, Nayar KR. COVID 19 and its mental health conse-
quences. J Ment Heal. 2020;8237:1–2.

	23.	 Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith 
HR, Azman AS, Reich NG, Lessler J. The incubation period of 

coronavirus disease 2019 (COVID-19) from publicly reported 
confirmed cases: estimation and application. Ann Intern Med. 
2020;172(9):577–82.

	24.	 Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive 
number of COVID-19 is higher compared to SARS coronavirus. 
J Travel Med. 2020. https://​doi.​org/​10.​1093/​jtm/​taaa0​21.

	25.	 Mairesse J, Marcovici I. Around probabilistic cellular automata. 
Theoret Comput Sci. 2014;559:42–72.

	26.	 Murthy S, Gomersall CD, Fowler RA. Care for critically ill 
patients with COVID-19. JAMA. 2020;323(15):1499–500.

	27.	 Nacoti M, Ciocca A, Giupponi A, Brambillasca P, Lussana F, 
Pisano M, Goisis G, Bonacina D, Fazzi F, Naspro R, Longhi L. 
At the epicenter of the COVID-19 pandemic and humanitarian 
crises in Italy: changing perspectives on preparation and mitiga-
tion. NEJM Catalyst Innov Care Deliv. 2020. https://​doi.​org/​10.​
1056/​CAT.​20.​0080.

	28.	 Nishiura H, Kobayashi T, Miyama T, Suzuki A, Jung SM, Hayashi 
K, Kinoshita R, Yang Y, Yuan B, Akhmetzhanov AR, Linton NM. 
Estimation of the asymptomatic ratio of novel coronavirus infec-
tions (COVID-19). Int J Infect Dis. 2020;94:154–5.

	29.	 Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, Li P, Hu B, 
Wang J, Hu C, Jin Y. Clinical characteristics of COVID-19 
patients with digestive symptoms in Hubei, China: a descrip-
tive, cross-sectional, multicenter study. Am J Gastroenterol. 
2020;115(5):766–73.

	30.	 Rocklöv J. Sjödin H, Wilder-Smith A COVID-19 outbreak on the 
Diamond Princess cruise ship: estimating the epidemic potential 
and effectiveness of public health countermeasures. J Travel Med. 
2020;27(3):taaa030.

	31.	 Sacks ST, Chiang CL. A transition-probability model for the study 
of chronic diseases. Math Biosci. 1977;34(3–4):325–46.

	32.	 Santé I, García AM, Miranda D, Crecente R. Cellular automata 
models for the simulation of real-world urban processes: a review 
and analysis. Landscape Urban Plan. 2010;96(2):108–22.

	33.	 Shim E, Tariq A, Choi W, Lee Y, Chowell G. Transmission poten-
tial and severity of COVID-19 in South Korea. Int J Infect Dis. 
2020;93:339–44.

	34.	 Spinelli A, Pellino G. COVID-19 pandemic: perspectives on an 
unfolding crisis. Br J Surg. 2020;107(7):785–7.

	35.	 Toffoli T, Margolus N. Cellular automata machines: a new envi-
ronment for modeling. MIT Press; 1987.

	36.	 Torales J, O’Higgins M, Castaldelli-Maia JM, Ventriglio A. The 
outbreak of COVID-19 coronavirus and its impact on global men-
tal health. Int J Soc Psychiatry. 2020; 0020764020915212.

	37.	 Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, Ho RC. Immediate 
psychological responses and associated factors during the initial 
stage of the 2019 coronavirus disease (COVID-19) epidemic 
among the general population in China. Int J Environ Res Public 
Health. 2020;17(5):1729.

	38.	 Wolfram S. Cellular automata and complexity: collected papers. 
CRC Press; 2018.

	39.	 Yu P, Zhu J, Zhang Z, Han Y. A familial cluster of infection asso-
ciated with the 2019 novel coronavirus indicating possible person-
to-person transmission during the incubation period. J Infect Dis. 
2020;221(11):1757–61.

	40.	 Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardio-
vascular system. Nat Rev Cardiol. 2020;17(5):259–60.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12648-020-01766-8
https://doi.org/10.1007/s12648-020-01766-8
https://doi.org/10.1093/jtm/taaa021
https://doi.org/10.1056/CAT.20.0080
https://doi.org/10.1056/CAT.20.0080

	Computational Model on COVID-19 Pandemic Using Probabilistic Cellular Automata
	Abstract
	Introduction
	Model Description
	Simulation and Analysis
	Effects of Population Density and Movement Restriction
	Promptness in Implementing Lockdown
	Effect of Initial Infection Level
	Effect of Exposure Probability
	Effect of Infection Probability
	Effect of Testing Efficiency
	Effect of Testing Time  and Recovery Probability 

	Discussions
	References




