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Glioblastomas (GBM) are the most common primary brain tumor with a median survival

of 15 months. A population of cells with stem cell properties (glioblastoma stem cells,

GSCs) drives the initiation and progression of GBM and is localized in specialized

microenvironments which support their behavior. GBM are characterized as extremely

resistant to therapy, resulting in tumor recurrence. Reactive oxygen species (ROS) control

the cellular stability by influencing different signaling pathways. Normally, redox systems

prevent cell oxidative damage; however, in gliomagenesis, the cellular redox mechanisms

are highly impaired. Herein we review the dual nature of the redox status in drug

resistance. ROS generation in tumor cells affects the cell cycle and is involved in tumor

progression and drug resistance in GBM. However, excess ROS production has been

found to induce cell death programs such as apoptosis and autophagy. Since GBM cells

have a high metabolic rate and produce high levels of ROS, metabolic adaptation in these

cells plays an essential role in resistance to oxidative stress-induced cell death. Finally,

the microenvironment with the stromal components participates in the enhancement of

the oxidative stress to promote tumor progression and drug resistance.
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INTRODUCTION

Glioblastoma (GBM,WHO classification IV grade) covers about 54% of all gliomas and 16% of total
brain tumors (Louis et al., 2016). It is the most common primary brain tumor with an incidence
of approximately three cases per 100,000 inhabitants in France. Its prognosis is bleak: the average
survival is 15 months once the diagnosis is established (Ostrom et al., 2015), with <10% of patients
surviving 5 years after diagnosis. GBM is characterized by inter- and intratumoral heterogeneity,
which has been suggested to contribute to resistance to treatment. As such, relapse may occur, in
part due to a therapy-resistant subpopulation of GBM stem cells (GSCs) present or by the induction
of dedifferentiation in the non-GSC subpopulation due to alterations in the REDOX state due to
therapy (Bao et al., 2006; Diehn et al., 2009). The standard therapy follows the Stupp protocol
(Stupp et al., 2005), which consists of tumor surgical resection followed by post-operative ionizing
radiation (IR), comprising 60Gy/30 fractions and concomitant plus adjuvant temozolomide (TMZ)
chemotherapy. However, due to the infiltrating nature of GBM, complete removal of the tumor is
not always possible. Chemotherapy and IR share common pathways to cell death, inducing DNA
damage either directly or indirectly by generating reactive oxygen species (ROS). It is accepted that
while low levels of ROS enhance cell growth and differentiation, higher levels induce cell death.
Thus, in many cancers, the level of ROS is an important marker of the state of the tumor.
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Numerous studies have demonstrated the presence in GBM
of a subpopulation of self-renewing and pluripotent GBM stem-
like cells (GSCs) responsible for GBM formation, maintenance,
invasiveness, and recurrence (Bao et al., 2006). Tomasetti et
al. (2017) have shown that neural stem cells (NSCs) in the
subventricular zone of the human brain might contribute to
GBM formation and development, and Lee et al. (2018) have
demonstrated that the somatic driver mutations in these NSCs
have the ability to stimulate the development of the tumor.
In addition, Chen et al. (2012) have identified a relatively
quiet subpopulation of GBM cells, with properties similar to
cancer stem cells that are the source of new tumor cells
post-chemotherapy treatment and could be responsible for
sustaining long-term tumor growth. A hierarchy in the stem
cell population was likewise shown, and chemotherapy could
assist in the expansion of pre-existing drug-resistant GSCs
(Lan et al., 2017). Moreover, glial cells reside in a specific
tumor microenvironment (TME), which supports tumor growth
via direct contact and secretion. The TME participates in
tumorigenesis by generating a ROS niche through oxidative stress
(OS) (Schiffer et al., 2018). OS enhances cancer cell invasiveness
but also supports GSC maintenance (Janiszewska et al., 2012)
and thus participates in the evasion/resistance to treatment and
consequently recurrence of the tumor (Burdon et al., 1990; Costa
et al., 2014). Furthermore, another role of ROS in TME would
be to influence, quantitatively and qualitatively, the nature of the
infiltrating non-cancer cells in the tumor (Weinberg et al., 2019).

In this review, we will discuss the role of OS in radio- and
chemotherapy in GBM. A listing of the activation of common
cellular stress pathways, in particular with the production of ROS
and engendering of metabolic reprogramming, is summarized
in Figure 1. We will also discuss how the stress induced by the
therapy regimes participates in the selection of GSCs and/or
enhances the dedifferentiation of non-GSCs to GSCs caused by
redox modifications. In addition, we will describe how, during
gliomagenesis as well as during the local response to therapy,
the TME contributes to stress and helps cancer cells escape
through OS.

OXIDATIVE STRESS AND CANCER

Two different hypotheses described the effects of ROS in tumor
cells, the first being “the threshold concept for cancer therapy,”
which states that as the amount of ROS in cancer cells increases,
the ratio between ROS and the antioxidants is maintained in
a well-controlled steady equilibrium, after which any further
augmentation in ROS or reduction in antioxidants would result
in cell death or increased sensitivity to therapy (Kong et al.,
2000). The second hypothesis suggests that when both tumor
and normal cells are subjected to comparable levels of exogenous
ROS-producing agents, the intracellular ROS levels of tumor cells
increase more readily than normal cells to attain a threshold and
induce cell death (Wang and Yi, 2008). The changes induced
during tumorigenesis are represented as changes in the redox
status in tumor cells, generally activating the creation of ROS.
These ROS molecules are typified as oxygen-carrying molecules

that have reactive properties, consisting of radicals comprising
O−

2 (superoxide) and HO• (hydroxyl) as well as non-radicals
such as H2O2 (hydrogen peroxide). ROS originate from oxygen,
which is used in numerous metabolic reactions in organelles
such as the mitochondria, endoplasmic reticulum (ER), and
peroxisomes. On a physiological level, the action of ROS is
to regulate signal transduction pathways and moderate the
activity of mitochondrial enzymes and transcription factors. In
cancer, the general consensus is that an elevated production
of ROS would engender tumorigenesis by impeding DNA
repair mechanisms, resulting in an accumulation in DNA
damage, including base modifications, inter- and intra-strand
binding, and DNA–protein bonds, as well as an increase in
cell proliferation due to the increase in H2O2 and O−

2 . Indeed
OS can generate ROS-induced damage in proteins, lipids, and
DNA, resulting in genomic instability. As such, cancer cells
are constantly maintaining a balance between the response to
OS and ROS production for their survival (Kong et al., 2000).
The resilient cellular response to low oxygen concentrations
under both physiological and pathological conditions involves
varied pathways; the best known are the hypoxia-inducible
factors (HIFs) and the ER stress responses. The HIF-related
mechanisms respond to alterations in oxygen concentration that
would influence the ability of GSCs to initiate tumors. Indeed
GSCs respond to hypoxia, and an augmentation in the level of
HIFs was detected in GSCs. Moreover, multiple HIF-regulated
genes are selectively expressed in GSCs in comparison to other
GBM cells (Li et al., 2009). Hypoxia has been shown to promote
the self-renewal capacity of GSCs as well as the ability to promote
a more stem-like phenotype in the non-stem cell population by
the up-regulation of important stem cell factors including Oct4
or Nanog (Heddleston et al., 2009).

HIF-2α is likewise expressed in GSCs at oxygen levels
comparable to normal in vivo levels (2–5%). Hence, in highly
heterogeneous GBM tumors, different tumor cells survive in a
wide spectrum of oxygen concentrations in their environment
and, because of the levels of HIFs, generate a gain over normal
cells by adapting to their surroundings. By consequence, the
enrichment of ROS occurs, harming non-malignant cells and
resulting in apoptosis, while tumor cells would survive and
prosper in a hypoxic microenvironment.

THE INTRACELLULAR SITES OF ROS
GENESIS

The main sources of ROS production in tumor cells include
NADPH oxidases (NOXs) and the electron transport chain
(ETC) in the mitochondria. Additionally, the ER also produces
important amounts of ROS from oxidoreductases and NOXs.
Both the mitochondrial ETC and NOXs decrease oxygen to the
reactive superoxide anion (O−

2 ), which undergoes a complex
sequence of conversion reactions that result in the formation
of hydrogen peroxide (H2O2) as well as hydroxyl radical
(−OH) or reactive nitrogen species (RNS), including nitric oxide
(NO−). Besides the ETC, the mitochondria also contain enzymes
that produce ROS. Some examples of mitochondrial enzymes
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FIGURE 1 | Role of therapy-induced oxidative stress (OS) in the genesis of therapeutic resistance processes and tumor escape. OS induced by chemo- or

radio-therapy during the treatment in glioblastomas will impact the survival/death balance, cell metabolism, glioblastoma stem cell subpopulation, and mitochondrial

DNA. All these induced mechanisms will promote therapy escape and tumor recovery. Depending on the degree of stress induced and the antioxidant defenses

activated, the cancer cell will either die or survive by different processes. ASK1, apoptosis signal-regulating kinase 1; NADH, reduced form nicotinamide adenine

dinucleotide; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; Nrf-2, nuclear factor erythroid-2-related factor 2; PK-2, pyruvate kinase.
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that produce ROS are the inner mitochondrial membrane
dihydroorotate dehydrogenase that is coupled to complex III of
the respiratory chain and generates O−

2 and H2O2, glycerol-3-
phosphate dehydrogenase 2 (GPDH-2), which produces ROS via
the reverse electron transport from flavin adenine dinucleotide
(FAD) to the electron transfer chain, and the outer mitochondrial
membrane monoamine oxidase (MAO) that releases ROS
through the deamination of serotonin to catecholamine. About
2% oxygen is used by the mitochondria to generate O−

2 , and
thus this organelle is considered as the main source of ROS
and this through multiple pathways (Murphy, 2009). As stated
previously, the ER is another organelle that participates in ROS
production in the cell and encompasses two important sources of
ROS: the first is NOX4, a member of the NADPH oxidase family,
and the second is the Ero1α-PD-I protein-folding pathway.
Thiol-disulfide exchange reactions between the catalytically
active domains of PD-I and cysteines of nascent client proteins
could result in rupture, creation, or isomerization of disulfide
bonds. This oxidoreductase reaction necessitates the activity of
the membrane-bound ER oxidoreductin 1α (Ero-1α), a FAD-
dependent oxidoreductase. A derivative of this Ero-1α-PD-I
oxidative protein folding pathway is H2O2, which would enhance
the oxidative environment in the ER, which is characterized
by a high glutathione disulfide-to-glutathione (GSH) ratio. The
folding of oxidative proteins involves quiescin-sulfhydryl oxidase
1 (QSOX-1) that produces H2O2 and contributes in the creation
of disulfide bonds in proteins.

BYPASSING MECHANISMS OF CHEMO-
AND RADIO-RESISTANCE IN
GLIOBLASTOMA

Morphologically, GBM tumors contain chronic hypoxic regions
(Rong et al., 2006; Matschke et al., 2016), with a naturally high
resistance to treatment due to an augmentation in hypoxia-
inducible factor-1 alpha (HIF-1α) (Hsieh et al., 2012). In these
regions, the concentration of H+ increases with distance from
the blood vessels due to the distance of diffusion and the
increased production of lactate from anaerobic cells, creating a
highly acidic region (Fang et al., 2008), which is also linked to
radio-resistance (Raghunand and Gillies, 2000; Hirschhaeuser
et al., 2011), while lactate would act as an antioxidant by
scavenging O·−

2 and OH·, thereby inhibiting lipid peroxidation
(Groussard et al., 2000). In these regions, dormant cells and
hypoxic cells have gene profiles distinct from cells found in
well-vascularized regions, which is associated with a lower
drug sensitivity (Lu et al., 2010). A subpopulation of GSCs
resides in these hypoxic niches far from blood vessels due to
their ability to adapt to the low O2 microenvironment (Ito
and Suda, 2014). Consequently, structural tumor hypoxia or
a hypoxic necrotic region contributes to tolerance to ROS-
inducing treatments and plays an important role in therapy
resistance, aggressiveness, and relapse (Vaupel and Mayer,
2007; Sattler et al., 2010). Several other mechanisms could
contribute to therapy resistance, including a paradoxical increase

in mitochondrial ROS production during hypoxia through a
HIF-1 regulation loop (Murphy, 2009).

Brain tumors have a distorted redox homeostasis, resulting
in the stimulation of survival pathways that would facilitate
tumor growth and resistance. The current treatment is based on
surgical excision associated with the combination of radio- and
chemotherapy, but tumor recurrence remains constant with the
acquisition of resistance by activation of several systems, some of
which modify the redox equilibrium. Relapse occurs in part due
to the redox-induced dedifferentiation of non-GSCs that would
add to this therapy resistance (Bao et al., 2006; Diehn et al., 2009).

Quite a few other mechanisms could be responsible, including
OS, which would modulate the efficacy of treatments and
resistance in various ways, impacting on drug sensitivity,
apoptosis, angiogenesis, or inflammatory pathways (Nathan
and Cunningham-Bussel, 2013). GBM therapies induce the
activation of redox-sensitive transcription factors, including
nuclear factor-κB (NF-κB), nuclear factor erythroid 2 p45-related
factor 2 (Nrf-2), or HIF-1 that would up-regulate cell survival
molecules belonging to the BCL-2 family of proteins and the Akt
survival pathway.

It has been shown that, during chemotherapy, tumor cells
could overcome drug-induced OS by enhancing their antioxidant
systems as well as an increasing P-gp pump efflux to acquire
a new redox balance due the increased ROS accumulation and
antioxidant systems in a process of redox rearranging (see
Figure 1). This adjustment to OS would result in low levels
of mitochondrial ROS, increased mitochondrial respiration,
and resistance to chemotherapy (Oliva et al., 2011). Redox
reactions initiated by therapy induce significant changes in cells,
pathways regulating survival, and inflammation, as well as induce
an up-regulation of antioxidant enzymes, thereby promoting
conformational changes in the drug transporters. The redox
status of the cell has a large effect on disulfide bond formation,
protein folding, and dimerization of multidrug resistance (MDR)
proteins such asMDR-1 (Liu et al., 2016), thereby increasing drug
resistance (Tivnan et al., 2015).

IR likewise causes charged particles (electrons or ions) to
traverse the cell and directly ionize DNA, causing double-
strand breaks (DSB), which could be restored by homologous
recombination (HR) and non-homologous end joining (NHEJ)
mechanisms, or a base damage and single-strand breaks (SSB)
repaired by BER and SSB repair mechanisms, respectively (Maier
et al., 2016). The principal consequence of ionizing radiation
is the elimination of cells predominantly by the induction of
DNA damage, resulting in a diminution of cell population
and a consequent functional deficiency. Radiation-induced DSB
characterize the most deadly form of DNA damage, resulting
in cell death if not repaired (Vlashi et al., 2011; Lan et al.,
2012). Radiotherapy, associated with chemotherapy in GBM,
also acts indirectly, producing free radicals that are derived
from the ionization or excitation of the water constituent of
the cells, resulting in the formation of aqueous free radicals
and ROS, including O·−

2 and H2O2. However, these radicals
are less significant than OH· in producing the fatal DNA
damage (Agostinelli and Seiler, 2006). Free radicals activate
cell death pathways, with the production of ROS leading to
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massive OS, DNA damage, alterations in mitochondrial function,
stem cell enrichment (Vlashi et al., 2011; Lan et al., 2012),
and modifications in radio- and chemo-sensitivity (Ke et al.,
2014). The adaption of tumor cells to survive could rise
from cellular reprogramming (Lagadec et al., 2012) and/or the
dedifferentiation of certain tumor cells tomore pluripotent states,
along with GSC selection among tumor cells.

During tumorigenesis, the microenvironment is in continual
transition with alteration in hypoxia, nutrients, and changes
in acidic stress; the result of which is that cells have to
continually modify their metabolic pathways (Vander Heiden
and DeBerardinis, 2017). This metabolic stress promotes the
emergence of CSCs. Under normoxic conditions, glucose
provides acetyl-CoA, which condenses with oxaloacetate to form
citrate. Glutamine would participate in this production via α-
ketogluterate. Under hypoxia or glucose deprivation, glutamine
would become the major source of citrate, and tumor cells
would be able to maintain cell proliferation despite a marked
reduction in citrate production from glucose. Two types of GSCs
are present in GBM; the first are highly proliferative cells found
in the perivascular zone, and the second group is composed of
quiescent cells found in the hypoxic regions, suggesting that the
microenvironment could influence the metabolism of these cells
(Brooks and Parrinello, 2017). GSCs depend on glycolysis to a
lesser degree than more differentiated tumor cells (Vlashi et al.,
2011). In addition, glycolysis was demonstrated to be greater
in mesenchymal GSCs than in proneural GSCs, suggesting a
correlation between the metabolism in GSCs and the tumor
subtype (Mao et al., 2013). This could be due to the over-
expression of the aldehyde dehydrogenase (ALDH) family of
genes, especially ALDH1A3 that was markedly increased in
mesenchymal GSCs (Mao et al., 2013). Furthermore, Shibao et al.
have shown that the heterogeneous metabolism in GSCs could be
due to environmental factors. There seems to be plasticity in the
metabolism of GSCs, with a reversible switch between glycolysis
and oxidative phosphorylation depending on the availability of
oxygen and, as such, influenced by hypoxia. There appears to be
a dichotomy suggesting that more glycolytic GSCs are found in
hypoxic niches, while GSCs having an oxidative phosphorylation
metabolism were found to be more in the perivascular regions
(Shibao et al., 2018). Higher mitochondrial activity in GSCs
would result to an increase in ROS concentrations. Furthermore,
PRDX4 negatively regulates OS levels in order to protect GSCs
from cell death and increase resistance to treatment (Kim et al.,
2014). It has been shown that TRAP1 modified mitochondrial
respiration and reprogrammed cellular metabolism (Yoshida
et al., 2013). Park et al. (2019) demonstrated that an interaction
in GSCs between the mitochondrial chaperone TNF receptor-
associated protein 1 (TRAP1) and the major mitochondrial
deacetylase sirtuin-3 (SIRT-3) improved the deacetylase activity
of SIRT-3 and consequently reduced ROS production by SOD-2,
the deacetylation activity of which increased. Finally, the increase
in the mitochondrial respiratory capacity and the reduction in
ROS production would aid GSCs to adapt to stress, thereby
resisting cell death (Park et al., 2019). This distinction is
reinforced by the data of Jin X. et al. (2017), which demonstrated
that the vascular regions in GBM showed a proneural phenotype

and would contain GSC-activated EZH2, while the hypoxic
regions showed a mesenchymal profile with GSCs expressing
BMI1. Both BMI1 and EZH2 promoted cell survival under
stress, and EZH2 contributes to resistance to radiation and
chemotherapy, suggesting that both BMI1 and EZH2 may allow
plasticity of the state under environment conditions.

THE PATHWAYS OF RESISTANCE TO
RADIO- AND CHEMOTHERAPY AND
PRODUCTION OF ROS ARE
INTERCONNECTED TO ENSURE
SURVIVAL

IR initiates alterations in oxidative phosphorylation, whichwould
augment the glycolytic rate that is linked to radio-resistance. An
increase in ROS would induce HIF-1α stabilization (Dewhirst
et al., 2008) and pyruvate dehydrogenase kinase 1 (PDK-1)
(Rademakers et al., 2008) that would act to limit the entry of
pyruvate into the Krebs cycle, thereby decreasing mitochondrial
oxygen consumption (Papandreou et al., 2006).

It has also been shown that human biliverdin reductase, which
converts biliverdin to bilirubin, a potent antioxidant responsible
for the maintenance of intracellular redox homeostasis (Sedlak
and Snyder, 2004), was induced by OS associated with hypoxia
and ROS induced during TMZ treatment (Kim et al., 2013).
GBM radio-resistance is linked to mitochondrial modifications
and an unusually high production of ROS scavengers. An
increase in mitochondrial H2O2 induces survival mechanisms
with an up-regulation of catalase and mitochondrial superoxide
dismutase (SOD-2) (Lee et al., 2004). An elevated activity of
the latter enzymes and an increase in the level of reduced
glutathione (GSH) are associated with the acquisition of
resistance (Trachootham et al., 2009; Ortega et al., 2011).
The interconnection of the consequences of the two types of
therapeutic strategies is illustrated by the fact that GSH can
form glutathione S-conjugated molecules to enable drug efflux
by MRP-1 (Krause et al., 2007), and higher concentrations of
GSH result in elevated chemotherapeutic resistance in numerous
cancers (Traverso et al., 2013). TMZ is an alkylating agent,
which functions by methylating guanine in the DNA at the O6
position, preventing a match with thymine in the replication
cycle (Jiang et al., 2012). TMZ induced DNA damage and the
production of ROS (Lo Dico et al., 2019), but the efficiency is
very relative since nine patients out of 10 relapsed (Stupp et al.,
2009). TMZ resistance is under the control of the DNA repair
enzyme, O6-methylguanine-DNA methyl-transferase (MGMT).
The expression of MGMT is silenced by methylation in the
promoter region of the gene in half of all GBM patients (Hegi
et al., 2004). Rocha et al. (2016) showed that TMZ resistance
and recurrence are associated to OS. Besides its alkylating effect,
TMZ has other cellular functions, including cell death, carried
out by increasing the level of ROS (Zhang et al., 2010) and
controlling autophagy (Yan et al., 2016), apoptosis (Roos et al.,
2007), and HIF-1α activity (Lo Dico et al., 2018). There is
a close relationship between autophagy and TMZ resistance
since TMZ toxicity depends on both (i) the chaperone protein
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folding function and (ii) the augmentation of protein degradation
pathways, both of which are mediated by the ER and autophagy
(Lo Dico et al., 2019).

Chang et al. (2017a) showed that specificity protein-1 (Sp1),
a nuclear transcription factor, protects GBM cells against stress
and TMZ-induced death. Sp1 has been shown to up-regulate
antioxidant genes, especially those that are beneficial against
stress-induced cellular damage (Yeh et al., 2011; Chang et al.,
2017a). Poschmann et al. (2015) linked the peroxiredoxin-
1 (PRX-1) status in glioma to OS caused by therapy and
showed that a decreased level of PRX-1 was associated with a
better response to chemotherapy (Dittmann et al., 2012). It was
hypothesized that PRX-1 (Svendsen et al., 2011) and thioredoxin
(TRX) (Saitoh et al., 1998), when bound to apoptosis signal-
regulating kinase 1 (ASK1), inhibited their phosphorylation
and the subsequent activation of the cell death pathways that
follow their dissociation under OS. As such, the overexpression
of PRX-1 generated by therapy in GBM, serves as a survival
factor and protects against therapy-induced stress (Svendsen
et al., 2011). The level of expression of peroxiredoxin-2 (PRX-
2) correlated with the resistance to radio- or chemotherapy
in GBM (Park et al., 2000) and the overexpression of TRX,
particularly in the hypoxic region of tumors, contributing to
chemotherapy resistance, which was negatively regulated by
TRX-interacting protein (TXNIP) (Haas et al., 2018). The
TXNIP level is directly correlated with patient survival in GBM
(Zhang et al., 2017), and increasing levels of TRX-1 escalate
the scavenging of ROS generated by various anticancer agents
(Marks, 2006). In the brain, GSH and GSH-related enzymes,
glutathione peroxidase (Gpx1), are essential for the elimination
of ROS and detoxification (Traverso et al., 2013). Zhu et al. (2018)
demonstrated that TMZ-resistant glioma cells have higher levels
of glutathione reductase (GR) and GSH than TMZ-sensitive cells.
Dalavaikodihalli Nanjaiah et al. (2019) showed that GSH, GR,
and catalase were all up up-regulated through the glutamate-
mediated activation of N-methyl-D-aspartate receptor. The
expression of the amino acid antiporter that mediates the
exchange of extracellular cysteine and intracellular glutamate
across the plasma membrane, the system xc−, was found
to be elevated in GBM cell lines, increase GSH production,
mitochondrial biogenesis, oxidative phosphorylation, and ATP
generation (Polewski et al., 2016), and conferred resistance to OS
while decreasing sensitivity to TMZ.

ROS PRODUCTION AND INFLAMMATION

Inflammation induced by GBM therapies participates in the
activation of tumor cell death processes through the production
of ROS, with different pathways counteracting the effects of
chemo- and radiotherapy. These pathways include Nrf-2/Kelch-
like ECH-associated protein 1 (Keap1), mitogen-activated
protein kinases (MAPKs), nuclear factor kappa B (NF-κB),
protein kinase C (PKC), signal transducers and activators of
transcription-3 (stat-3), and peroxisome proliferator-activated
receptor-γ (PPARγ), which regulate the antioxidant defense
systems (Jaramillo and Zhang, 2013). Indeed ROS, OS pathways,

and inflammation are all closely linked and participate in the
resistance to therapy. ROS and RNS production is central to
the progression of inflammation (Mittal et al., 2014). ROS acts
as both a signaling molecule and a mediator of inflammation
(Conti et al., 2010). Depending on the level of ROS induced
and the initial resistance capacity of tumor cells, the associated
inflammation can have an important impact on the fate of the
cell. The NF-κB a key regulator of inflammatory gene expression
(Conti et al., 2007) has been shown to stimulate, via transcription,
genes encoding pro-inflammatory cytokines (IL-6), cell adhesion
molecules, inducible nitric oxide synthase or iNOS (NOS2),
and cyclooxygenase-2 (COX-2) (Grivennikov et al., 2010) and,
together with NO derived from iNOS and PGE2, has key
functions in the pathogenesis of inflammation and carcinogenesis
(Nagai et al., 2002). The connection between NF-κB signaling
and ROS is complex. Depending on the circumstances, ROS can
either activate or inhibit NF-κB signaling and, as such, interact
with NF-κB signaling pathways in many ways. NF-κB activity is
regulated by the expression of ROS and NF-κB-dependent genes
that affect the concentration of ROS in the cell (Morgan and
Liu, 2011). NF-κB activation can also contribute to the protection
against high levels of ROS produced during therapy by positively
regulating manganese SOD-2 (Djavaheri-Mergny et al., 2004;
Dhar and St Clair, 2012), copper–zinc superoxide dismutase
(Rojo et al., 2004), ferritin heavy chain (Pham et al., 2004), TRX-
1 and TRX-2 (Djavaheri-Mergny et al., 2004; Kairisalo et al.,
2007), glutathione S-transferase π (GST- π), and glutathione
peroxidase-1 (Gpx1) (Schreiber et al., 2006) in response to OS
(and hypoxia). Heme oxygenase (HO-1) is also up-regulated by
NF- κB (Lin et al., 2007).

However, enzymes that stimulate the production of ROS and
their targets are all up-regulated, including NADPH oxidase
(NOX-2) (Anrather et al., 2006) and xanthine oxidoreductase
(XOR), which are regulated by NF-κB (Xu et al., 1996), iNOS
and NOS1 (Nishiya et al., 2000), COX-2, and prostaglandin G/H
synthase 2 (Annabi et al., 2009). The latter plays a key role in
inflammation (Smith et al., 1996) and COX-2 by stimulating
the release of pro-angiogenic prostaglandins (Tsujii et al., 1998),
acting on tumorigenesis and tumor growth. Annabi et al.
(2009) showed an enhanced COX-2 expression in the CD133+

GSC population.
With the induction of inflammation, there is an augmentation

in Il-6 production, which would constitute a pro-survival signal
in GBM (Van Meir et al., 1990) and particularly in GSCs,
which preferentially express the IL-6 receptor alpha (IL-6Rα) and
glycoprotein 130 (gp-130), generating the heterodimerization of
receptors and culminating in the activation of stat-3 signaling
(Wang et al., 2009). Tamari et al. (2017) explored the control of
ROS by IL-6 in radio-resistance in GBM cell lines and showed
that IL-6 was implicated in the inhibition of mitochondrial ROS
(O2·−) and intracellular ROS (·OH, ONOO−). stat-3 has also
been demonstrated to be a central element linking extracellular
signals to transcriptional pathways involved in proliferation and
cell cycle progression (Brantley and Benveniste, 2008).

During therapy in GBM, stress, inflammation, and
pro-apoptotic signals could also lead to the activation of
the Nrf-2 pathway. Nrf-2 maintains redox homeostasis (Ma,
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2013) and is an essential antioxidant transcription factor
regulator in cells against xenobiotics capable of triggering DNA
damage and initiating carcinogenesis (Kensler et al., 2007).
However, the role of Nrf-2 in drug resistance was suggested by its
action to induce antioxidant enzymes (Wang et al., 2008). Indeed
elevated levels of ROS (during radio- or chemotherapy) induced
the translocation of Nrf-2 to the nucleus, where it bound to the
antioxidant response element (ARE) or the electrophile-response
element in the promoter region of Nrf-2, targeting antioxidant
and anti-apoptotic genes, including heme-oxygenase 1 (HO-1)
(Pan et al., 2013; Tebay et al., 2015), which catalyzes heme
degradation and the production of carbon monoxide (CO),
ferrous iron (Fe2+), and biliverdin (Kim et al., 2013). HO-1 plays
a protective role in chemo-resistance through the induction
of autophagy MAPK kinase pathways and protection against
ROS damage to increase the resistance to therapy (Johnson,
2015). The shift between activation and inactivation of Nrf-2
protects GBM cells from the deleterious effects of ROS in
cells produced by therapy, thereby preventing apoptosis and
sustaining cell survival (Ma, 2013). It has been shown also to
support tumorigenesis in primary cultures of GBM cells by
promoting proliferation and resistance to cell death programs
such as ferroptosis (Fan et al., 2017). Nrf-2 plays a transcriptional
regulatory role on the ECM remodeling markerMMP-2, favoring
chemo-resistance (Rajesh et al., 2019).

The translocation of Nrf-2 to the nucleus caused by OS has
been shown to activate the glutamate cysteine ligase modifier
subunit, glutathione S-transferase π, GSH availability and use,
glutathione reductase, and glutathione peroxidase (Sporn and
Liby, 2012; Rocha et al., 2016). Besides the Nrf-2 pathway, other
highly efficient antioxidant defense systems, the PRXs, have a
key function in the preservation of cellular redox homeostasis,
preventing the oxidation and aggregation of proteins. PRXs are
activated during therapy and, as such, play an essential role in
therapy resistance (Sharapov and Novoselov, 2019).

ROS AND AUTOPHAGY

Numerous studies have shown that TMZ could induce
autophagic cell death in GBM cell lines that were under
the control of Nrf-2 (Kanzawa et al., 2004; Stepkowski and
Kruszewski, 2011; Zhou et al., 2013). The induction of stress
by therapy could affect tumor cells in different ways: including
the induction of autophagy, cellular senescence, apoptosis,
or necrosis, all of which are, in part, interconnected, and
damages induced by therapy—either chemo- or radiotherapy
could induce autophagy as a housekeeping process (Kanzawa
et al., 2004; Lin et al., 2012). Autophagy could also prevent
the initiation of tumorigenesis or, inversely, autophagy could
support gliomagenesis by increasing cancer cell survival under
unfavorable conditions. Glioma cells can escape to stress-
induced effects with autophagy to survive some therapies (Kim
et al., 2017). However, this process is complex because massive
autophagy can induce lethal “self-eating” and apoptosis (Li et al.,
2011). Autophagy, which induces the degradation and recycling
of long-lived proteins or organelles, can be directed by ROS

and so with being indirectly regulated by antioxidant systems.
Autophagy is an essential event in GBM resistance to treatment
and presents a double face.

Several pathways are associated with its activation
in GBM cells; the extracellular signal-regulated
kinase1/2 (ERK1/2) pathway (Scherz-Shouval et al.,
2007), class I phosphatidylinositol 3-phosphate kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway
(Fan et al., 2010), and nuclear factor kappa-B (NF-κB) pathway.
The redox imbalance has an essential role in the process, with the
mitochondria as the main source of ROS in autophagy signaling.
Through these pathways, dual effects of TMZ on autophagy exist,
depending on the concentration. Both autophagy inducing death
and protective autophagy can be achieved, and this would affect
tumor cell death, GSC differentiation, or resistance to treatment
(Buccarelli et al., 2018; Feng et al., 2019).

It has been suggested that, during induced stress, there is a
simultaneous activation of autophagy/mitophagy and apoptosis
(Kubli and Gustafsson, 2012). Mitophagy, a selective autophagic
process, is normally an onco-suppressor process that prevents
oncogenic transformation (Wang and Klionsky, 2011). During
cancer cell survival under cytotoxic stress, these stresses could
induce damage in the mitochondria, resulting in the removal
of the damaged mitochondria from the cell by mitophagy and
thereby reducingmitochondrial ROS. If mitochondrial damage is
not repaired and mitophagy is inactivated, the apoptotic pathway
would be activated, resulting in cell death (Kubli and Gustafsson,
2012). However, transfer of the mitochondria between cancer-
associated fibroblasts and a GBM tumor cell subpopulation could
help cells to escape to this process (Salaud et al., 2020).

IMPACT OF ROS AND GLIOBLASTOMA
STEM CELLS

OS or other stresses such as hypoxia result in the enrichment
of GSCs (Pistollato et al., 2010). GSCs have a radio- and
chemo-resistant phenotype responsible for the constant relapse
(Liu et al., 2015), in part because of the high expression of
anti-apoptotic proteins and drug efflux transporters (Nakai
et al., 2009) and the constitutive activation of the DNA repair
element, poly-ADP-ribose polymerase 1. MacLeod et al. (2019)
explored the mechanisms of TMZ sensitivity in GSCs and
confirmed the implication of key members of the mismatch
repair (MMR) pathway, including MutL homolog 1 (MLH1),
MutS protein homolog-2 and−6 (MSH-2 and MSH-6), and the
MMR endonuclease PMS2, which plays an important role in
mediating oxidative DNA damage repair (Brierley and Martin,
2013). The DNA replication licensing factorsMCM-8 andMCM-
9, which together form a dimeric helicase complex, are likewise
involved in homologous recombination with the zinc finger
CCCHdomain-containing protein 7A, ZC3H7A, the inactivation
of which results in an increased sensitivity to oxidative DNA
damage repair (MacLeod et al., 2019). This resistance can be
attributed, among others, to the detoxification mechanisms of
O2·− and NO formation and enhanced autophagy (Lyakhovich
and Lleonart, 2016). Baulch et al. (2016) demonstrated that OS

Frontiers in Molecular Biosciences | www.frontiersin.org 7 January 2021 | Volume 7 | Article 620677

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Olivier et al. Oxidative Stress in Glioblastoma

induced by radiation in primary GBM cell cultures resulted
in the secretion of extracellular vesicles (EVs) that induced
cellular reprogramming to induce pluripotency and were
amplified with repeated irradiations. Similarly, mesenchymal
transdifferentiation and radio-resistance in GSCs could be
triggered by the activation of NF-kB (Bhat et al., 2013). Resistance
to therapy and tumor recurrence are amplified by the ROS-
induced Nrf-2 activity and the consequential maintenance of
GSC self-renewal and proliferation that would result in tumor
relapse (Zhu et al., 2013) and inhibition of GSC differentiation
(Zhu et al., 2014).

The expression of stemness markers has been shown
to increase with inflammation, hypoxia, or radio- and
chemotherapy (Hsieh et al., 2015). The CD133+ and Bmi-1
proteins associated with stem cells and drug resistance are linked
to increased SOD-2 expression (Siddique and Saleem, 2012).
SOD-2 overexpression in GSCs reduces the O2·− reaction and
caspase-dependent apoptosis, culminating in the acquisition of
TMZ resistance (Chien et al., 2019). Sp1, which modulates SOD-
2, contributes to the tolerance of TMZ in GBM cells (Chang
et al., 2017a,b). Sp1 also promotes p53-induced glycolysis
regulatory phosphatase expression in GBM by decreasing OS
in cells through the pentose phosphate pathway-mediated
NADPH generation, an important ROS scavenger in cells
(Tang and He, 2019).

Additionally, IR augmented the transdifferentiation of GBM
cells, in particular, that of GSCs into vascular endothelial
cells (Soda et al., 2011; Deshors et al., 2019) that resulted
in improved neovascularization in GBM tumor and thus
participated indirectly to patient relapse. Furthermore, H2O2-
induced OS selectively increased miR-34a (Baker et al., 2016),
which also triggered the transdifferentiation of GSCs into
vascular endothelial cells (Jin Z. et al., 2017). SOX-2 and stat-
3 have been shown as modulators of these actions (Smith and
Macleod, 2019). In this context, radio- and chemo-resistant GSCs
present a metabolic adaptation presenting a reduced glucose
dependence, an improved lipid catabolism, ROS, mitogen-
activated protein kinases (MAPKs) activity, and NAD+ level,
and an amplified SIRT1/PGC1 axis that promotes autophagy,
resulting in an increase in the maintenance and repair machinery
(Ye et al., 2013).

ROS AND TUMOR MICROENVIRONMENT

It has been suggested that stress stimuli from the
microenvironment maintain the GSC subpopulation, which
has a high level of drug resistance. Microenvironment is,
in fact, essential for tumorigenesis and dysregulation of
redox equilibrium.

The tumor microenvironment represents non-tumor cells
within the tumor, which include the inflammatory infiltrate
predominantly of microglia and macrophages, tumor-infiltrating
lymphocytes, neutrophils, normal and reactive astrocytes,
cancer-associated fibroblasts (CAFs), endothelial cells, and
vascular pericytes (Bissell and Radisky, 2001; Tlsty and Coussens,
2006). The TME also contains proteins and non-protein

biomolecules (polysaccharides, hormones, NO, etc.) that make
up the extracellular matrix (ECM). The TME is principally
perceived and confirmed in niches, however, it plays an
important role in regulating everything in the tumor and
in the surrounding tissue (Schiffer et al., 2018). Indeed,
interactions between the tumor cells, ECM, soluble factors
and blood vessels generate an intricate diverse environment
that is in continual transformation supporting and maintaining
tumorigenesis (Greaves and Maley, 2012). The metabolism of
the different cells present in the TME, cell-cell interactions,
the remodeling of ECM proteins to form the structure of the
TME and the blood supply, give raise to several structural
environmental factors such as hypoxia (O2 tension varying from
0.1 to 3%), acidity and alterations in the composition of the
ECM and the accretion of soluble factors including O2, nutrients,
ROS, RNS, ATP, Ca2+, H+, growth factors, chemokines and
cytokines (Frisch et al., 2019). All these factors have an effect
on the metabolism of cells and therefore, on the function of the
cells, thus the TME is constantly fluctuating and plays a critical
role in drug resistance, angiogenesis, cell death, DNA repair, OS,
immune escape, the level and activity of multidrug resistance
(MDR)-related genes, tumor progression, and epithelial-to-
mesenchymal transition (Zhang et al., 2020). As such, the TME
represents a key factor in defining and regulating the preservation
of tumor heterogeneity, tumor progression, and drug resistance
(Da Ros et al., 2018). The principal function of the relationship
between tumor cells and TME in tumorigenesis has been said
to be the dynamic collaboration between the two to stimulate
the proliferation and protection of the tumor cells from immune
surveillance and radio- and chemotherapy. Indeed it has been
shown that most of the non-tumor cells present in the TME
assume a tumor-promoting phenotype subsequent to alterations
by the local environment on their cell functions, which include
changes in gene expression.

ROS also affect cells that constitute the TME. OS in the TME
is one of the main factors that mediate the conversion of cell
types, such as normal fibroblasts and mesenchymal stem cells to
CAFs, which play a key role in tumor cell proliferation, survival,
angiogenesis, invasion, inflammation, and ECM remodeling via
cross-talk with cancer cells through paracrine signals (Costa et al.,
2014; Salaud et al., 2020). In addition to regulating the conversion
of fibroblasts to CAFs, the oxidative TME can also increase the
production of paracrine signals and matrix remodeling enzymes
that would promote the invasion and metastasis of tumor cells.
The regulation of protein tyrosine phosphatases (PTPases) by
ROS appears as a key mechanism capable of regulating signaling
by cell surface receptors, including tyrosine kinase receptors and
integrins. For instance, an increase in ROS by CAFs causes the
secretion of pro-invasive signals, including HGF, IL-6, VEGF,
CXCL-12, and CXCL-14. ROS activation of the CXCL-12/CXCR-
4 signaling pathway contributes to a cross-talk between tumor
cells and CAFs (Orimo et al., 2005). For example, the cytokine
CXCL-12 is secreted by CAFs, while its receptor CXCR-4 is
found mainly on tumor cells. Thus, CXCL-12 signaling by
receptor CXCR-4 requires an intimate interaction between CAFs
and tumor cells, which would result in the proliferation of
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tumor cells as well as acceleration of neo-angiogenesis due to
the recruitment of endothelial progenitor cells (Costa et al.,
2014). Thus, chemokines released by non-tumor cells can act as
paracrine factors, creating a communication with tumor cells to
promote tumorigenesis (Coppé et al., 2010; Fiaschi and Chiarugi,
2012). CAFs and/or cancer-associated macrophages (CAMs)
collaborate together to engender a pro-oxidant environment.
Due to the activation of NOS2, CAMs can actively fabricate ROS,
which will instigate the recruitment of CAFs and the activation
of MMPs (Giannoni et al., 2012). The chemo-attractant, stromal-
derived factor-1α (SDF-1α)/ hemokine (C-X-C motif) ligand
12 (CXCL-12), the C-X-C receptor type 4 (CXCR-4), and the
cysteine protease cathepsin K (cat K) are localized to GSC niches
in GBM (Hira et al., 2015) and SDF-1α acting through its
interactions with CXCR-4 and/or its second receptor CXCR-7
on GSCs facilitates the homing of GSCs to niches, while cat K,
which is up-regulated by ROS (H2O2) (Tsai et al., 2014), can
cleave and thereby inactivate SDF-1α and, in doing so, facilitate
the migration of GSCs out of the niches.

MDSC, Treg, and CAM provide an immunosuppressive
environment that would contribute to tumor cell proliferation,
invasion, and resistance to chemotherapy (Badie and Schartner,
2000; Beier et al., 2012; Hira et al., 2017). CD8+ T cells
are crucial for the anticancer immune response in tumors;
however, the immunosuppressive environment formed in the
TME would ultimately result in the suppression of the cytotoxic
T lymphocyte response, culminating in cancer progression.
Inflammatory cells support tumor growth, invasion, and therapy
resistance instigated by the secretion of specific molecules and
factors that favor the anti-inflammatory activity (TGF-ß, ARG1,
and IL-10), tissue remodeling, and angiogenesis (VEGF, MMP2,
MMP9) (Grivennikov et al., 2010). Furthermore, the effect of
inflammatory cells on the ECM to release MMP would directly
affect GSCs. High levels of ROS are major factors in immune-
suppression and inhibition for T cell activation and proliferation,
while low levels of ROS generate T cell activation in the TME,
whereas CAFs have been implicated in immune-suppression of
CD8+ T cells in GBM. Ford et al. (2020) have shown that the
pharmacologic inhibition of NADPH oxidase 4 in the proneural
subtype of GBM “normalized” CAFs to a quiescent phenotype,
resulting in intratumoral CD8+ T cell infiltration and thereby
overcoming the CAF-mediated CD8+ T-cell exclusion effect.
CAFs or CAMs would together synergize to generate a pro-
oxidant environment.

The redox landscape extends beyond the single cell to the
TME. Moreover, the TME is associated with a reduced oxygen
concentration, initiating a hypoxic environment that is linked
to an amplified tumoral aggressiveness (Narayanan et al., 2020).
Hypoxia would also influence intercellular communication by
varying the release and the uptake of EVs by the cells. Studies
have shown that hypoxia-derived tumor EVs play an important
role in gliomagenesis (Kore et al., 2018). Exosomes are small
EVs that transport cytosolic biomolecules, such as miRNAs and
proteins, from virtually all cells in the body to neighboring
and distal cells via the endocytic pathway. Recently, EVs have
received a significant interest as transporters of biological

mediators and have shown to be an important messenger in
the intercellular communication between the tumor and the
TME (Sullivan et al., 2017). Tumor cells exclude EV to engage
non-tumor cells present in the TME and reprogram these
cells from their normal activity to be more pro-tumorigenic
(Whiteside, 2016). The transfer of molecules via EVs has
emerged as a key messenger in intercellular communication
in the TME. These EVs transport a diverse selection of
molecules, including proteins, lipids, or nucleic acid cargoes.
Tumor cells exclude EVs to the non-tumor cells, resulting
in molecular, transcriptional, and translational modifications
that cause these cells to fabricate factors required for tumor
growth and at the same time alter the function of these
cells (Santos and Almeida, 2020). TME stromal cells would,
in turn, generate their own EVs containing and transferring
molecules not only to the tumor but also to other cells in the
TME, enhancing their pro-tumorigenic activity (Kalluri, 2016).
Thus, EVs are able to propagate and maintain the TME as
well as regulate the redox environment. An imbalance in the
redox status would also alter the quantity of exosomal cargo
proteins and consequently influences the redox levels in the
EV-receiving cells. For example, the redox-sensitive signaling
pathway PI3K/Akt/endothelial NOS controls the exosomal
release of angpoietin-2 that has a key function in the remodeling
of tumor vascularity.

Besides facilitating the transformation of stromal cells, the
oxidative TME plays a key role in the output of paracrine
signals and matrix remodeling enzymes that directly affect tumor
cells, resulting in proliferation and invasion. In this context,
the role of redox regulation by the PTPases has emerged
as a key signal-regulating mechanism (Frijhoff et al., 2014).
Acidosis, usually associated with high concentrations of lactate,
presents a crucial stress factor in TME and would affect the
comportment of the tumor. Tumorigenesis leads to alterations
in metabolism, resulting in an amplification in glycolysis, caused
by aerobic glycolysis or the “Warburg effect,” which triggers
a prompt supply of energy that is correlated to an increased
conversion of glucose to lactate (Gatenby and Gillies, 2004;
Vander Heiden et al., 2009; Vaupel and Multhoff, 2017). Lactate
has been shown to be associated with tumor progression, therapy
resistance, and immune escape (Brizel et al., 2001; Sattler et al.,
2010; Kahlon et al., 2016). Radiotherapy resistance could also
be intensified by the antioxidant properties of lactate, which
would neutralize the ROS produced by IR to cells. Moreover,
studies have shown that acidosis supports cell motility and
migration as well as the degradation and remodeling of the
ECM (Goetze et al., 2011). Lactate has been implicated in tumor
angiogenesis and the expression of GSC markers (Hjelmeland
et al., 2011). Exposure to acidic conditions could result in
autophagy, which, as stated earlier, is connected with the
preservation of the GSC phenotype and resistance to therapy
(Lomonaco et al., 2009; Peppicelli et al., 2017). Acidosis could also
neutralize ROS associated with radiotherapy, inhibit radiation-
induced apoptosis, enhance the activity of P-glycoprotein (P-gp),
and/or reduce the rate of proliferation of tumor cells (Peppicelli
et al., 2017). In addition, acidosis would reduce the immune
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response by affecting the infiltration of tumor cells and the
cytokine release by T cells, impeding monocytes, blocking the
cytotoxic activity of natural killer (NK) and CD8+ T cells,
and boosting the activity of MDSC (Vaupel and Multhoff,
2017).

Thus, high levels of ROS present in tumor cells could
result from either an amplified metabolic activity, mitochondrial
dysfunction, peroxisome activity, deregulated cell receptor
signaling, oncogene activity, enhanced activity of cyclooxygenase,
lysyl oxidase, and thymidine phosphorylase, or communication
with the immune infiltrate (Babior, 1999; Storz, 2005), suggesting
that ROS and RNS can support numerous facets of tumor
development and progression.

PIVOTAL FUNCTION OF ANTIOXIDANT IN
GLIOBLASTOMA: EFFECT OF NUTRITION

It is now accepted that the synergistic effects of active compounds
present in fruit and vegetables are responsible for their anticancer
actions, and studies have shown a reverse effect of a diet
rich in antioxidants in GBM (Chen et al., 2002; Tedeschi-
Blok et al., 2006). Numerous studies have suggested that
modulation of metabolism and ROS production by specific
natural dietary constituents, such as phytoestrogens, flavonoids,
polyunsaturated fatty acids, and vitamins, may have a protective
action against cancers.

We used an ethylnitrosourea (ENU)-induced malignant
GBM pregnant rat model developed from Koestner et al.
(1971) to explore the influence of nutrition on gliomagenesis
using an experimental diet (PtcD) composed of different
constituents suggested to interfere in carcinogenesis, mainly
phytochemicals, and its effects were compared to a diet without
the phytochemicals (StD). In male rats fed the PtcD, the
frequency of GBM was clearly diminished compared to that of
rats fed the StD; however, in females, the outcome was negligible.
An evaluation of the gene expression of proteins implicated
in proliferation, apoptosis, and response to OS in male brain
tumors depicted that the inhibition of the systemic effects (loss
of body weight and liver mass, plus reduced liver mitochondria
mass) was linked to an increase in Bcl-2 and catalase and a
decrease in Ki-67, SOD-1, and SOD-2 (Pouliquen et al., 2008).
These data suggested that the degree of aggressiveness of GBM
could be controlled by dietary interventions and recommended
that some phytochemicals with antioxidant properties could
participate to the mechanism. We explored this hypothesis in a
study using SUVIMAX-like diet (“Supplementation enVitamines
et Minéraux Antioxydants”), where rats were fed with a diet
enriched with alpha-tocopherol, beta-carotene, vitamin C, zinc,
and sodium selenite. We observed that this diet was associated
with a considerable lag in the clinical signs of the disease
but not a statistically significant difference in the incidence of
glioma in an ENU model. The SUVIMAX-like diet decreased
the candidatemarkers of tumor aggressiveness and gliomagenesis
progression. The expression of the mRNA of two common
markers in human glioma, SOD-2 and IGFBP5 (insulin growth

factor binding protein), was reduced in the tumors of rats fed
the antioxidant diet. In addition, the transcripts of two markers
linked to brain tumor proliferation, PDGFR-β (platelet-derived
growth factor receptor beta), and Ki-67 were also significantly
decreased. Overall, our results suggested a protective role for
antioxidants in restraining the aggressiveness and, to some
extent, evolution of GBM in a rat model (Hervouet et al.,
2013).

Studies have highlighted the protective roles of hormones
(Kabat et al., 2010; Zhou et al., 2019), and vitamins
(Pouliquen et al., 2008; Kyritsis et al., 2011) in GBM as
well as in other cancers (Han et al., 2015). However, the
implication of ROS in the observed protection remains to
be investigated.

CONCLUSION AND FUTURE DIRECTIONS

The oncogenic activity of oxidants hinges on four principal
functions in tumorigenesis. Firstly, the mutagenic potential of
oxidants could be implicated in the initiation of tumorigenesis.
A considerable amount of mutagenic DNA damage in cells
can be attributed to endogenous ROS and RNS; two of
the principal candidates being hydroxyl radical (OH−) and
peroxinitrite (ONOO−), both of which have 8-oxo-guanine
and single- and/or double-strand DNA breaks (Marnett, 2000).
Secondly, the influence of oxidants on intracellular signaling
pathways regulating cell proliferation and survival would
promote tumorigenesis (Cerutti, 1985). Indeed low doses of
hydrogen peroxide (H2O2) and superoxide (O−

2 ) have been
shown to stimulate cell proliferation in several tumors (Storz,
2005). ROS may diminish the requirement of cells for growth
factors by decreasing the activation level of cognate receptor
tyrosine kinase (RTK) or by trans-activating receptors in a ligand-
independent manner (Rhee et al., 2000). Since RTK is linked to
many downstream signaling cascades, numerous growth-related
signaling actions triggered by oxidants could partially mimic the
upstream activation of RTK-dependent signaling (Pani et al.,
2000). Thirdly, the oxidants have impact on cell motility and
invasiveness. Data suggest that tumor evolution is closely linked
to the hypoxic TME in tumor lesions (Allen and Jones, 2011).
The production of ROS in mild hypoxic environments could be
the result of deregulation of mitochondrial respiration (Klimova
and Chandel, 2008). Finally, the role of oxidants in stromal
reactions is necessary for tumor progression and dissemination,
such as inflammation/repair and angiogenesis (Comito et al.,
2011). Indeed hypoxia that arises at the start of tumor growth
and produces cell necrosis results in the activation of hypoxia-
responsive genes in tumor and non-tumor cells. It also supports
the deployment and persistence of immune cells that are mainly
glycolytic, including macrophages that generate large amounts of
ROS. This has huge concerns for the cells present in this niche,
as they must adjust to survive in this very oxidative environment.
The increased levels of ROS also stimulate pathways in leukocytes
to secrete more cytokines that support tumor growth, resulting
in new cellular mutations, and could transform other cells and
induce apoptosis.
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In the future, it would be interesting to study the impact of
oxidative stress in new therapies such as immune or oncolytic
virus-based therapies. Similarly, ROS production effects on
radiation therapies have been described, but their radio-
sensitizing modulation properties at the chemical and biological
levels need to be completed. Finally, since ROS production can be
partially controlled positively or negatively by nutrition and/or
by pollutants, it remains to be established how environmental
factors could be incorporated into treatment strategies.
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