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ABSTRACT—Serum lactate levels are traditionally interpreted as a marker of tissue hypoxia and often used clinically as an

indicator of severity and outcome of sepsis/septic shock. Interestingly, recent studies involving the effects of tumor-derived

lactate suggest that lactate itself may have an immunosuppressive effect in its local environment. This finding adds to the

recent advances in immunometabolism that shed light on the importance of metabolism and metabolic intermediates in the

regulation of innate immune and inflammatory responses in sepsis. In this article, we summarize recent studies, showing

that the activation of immune cells requires aerobic glycolytic metabolism and that lactate produced by aerobic glycolysis

may play an immunosuppressive role in sepsis.
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INTRODUCTION

Sepsis is a clinical syndrome characterized by systemic

inflammatory response to infection (1–3). In the early stage

of sepsis, activated innate immune cells initiate a significant

increase in both innate immune and inflammatory responses to

clear invading pathogens from the host. If the initial response is

not properly controlled, it will result in exaggerated innate

immune and inflammatory responses that could damage organs

(2, 4) and increase septic mortality (1). Early clinical efforts are

focused on controlling the inflammatory responsive phase of

sepsis. Unfortunately, over the last 20 years unanimously poor

results have been obtained from clinical trials using anti-

inflammatory targets (5). Recent data show that the mortality

of sepsis has been significantly reduced due to improvements in

the treatment protocols (6). Furthermore, those who survive

from the acute hyperinflammatory responsive phase remain at

an increased risk for secondary and/or nosocomial infection,

and consequential late-stage mortality (7, 8). However, the

mechanisms are incompletely understood. Hotchkiss, Payen,

and Pickkers as well as others recently hypothesized that an

immunosuppressive phase may exist in sepsis/septic patients

(3, 9–15) and may alternatively be a better candidate for

therapy (16, 17). Although this hypothesis seems controversial

(18, 19), there are number of factors that contribute to immu-

nosuppression, including the apoptosis of innate immune cells
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and most T-cell populations (9), a decrease in the number of

lymphoid progenitors (20), a reduction in bone marrow cell

production (21), and a resultant state of immune tolerance/

paralysis in which many immune cells are reprogrammed via

epigenetic alterations to an unresponsive phenotype (22). In

addition, metabolic reprogramming of immune cells may also

contribute to the development of immune dysfunction during

sepsis (23). Importantly, increasing evidence shows that extra-

cellular lactate may have an important regulatory effect on a

variety of immune cells (24). In addition, excellent review

articles have been published showing that aerobic glycolytic

metabolism is necessary for the activation of immune cells (23,

25–28). In this article, we briefly discuss lactate’s potential

inhibitory role in the systemic immune response to sepsis.

SERUM LACTATE LEVELS IN SEPSIS

The measurement of serum lactate levels is often incorpo-

rated in the clinical management of critical illness, particularly

in cases of severe sepsis and septic shock (29). In this context,

serum lactate is typically used to evaluate disease severity,

treatment response, and prognosis (30). The recent sepsis-3

guidelines recommend that persistence of a serum lactate more

than 2 mmol/L, despite adequate fluid resuscitation, should be

included as a new criterion when clinically defining septic

shock (31). This recommendation is based on the recognition

that lactate levels correlate strongly and positively with disease

severity, morbidity, and mortality in the context of sepsis (32,

33). Published literature has shown that high concentrations of

serum lactate could be a predictor of mortality, whereas re-

duced lactate levels have been reported to be associated with

improved clinical outcomes (15, 29, 34–38). Vincent et al. (39)

recently published an excellent review article regarding the

value of blood lactate kinetics in critically ill patients. The

authors systematically searched the published literatures, col-

lected data from 96 studies, and concluded that a better
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outcome was associated with decreasing blood lactate

concentrations. This was not limited to septic patients, suggest-

ing that the value of lactate kinetics seems to be valid regardless

of the initial value (39). The authors preferred using the term

lactate kinetics that reflect the greater lactate production than

clearance (39). Indeed, recent studies highlight the important

role of immune cells in the production of lactate through

aerobic glycolytic metabolism (25, 26, 40, 41).
INCREASED LACTATE PRODUCTION BY
ACTIVATED IMMUNE CELLS THROUGH AEROBIC

GLYCOLYSIS

Over half a century ago, Dr. Otto Warburg observed that

various cancer cells metabolize glucose directly to lactate

despite the presence of abundant oxygen in the environment

(42). Initially termed the Warburg effect, this phenomenon is

now more commonly referred to as aerobic glycolysis. Recent-

ly, the transient utilization of aerobic glycolysis has been

observed in many activated immune cells (43, 44). Although

it is significantly less favorable energetically, there are several

advantages to this type of metabolism with regard to immune

function. First, an adequate immune response requires rapid

energy production, and aerobic glycolysis provides the essen-

tial ATP immediately (45). Second, aerobic glycolysis and

parallel increases in the pentose phosphate pathway provide

important precursors for the synthesis of lipids, amino acids,

and nucleotides that are required for rapid cellular growth and

proliferation (25). In addition to supporting the basic energy

requirements of the dividing cell, altered metabolism is now

known to play an important and direct role in regulating

changes in immune cell phenotype. For example, recent

studies have shown that metabolic enzymes and their products

can stimulate the release of alarmins from cells (46), act as

bacterial component receptors (47), promote epigenetic

modification of histones for trained immunity (48), regulate

microRNA expression (49), and participate in various other

immunoregulatory processes. Collectively, these findings

suggest that the transient adoption of aerobic glycolysis in

the immune response may also play an active role in regulating

cell phenotype (50).

Indeed, the switch to aerobic glycolysis seems to play an

important role in the inflammatory response by the innate

immune system. Toll-like receptors (TLRs) are critical in the

induction of innate immune and inflammatory responses. TLRs

could bind with their ligands, including bacterial components

and endogenous ligands, and initiate a cellular signaling cas-

cade that ultimately results in transcriptional regulatory

changes within the cell (51, 52). For example, lipopolysac-

charides (LPS) binds with TLR4 on dendritic cells (DCs) and

macrophages, leading to a metabolic transition from oxidative

phosphorylation to aerobic glycolysis and resulting in a proin-

flammatory phenotype (53, 54, 40). Suzuki et al. recently

outlined the differential reliance of proinflammatory (M1)

macrophages on aerobic glycolysis. This is in contrast to

alternative (M2) phenotypes that rely more heavily on oxidative

phosphorylation (55). In addition to these observations, in vitro

inhibition of glycolysis seems to reprogram innate immune
cells to a more anti-inflammatory state, further highlighting the

importance of metabolism in cell phenotype (56, 57).

In addition, adaptive immunity also plays an important role

in mediating the pathogen-specific and delayed response in

sepsis. The metabolic regulation of adaptive immune cells has

been reported in subsets of both B and T lymphocytes that adopt

a Warburg-like metabolism upon activation (58–60). In lym-

phocytes, metabolic regulation seems to be different between T-

effector (Teff) cells and T-regulatory (Treg) cells. Michalek et al.

recently reported that Teff cells exhibit greater expression of the

glucose transporter 1 (GLUT1) and elevated levels of glycoly-

sis, while Treg cells primarily rely on fatty acid oxidation (61).

This finding may highlight a characteristic metabolic differ-

ence between predominantly proinflammatory cells. For exam-

ple, Teff and M1 macrophage subtypes rely primarily on

glycolysis, whereas Treg and M2 macrophage subtypes use

fatty acid oxidation. Ultimately, these variations may represent

an important feature by which immune cells can respond

differently to metabolites present in their surroundings.
DECREASED PRODUCTION OF LACTATE
IMPROVES SURVIVAL OUTCOME OF SEPTIC MICE

Critical illness usually causes a metabolic shift from mito-

chondrial oxidative phosphorylation to aerobic glycolysis. This

transition is associated with lactate production, multiple organ

dysfunction, and poor outcomes. As previously mentioned,

utilization of aerobic glycolytic metabolism by activated im-

mune cells could contribute to increase lactate production.

Nalos et al. used transcriptomic analysis to examine the cellular

metabolism of circulating blood cells from nonhypoxic criti-

cally ill patients and observed a significant reprogramming of

metabolic pathways during critical illness. These authors con-

cluded that aerobic glycolysis does exist in nonhypoxic cells

during critical illness (62). The increased lactate production

may also indicate a metabolic shift to an inflammatory glycol-

ysis. Palsson-McDermott et al. have shown that stimulation of

macrophages with LPS significantly increased the expression

of pyruvate kinase M2 (PKM2), a critical modulator of IL-1b

production, macrophage polarization, glycolytic reprogram-

ming, and Warburg metabolism (63). Furthermore, activation

of PKM2 attenuated LPS-induced proinflammatory M1 mac-

rophage phenotype and promoted traits typical of an M2

macrophage (63). Xie et al. (64) from the same group reported

that PKM2-mediated glycolysis promotes inflammasome acti-

vation by modulating EIF1AK2 phosphorylation in macro-

phages. In accordance with these findings, pharmacological

inhibition of the PKM2-EIF2AK2 pathway has been shown to

protect mice from lethal endotoxemia and polymicrobial sepsis

(64). Inhibition of aerobic glycolysis by either 2-deoxy-D-

glycose (2-DG) or PKM2 inhibitor also markedly improves

survival outcome in polymicrobial sepsis, and reduces serum

lactate levels and HMGB1 release (46). Wang et al. reported a

similar observation that inhibition of aerobic glycolysis by 2-

DG significantly improved survival outcome in bacterial sepsis

(65) and reduced LPS-induced inflammation in vivo (66).

Recently, Zheng et al. (67) reported that sepsis-increased

glycolysis also contributes to cardiomyopathy and mortality.
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Inhibition of glycolysis by 2-DG markedly improves cardiac

function and survival outcome by improving mitochondrial

function and inflammatory responses (67). Collectively, the

current published literature indicates that sepsis and endotoxin

could increase aerobic metabolism and produce more lactate

that may ultimately alter the function of immune cells. Under-

standing the mechanisms by which metabolic switching reg-

ulates the processes of immune response could be a novel

research topic in sepsis.
LACTATE MODULATES THE IMMUNE RESPONSE

Previous studies have shown that high levels of lactate could

downregulate the rate-limiting glycolytic enzymes hexokinase

and phosphofructokinase in a variety of tissues (68) and

immune cells (69). Therefore, given the importance of aerobic

glycolysis in activated immune cells, the downregulation of

these rate-limiting glycolytic enzymes may have important

implications on cellular function. Indeed, a growing body of

evidence suggests that tumor-derived lactate has clinically

relevant immunosuppressive effects on a variety of cell types

in the surrounding microenvironment (70). Interestingly, in

cancer research, the immunologic changes of immune cells

are very similar to those observed in the immunosuppressive

phase of sepsis. It would be interesting to investigate the effect

of increased lactate on immune cell function during sepsis.
LACTATE AND INNATE IMMUNE CELL FUNCTION

Recent and ongoing studies have explored the potential

immunomodulatory effects of lactate on innate immune cells,

primarily macrophages and DCs. These cells serve a funda-

mental role as antigen-presenting cells, and act as gatekeepers

for the activation of lymphocyte B and T cells in the adaptive

response. In the context of sepsis, impaired function of innate

immunity not only limits the response to primary infection, but

also damages important barriers to secondary nosocomial

infection (17). A prominent feature of protracted sepsis is

the inappropriate development of immunologic tolerance to-

ward pathogens (9, 71). For example, DCs transition toward a

progressively tolerogenic phenotype and promote immunosup-

pressive regulatory T-cell differentiation (72). The mechanisms

underlying this transition may involve a significant metabolic

dysfunction within these cells (23, 73). Indeed, recent studies

have reported that the addition of exogenous lactate to growth

medium containing DCs induced metabolic reprogramming

and ultimately triggered innate immune cells to adapt a more

tolerogenic phenotype (73, 74). These authors proposed that the

unfavorable concentration gradient of lactate may prevent its

diffusion-mediated export from immunogenic DCs that rely on

aerobic glycolysis. It has also been reported that lactate in

peritoneal dialysis solutions may inhibit LPS-induced matura-

tion of DCs (75).

Recently, the effects of lactate on the functioning and

differentiation of macrophages have been reported (56, 76,

77). In the late stage of sepsis, macrophages are often observed

as having a predominantly immunosuppressive M2 phenotype

configuration that may have a critical role in the pathogenesis
of immune system dysfunction (56, 77). Interestingly, the M2

phenotype has also been observed in the local environments of

tumor cells, where it may contribute to immune system evasion

(76). Colegio et al. (76) reported that lactate may serve as the

primary mediator responsible for promoting the M2 inhibitory

polarization of macrophages. In subsequent in vitro experi-

ments involving bone marrow-derived macrophages, these

authors reported that lactate was consistently capable of induc-

ing an M2-like macrophage polarization by an HIF-1a-depen-

dent mechanism. In addition, lactate treatment also increased

production of M2-associated genes (VEGF and Arg1) and

markers (Fizz1, Mgl1, and Mgl2) in a dosage-dependent man-

ner (76). Selleri et al. (78) have similarly reported that lactate

induces a preferential differentiation of monocytes into M2

macrophages in a dose-dependent fashion by metabolic reprog-

ramming. Furthermore, it has been reported that lactate

decreases TNF-a secretion by human monocytes (79), poten-

tially by reducing NF-kB activation and delaying LPS-induced

signal transduction (80).

To explore the mechanisms by which lactate can induce the

macrophage transition to an anti-inflammatory phenotype,

Hoque et al. (81) recently proposed a novel cellular signaling

pathway. This pathway involves the GPR81 receptor that

recognizes lactate and has the ability to induce the transition

of macrophages to the M2 phenotype. As presented in Figure 1,

these authors showed that macrophages treated with LPS in the

presence of lactate exhibited a significant reduction in proin-

flammatory cytokine production such as Pro-IL1 b, Pro-IL18,

Casp1, and Nlrp3, whereas production of anti-inflammatory

cytokines like IL-10 was not affected. The mechanisms by

which lactate significantly affects LPS-induced production of

proinflammatory cytokines involve the GPR81-dependent an-

tagonism of the TLR4/TLR9-mediated signaling pathway, and

consequently attenuation of LPS-induced NF-kB activation. It

has been reported that GPR81 has an impressively high affinity

for lactate with an estimated EC50 of �4.3 mM/L (82), sug-

gesting that relatively low concentrations of lactate may have

an effect on TLR-mediated NF-kB activation pathway (81).

Lactate has also been reported to influence the bone marrow

stem cell maturation process. Husain et al. have recently shown

that the addition of lactate to the growth medium before

induction of bone marrow stem cell differentiation results in

a significantly increased production of myeloid-derived sup-

pressor cells (MDSCs) when compared with the control (83).

MDSCs are a heterogenous group of cells that have predomi-

nantly immunosuppressive effects and play an important role in

cancer development and chronic infectious diseases (84). In

addition, increased MDSCs in sepsis were recently implicated

in the pathogenesis of protracted immune dysfunction (20, 85).

However, to date few studies have neither examined the

metabolic properties of these cells nor fully described the

mechanisms surrounding their origin.
LACTATE AND ADAPTIVE IMMUNE CELL
FUNCTION

In addition to influencing the function of the innate immune

cells, lactate has also been reported to have effects on T-cell



FIG. 1. Possible mechanisms by which lactate can induce the macrophage transition to an anti-inflammatory phenotype.
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functioning (86). Haas et al. (69) recently reported that lactate

accumulation in the synovia of rheumatoid arthritis patients

may play a role in the localization of T cells to the site of

inflammation. In vitro studies by this group demonstrated that

sodium lactate inhibited CD4þ cell motility, whereas an acidic

lactate was required to inhibit the motility of CD8þ T cells. In

CD4þ T cells, the effect of lactate (at physiologic pH) seemed

to be dependent on the interruption of glycolysis and required

expression of the Naþ/lactate cotransporter, Slc5a12 (69). In
FIG. 2. Potential role of increased lactate in the regulation of immune c
contrast, the inhibitory effect of lactate on CD8þ T cells

required expression of the Slc16a1 proton-coupled lactate

transporter in addition to an acidic microenvironment (69).

These effects were dose-dependent and estimated the EC50 of

lactate to be�10 mM/L (69). However, this concentration is not

significantly greater than what is observed in severe sepsis.

Finally, the authors reported that buffered sodium lactate

induced CD4þ T helper cells toward a TH17 subset, whereas

unbuffered lactic acid inhibited the cytolytic function of CD8þ
ell function.
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T cells (69). At present, there is no study to investigate the

effects of lactate on Treg cells. It is possible that the proposed

Treg cells are less dependent on aerobic glycolysis and primarily

use oxidative phosphorylation for their energy production (61).

Thus, theoretically they may not be susceptible to this type of

metabolic regulation.
CONCLUSION

We have highlighted some of the current research surround-

ing the potential role of lactate as an immunosuppressive

metabolite (see Fig. 2). Although there are clearly a number

of contributing factors to the development of immune suppres-

sion in sepsis, the recent developments in other fields of

research suggest that lactate could be a potential and critical

contributory factor in the regulation of immune function

in sepsis.
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