OPEN access

Dae-Woong Kim^a long lin Kim^b long Won Shin^c lin Hong Kim^c and Dohyun Moon^c*

^aDepartment of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 702-701, Republic of Korea, ^bDepartment of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu, 702-701, Republic of Korea, and ^cBeamline Department, Pohang Accelerator Laboratory 80, Jigokro-127-beongil, Nam-Gu Pohang, Gyeongbuk 790-784, South Korea. *Correspondence e-mail: dmoon@postech.ac.kr

The crystal structure of the title compound, $[Ni(NCS)_2(C_{16}H_{38}N_6)]$, has been determined from synchrotron data. The asymmetric unit consists of two halves of the complex molecules which have their Ni^{II} atoms located on inversion centres. The Ni^{II} ions show a tetragonally distorted octahedral coordination geometry, with four secondary amine N atoms of the azamacrocyclic ligand in the equatorial plane and two N atoms of the thiocyanate anions in the axial positions. The average equatorial Ni–N bond length [2.070(5) Å] is shorter than the average axial Ni-N bond length [2.107 (18) Å]. Only half of the macrocyclic ligand N-H groups are involved in hydrogen bonding. The complex molecules are connected *via* intermolecular $N-H \cdots S$ hydrogen bonds into two symmetry-independent one-dimensional polymeric structures extending along the *b*-axis direction. One of the *n*-butyl substituents of the macrocycle exhibits conformational disorder with a refined occupancy ratio of 0.630:0.370.

1. Chemical context

Coordination compounds, including those formed by macrocyclic ligands, have attracted wide interest of material sciences, because of their potential applications (Lehn, 1995; Zhou et al., 2012). In particular, Ni^{II} macrocyclic complexes having vacant sites in the axial positions have been used for the synthesis of new supramolecular materials with interesting properties, including chiral recognition (Ryoo et al., 2010) and gas storage (Suh et al., 2012). For example, Ni^{II} complexes with alkyl-substituted tetra-azamacrocyclic ligands and anionic tetrazole derivatives, metal cyanide and azide (Shen et al., 2012; Kim et al., 2015) have been studied as magnetic materials and substrates for crystal engineering. The thiocyanate ion is a versatile anionic ligand which can easily bind to a transition metal ion as a terminal or bridging ligand through the nitrogen and/or the sulfur atoms, thus allowing the assembly of multidimensional compounds or heterometallic complexes (Safarifard & Morsali, 2012; Wang & Wang, 2015). Here, we report the synthesis and crystal structure of an Ni^{II} complex with an azamacrocycle ligand and two thiocyanate anions, trans-(1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane- $\kappa^4 N^3, N^6, N^{10}, N^{13}$) bis(thiocyanato- κN) nickel(II) (I).

Received 28 May 2015 Accepted 8 June 2015

CrossMark

Edited by M. Gdaniec, Adam Mickiewicz University, Poland

Keywords: crystal structure; azamacrocyclic ligand; Jahn-Teller distortion; sodium thiocyanate; hydrogen bonding; synchrotron data

CCDC reference: 1405450 Supporting information: this article has supporting information at journals.iucr.org/e

research communications

2. Structural commentary

The title compound (I) contains two crystallographically independent complex molecules that are centrosymmetric. Each Ni^{II} ion lies on an inversion centre and is coordinated by four secondary amine N atoms of the azamacrocyclic ligand in a square-planar fashion in the equatorial plane, and by two N atoms from the thiocyanate anions at the axial positions, resulting in a tetragonally distorted octahedral geometry, as shown in Fig. 1. The average equatorial bond lengths, Ni1A - N_{eq} and Ni1*B*-N_{eq}, are 2.070 (8) and 2.070 (3) Å, respectively. The axial bond lengths, $Ni1A - N_{ax}$ and $Ni1B - N_{ax}$ are 2.119 (1) and 2.093 (1) Å, respectively. The axial bonds are longer than the equatorial bonds, which can be attributed either to a large Jahn-Teller distortion effect of the Ni^{II} ion and/or to a ring contraction of the azamacrocyclic ligand (Halcrow, 2013; Kim et al., 2015). The average N-C and C-S bond lengths of the thiocyanate ligands are 1.157 (1) and

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

		·		
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1A - H1A \cdots S1A^{i}$ $N2B - H2B \cdots S1B^{ii}$	$\begin{array}{c} 1.00\\ 1.00 \end{array}$	2.73 2.66	3.5154 (17) 3.4556 (17)	136 137

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z.

1.627 (11) Å, respectively. The former is very similar to a C=N triple-bond length, while the latter is slightly shorter than reported C-S single-bond lengths (Bradforth *et al.*, 1993; Shin *et al.*, 2010). The six-membered chelate rings involving C2A, C3A and C2B, C3B atoms adopt a *chair* conformation, whereas the five-membered chelate rings involving C1A, C4A and C1B, C4B assume a *gauche* conformation (Min & Suh, 2001; Kim *et al.*, 2015).

3. Supramolecular features

The S atoms of the thiocyanate groups form intermolecular $N-H\cdots$ S hydrogen bonds with adjacent secondary amine groups of the azamacrocyclic ligand, giving rise to two symmetry-independent one-dimensional polymeric chains propagating along the *b*-axis direction (Fig. 2 and Table 1).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, Feb 2015 with two updates; Groom & Allen, 2014) indicated one complex of Ni^{II} with the same azamaclocyclic ligand having an anionic tetrazole derivative at the axial positions (Kim *et al.*, 2015).

Figure 1

View of the molecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. The minor position of the *n*-butyl substituent in the *A* molecule is not shown.

Table 2Experimental details.

Crystal data Chemical formula [Ni(NCS)2(C16H38N6)] 489.39 М., Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 180 8.6610 (17), 12.027 (2), 12.560 (3) a, b, c (Å) α, β, γ (°) V (Å³) 94.66 (3), 97.99 (3), 110.04 (3) 1205.4(5)Ζ 2 Radiation type Synchrotron, $\lambda = 0.630$ Å $\mu \ (\mathrm{mm}^{-1})$ 0.72 Crystal size (mm) $0.25 \times 0.15 \times 0.13$ Data collection Diffractometer ADSC Q210 CCD area detector Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK: Otwinowski & Minor, 1997) 0.841, 0.916 T_{\min}, T_{\max} No. of measured, independent and 12812, 6583, 6243 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.014 $(\sin \theta / \lambda)_{max} (\dot{A}^{-1})$ 0.696 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.042, 0.111, 1.06 No. of reflections 6583 287 No. of parameters No. of restraints 11 H-atom parameters constrained H-atom treatment $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 1.58, -1.11

Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Putz & Brandenburg, 2007) and publCIF (Westrip, 2010).

5. Synthesis and crystallization

The title compound (I) was prepared as follows. The starting complex, $[Ni(C_{16}H_{38}N_6)](ClO_4)_2$, was prepared by a slightly modified method reported by Jung *et al.* (1989). To a MeCN solution (10 mL) of $[Ni(C_{16}H_{38}N_6)](ClO_4)_2$ (0.15 g, 0.26 mmol) was slowly added a MeCN solution (5 mL) containing sodium thiocyanate (0.042 g, 0.52 mmol) at room temperature. A pale-pink precipitate was formed, which was filtered off, washed with MeCN, and diethyl ether, and dried in air. Single crystals of the title compound were obtained by layering of the MeCN solution of sodium thiocyanate on the MeCN solution of $[Ni(C_{16}H_{38}N_6)](ClO_4)_2$ for several days. Yield: 0.062 g (49%). FT–IR (KBr, cm⁻¹): 3304, 3243, 2929, 2867, 2069, 1468, 1386, 1273, 1204, 1070, 925.

Safety note: Although we have experienced no problem with the compounds reported in this study, perchlorate salts of metal complexes are often explosive and should be handled with great caution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on

Figure 2

View of the crystal packing, with $N-H \cdots S$ hydrogen bonds drawn as red dashed lines. H atoms have been omitted for clarity.

their parent atoms, with C–H distances of 0.98–0.99 Å and an N–H distance of 1.0 Å with $U_{iso}(H)$ values of 1.2 or $1.5U_{eq}$ of the parent atoms. The C7A and C8A atoms of the macrocyclic ligand were refined as disordered over two sets of sites (C71A, C72A and C81A, C82A) with refined occupancies of 0.630 and 0.370, respectively. The bond lengths and angles of the disordered part were restrained to ensure proper geometry using DFIX and DANG instructions of *SHELXL2014* (Sheldrick, 2015*b*).

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2014R1A1A2058815) and supported by the Institute for Basic Science (IBS, IBS-R007-D1–2015 – a01). The X-ray crystallography BL2D-SMC beamline at PLS-II was supported in part by MSIP and POSTECH.

References

- Arvai, A. J. & Nielsen, C. (1983). *ADSC Quantum-210 ADX*. Area Detector System Corporation, Poway, CA, USA.
- Bradforth, S. E., Kim, E. H., Arnold, D. W. & Neumark, D. M. (1993). J. Chem. Phys. **98**, 800–810.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784-1795.
- Jung, S. K., Kang, S. G. & Suh, M. P. (1989). *Bull. Korean Chem. Soc.* **10**, 362–366.
- Kim, D.-W., Shin, J. W., Kim, J. H. & Moon, D. (2015). Acta Cryst. E71, 173–175.
- Lehn, J.-M. (1995). In Supramolecular Chemistry; Concepts and Perspectives. Weinheim: VCH.
- Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303-313.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography, Part A*, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York.
- Putz, H. & Brandenburg, K. (2007). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Ryoo, J. J., Shin, J. W., Dho, H. S. & Min, K. S. (2010). *Inorg. Chem.* 49, 7232–7234.
- Safarifard, V. & Morsali, A. (2012). CrystEngComm, 14, 5130-5132.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shen, X., Zhou, H., Zhang, Q., Xu, Y. & Zhou, H. (2012). Eur. J. Inorg. Chem. pp. 5050–5057.
- Shin, J. W., Rowthu, S. R., Ryoo, J. J. & Min, K. S. (2010). Acta Cryst. E66, m919–m920.
- Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.
- Wang, H.-T. & Wang, X.-L. (2015). Acta Cryst. C71, 318-321.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhou, Z., Shen, M., Cao, C., Liu, Q. & Yan, Z. (2012). Chem. Eur. J. 18, 7675–7679.

supporting information

Acta Cryst. (2015). E71, 779-782 [doi:10.1107/S205698901501110X]

Crystal structure of *trans*-(1,8-dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane- $\kappa^4 N^3$, N^6 , N^{10} , N^{13}) bis(thiocyanato- κN)nickel(II) from synchrotron data

Dae-Woong Kim, Jong Jin Kim, Jong Won Shin, Jin Hong Kim and Dohyun Moon

Computing details

Data collection: *PAL ADSC Quantum-210 ADX* (Arvai & Nielsen, 1983); cell refinement: *HKL3000sm* (Otwinowski & Minor, 1997); data reduction: *HKL3000sm* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXT2014* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Putz & Brandenburg, 2007); software used to prepare material for publication: *publCIF* (Westrip, 2010).

trans-(1,8-Dibutyl-1,3,6,8,10,13-hexaazacyclotetradecane- $\kappa^4 N^3$, N^6 , N^{10} , N^{13}) bis(thiocyanato- κN) nickel(II)

Ci	V	st	al	da	ita	

[Ni(NCS)₂(C₁₆H₃₈N₆)] $M_r = 489.39$ Triclinic, *P*I a = 8.6610 (17) Å b = 12.027 (2) Å c = 12.560 (3) Å $a = 94.66 (3)^{\circ}$ $\beta = 97.99 (3)^{\circ}$ $\gamma = 110.04 (3)^{\circ}$ $V = 1205.4 (5) \text{ Å}^{3}$

Data collection

ADSC Q210 CCD area-detector diffractometer Radiation source: PLSII 2D bending magnet ω scan Absorption correction: empirical (using intensity measurements) (*HKL3000sm SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.841, T_{max} = 0.916$ *Refinement*

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.111$ S = 1.066583 reflections Z = 2 F(000) = 524 $D_x = 1.348 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.630 \text{ Å}$ Cell parameters from 49914 reflections $\theta = 0.4-33.6^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 180 KBlock, pale pink $0.25 \times 0.15 \times 0.13 \text{ mm}$

12812 measured reflections 6583 independent reflections 6243 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 26.0^\circ, \theta_{min} = 1.6^\circ$ $h = -12 \rightarrow 12$ $k = -16 \rightarrow 16$ $l = -17 \rightarrow 17$

287 parameters11 restraintsHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0541P)^{2} + 0.7946P] \qquad \Delta \rho_{max} = 1.58 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -1.11 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.002$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
NilA	0.0000	0.0000	0.5000	0.02295 (8)	
S1A	-0.39772 (6)	0.09973 (6)	0.68745 (4)	0.05126 (15)	
N1A	0.20720 (17)	0.11708 (13)	0.60541 (11)	0.0301 (3)	
H1A	0.3083	0.1069	0.5828	0.036*	
N2A	0.02319 (18)	0.10693 (13)	0.37714 (12)	0.0321 (3)	
H2A	0.1105	0.0955	0.3377	0.039*	
N3A	0.2318 (2)	0.27979 (15)	0.49597 (17)	0.0460 (4)	
N4A	-0.16012 (18)	0.07346 (14)	0.56843 (13)	0.0343 (3)	
C1A	0.1944 (2)	0.07739 (18)	0.71320 (14)	0.0373 (4)	
H1A1	0.1128	0.1036	0.7459	0.045*	
H1A2	0.3042	0.1129	0.7621	0.045*	
C2A	0.2242 (3)	0.24393 (17)	0.60232 (18)	0.0426 (4)	
H2A1	0.1280	0.2567	0.6285	0.051*	
H2A2	0.3269	0.2957	0.6528	0.051*	
C3A	0.0780 (3)	0.23584 (17)	0.41904 (19)	0.0431 (4)	
H3A1	0.0916	0.2821	0.3571	0.052*	
H3A2	-0.0106	0.2499	0.4539	0.052*	
C4A	-0.1381 (2)	0.05792 (19)	0.30124 (15)	0.0387 (4)	
H4A1	-0.1251	0.0872	0.2304	0.046*	
H4A2	-0.2223	0.0840	0.3307	0.046*	
C5A	0.3770 (3)	0.2784 (3)	0.4483 (3)	0.0632 (7)	
H5A1	0.3705	0.3095	0.3778	0.076*	
H5A2	0.3693	0.1945	0.4332	0.076*	
C6A	0.5445 (3)	0.3493 (3)	0.5164 (4)	0.0870 (11)	
H6A1	0.5622	0.3131	0.5829	0.104*	
H6A2	0.5534	0.4327	0.5378	0.104*	
C71A	0.6816 (5)	0.3457 (6)	0.4395 (4)	0.084 (2)	0.63
H71A	0.6781	0.2628	0.4233	0.100*	0.63
H71B	0.6563	0.3747	0.3701	0.100*	0.63
C81A	0.8493 (5)	0.4237 (4)	0.4995 (4)	0.0654 (11)	0.63
H81A	0.8483	0.5035	0.5213	0.098*	0.63
H81B	0.9324	0.4296	0.4525	0.098*	0.63
H81C	0.8780	0.3895	0.5642	0.098*	0.63
C72A	0.7095 (11)	0.3319 (9)	0.5052 (9)	0.077 (2)	0.37
H72A	0.8005	0.3782	0.5662	0.093*	0.37
H72B	0.6971	0.2465	0.4991	0.093*	0.37

C82A	0.7346 (11)	0.3790 (12)	0.4057 (7)	0.090(3)	0.37
H82A	0.6498	0.3254	0.3461	0.135*	0.37
H82B	0.8460	0.3857	0.3921	0.135*	0.37
H82C	0.7255	0.4582	0.4107	0.135*	0.37
C9A	-0.2607(2)	0.08368 (15)	0.61628 (13)	0.0304 (3)	
Ni2B	1.0000	0.5000	0.0000	0.02474 (8)	
S1B	0.48562 (7)	0.51503 (7)	-0.18976(6)	0.0654(2)	
N1B	0.90438 (18)	0.33335 (13)	-0.09357(12)	0.0319 (3)	
H1B	0.7910	0.3226	-0.1338	0.038*	
N2B	0.86585 (17)	0.44340 (13)	0.12179 (11)	0.0293 (3)	
H2B	0.7493	0.4404	0.0979	0.035*	
N3B	0.7849 (2)	0.23013 (14)	0.05324 (14)	0.0368 (3)	
N4B	0.79629 (19)	0.53663 (16)	-0.07763(14)	0.0384 (3)	
C1B	1.0161 (2)	0.34041 (17)	-0.17379 (16)	0.0395 (4)	
H1B1	0.9614	0.2749	-0.2350	0.047*	
H1B2	1.1210	0.3322	-0.1394	0.047*	
C2B	0.8871 (3)	0.23310 (16)	-0.02905 (18)	0.0401 (4)	
H2B1	0.8377	0.1568	-0.0789	0.048*	
H2B2	0.9997	0.2392	0.0065	0.048*	
C3B	0.8572 (2)	0.32257 (17)	0.14559 (15)	0.0363 (3)	
H3B1	0.9715	0.3258	0.1735	0.044*	
H3B2	0.7904	0.3008	0.2037	0.044*	
C4B	0.9457 (2)	0.53919 (17)	0.21515 (14)	0.0366 (4)	
H4B1	1.0503	0.5321	0.2515	0.044*	
H4B2	0.8700	0.5320	0.2685	0.044*	
C5B	0.6079 (2)	0.20371 (17)	0.00919 (15)	0.0366 (4)	
H5B1	0.5718	0.1390	-0.0530	0.044*	
H5B2	0.5956	0.2756	-0.0184	0.044*	
C6B	0.4936 (2)	0.16605 (17)	0.09165 (15)	0.0382 (4)	
H6B1	0.5143	0.0997	0.1253	0.046*	
H6B2	0.5206	0.2340	0.1498	0.046*	
C7B	0.3107 (3)	0.12633 (19)	0.04111 (16)	0.0413 (4)	
H7B1	0.2794	0.0511	-0.0089	0.050*	
H7B2	0.2932	0.1877	-0.0020	0.050*	
C8B	0.1979 (3)	0.1066 (2)	0.12585 (18)	0.0456 (4)	
H8B1	0.2212	0.0508	0.1725	0.068*	
H8B2	0.0808	0.0734	0.0895	0.068*	
H8B3	0.2190	0.1831	0.1701	0.068*	
C9B	0.6659 (2)	0.52684 (14)	-0.12328 (13)	0.0294 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
NilA	0.02036 (13)	0.02643 (14)	0.02328 (13)	0.00930 (10)	0.00718 (9)	0.00057 (9)
S1A	0.0351 (2)	0.0888 (4)	0.0415 (3)	0.0343 (3)	0.01563 (19)	0.0052 (3)
N1A	0.0239 (6)	0.0347 (7)	0.0292 (6)	0.0085 (5)	0.0064 (5)	-0.0031 (5)
N2A	0.0294 (6)	0.0369 (7)	0.0333 (7)	0.0130 (5)	0.0111 (5)	0.0087 (5)
N3A	0.0402 (8)	0.0320 (7)	0.0611 (11)	0.0053 (6)	0.0126 (8)	0.0082 (7)

N4A	0.0292 (6)	0.0389 (7)	0.0376 (7)	0.0161 (6)	0.0098 (5)	-0.0021 (6)
C1A	0.0309 (8)	0.0535 (10)	0.0258 (7)	0.0150 (7)	0.0046 (6)	-0.0020 (7)
C2A	0.0391 (9)	0.0315 (8)	0.0492 (10)	0.0061 (7)	0.0071 (8)	-0.0078 (7)
C3A	0.0437 (10)	0.0344 (9)	0.0555 (11)	0.0155 (8)	0.0138 (8)	0.0144 (8)
C4A	0.0354 (8)	0.0551 (11)	0.0305 (8)	0.0204 (8)	0.0076 (6)	0.0118 (7)
C5A	0.0370 (11)	0.0618 (15)	0.0824 (18)	-0.0004 (10)	0.0211 (11)	0.0257 (13)
C6A	0.0414 (13)	0.0560 (16)	0.147 (3)	-0.0010 (11)	0.0047 (17)	0.0253 (19)
C71A	0.042 (2)	0.129 (4)	0.055 (2)	-0.011 (2)	0.0025 (17)	0.067 (3)
C81A	0.051 (2)	0.062 (2)	0.076 (3)	0.0168 (18)	0.0036 (19)	-0.003 (2)
C72A	0.062 (5)	0.074 (5)	0.098 (7)	0.026 (4)	0.016 (5)	0.019 (5)
C82A	0.083 (7)	0.129 (10)	0.054 (5)	0.049 (7)	-0.015 (5)	-0.011 (6)
C9A	0.0253 (7)	0.0374 (8)	0.0300 (7)	0.0144 (6)	0.0043 (5)	-0.0002 (6)
Ni2B	0.02097 (13)	0.02802 (14)	0.02616 (14)	0.01142 (10)	0.00207 (9)	0.00079 (10)
S1B	0.0371 (3)	0.0927 (5)	0.0605 (4)	0.0332 (3)	-0.0185 (2)	-0.0201 (3)
N1B	0.0280 (6)	0.0312 (6)	0.0350 (7)	0.0090 (5)	0.0090 (5)	-0.0017 (5)
N2B	0.0241 (6)	0.0333 (6)	0.0283 (6)	0.0093 (5)	0.0025 (5)	0.0009 (5)
N3B	0.0358 (7)	0.0314 (7)	0.0425 (8)	0.0102 (6)	0.0093 (6)	0.0065 (6)
N4B	0.0285 (7)	0.0482 (9)	0.0418 (8)	0.0189 (6)	0.0019 (6)	0.0083 (7)
C1B	0.0345 (8)	0.0373 (9)	0.0424 (9)	0.0079 (7)	0.0145 (7)	-0.0086 (7)
C2B	0.0419 (9)	0.0297 (8)	0.0524 (11)	0.0152 (7)	0.0153 (8)	0.0037 (7)
C3B	0.0341 (8)	0.0393 (9)	0.0347 (8)	0.0119 (7)	0.0039 (6)	0.0102 (7)
C4B	0.0299 (8)	0.0446 (9)	0.0289 (7)	0.0070 (7)	0.0060 (6)	-0.0040 (7)
C5B	0.0354 (8)	0.0332 (8)	0.0363 (8)	0.0054 (6)	0.0084 (7)	0.0042 (6)
C6B	0.0386 (9)	0.0371 (8)	0.0339 (8)	0.0067 (7)	0.0089 (7)	0.0046 (7)
C7B	0.0397 (9)	0.0445 (10)	0.0339 (8)	0.0069 (8)	0.0105 (7)	0.0029 (7)
C8B	0.0434 (10)	0.0489 (11)	0.0440 (10)	0.0125 (8)	0.0158 (8)	0.0083 (8)
C9B	0.0283 (7)	0.0303 (7)	0.0309 (7)	0.0131 (6)	0.0055 (6)	0.0003 (6)

Geometric parameters (Å, °)

Ni1A—N1A ⁱ	2.0640 (17)	C82A—H82A	0.9800
Ni1A—N1A	2.0640 (17)	C82A—H82B	0.9800
Ni1A—N2A ⁱ	2.0754 (15)	C82A—H82C	0.9800
Ni1A—N2A	2.0754 (15)	Ni2B—N2B ⁱⁱ	2.0675 (15)
Ni1A—N4A ⁱ	2.1190 (15)	Ni2B—N2B	2.0675 (15)
Ni1A—N4A	2.1190 (15)	Ni2B—N1B ⁱⁱ	2.0719 (16)
S1A—C9A	1.6339 (17)	Ni2B—N1B	2.0719 (16)
N1A—C1A	1.478 (2)	Ni2B—N4B ⁱⁱ	2.0933 (16)
N1A—C2A	1.486 (2)	Ni2B—N4B	2.0933 (16)
N1A—H1A	1.0000	S1B—C9B	1.6190 (18)
N2A—C4A	1.477 (2)	N1B—C1B	1.479 (2)
N2A—C3A	1.483 (3)	N1B—C2B	1.484 (2)
N2A—H2A	1.0000	N1B—H1B	1.0000
N3A—C3A	1.436 (3)	N2B—C4B	1.480 (2)
N3A—C2A	1.440 (3)	N2B—C3B	1.486 (2)
N3A—C5A	1.470 (3)	N2B—H2B	1.0000
N4A—C9A	1.158 (2)	N3B—C3B	1.444 (3)
C1A—C4A ⁱ	1.517 (3)	N3B—C2B	1.446 (2)

C1A—H1A1	0.9900	N3B—C5B	1.469 (3)
C1A—H1A2	0.9900	N4B—C9B	1.156 (2)
C2A—H2A1	0.9900	C1B—C4B ⁱⁱ	1.523 (3)
C2A—H2A2	0.9900	C1B—H1B1	0.9900
C3A—H3A1	0.9900	C1B—H1B2	0.9900
СЗА—НЗА2	0.9900	C2B—H2B1	0.9900
C4A—C1A ⁱ	1.517 (3)	C2B—H2B2	0.9900
C4A—H4A1	0.9900	C3B—H3B1	0.9900
C4A—H4A2	0.9900	C3B—H3B2	0.9900
С5А—С6А	1.501 (4)	C4B—C1B ⁱⁱ	1.522 (3)
C5A—H5A1	0.9900	C4B—H4B1	0.9900
С5А—Н5А2	0.9900	C4B—H4B2	0.9900
C6A—C72A	1.537 (9)	C5B—C6B	1.520 (3)
C6A—C71A	1.641 (6)	C5B—H5B1	0.9900
C6A—H6A1	0.9900	C5B—H5B2	0.9900
С6А—Н6А2	0.9900	C6B—C7B	1.514 (3)
C71A—C81A	1.485 (5)	C6B—H6B1	0.9900
С71А—Н71А	0.9900	С6В—Н6В2	0.9900
С71А—Н71В	0.9900	C7B—C8B	1.522 (3)
C81A—H81A	0.9800	C7B—H7B1	0.9900
C81A—H81B	0.9800	C7B—H7B2	0.9900
C81A—H81C	0.9800	C8B—H8B1	0.9800
C72A—C82A	1.427 (12)	C8B—H8B2	0.9800
С72А—Н72А	0.9900	C8B—H8B3	0.9800
С72А—Н72В	0.9900		
0,211 11,20	0.7 7 0 0		
N1A ⁱ —Ni1A—N1A	180.00 (7)	C72A—C82A—H82B	109.5
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ	180.00 (7) 95.00 (7)	C72A—C82A—H82B H82A—C82A—H82B	109.5 109.5
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ	180.00 (7) 95.00 (7) 85.00 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C	109.5 109.5 109.5
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A	180.00 (7) 95.00 (7) 85.00 (6) 85.00 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C	109.5 109.5 109.5 109.5
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A	180.00 (7) 95.00 (7) 85.00 (6) 85.00 (6) 95.00 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C	109.5 109.5 109.5 109.5 109.5
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A	180.00 (7) 95.00 (7) 85.00 (6) 85.00 (6) 95.00 (6) 180.00 (8)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A	109.5 109.5 109.5 109.5 109.5 109.5 178.09 (16)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ	180.00 (7) 95.00 (7) 85.00 (6) 85.00 (6) 95.00 (6) 180.00 (8) 91.75 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ	180.00 (7) 95.00 (7) 85.00 (6) 85.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A—Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A—Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N2A—Ni1A—N4A ⁱ	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 87.15 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ N2B ⁱⁱ —Ni2B—N1B ⁱⁱ	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N2A—Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A ⁱ	180.00 (7) 95.00 (7) 85.00 (6) 85.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 88.25 (6) 88.25 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ N2B ⁱⁱ —Ni2B—N1B N2B—Ni2B—N1B	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A—Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N2A—Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 87.15 (6) 88.25 (6) 91.75 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ N2B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6) 180.0
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N2A—Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A N1A ⁱ —Ni1A—N4A N1A—Ni1A—N4A N2A ⁱ —Ni1A—N4A	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 87.15 (6) 88.25 (6) 91.75 (6) 87.15 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B N2B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N1B	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6) 180.0 88.26 (6)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A—Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A N1A—Ni1A—N4A N1A—Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A—Ni1A—N4A	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 87.15 (6) 88.25 (6) 91.75 (6) 87.15 (6) 87.15 (6) 92.85 (6)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ N2B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N4B ⁱⁱ	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6) 180.0 88.26 (6) 91.74 (6)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A—Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A N1A—Ni1A—N4A N1A—Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N4A ⁱ —Ni1A—N4A	180.00 (7) 95.00 (7) 85.00 (6) 85.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 87.15 (6) 87.15 (6) 87.15 (6) 92.85 (6) 180.0	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N4B ⁱⁱ N2B—Ni2B—N4B ⁱⁱ	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6) 180.0 88.26 (6) 91.74 (6) 88.42 (7)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A N1A ⁱ —Ni1A—N4A N1A—Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A—Ni1A—N4A N2A—Ni1A—N4A N2A—Ni1A—N4A N2A—Ni1A—N4A	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 91.75 (6) 88.25 (6) 91.75 (6) 87.15 (6) 92.85 (6) 180.0 114.56 (15)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B—Ni2B—N4B ⁱⁱ	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6) 180.0 88.26 (6) 91.74 (6) 88.42 (7) 91.58 (7)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A—Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A N1A ⁱ —Ni1A—N4A N1A—Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A—Ni1A—N4A N2A—Ni1A—N4A N4A ⁱ —Ni1A—N4A C1A—N1A—C2A C1A—N1A—N1A	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 91.75 (6) 88.25 (6) 91.75 (6) 87.15 (6) 92.85 (6) 180.0 114.56 (15) 106.14 (11)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B N2B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B—Ni2B—N4B ⁱⁱ N1B—Ni2B—N4B ⁱⁱ	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6) 180.0 88.26 (6) 91.74 (6) 88.42 (7) 91.58 (7) 91.74 (6)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A—Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N2A—Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A N1A—Ni1A—N4A N1A—Ni1A—N4A N2A—Ni1A—N4A N2A—Ni1A—N4A N2A—Ni1A—N4A N4A ⁱ —Ni1A—N4A C1A—N1A—C2A C1A—N1A—Ni1A C2A—N1A—Ni1A	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 91.75 (6) 88.25 (6) 91.75 (6) 87.15 (6) 92.85 (6) 180.0 114.56 (15) 106.14 (11) 112.51 (12)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ N2B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B—Ni2B—N4B ⁱⁱ N2B ⁱⁱ —Ni2B—N4B ⁱⁱ N2B ⁱⁱ —Ni2B—N4B ⁱⁱ	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6) 180.0 88.26 (6) 91.74 (6) 88.42 (7) 91.58 (7) 91.74 (6) 88.26 (6)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A—Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N2A—Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A N1A—Ni1A—N4A N1A—Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A—Ni1A—N4A N4A ⁱ —Ni1A—N4A C1A—N1A—C2A C1A—N1A—N1A C1A—N1A—N1A C1A—N1A—N1A	180.00 (7) 95.00 (7) 85.00 (6) 85.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 91.75 (6) 87.15 (6) 87.15 (6) 92.85 (6) 180.0 114.56 (15) 106.14 (11) 112.51 (12) 107.8	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N4B ⁱⁱ N2B—Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6) 180.0 88.26 (6) 91.74 (6) 88.42 (7) 91.58 (7) 91.74 (6) 88.26 (6) 91.74 (7)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A N1A ⁱ —Ni1A—N4A N1A—Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A C1A—N1A—N4A C1A—N1A—N1A C2A—N1A—H1A C2A—N1A—H1A	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 91.75 (6) 87.15 (6) 87.15 (6) 92.85 (6) 180.0 114.56 (15) 106.14 (11) 112.51 (12) 107.8	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N2B—Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B N1B ⁱⁱ —Ni2B—N4B N1B ⁱⁱ —Ni2B—N4B N1B ⁱⁱ —Ni2B—N4B N1B ⁱⁱ —Ni2B—N4B	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6) 180.0 88.26 (6) 91.74 (6) 88.42 (7) 91.74 (6) 88.26 (6) 91.74 (6) 88.26 (6) 91.58 (7) 88.42 (7)
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A—Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A—Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N2A—Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A N1A—Ni1A—N4A N2A—Ni1A—N4A N2A—Ni1A—N4A N2A—Ni1A—N4A N2A—Ni1A—N4A N4A ⁱ —Ni1A—N4A N4A ⁱ —Ni1A—N4A C1A—N1A—N1A C1A—N1A—H1A Ni1A—N1A—H1A	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 91.75 (6) 88.25 (6) 91.75 (6) 87.15 (6) 92.85 (6) 180.0 114.56 (15) 106.14 (11) 112.51 (12) 107.8 107.8	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B ⁱⁱ N2B—Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B N1B ⁱⁱ —Ni2B—N4B N1B ⁱⁱ —Ni2B—N4B N1B ⁱⁱ —Ni2B—N4B N1B ⁱⁱ —Ni2B—N4B N1B ⁱⁱ —Ni2B—N4B N1B ⁱⁱ —Ni2B—N4B	109.5 109.5 109.5 109.5 109.5 109.5 $178.09 (16)$ 180.0 $93.91 (6)$ $86.09 (6)$ $93.91 (6)$ 88.00 $88.26 (6)$ $91.74 (6)$ $88.42 (7)$ $91.58 (7)$ $91.58 (7)$ $88.42 (7)$ $88.42 (7)$ $91.58 (7)$ $88.42 (7)$ $91.58 (7)$ $88.42 (7)$ $91.58 (7)$ $88.42 (7)$ 180.0
N1A ⁱ —Ni1A—N1A N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A ⁱ N1A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N2A N2A ⁱ —Ni1A—N2A N1A ⁱ —Ni1A—N4A ⁱ N1A—Ni1A—N4A ⁱ N2A ⁱ —Ni1A—N4A ⁱ N2A—Ni1A—N4A ⁱ N1A ⁱ —Ni1A—N4A N1A—Ni1A—N4A N1A—Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A ⁱ —Ni1A—N4A N2A—Ni1A—N4A N2A—Ni1A—N4A N4A ⁱ —Ni1A—N4A C1A—N1A—N1A C1A—N1A—N1A C1A—N1A—H1A C2A—N1A—H1A Ni1A—N1A—H1A C4A—N2A—C3A	180.00 (7) 95.00 (7) 85.00 (6) 95.00 (6) 95.00 (6) 180.00 (8) 91.75 (6) 88.25 (6) 92.85 (6) 91.75 (6) 87.15 (6) 87.15 (6) 92.85 (6) 180.0 114.56 (15) 106.14 (11) 112.51 (12) 107.8 107.8 107.8 115.13 (15)	C72A—C82A—H82B H82A—C82A—H82B C72A—C82A—H82C H82A—C82A—H82C H82B—C82A—H82C N4A—C9A—S1A N2B ⁱⁱ —Ni2B—N2B N2B ⁱⁱ —Ni2B—N1B ⁱⁱ N2B Ni2B—N1B ⁱⁱ N2B Ni2B—N1B N1B ⁱⁱ —Ni2B—N1B N2B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B—Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B ⁱⁱ N1B ⁱⁱ —Ni2B—N4B N1B Ni2B—N4B N1B Ni2B—N4B N1B Ni2B—N4B N1B Ni2B—N4B	109.5 109.5 109.5 109.5 109.5 178.09 (16) 180.0 93.91 (6) 86.09 (6) 93.91 (6) 180.0 88.26 (6) 91.74 (6) 88.42 (7) 91.58 (7) 91.58 (7) 91.58 (7) 88.42 (7) 180.0 114.04 (15)

CAA N2A NilA	105.03(11)	CIP NIP NOP	104.88 (11)
C4A = N2A = N11A C3A = N2A = N11A	105.95(11) 112.70(12)	C1B— $N1B$ — $N12BC2B$ — $N1B$ — $N12B$	104.88(11) 113 56(11)
$C_{4}A_{N2}A_{H2}A$	107.6	C1B_N1B_H1B	108.0
$C_{A} = N_{2} A = H_{2} A$	107.6	C2B N1B H1B	108.0
$N_{1}A = N_{2}A = H_{2}A$	107.6	Ni2B_N1B_H1B	108.0
$C_{3A} = N_{3A} = C_{2A}$	116 46 (17)	CAB N2B C3B	114.37(14)
$C_{3A} = N_{3A} = C_{2A}$	110.40(17) 113.3(2)	C4B = N2B = N32B	104.95(14)
$C_{2A} = N_{3A} = C_{5A}$	115.5(2) 116.6(2)	C3B N2B Ni2B	104.93(10) 112.98(11)
$C_{2A} = N_{3A} = C_{3A}$	161.18(15)	CAB N2B H2B	108.1
$N_{1A} = C_{1A} = C_{4A^{i}}$	101.10(15) 108.32(14)	C3B N2B H2B	108.1
N1A C1A H1A1	110.0	NGOR NOR HOR	108.1
$C_{AA^{i}}$ C_{IA} H_{IAI}	110.0	$\begin{array}{cccc} \mathbf{N}\mathbf{Z}\mathbf{D} & \mathbf{N}\mathbf{Z}\mathbf{D} & \mathbf{M}\mathbf{Z}\mathbf{D} \\ \mathbf{C}3\mathbf{R} & \mathbf{N}3\mathbf{R} & \mathbf{C}2\mathbf{R} \\ \end{array}$	106.1
$C_{A} = C_{A} = IIA$	110.0	$C_{3}D_{N_3}D_{C_2}D_{C_3}D_$	115.91(15) 115.92(16)
A^{i} $C1A$ $H1A2$	110.0	$C_{3}B_{N_3}B_{C_3}B_$	113.92(10) 113.83(16)
$H_{1A1} = C_{1A} = H_{1A2}$	108.4	COR N/AR N;2R	113.03(10) 163.23(16)
MAI = CIA = MAZ	113 64 (16)	$V_{2}D_{1}V_{4}D_{1}V_{1}ZD$	103.23(10) 108.40(15)
N2A C2A H2A1	113.04 (10)	N1D - C1D - U1D1	100.49 (13)
$N_{A} = C_{A} = H_{A}$	108.8		110.0
NIA-C2A-H2AI	108.8	$C4B^{}$ $C1B^{}$ $H1B1$	110.0
$N_{A} = C_{A} = H_{A}^{2}$	108.8	NIB - CIB - HID2	110.0
NIA = C2A = H2A2	108.8	$C4B^{}$ $C1B^{}$ $H1B2$	110.0
H2AI = C2A = H2A2	107.7	HIBI-CIB-HIB2	108.4
N3A - C3A - N2A	113.85 (16)	N3B-C2B-NIB	113.94 (15)
N3A—C3A—H3A1	108.8	N3B-C2B-H2B1	108.8
N2A—C3A—H3A1	108.8	NIB-C2B-H2B1	108.8
N3A—C3A—H3A2	108.8	N3B—C2B—H2B2	108.8
N2A—C3A—H3A2	108.8	N1B—C2B—H2B2	108.8
H3A1—C3A—H3A2	107.7	H2B1—C2B—H2B2	107.7
$N2A$ — $C4A$ — $C1A^{i}$	108.23 (15)	N3B—C3B—N2B	114.19 (14)
N2A—C4A—H4A1	110.1	N3B—C3B—H3B1	108.7
$C1A^{i}$ — $C4A$ — $H4A1$	110.1	N2B—C3B—H3B1	108.7
N2A—C4A—H4A2	110.1	N3B—C3B—H3B2	108.7
$C1A^{i}$ — $C4A$ — $H4A2$	110.1	N2B—C3B—H3B2	108.7
H4A1—C4A—H4A2	108.4	H3B1—C3B—H3B2	107.6
N3A—C5A—C6A	115.5 (3)	N2B—C4B—C1B ⁱⁱ	108.66 (15)
N3A—C5A—H5A1	108.4	N2B—C4B—H4B1	110.0
C6A—C5A—H5A1	108.4	C1B ⁱⁱ —C4B—H4B1	110.0
N3A—C5A—H5A2	108.4	N2B—C4B—H4B2	110.0
C6A—C5A—H5A2	108.4	C1B ⁱⁱ —C4B—H4B2	110.0
H5A1—C5A—H5A2	107.5	H4B1—C4B—H4B2	108.3
C5A—C6A—C72A	125.6 (5)	N3B—C5B—C6B	113.59 (16)
C5A—C6A—C71A	105.5 (3)	N3B—C5B—H5B1	108.8
C5A—C6A—H6A1	110.6	C6B—C5B—H5B1	108.8
С71А—С6А—Н6А1	110.6	N3B—C5B—H5B2	108.8
С5А—С6А—Н6А2	110.6	C6B—C5B—H5B2	108.8
C71A—C6A—H6A2	110.6	H5B1—C5B—H5B2	107.7
H6A1—C6A—H6A2	108.8	C7B—C6B—C5B	112.38 (16)
C81A—C71A—C6A	107.8 (4)	C7B—C6B—H6B1	109.1
C81A—C71A—H71A	110.2	C5B—C6B—H6B1	109.1

C6A—C71A—H71A	110.2	С7В—С6В—Н6В2	109.1
C81A—C71A—H71B	110.2	C5B—C6B—H6B2	109.1
C6A—C71A—H71B	110.2	H6B1—C6B—H6B2	107.9
H71A—C71A—H71B	108.5	C6B—C7B—C8B	112.29 (17)
C71A—C81A—H81A	109.5	C6B—C7B—H7B1	109.1
C71A—C81A—H81B	109.5	C8B—C7B—H7B1	109.1
H81A—C81A—H81B	109.5	C6B—C7B—H7B2	109.1
C71A—C81A—H81C	109.5	C8B—C7B—H7B2	109.1
H81A—C81A—H81C	109.5	H7B1—C7B—H7B2	107.9
H81B—C81A—H81C	109.5	C7B—C8B—H8B1	109.5
C82A—C72A—C6A	99.0 (7)	C7B—C8B—H8B2	109.5
C82A—C72A—H72A	112.0	H8B1—C8B—H8B2	109.5
C6A—C72A—H72A	112.0	C7B—C8B—H8B3	109.5
C82A—C72A—H72B	112.0	H8B1—C8B—H8B3	109.5
C6A—C72A—H72B	112.0	H8B2—C8B—H8B3	109.5
H72A—C72A—H72B	109.6	N4B—C9B—S1B	178.44 (17)
С72А—С82А—Н82А	109.5		
C2A—N1A—C1A—C4A ⁱ	167.05 (14)	C5A—C6A—C72A—C82A	71.8 (8)
Ni1A—N1A—C1A—C4A ⁱ	42.27 (15)	C2B—N1B—C1B—C4B ⁱⁱ	-167.20 (15)
C3A—N3A—C2A—N1A	73.7 (2)	Ni2B—N1B—C1B—C4B ⁱⁱ	-42.36 (16)
C5A—N3A—C2A—N1A	-64.4 (2)	C3B—N3B—C2B—N1B	-71.3 (2)
C1A—N1A—C2A—N3A	-178.39 (15)	C5B—N3B—C2B—N1B	66.9 (2)
Ni1A—N1A—C2A—N3A	-57.03 (18)	C1B—N1B—C2B—N3B	176.89 (15)
C2A—N3A—C3A—N2A	-73.1 (2)	Ni2B—N1B—C2B—N3B	56.80 (19)
C5A—N3A—C3A—N2A	66.4 (2)	C2B—N3B—C3B—N2B	72.1 (2)
C4A—N2A—C3A—N3A	177.61 (16)	C5B—N3B—C3B—N2B	-65.2 (2)
Ni1A—N2A—C3A—N3A	55.96 (19)	C4B—N2B—C3B—N3B	-177.77 (14)
C3A—N2A—C4A—C1A ⁱ	-167.20 (15)	Ni2B—N2B—C3B—N3B	-57.79 (17)
Ni1A—N2A—C4A—C1A ⁱ	-41.95 (15)	C3B—N2B—C4B—C1B ⁱⁱ	166.62 (14)
C3A—N3A—C5A—C6A	166.0 (2)	Ni2B—N2B—C4B—C1B ⁱⁱ	42.25 (15)
C2A—N3A—C5A—C6A	-54.7 (3)	C3B—N3B—C5B—C6B	-58.2 (2)
N3A—C5A—C6A—C72A	159.1 (5)	C2B—N3B—C5B—C6B	163.62 (16)
N3A—C5A—C6A—C71A	-173.6 (3)	N3B—C5B—C6B—C7B	-173.67 (16)
C5A—C6A—C71A—C81A	175.0 (4)	C5B—C6B—C7B—C8B	-171.39 (18)

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1A—H1A····S1A ⁱⁱⁱ	1.00	2.73	3.5154 (17)	136
N2B—H2B····S1B ^{iv}	1.00	2.66	3.4556 (17)	137

Symmetry codes: (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*+1, -*z*.