
biomimetics

Article

Fluid–Structure Interaction for Biomimetic Design of
an Innovative Lightweight Turboexpander

Ibrahim Gad-el-Hak

Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, H3C 3A7, Canada;
gadelhakibrahim@gmail.com

Received: 15 January 2019; Accepted: 18 March 2019; Published: 22 March 2019
����������
�������

Abstract: Inspired by bird feather structures that enable the resistance of powerful aerodynamic
forces in addition to their lower weight to provide stable flight, a biomimetic composite turbine blade
was proposed for a low-temperature organic Rankine cycle (ORC) turboexpander that is capable
of producing lower weight expanders than that of stainless steel expanders, in addition to reduce
its manufacturing cost, and hence it may contribute in spreading ORC across nonconventional
power systems. For that purpose, the fluid–structure interaction (FSI) was numerically investigated
for a composite turbine blade with bird-inspired fiber orientations. The aerodynamic forces were
evaluated by computational fluid dynamics (CFD) using the commercial package ANSYS-CFX
(version 16.0) and then these aerodynamic forces were transferred to the solid model of the proposed
blade. The structural integrity of the bird-mimetic composite blade was investigated by performing
finite element analysis (FEA) of composite materials with different fiber orientations using ANSYS
Composite PrepPost (ACP). Furthermore, the obtained mechanical performance of the composite
turbine blades was compared with that of the stainless steel turbine blades. The obtained results
indicated that fiber orientation has a greater effect on the deformation of the rotor blades and the
minimum value can be achieved by the same barb angle inspired from the flight feather. In addition
to a significant effect in the weight reduction of 80% was obtained by using composite rotor blades
instead of stainless steel rotor blades.

Keywords: biomimetic composite blade; nature-inspired; organic Rankine cycles; computational
fluid dynamics; finite element analysis; fluid–structure interaction; bird feather; fiber
orientation; turboexpanders

1. Introduction

Growing populations and increasing industrialization have globally led to an exponential increase
in energy demands. In the meanwhile, growing concerns over global warming and the environmental
issues of conventional energy resources, such as oil, gas, and coal, are initiating the need to meet global
energy demand from renewable energy resources and to improve energy efficiency by recovering
low-grade heat sources. The organic Rankine cycle (ORC) has been recently used as a low-grade heat
recovery system. It is a technology that operates correspondingly to the steam Rankine cycle, except
that steam is replaced with organic working fluids. This organic working fluid has a lower boiling point
compared to that of steam, and is consequently able to use waste heat sources to drive a turbine for
power generation [1]. The main two parameters which determine the performance of an ORC system
are working fluid selection and expander design. A wide range of research conducted in the area of
working fluid selection was basically performed to calculate the cycle efficiency and output power for
different working fluids through thermodynamic analysis for an ORC cycle [2–6]. Moreover, Darvish
et al. [7] tested nine working fluids, namely, R134a, R123, R227ea, R245fa, R600, R600a, iso-pentane,
n-pentane, and toluene to identify the best performing fluid for low-temperature ORC applications.
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They performed the thermodynamic model for ORC system which has a source temperature of 120 ◦C
to evaluate thermodynamic parameters such as, output power and exergy efficiency, within system
constrains. They found that refrigerant R600a produced highest exergy efficiency of 20.3% among
other working fluids. In addition, R600a has a low global warming potential (GWP) of three and
zero ozone depleting potential (ODP) and thereby its environmental impact is lower. In addition to
an expander design was selected based on its efficiency, targeted power output and size which were
determined through the preliminary design process of an expander [8–11]. Radial turboexpanders are
preferred for ORC systems due to their high tip speed, which contributes positively in stage-specific
work [6]. The rotational turbine speed is nevertheless limited by the strength of materials at the wheel
periphery due to the centrifugal forces. Moreover, the rotational speed should be selected to obtain
the blade speed ratio (U2/C0) near to 0.7 for better isentropic efficiency. However, technical analysis
is an essential first step that should be considered in the design process of a cycle, but the economic
perspective of a cycle is crucial to estimate the energy price. Generally, the feasibility of implementing
energy-efficient technology is found to be sensitive to the cost of equipment more than to the expected
energy costs [1]. The expander is the most expensive component in an ORC system as it costs around
50% of total investment costs [1].

Composite materials can be used to produce innovative low-cost expanders for ORC systems.
There are benefits to manufacturing composite turboexpanders for an ORC system due to (i) their lower
weight than that of stainless steel turboexpanders lead to reduce centrifugal loads acting on the turbine
rotor due to its high rotational speed, (ii) their corrosion-resistant properties provide an advantage for
operation with a two-phase flow without the occurrence of corrosion in the turbine blades, (iii) their
low thermal conductivity will help to reduce the heat loss from the turbine by maximizing the use of
the flow energy, and (iv) they have a design flexibility which can be used easily for the twisted turbine
blade. Moreover, the fiber orientations of unidirectional fibrous composites play a significant role in
increasing its stiffness and strength by aligning the fibers parallel to the direction of loading. However,
choosing of a fiber angle is a challenging task when the load is applied into two different directions,
such as bending and torsional loads.

Biomimetic Design of Turboexpanders

Biomimicry of flight wings of birds can be incorporated to design the composite turbine blade of
a turboexpander, with fiber orientations mimicking the bird’s feathers structure. A bird’s flight feather
has elaborate structures that could only have evolved to meet the need to resist bending and torsion
in a wing, and to transmit aerodynamic forces to the shaft (rachis) [12]. During the developmental
stages of the bird wing, the flight feathers grow up to be structurally able to resist the aerodynamic
forces as shown in Figure 1a. Between developmental stages (B) and (C), a stiffening shaft (rachis)
along the axis of the feather resists both bending and torsion, but does not prevent the vanes from
twisting up at the edges in response of air flow, which become stiffer at both edges as the twisted angle
of the feather vane is reduced by configuration of an array of parallel ridges (barbs) as indicated in
Figure 1b. Thereby, the fluid–structure interaction between the flowing air and the feather is reduced.
By analogy, this is the same problem in a composite turbine blade. Due to the elasticity of a composite
turbine blade and the aerodynamic forces around the blade, the interaction between them leads to
twisting of the blade tip, and the blade angle changes from the optimum design point (Figure 1c), thus
resulting in a deteriorated performance of the turboexpander. Here, we use the orientation of feather
barbs as inspiration to design a composite turbine blade for ORC turboexpanders as bird feathers have
several features that make them ideally suited for flight (Figure 1d). The direction of the barbs from
the leading and trailing edge increases the torsional stiffness of the feather and reduces the twisted
angle during the interaction with the flowing air. Thus, using unidirectional fibrous composites with
an acute fiber angle, as indicated in Figure 1d, in manufacturing the rotor turbine blades would have a
significant contribution to reducing its deformed twisted angle as well as reducing its weight.
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Figure 1. (a) Three stages in the development of flight feathers from simple scales in birds [12]: (A) a 
simple scale tends to bend upwards in response to air pressure, (B) a longitudinal stiffening ridge 
resists upward bending, and (C) stiffening ridges in the vanes resist the curling tendency. (b) 
Schematic diagram of the mature feather branch morphology: vane width (W), barb length (L), and 
barb angle with respect to the rachis (α). (c) Geometry of the rotor blades for a radial inflow turbine 
and (d) schematic diagram of the proposed fiber orientation inspired by bird feathers. 

Understanding the flight feather vanes structure can be helpful to create lightweight as well as 
structurally robust turboexpanders because the barb angle is adjusted to meet the variations of 
aerodynamic forces along the flight vane. Thereby, the flight feather vanes can be classified into four 
main categories based on their aerodynamic functions as shown in Figure 2 [13]: (i) cutting-edge 
leading vanes function as the cutting edge of an aerofoil during flight; (ii) free-edge trailing vanes 
function as the unsupported trailing edge of an aerofoil during flight; (iii) supported leading vanes; 
and (iv) supported trailing vanes overlap with each other to create a continuous surface of the wing. 
The geometry of feather barbs (barb length and barb angle) defines feather vane asymmetry and vane 
rigidity, which are both critical for a feather’s aerodynamic performance. For instance, two feathers 
with the same vane width could vary extensively in barb geometry which is reflected on their 
response to aerodynamic forces. Thus, Feo et al. [13] analyzed feather barb geometry of 60 species of 
modern flying birds including the four flight feather vanes. They measured barb angle and barb 
length for each feather of leading and trailing vanes at 25% and 50% of total vane length from the tip 
of the feather. Among the analyzed feathers, they found that the barb angles were varied based on 
the function of flight feathers. They observed that both barb angle and barb length significantly 
differed between cutting-edge and supported leading vane partitions, but not between trailing vane 
partitions. They found that free-edge trailing vanes, supported trailing vanes and supported leading 
vanes coincided with each other in morphospace due to their similar ranges of large barb angles (30–
50°). By contrast, cutting-edge leading vanes were classified to a distinct region of morphospace 
characterized by small barb angles (less than 24°). They concluded that small barb angles can 
contribute to vane rigidity (i.e., resistance to aerodynamic forces during flight) in contrast to larger 
barb angles help increase the flexibility of a vane [14]. 
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Figure 1. (a) Three stages in the development of flight feathers from simple scales in birds [12]: (A)
a simple scale tends to bend upwards in response to air pressure, (B) a longitudinal stiffening ridge
resists upward bending, and (C) stiffening ridges in the vanes resist the curling tendency. (b) Schematic
diagram of the mature feather branch morphology: vane width (W), barb length (L), and barb angle
with respect to the rachis (α). (c) Geometry of the rotor blades for a radial inflow turbine and (d)
schematic diagram of the proposed fiber orientation inspired by bird feathers.

Understanding the flight feather vanes structure can be helpful to create lightweight as well
as structurally robust turboexpanders because the barb angle is adjusted to meet the variations of
aerodynamic forces along the flight vane. Thereby, the flight feather vanes can be classified into four
main categories based on their aerodynamic functions as shown in Figure 2 [13]: (i) cutting-edge
leading vanes function as the cutting edge of an aerofoil during flight; (ii) free-edge trailing vanes
function as the unsupported trailing edge of an aerofoil during flight; (iii) supported leading vanes;
and (iv) supported trailing vanes overlap with each other to create a continuous surface of the wing.
The geometry of feather barbs (barb length and barb angle) defines feather vane asymmetry and vane
rigidity, which are both critical for a feather’s aerodynamic performance. For instance, two feathers
with the same vane width could vary extensively in barb geometry which is reflected on their response
to aerodynamic forces. Thus, Feo et al. [13] analyzed feather barb geometry of 60 species of modern
flying birds including the four flight feather vanes. They measured barb angle and barb length for each
feather of leading and trailing vanes at 25% and 50% of total vane length from the tip of the feather.
Among the analyzed feathers, they found that the barb angles were varied based on the function of
flight feathers. They observed that both barb angle and barb length significantly differed between
cutting-edge and supported leading vane partitions, but not between trailing vane partitions. They
found that free-edge trailing vanes, supported trailing vanes and supported leading vanes coincided
with each other in morphospace due to their similar ranges of large barb angles (30–50◦). By contrast,
cutting-edge leading vanes were classified to a distinct region of morphospace characterized by small
barb angles (less than 24◦). They concluded that small barb angles can contribute to vane rigidity
(i.e., resistance to aerodynamic forces during flight) in contrast to larger barb angles help increase the
flexibility of a vane [14].
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Differences in the mechanical behavior of feathers are strongly correlated to differences in their 
morphology and function. Moreover, Enno et al. [14] examined the functional morphology of feather 
vanes by combining morphological examination with mechanical tests. Their practical work was 
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from the base to the tip, located at one-quarter (base), half (middle), and three-quarters (tip). They 
found that the mean branching angles for the leading edge at base, middle and tip were 37 ± 10°, 28.5 
± 6°, and 23 ± 7.5°, respectively. While the mean branching angles were relatively larger in the trailing 
edge, these values at base, middle and tip became 48.6 ± 10°, 40.4 ± 4°, and 35 ± 4°, respectively. In 
addition, the mechanical tests were performed on each trailing edge vane of the selected feathers at 
three different locations—the base, middle, and tip—to examine their mechanically resistance. They 
applied the loads on the trailing vane as mimicking aerodynamic forces until the failure of vane 
occurred. They concluded that the tip region of each vane resisted greater moments than both the 
middle and base due to the lower branching angles of the barbs, which helped to produce the stiffer 
structure of the feathers.  

It is obvious that the vanes of the bird flight feathers have mechanically competent grid texture 
whose behavior is controlled by their geometry (barb angle), giving a structure which combines 
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Here, the structure of flight feathers is utilized to propose lightness and robust and cheaper 
turboexpanders for a low-temperature ORC system. The biomimetic composite turbine blade was 
molded as an unidirectional fibrous composite with different fiber orientations (20°, 30°, 40°, 50°, and 
60°) by using ANSYS Composite PrepPost (ACP) to select the optimum fiber angle. Consequently, 
the fluid–structure interaction (FSI) for the biomimetic composite turbine blade was investigated 
numerically by performing integrated computational models of the proposed blade to evaluate the 
structural integrity in terms of the tip deflection and von Mises stress due to centrifugal, thermal, and 
aerodynamic loads. The FSI model was obtained by coupling a finite element analysis (FEA) based 
on computational solid dynamics (CSD) andcomputational fluid dynamics (CFD). The CFD 
simulations based on a three-dimensional (3D) Reynolds-averaged Navier–Stokes (RANS) model 
were performed for the turboexpander to obtain the thermal and aerodynamic loads through the 
blade surface. 
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Figure 2. Four vane partitions recognized by aerodynamic functions: cutting-edge leading vanes,
supported leading vanes, free-edge trailing vanes and supported trailing vanes.

Differences in the mechanical behavior of feathers are strongly correlated to differences in their
morphology and function. Moreover, Enno et al. [14] examined the functional morphology of feather
vanes by combining morphological examination with mechanical tests. Their practical work was carried
out on feathers from both wings of the pigeon Columba livia. They measured both the length of the vane
and the branching angles of barbs from leading and trailing edge at three points beginning from the base
to the tip, located at one-quarter (base), half (middle), and three-quarters (tip). They found that the mean
branching angles for the leading edge at base, middle and tip were 37 ± 10◦, 28.5 ± 6◦, and 23 ± 7.5◦,
respectively. While the mean branching angles were relatively larger in the trailing edge, these values at
base, middle and tip became 48.6 ± 10◦, 40.4 ± 4◦, and 35 ± 4◦, respectively. In addition, the mechanical
tests were performed on each trailing edge vane of the selected feathers at three different locations—the
base, middle, and tip—to examine their mechanically resistance. They applied the loads on the trailing
vane as mimicking aerodynamic forces until the failure of vane occurred. They concluded that the tip
region of each vane resisted greater moments than both the middle and base due to the lower branching
angles of the barbs, which helped to produce the stiffer structure of the feathers.

It is obvious that the vanes of the bird flight feathers have mechanically competent grid texture
whose behavior is controlled by their geometry (barb angle), giving a structure which combines
lightness, flexibility, and mechanical competence.

Here, the structure of flight feathers is utilized to propose lightness and robust and cheaper
turboexpanders for a low-temperature ORC system. The biomimetic composite turbine blade was
molded as an unidirectional fibrous composite with different fiber orientations (20◦, 30◦, 40◦, 50◦, and
60◦) by using ANSYS Composite PrepPost (ACP) to select the optimum fiber angle. Consequently,
the fluid–structure interaction (FSI) for the biomimetic composite turbine blade was investigated
numerically by performing integrated computational models of the proposed blade to evaluate the
structural integrity in terms of the tip deflection and von Mises stress due to centrifugal, thermal, and
aerodynamic loads. The FSI model was obtained by coupling a finite element analysis (FEA) based on
computational solid dynamics (CSD) andcomputational fluid dynamics (CFD). The CFD simulations
based on a three-dimensional (3D) Reynolds-averaged Navier–Stokes (RANS) model were performed
for the turboexpander to obtain the thermal and aerodynamic loads through the blade surface.
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2. Numerical Simulations

In order to investigate the FSI of the biomimetic composite blade, a computational fluid domain
for the turbine was performed to obtain the aerodynamic and thermal loads and thereby these loads
can be inserted to a structural model of the proposed blade. Three-dimensional CFD simulations for a
turboexpander were performed by using a commercial package ANSYS-CFX (version 16.0, ANSYS,
Inc., Cannonsburg, PA, USA) as well as static structural analysis were performed for the proposed
composite blade using a commercial package ANSYS Static Structural and ANSYS Composite Pre/Post
(ACP) (version 16.0, ANSYS, Inc.).

2.1. CFD Simulations

In radial turboexpanders, the flow is mainly 3D due to the complexity of the turbine blade
geometry. Hence, turbine 3D CFD simulation is required to determine aerodynamic forces and
temperature distribution through the turbine blade profile. Using a 3D CFD model, three governing
equations of fluid dynamics—the continuity, momentum in three-directions (x, y, and z), and energy
equations—were numerically solved by using ANSYS-CFX (version 16.0). The detailed geometry
of turbine blade was generated through ANSYS Blade-Gen (version 16.0, ANSYS, Inc.) for both the
stator and rotor. After that, the solid model of the turbine blade was generated; the fluid domain was
discretized using ANSYS Turbo-Grid (version 16.0, ANSYS, Inc.) into structured (hexahedron) meshes.
Three-dimensional RANS steady compressible flow simulations with standard k–ω turbulence model
was solved in ANSYS-CFX for a single stage radial inflow turbine, which is normally used in the
Sundstrand Power Systems T-100 Multipurpose Small Power Unit [15]. The obtained numerical results
from the turbine model with air as working fluid were compared with the experimental data [15]
in order to validate the CFD turboexpander model. Subsequently, the turboexpander model was
implemented in low-temperature ORC system with scaling boundary conditions from air to R600a
working fluid. For this ORC system, the inlet and outlet turbine temperatures were set to 370 and
313 K, respectively; and the turbine rotational speed was selected to maintain the optimum blade
speed ratio of 0.7. The obtained thermal and aerodynamic loads from the turbine model with R600a
were used to investigate the aeroelasticity of the proposed composite turbine.

2.1.1. Geometry

The 3D model was generated in ANSYS Blade-Gen (version 16.0) based upon published
geometrical information [16]. The rotor and stator blade profiles, including the wrap angle, blade
angle, and blade thickness through its meridional axis, were used to define a solid model for the rotor
and the stator blades. Figure 3 shows the final 3D model of the radial inflow turbine which consists of
16 rotor blades and 19 stator blades.
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The structured (hexahedron) meshes for both the rotor and stator flow passages were generated 
using ANSYS Turbo-Grid (version 16.0). Automatic topology and meshing (ATM-optimized) was 
adjusted for the rotor and nozzle domains to maintain high mesh quality as blade shape changes 
from hub to shroud. The element size refinement was controlled in the boundary layer by selecting 
the method proportional to mesh size with a setting factor base and factor ratio of 0 and 1.6 
respectively, to ensure the meshes able to capture the turbulent flow structures and the boundary 
layer effects near the walls. A turbulence model chosen was standard k–ω to capture the turbulence 
phenomena. The nondimensional grid spacing (y+) at the wall is required to be near 1.0 for the k–ω 
standard turbulence model; however, the typical value of y+ at the rotor blade was 9.8 in case of air. 
Subsequently, the option of automatic wall functions was chosen, which allows the k–ω model to 
obtain good predictions albeit the value of y+ is larger than 1.0. The total number of elements for the 
rotor and nozzle mesh was 3,272,048 and 4,272,122 elements, respectively. The 10 layers of elements 
were inserted in the shroud tip clearance of 0.23 mm in radial direction to 0.4 mm in axial direction. 
The computational meshes for the rotor and stator domains used for the validation of the CFD model 
are shown in Figure 4. 

 

Figure 3. Three-dimensioanl model of the radial inflow turbine.

2.1.2. Mesh for Fluid Analysis

The structured (hexahedron) meshes for both the rotor and stator flow passages were generated
using ANSYS Turbo-Grid (version 16.0). Automatic topology and meshing (ATM-optimized) was
adjusted for the rotor and nozzle domains to maintain high mesh quality as blade shape changes from
hub to shroud. The element size refinement was controlled in the boundary layer by selecting the
method proportional to mesh size with a setting factor base and factor ratio of 0 and 1.6 respectively,
to ensure the meshes able to capture the turbulent flow structures and the boundary layer effects near
the walls. A turbulence model chosen was standard k–ω to capture the turbulence phenomena. The
nondimensional grid spacing (y+) at the wall is required to be near 1.0 for the k–ω standard turbulence
model; however, the typical value of y+ at the rotor blade was 9.8 in case of air. Subsequently, the
option of automatic wall functions was chosen, which allows the k–ωmodel to obtain good predictions
albeit the value of y+ is larger than 1.0. The total number of elements for the rotor and nozzle mesh was
3,272,048 and 4,272,122 elements, respectively. The 10 layers of elements were inserted in the shroud
tip clearance of 0.23 mm in radial direction to 0.4 mm in axial direction. The computational meshes for
the rotor and stator domains used for the validation of the CFD model are shown in Figure 4.
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adiabatic. The boundary conditions of the full turbine model are shown in Figure 5. Steady-state 
simulations were run until root mean square (RMS) residuals were achieved to below 10−6. 
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2.1.3. CFD Model Setup

Boundary conditions, interfaces, properties of working fluid, and a turbulence model are required
to define each computational domain to run the simulations. In this study, a full turbine model
including the entire rotor and the stator blades was selected to carry out the flow simulations. In
order to model the interaction between the rotating (rotor) and stationary (stator) domains, the frozen
rotor method was defined at the interface between them. Moreover, general grid interface (GGI) was
defined at the shroud tip to connect nonconfirming grids. In addition, boundary conditions were
required to define at the borders of each domain to solve the computational domain. Inlet boundary
conditions for the turbine model were the total pressure and the total temperature whereas the static
pressure was defined at the turbine outlet. Two sets of boundary conditions were used in this study
as shown in Table 1. The CFD flow simulation was performed with the first set in order to validate
the turbine model with the experiments that conducted by Jones [15] using air working fluid. In
addition, the CFD turboexpander model was run with boundary conditions of R600a as a result of
implementing it in ORC system to calculate the aerodynamic forces. This is due to the fact that organic
fluids should be considered as a real gas to predict accurate simulations; Peng–Robinson equation
of state [17] is implemented in the solver ANSYS-CFX to determine the real gas properties of R600a.
All wall boundaries were imposed a no-slip condition, smooth wall, and adiabatic. The boundary
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conditions of the full turbine model are shown in Figure 5. Steady-state simulations were run until
root mean square (RMS) residuals were achieved to below 10−6.

Table 1. Boundary conditions of two cases for the turboexpander.

Cases Inlet Turbine
Pressure (kPa)

Inlet Turbine
Temperature (K)

Outlet Turbine
Pressure (kPa)

Rotational Turbine
Speed (RPM)

Air 413.6 477.6 72.4 71700
R600a 1872 370 395 40219
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2.2. FEA Simulations

After the aerodynamic forces calculated along the blade surface, 3D turbine blade FEA simulations
were performed to evaluate the mechanical performance parameters of the biomimetic composite
turbine blade during turbine operations. In this analysis, von Mises stresses and blade deformation
were obtained by ANSYS Static Structural and ANSYS Composite Pre/Post (ACP) to ensure that the
biomimetic turbine blades are structurally robust.

2.2.1. Mesh for Structural Analysis

In order to compare the mechanical performance between the turboexpander manufactured in
stainless steel and with that of composite rotor blades, two cases have been studied. In the first case, the
whole turbine was modeled as 3D solid model of stainless steel; thereby its geometry was transferred
to ANSYS Static Structural to create its mesh and define its material’s properties.

Figure 6 shows the unstructured tetrahedral mesh for the wheel hub with 175,487 total nodes.
Whereas, the structured hexahedral mesh was created for the rotor blades with 38,248 total nodes for
one rotor blade as shown in Figure 7. In the second case, the rotor turbine blades were modeled as
a composite material with different fiber orientations while, the wheel turbine hub was modeled as
stainless steel. Hence, the rotor turbine blades generated in BladeGen were transferred to ACP (Pre) to
create the mesh for their blade thickness as shown in Figure 7; whereas the 3D model of the wheel
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hub was transferred to ANSYS Mechanical Model (version 16.0, ANSYS, Inc.) to create its tetrahedron
mesh with 175,487 total nodes as shown in Figure 6. The composite rotor blades were assembled with
its hub in ANSYS Static Structural as shown in Figure 8.Biomimetics 2019, 4, 27 9 of 21 
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2.2.2. Turbine Composite Materials

ANSYS Composite Pre/Post (ACP) was used to assign the composite materials to the rotor blades.
Epoxy carbon UD (unidirectional) prepreg was selected for the composite rotor blades because its glass
transition temperature around 120 ◦C, which is below the inlet turbine temperature of 97 ◦C. Table 2
shows the properties of the materials used in modeling the turbine. An ACP composite model of the
bird-mimetic composite blade is shown in Figure 9. The reference direction for the composite material
was considered parallel to the blade edge which is indicated by yellow arrows, the fiber direction
from the reference is indicated by green arrows, and the composite layup direction is indicated by
pink arrows. The turbine consists of 16 rotor blades and each blade has been modeled with 0.5 mm
of turbine material on each side of the blade, pressure side and suction side. Figure 10 shows the
composite material model of the blade with different fiber orientations 30◦, 40◦, 50◦, and 60◦ from the
blade root section.

Table 2. Properties of materials used in modeling the turbine.

Material Density
(kg/m3)

Ex
(MPa)

Ey = Ez
(MPa)

Gyz
(MPa)

Gxy = Gxz
(MPa)

Xt
(MPa)

Yt = Zt
(MPa)

νxy =
νxz

νyz

Epoxy carbon
UD prepreg 1490 121000 8600 3100 4700 2231 29 0.27 0.4

Stainless steel 7750 193000 193000 73664 73664 207 207 0.31 0.31

UD: unidirectional.
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2.2.3. Fluid–Structure Interaction Model Setup

Fluid–structure interaction can be considered as the result of the mutual interaction of three main
disciplines: dynamics, solid mechanics, and aerodynamics [18]. The one-way FSI system was used in
this analysis. For the static structural analysis, the boundary conditions and loads are defined for the
model in order to determine the stresses and deflections in the turbine. These loads are caused by the
temperature and pressure of the working fluid, and turbine rotational speed. Based on Ansys-CFX
simulation results, the aerodynamic pressure force on the rotor blades and thermal loads due to
working fluid temperature are transferred to a static structural model and solved for equivalent von
Mises stress and total deformation. Therefore, ANSYS is mapping the forces on each node from CFX
into the mechanical node. Consequently, the position of the blade geometry in CFX module and
Static Structural module must be same with reference to the global coordinate system. The results
showed that 97% of mechanical nodes were mapped to the CFD surface. Both Figures 11 and 12 show
the imported pressure and temperature distributions on the rotor and the hub wheel from CFX into
the static structural model. In order to model the centrifugal stresses, the rotational speed and the
cylindrical support were applied on the wheel hub as shown in Figure 13. The rotational turbine speed
was 40,219 rpm as indicated in Table 1. The cylindrical support limits the motion of the turbine wheel
in the radial and axial directions and it is free in the tangential direction.



Biomimetics 2019, 4, 27 12 of 21

Biomimetics 2019, 4, 27 11 of 21 

 

(c) (d) 

Figure 10. An ACP composite model for the rotor blade with different fiber orientations:(a) 30° from 
the blade edge, (b) 40° from the blade edge, (c) 50° from the blade edge, and (d) 60° from the blade 
edge.  

2.2.3. Fluid–Structure Interaction Model Setup 

Fluid–structure interaction can be considered as the result of the mutual interaction of three 
main disciplines: dynamics, solid mechanics, and aerodynamics [18]. The one-way FSI system was 
used in this analysis. For the static structural analysis, the boundary conditions and loads are defined 
for the model in order to determine the stresses and deflections in the turbine. These loads are caused 
by the temperature and pressure of the working fluid, and turbine rotational speed. Based on Ansys-
CFX simulation results, the aerodynamic pressure force on the rotor blades and thermal loads due to 
working fluid temperature are transferred to a static structural model and solved for equivalent von 
Mises stress and total deformation. Therefore, ANSYS is mapping the forces on each node from CFX 
into the mechanical node. Consequently, the position of the blade geometry in CFX module and Static 
Structural module must be same with reference to the global coordinate system. The results showed 
that 97% of mechanical nodes were mapped to the CFD surface. Both Figures 11 and 12 show the 
imported pressure and temperature distributions on the rotor and the hub wheel from CFX into the 
static structural model. In order to model the centrifugal stresses, the rotational speed and the 
cylindrical support were applied on the wheel hub as shown in Figure 13. The rotational turbine 
speed was 40,219 rpm as indicated in Table 1. The cylindrical support limits the motion of the turbine 
wheel in the radial and axial directions and it is free in the tangential direction.  

 
Figure 11. Imported pressure on the rotor blades and the wheel hub. Figure 11. Imported pressure on the rotor blades and the wheel hub.Biomimetics 2019, 4, 27 12 of 21 

 

 
Figure 12. Imported temperature distribution for the rotor blades.  

 
Figure 13. Rotational velocity (A), cylindrical support (blue surface) for the turbine model and 
imported pressure on the rotor blades (B, C, D, E, F, G, H, I, J) 

3. Results and Discussion 

3.1. Validation of the CFD Model 

The comparison of the mass flow and the total to static efficiency ( ) as defined by Equation 
(1) between the experimental data that conducted on the turbine by Jones [15] and CFD results are 
summarized in Table 3. It can be concluded that total-to-static efficiency matches very well (1.4%) 
near the design point (pressure ratio (Pr) = 5.73 and 	= 86.4%). In addition, the mass flow rate 
obtained from the experiment and CFD match well (2.7%) at the design point ( 	= 0.33 kg/s), 
indicating that the CFD model is sufficient to predict the turbine performance near the design point. 
Consequently, the CFD model was run with boundary conditions of R600a to determine the 
aerodynamic and thermal loads that required in the structural analysis of the turbine. The obtained 
numerical total-to-static efficiency in case of R600a is 86.2% which indicates that the selected 
rotational speed coincides with the optimum value of speed ratio: 

 = ℎ − ℎℎ − ℎ  (1) 

 
where ℎ 	is the total enthalpy at the inlet of the turbine, ℎ  is the total enthalpy at the turbine 
outlet, and ℎ  is the static isentropic enthalpy at the turbine outlet.  

Figure 12. Imported temperature distribution for the rotor blades.

Biomimetics 2019, 4, 27 12 of 21 

 

 
Figure 12. Imported temperature distribution for the rotor blades.  

 
Figure 13. Rotational velocity (A), cylindrical support (blue surface) for the turbine model and 
imported pressure on the rotor blades (B, C, D, E, F, G, H, I, J) 

3. Results and Discussion 

3.1. Validation of the CFD Model 

The comparison of the mass flow and the total to static efficiency ( ) as defined by Equation 
(1) between the experimental data that conducted on the turbine by Jones [15] and CFD results are 
summarized in Table 3. It can be concluded that total-to-static efficiency matches very well (1.4%) 
near the design point (pressure ratio (Pr) = 5.73 and 	= 86.4%). In addition, the mass flow rate 
obtained from the experiment and CFD match well (2.7%) at the design point ( 	= 0.33 kg/s), 
indicating that the CFD model is sufficient to predict the turbine performance near the design point. 
Consequently, the CFD model was run with boundary conditions of R600a to determine the 
aerodynamic and thermal loads that required in the structural analysis of the turbine. The obtained 
numerical total-to-static efficiency in case of R600a is 86.2% which indicates that the selected 
rotational speed coincides with the optimum value of speed ratio: 

 = ℎ − ℎℎ − ℎ  (1) 

 
where ℎ 	is the total enthalpy at the inlet of the turbine, ℎ  is the total enthalpy at the turbine 
outlet, and ℎ  is the static isentropic enthalpy at the turbine outlet.  

Figure 13. Rotational velocity (A), cylindrical support (blue surface) for the turbine model and imported
pressure on the rotor blades (B, C, D, E, F, G, H, I, J).



Biomimetics 2019, 4, 27 13 of 21

3. Results and Discussion

3.1. Validation of the CFD Model

The comparison of the mass flow and the total to static efficiency (ηt−s) as defined by Equation
(1) between the experimental data that conducted on the turbine by Jones [15] and CFD results are
summarized in Table 3. It can be concluded that total-to-static efficiency matches very well (1.4%) near
the design point (pressure ratio (Pr) = 5.73 and ηt−s = 86.4%). In addition, the mass flow rate obtained
from the experiment and CFD match well (2.7%) at the design point (

.
m = 0.33 kg/s), indicating that the

CFD model is sufficient to predict the turbine performance near the design point. Consequently, the
CFD model was run with boundary conditions of R600a to determine the aerodynamic and thermal
loads that required in the structural analysis of the turbine. The obtained numerical total-to-static
efficiency in case of R600a is 86.2% which indicates that the selected rotational speed coincides with
the optimum value of speed ratio:

ηt−s =
h01 − h03

h01 − h3ss

(1)

where h01 is the total enthalpy at the inlet of the turbine, h03 is the total enthalpy at the turbine outlet,
and h3ss is the static isentropic enthalpy at the turbine outlet.

Table 3. Comparison of total-to-static efficiency and mass flow rate between computational fluid
dynamics (CFD) results and experimental data [15].

Case
Mass Flow Tate (kg/s) Total-to-Static Efficiency (%)

CFD Error (%) CFD Error (%)

Jones [15] 0.339 2.7 87.6 1.4

Figure 14 shows 3D streamlines of the velocity around the rotor and stator blades in case of R600a
as a working fluid. We observed that the maximum velocity of R600a occurred at the nozzle outlet due
to the acceleration effect of the nozzle throat. In addition, the flow velocity was relatively high at the
rotor outlet due to the rotation of the rotor. When the energy of the fluid was extracted by rotating of
the rotor blades, then the flow left the rotor outlet with less pressure as shown in Figure 15.
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In order to import the aerodynamic forces from the CFX into the mechanical module, it is required
to obtain the effect of R600a forces on the rotor blades. Figure 16 shows the samples of pressure
distribution at three locations of the rotor blade heights 25%, 50%, and 75% span. The rotor blade
appeared to encounter high loading at its leading edge accompanied with declining loading toward
the trailing edge which may cause structural issues for the blade integrity.
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Figure 16. Pressure distribution along the rotor blade for R600a at three different locations: 25% span,
50% span, and 75% span.

3.2. Static Structural Results

After importing the forces from CFX into the mechanical module, the structure was solved,
and two main results were obtained: blade deflection and von Mises stresses on the turbine wheel.
Figure 17 shows the stress contours of the turbine wheel at 40,219 rpm for two cases with different
fiber orientation. The maximum stress value was found to be located at the connection between the
blade root section and the wheel hub. Thereby, the stress concentration level at the joint can be avoided
by increasing the fillet radius. Table 4 shows the maximum stress values for all cases with different
fiber orientation.
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Figure 17. von Mises stress for the turbine with (a) Steel rotor blades and (b–f) a composite rotor with
different fiber orientations: (b) 20◦; (c) 30◦; (d) 40◦; (e) 50◦; and (f) 60◦.

Table 4. Maxiumu von Mises stress and tip deflection.

Case Maximum von Mises
Stress (Mpa)

Maximum Deflection on
the Presure Side (mm)

Percentage of
Deflection from 30◦

Fiber Orientation (%)

Stainless steel 1277 0.0045 −96.09
20◦ fiber orientation 2486.3 0.1351 17.17
30◦ fiber orientation 2387.9 0.1153 -
40◦ fiber orientation 2327.8 0.1625 40.93
50◦ fiber orientation 2280.6 0.2504 117.1
60◦ fiber orientation 2238.2 0.3682 219.3

Figure 18 shows the deformation distribution of the rotor blades for all cases where the maximum
value occurred at the shroud of the pressure side near the most curved section due to the high pressure
on this side, in addition to the force created by change of the flow momentum. It is worth noticing that
the fiber orientation had a significant effect on the deflection of the composite rotor blades, as shown
in Table 4, where the deflection was decreased with increasing fiber orientation angle to reach the
minimum value of 0.1153 mm (30◦ fiber orientation), and then the deflection was increased gradually to
reach a maximum value of 0.3682 mm (60◦ fiber orientation) as shown in Figure 19. It can be concluded
that the optimum fiber orientation angle (30◦) was consistent with the barb angle in the tip leading
of the feather (23 ± 7.5◦) as aforementioned, consequently the proposed fiber orientation as inspired
from bird feathers could contribute positively to make the composite turbine blade more robust.
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Figure 18. Directional deformation (z direction) for (a) steel rotor blades and (b–f) composite rotor 
with different fiber orientations: (b) 20°; (c) 30°; (d) 40°; (e) 50°; and (f) 60°. 

Figure 18. Directional deformation (z direction) for (a) steel rotor blades and (b–f) composite rotor
with different fiber orientations: (b) 20◦; (c) 30◦; (d) 40◦; (e) 50◦; and (f) 60◦.
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turboexpanders. However, higher turbine tip speed increases the centrifugal stresses on the rotor 
blades. In order to increase the turbine rotational speed without increasing the centrifugal stresses, 
composite material can be introduced to achieve that. Table 5 shows the significant reduction (80%) 
in the weight of composite rotor blades compare to that of stainless steel rotor blades which can 
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Table 5. Rotor blades weight. 
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Weight Using Composite Material (%) 

Stainless teel rotor 
blades 

0.1234 - 

Composite rotor 
blades 

0.0237 80.0 

4. Conclusions 

The fluid–structure interaction of the proposed bird-mimetic composite turbine blade was 
evaluated using CFD and FEA simulations by means of accurately predict the aerodynamic loads 
and static structural response of the blade. Consequently, the CFD model was validated against the 
experimental results from a test rig using air. The boundary conditions of the turboexpander 
switched from air to an organic fluid (R600a) as a result of implementing the turboexpander in an 
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Figure 19. Effect of different fiber orientation on maximum deflection of the pressure side blade.

3.3. Blade Weight

Radial turboexpanders are used widely due to their higher specific work. This claim belongs
to that the specific work as suggested by Euler work equation for turbomachinery is function of
1
2 (U2

2 − U3
2) as shown in Equation (2) [19]:

WEu =
1
2
[(U2

2 − U3
2)− (w2

2 − w3
2) + (c2

2 − c3
2)] (2)

where subscripts 2 and 3 represent rotor inlet and outlet, respectively. U is the blade speed, c is the
absolute flow velocity and w is the relative velocity between the blade speed and absolute flow velocity.

This term has a positive contribution in the specific work due to higher tip speed in radial
turboexpanders. However, higher turbine tip speed increases the centrifugal stresses on the rotor
blades. In order to increase the turbine rotational speed without increasing the centrifugal stresses,
composite material can be introduced to achieve that. Table 5 shows the significant reduction (80%)
in the weight of composite rotor blades compare to that of stainless steel rotor blades which can
contribute to increase the extracted specific work by the radial turboexpander.

Table 5. Rotor blades weight.

Case Weight (kg) Percentage in Reduction of Blades
Weight Using Composite Material (%)

Stainless teel rotor blades 0.1234 -
Composite rotor blades 0.0237 80.0

4. Conclusions

The fluid–structure interaction of the proposed bird-mimetic composite turbine blade was
evaluated using CFD and FEA simulations by means of accurately predict the aerodynamic loads
and static structural response of the blade. Consequently, the CFD model was validated against the
experimental results from a test rig using air. The boundary conditions of the turboexpander switched
from air to an organic fluid (R600a) as a result of implementing the turboexpander in an ORC system.
Subsequently, a steady-state CFD simulation was performed in order to calculate the aerodynamic
and thermal loads that required running FEA simulations to check the feasibility of producing the
composite turboexpanders in low-temperature ORCs. Moreover, the structural modeling of the rotor
blades was performed to investigate the effect of fiber orientation on their rotor blade deflection due to
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FSI. The proposed fiber orientation angle inspired from nature has a significant effect to decrease the
blade deformation. The main obtained results are summarized as follows:

• The fiber orientation angle has a significant effect on the deformation of the rotor blades and the
minimum deflection value was observed with 30◦ fiber orientation which is consistent with the
barb angle at the tip leading of the flight feather. A little change in the fiber orientation has a
greater effect on the deformation; the deformation was increased by 219.3% by using 60◦ fiber
orientation compared with the deflection observed at 30◦ fiber orientation.

• The composite rotor blades weighed 0.0237 kg instead of 0.1234 kg, which means a weight
reduction of 80%, and was proven to be structurally robust. This weight reduction can contribute
to increasing the turbine rotational speed, which will increase the specific work without increasing
the centrifugal stresses on the turbine.

The findings of the current work are in three areas: (i) the orientation of the fiber significantly
influences blade deformation; (ii) the use of a composite material leads to a weight reduction of the
turbine rotor blades up to 80% vs. stainless steel; and (iii) the bioinspired design of the composite
blades of the ORC turbines was found to be the optimum design for the fiber angles as inspired
by the bird barb angles. Future work will focus on the experimental verification of implementing
these biomimetic blades for ORC turbines. In addition, a numerical investigation of two-way FSI for
biomimetic blades will be conducted to determine the efficiency variations with fiber orientations.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Lemmens, S. A Perspective on Costs and Cost Estimation Techniques for Organic Rankine Cycle Systems.
In Proceedings of the 3rd International Seminar on ORC Power Systems (ASME ORC 2015), Brussels,
Belgium, 12 October 2015; pp. 12–14.

2. Schuster, A.; Karellas, S.; Kakaras, E.; Spliethoff, H. Energetic and economic investigation of organic Rankine
cycle applications. Appl. Therm. Eng. 2009, 29, 1809–1817. [CrossRef]

3. Jumel, S.; Feidt, M.; Kheiri, A. Working Fluid Selection and Performance Comparison of Subcritical and
Supercritical Organic Rankine Cycle (ORC) for Low-Temperature Waste Heat Recovery. In Proceedings of
the ECEEE Summer Study on Energy Efficiency in Industry, Arnhem, The Netherlands, 11–14 September
2012; pp. 559–569.

4. Gao, H.; Liu, C.; He, C.; Xu, X.; Wu, S.; Li, Y. Performance analysis and working fluid selection of a
supercritical organic Rankine cycle for low grade waste heat recovery. Energies 2012, 5, 3233–3247. [CrossRef]

5. Chen, H.; Goswami, D.Y.; Stefanakos, E.K. A review of thermodynamic cycles and working fluids for the
conversion of low-grade heat. Renew. Sustain. Energy Rev. 2010, 14, 3059–3067. [CrossRef]

6. Bao, J.; Zhao, L. A review of working fluid and expander selections for organic Rankine cycle. Renew. Sustain.
Energy Rev. 2013, 24, 325–342. [CrossRef]

7. Darvish, K.; Ehyaei, M.A.; Atabi, F.; Rosen, M.A. Selection of optimum working fluid for organic Rankine
cycles by exergy and exergy-economic analyses. Sustainability 2015, 11, 15362–15383. [CrossRef]

8. Sauret, E.; Rowlands, A.S. Candidate radial-inflow turbines and high-density working fluids for geothermal
power systems. Energy 2011, 36, 4460–4467. [CrossRef]

9. Qiu, G.; Liu, H.; Riffat, S. Expanders for micro-CHP systems with organic Rankine cycle. Appl. Therm. Eng.
2011, 31, 3301–3307. [CrossRef]

10. Fiaschi, D.; Manfrida, G.; Maraschiello, F. Thermo-fluid dynamics preliminary design of turbo-expanders for
ORC cycles. Appl. Energy 2012, 97, 601–608. [CrossRef]

11. Sauret, E.; Gu, Y. Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow
turbine. Appl. Energy 2014, 135, 202–211. [CrossRef]

12. Pennycuick, C.J. Modelling the Flying Bird, 1st ed.; Academic Press: Burlington, MA, USA, 2008.
13. Feo, T.J.; Field, D.J.; Prum, R.O. Barb geometry of asymmetrical feathers reveals a transitional morphology in

the evolution of avian flight. Proc. R. Soc. B 2015, 282, 20142864. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.applthermaleng.2008.08.016
http://dx.doi.org/10.3390/en5093233
http://dx.doi.org/10.1016/j.rser.2010.07.006
http://dx.doi.org/10.1016/j.rser.2013.03.040
http://dx.doi.org/10.3390/su71115362
http://dx.doi.org/10.1016/j.energy.2011.03.076
http://dx.doi.org/10.1016/j.applthermaleng.2011.06.008
http://dx.doi.org/10.1016/j.apenergy.2012.02.033
http://dx.doi.org/10.1016/j.apenergy.2014.08.076
http://dx.doi.org/10.1098/rspb.2014.2864
http://www.ncbi.nlm.nih.gov/pubmed/25673687


Biomimetics 2019, 4, 27 21 of 21

14. Ennos, A.; Hickson, J.; Roberts, A.N.N.A. Functional morphology of the vanes of the flight feathers of the
pigeon Columba livia. J. Exp. Biol. 1995, 198, 1219–1228. [PubMed]

15. Jones, A.C. Design and Test of a Small, High Pressure Ratio Radial Turbine. In Proceedings of the ASME
International Gas Turbine and Aeroengine Congress and Exposition, The Hague, The Netherlands, 13–16
June 1994.

16. Sauret, E. Open Design of High Pressure ratio radial-inflow Turbine for Academic Validation. In Proceedings
of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15
November 2012; pp. 3183–3197.

17. Peng, D.Y.; Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59–64.
[CrossRef]

18. Dowell, E.H. A Modern Course in Aeroelasticity, 5th ed.; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 2015.

19. Dixon, S.L.; Hall, C. Fluid Mechanics and Thermodynamics of Turbomachinery; Butterworth-Heinemann: Oxford,
UK, 2013.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/9319072
http://dx.doi.org/10.1021/i160057a011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Numerical Simulations 
	CFD Simulations 
	Geometry 
	Mesh for Fluid Analysis 
	CFD Model Setup 

	FEA Simulations 
	Mesh for Structural Analysis 
	Turbine Composite Materials 
	Fluid–Structure Interaction Model Setup 


	Results and Discussion 
	Validation of the CFD Model 
	Static Structural Results 
	Blade Weight 

	Conclusions 
	References

