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Abstract: Natural autoantibodies, immunoglobulins (Igs) that target self-proteins, are common in
the plasma of healthy individuals; some of the autoantibodies play pathogenic roles in systemic or
tissue-specific autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus.
Recently, the field of autoantibody-associated diseases has expanded to encompass neurodegenerative
diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), with related studies
examining the functions of Igs in the central nervous system (CNS). Recent evidence suggests that Igs
have various effects in the CNS; these effects are associated with the prevention of neurodegeneration,
as well as induction. Here, we summarize the functional roles of Igs with respect to neurodegenerative
disease (AD and PD), focusing on the target antigens and effector cell types. In addition, we review the
current knowledge about the roles of these antibodies as diagnostic markers and immunotherapies.

Keywords: immunoglobulin; Alzheimer’s disease; Parkinson’s disease; diagnostic marker;
immunotherapy

1. Introduction

Antibodies bind to various foreign antigens (e.g., bacterial components and products, viruses,
protozoa, and fungi) that enter the circulatory system of both humankind and animals. However,
some antibodies bind to self-molecules such as cellular components (including nucleic acids,
phospholipids, and proteins) in healthy individuals; these are referred to as natural antibodies
or autoantibodies. The majority of natural autoantibodies are immunoglobulin (Ig) M class;
as such, they are polyreactive and bind several unrelated antigens with different affinities,
thereby contributing to homeostasis of the immune system. However, the adaptive immune responses
are mediated primarily by high-affinity, somatically mutated IgG antibodies [1,2]. As with B-2 cells,
B-1 cells (which are the main cell type that produces IgM isotype natural autoantibodies) have a
mechanism for somatic hypermutation and class-switching. Therefore, the ability to bind to self-antigens
can be a template for emergence of high-affinity IgG antibodies that recognize self-antigens [2–4].
Therefore, IgG autoantibodies are also present in the plasma of healthy individuals; these IgG
autoantibodies have personal specific signatures that tend to be stable over time [5]. Newborns share a
universal immune profile with respect to the IgM repertoire; by contrast, IgG autoantibody repertories
are highly diverse and shared between the mother and newborn. This suggests that IgG signatures
change according to personal immune “experience” [6]. Naturally occurring autoantibodies may
provide clues regarding disruption of immune homeostasis and autoimmune diseases associated with
recognition of autoantigens.

In some diseases, autoantibodies develop before clinical manifestations of autoimmune disease
appear; examples include Sjögren’s syndrome (SS), autoimmune hepatitis, multiple sclerosis,
systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and primary biliary cirrhosis. The roles
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of autoantibodies in the pathology of these diseases are different; indeed, these antibodies can have
diverse effects against the same antigen depending on the target epitope [2,7–11]. Some autoantibodies
in the sera of autoimmune disease patients exert various functions; for example, they act as pathogenic
molecules that mimic hormone stimulation of receptors, block neural transmission by binding to
receptors, affect signaling pathways, lyse cells, and induce inflammation at the site of autoantibody
binding [8]. By contrast, some autoantibodies against autoantigens exposed during cell death increase
phagocytosis of dead cells by forming a cell synapse between the phagocyte and the dead cell to
induce engulfment [12]. Autoantibodies binding to the surfaces of necrotic cells from the serum of SLE
patients increase phagocytic activity through complement component C4 [13]. Anti-dsDNA antibodies
in sera from SLE patients participate in phagocytosis of the apoptotic cells by opsonizing the target
cells [14]. Antiphospholipid antibodies also opsonize apoptotic cells by enhancing recognition of
phagocytes [15]. In addition, apoptotic cell engulfment activates immunological signals that inhibit
release of proinflammatory cytokines and induce an anti-inflammatory state in innate immune
cells [12,16]. Therefore, autoantibodies can be used as biomarkers, thereby providing the opportunity
to develop diagnostic tools and immunotherapies [2,7,8].

The concept of the brain as a site of immune privilege has been revised; we now know that
immune cells provide immune surveillance within the central nerve system (CNS). Thus, research into
the adaptive immune system is expanding into the CNS [17]. Mass cytometry of the mouse brain
characterized the various resident and infiltrating immune populations in the brain compartment.
The results indicate that small but significant numbers of immune cells, such as T cells, B cells,
dendritic cells, and natural killer (NK) cells, migrate into the choroid plexus and meninges [18].
Lymphatic vessels in the brain have functional characteristics that include transportation of both
fluid and immune cells; these vessels are connected to the deep cervical lymph nodes [19]. Therefore,
many studies have examined the contributions of adaptive immune systems to neurodegenerative
diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), which are related to
neuroinflammation [20].

Recent clinical evidence shows that autoantibodies play roles in disease; therefore, the concept
that neurodegenerative diseases may have an autoimmune etiology has been suggested [21–23].
Due to recent advances in technology related to antibody screening, many studies are attempting
to identify autoantibodies associated with neurodegenerative diseases [24,25]. Some studies have
identified autoantibodies that can either accelerate or prevent neurodegeneration, depending on the
target antigens and cell types involved. Several reports show that Igs may be potential markers
(on which we can base diagnostic techniques) and agents or targets for immunotherapy. In this review,
we summarize the functional roles of Igs in the CNS, focusing on neurodegenerative diseases AD and
PD, as well as their potential utility as diagnostic markers and immunotherapy agents or targets.

2. Role of Igs in AD

2.1. Alteration of Adaptive Immune Responses in AD

AD is a degenerative disease of the brain, accounting for an estimated 60–80% of dementia cases.
AD causes difficulties with memory, language, and problem-solving due to damage or destruction
of nerve cells. The major hallmarks of AD are accumulation of beta-amyloid (Aβ) around neurons
and tau phosphorylation inside neurons [26], which are accompanied by neurinflammation in the
CNS [20]. A pathogenic form of Aβ, Aβ1-42, induces Aβ amyloid fibril formation; these accumulated
Aβ amyloid fibrils in turn induce formation of senile plaques, resulting in neurotoxicity and induction
of tau pathology. Tau is a microtubule-associated protein involved in microtubule polymerization and
structural stabilization; however, the pathogenic form of tau forms aggregates and fibril seeds that
damage the cell [27].

Recent research has focused on the contribution of the adaptive immune system to AD pathogenesis.
One study shows that the number of clonally expanded CD8+ T effector memory CD45RA+ cells in
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the blood of AD patients is increased, and that these cells patrol the cerebrospinal fluid (CFS) [28].
Lymphocyte profiling has revealed a significant decline in CD4+ T cell populations in the CSF in
brain regions in which Aβ is deposited. By contrast, the Aβ burden shows a positive correlation with
increased numbers of memory B cells in the CSF; this is exacerbated in APOE ε4 carriers [29]. Increased
numbers of double-negative (IgD−CD27−) memory B cells and a reduction in the number of naïve B
cells (IgD+CD27−) in the peripheral blood have been identified in AD [30], and the number of cells
producing antibodies targeting Aβ1-42 is increased in AD [31]. These studies suggest a functional role
for the adaptive immune system in AD pathogenesis, particularly with respect to B cell function [32].

2.2. Evidence for an Association between Ig Responses and AD

Clinical evidence suggests that the Ig response is associated with AD pathogenesis. Ig labeling
shows that Ig+ neurons have neurodegenerative apoptotic characteristics that are not observed
in Ig− neurons [33]; Ig binding to apoptotic debris may induce apoptotic cell clearance [12,14,15].
Additionally, C1q and C5b-9 were detected in these Ig− positive neurons [22]. In the brain of
human AD patients immunized (or not) with AN-1792, IgG was detected in Aβ plaques, on plaques
surrounding microglia, and within neurons adjacent to plaques; antibody deposition correlated
with the C1q load [34]. Biochemical studies provide evidence for an interaction between IgG
and tau protein, supporting a pathological role for Igs in AD brains [35]. These data support
the autoimmune disease theory for AD; blood–brain barrier (BBB) dysfunction in AD allows
autoantibodies access to targets in the brain, which leads to autoimmunity-induced neural cell
death [22]. In addition, changes of autoantibody levels in blood and CSF have been identified.
The blood of AD patients contains higher levels of Aβ-IgG immune complexes than that of controls.
In addition, the levels of Aβ-IgG complexes correlate negatively with performance in cognitive tests [36].
Antibodies specific for tau protein and heavy neurofilaments are increased in AD patients [37]. Moreover,
elevated plasma levels of nicotinic acetylcholine receptor α7 (α7 nAChR)-specific autoantibodies are
characteristic of early AD patients [38]. The neuronal α7 nAChRs are widely distributed in the CNS
and are involved in PI3K/Akt signaling, which protects brain cells from apoptotic signals [39,40].
The α7 nAChRs interact directly with Aβ peptide and stimulate the neuroprotective pathways that
protect against Aβ-toxicity [41]. Studies in an lipopolysaccharide injected mice model show that α7
nAChRs-specific antibodies aggravate neuroinflammation by stimulating proinflammatory cytokines
and downregulating anti-pro-inflammatory miRNAs, which are responsible for limiting inflammatory
signals in the CNS [42]. An autoantibody screening study identified autoantibodies in CSF that target
glia-derived nexin, actin-interacting proteins, metalloproteinase inhibitor 2, quinone oxidoreductase,
inositol trisphosphate receptor 1, and endoplasmic reticulum calcium ATPase 2 [43]. The levels of
autoantibodies targeting ATP synthase, angiotensin II type 1, and 5-hydroxytryptamine also are
altered in AD [44]. The concentration of IgM and IgG autoantibodies targeting alpha B-crystallin is
increased in AD patients [45]. These data suggest that some types of Ig have functional roles related to
AD pathogenesis.

2.3. BBB Breakdown and Ig Infiltration of the CNS

The brain has a lymphatic drainage system for clearing waste, which includes abnormal proteins
that contribute to neurodegeneration [46,47]; in addition, meningeal lymphatics vessels provide a
direct pathway by which CSF components and immune cells drain to the cervical lymph nodes [48].
Therefore, neuronal antigens could be presented to immune cells in cervical lymph nodes. However, as
antineuronal surface antibodies are rarely found in the CSF and blood of healthy participants, it seems
that production of neuronal surface antibodies is induced by neuronal inflammatory conditions [49].

Some evidence suggests that Igs in the CNS have infiltrated from the blood. A study of CSF
and blood from hip fracture patients showed that CSF and blood contain similar autoantibody
repertoires [50]. However, the amounts of each antibody type in the CSF were far lower than those in
blood [50,51]. The similarity of the autoantibody repertoires and the lower amounts of antibodies in
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the CSF suggest that blood Igs infiltrate the CNS. Additionally, low levels of IgG were observed in the
adult human cortex; in particular, diffuse patterns were observed around blood vessels, but extending
into the brain parenchyma [52].

BBB breakdown may result in greater infiltration of the brain by Igs. BBB breakdown was
identified in AD post-mortem human studies measuring perivascular accumulation of blood-derived
fibrinogen, Ig, thrombin, albumin, and loss of BBB tight junctions. In addition, genetic risk factors
for AD, such as APOE, APP, and PSEN1, induce BBB breakdown in animal models [53–56]. A study
revealed that physical BBB breakdown induced by needle insertion can trigger selective IgG localization
in the brain parenchyma at the site of injury; in addition, IgG antibodies from neuromyelitis optica
spectrum disease patients induce astrocyte pathology in this region [57]. These studies suggest that
BBB breakdown in AD results in deposition of Igs in the brain. In addition, failure of the lysosome
system in AD could be another possible factor that causes antibody deposition in the brain [58,59].

2.4. Protective Role of Natural Antibodies in AD

Many studies have identified functional roles for Igs in AD. However, the function of Igs
depends on the target antigen and CNS cell type. Some reports suggest a protective role for IgG in
AD. Studies identified an increase in IgG associated with microglia in the brains of AD transgenic
mice [60,61]. One study used the immune-deficient AD mouse model, which lacks B, T and NK
cells, to examine the functional role of Igs. They noted several changes in the immune-deficient AD
mouse model, including increased levels of Aβ and several proinflammatory cytokines, and a shift in
microglial phenotype. Delivery of normal mouse IgG to mice via either bone marrow transplantation
or direct stereotactic injection led to a marked reduction in AD pathology. The Src/spleen tyrosine
kinase (Syk)/phosphatidylinositol 3-kinase signal transduction pathway is involved in the IgG-induced
uptake of Aβ by microglia [60]. Another study showed that stress granules (SGs) containing Syk
and phosphotyrosine are prevalent in the brains of AD patients. These SGs modulate Syk and cause
microglial cell dysfunction with respect to phagocytosis of Escherichia coli or Aβ fibrils. Phagocytic
activity was restored by treatment with non-specific rabbit IgG, suggesting a mechanism that explains
the therapeutic efficacy of intravenous IgG [62]. Another research study examined how AD risk
factors (APOE genotype, aging, and gender) affect IgG levels in various brain regions, especially in
AD-susceptible regions, such as the hippocampus and cortex. IgG was detected mainly on microglia
and some neurons, but not astrocytes [61]. These data show that Igs might prevent Aβ pathology by
increasing phagocytosis by microglial cells, leading to increased clearance of Aβ. Another study showed
that human IgG prevents Aβ-mediated neurotoxicity by inhibiting Aβ aggregation. The protective
effects of IgG seem to be independent of IgG specificity; the Fab region is responsible for inhibiting Aβ

aggregation, and bioinformatics tools show that the Fab regions bind to Aβ [63]. These studies show
that non-specific IgG may also inhibit Aβ aggregation.

Antibodies specific for some epitopes are protective against AD. Natural antibodies specific
for toxic Aβ and amyloidogenic non-Aβ species are present in blood and CSF samples from both
AD patients and healthy controls. IgG targeting oligomeric Aβ1-42 declines with age and advancing
AD, and IgG isolated from the plasma of AD patients or healthy controls protects primary neurons
from Aβ-induced toxicity [51]. These results suggest that natural Igs, even in healthy individuals,
protect against AD pathogenesis. Thus, administering these antibodies to the elderly may prevent AD
(Table 1).

2.5. Pathogenic Natural Antibodies in AD

By contrast, some research shows that Igs have pathogenic effects. The Fc gamma receptor (FcγR)
is a receptor for IgG that has both activating and inhibitory activities [75,76]. Multiple cell types within
the CNS (e.g., neurons and astrocytes) express FcγRs, and various stimuli (e.g., immune complexes)
can activate expression of FcγRs [67,76–78]. FcγRs participate in uptake of Igs and increase calcium
concentrations and neurotransmitter release from motor neurons [79]. IgG immune complexes increase
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phosphorylation of extracellular signal-regulated kinase and levels of intracellular calcium, and induce
FcγR-mediated internalization of IgG in cortical and hippocampal cells [77]. In addition, IgG immune
complexes activate sensory neurons directly [68]. These findings suggest that IgG immune complexes
affect neuronal function via direct interactions with FcγR expressed by non-immune cells in the brain.

Table 1. The potential roles of autoantibodies in neuronal degenerative diseases.

Protective Role

Disease Function Antibody Target Effector Cell Reference

AD

Enhance the phagocytosis of Aβ Non-specific Microglia [60–62]

Inhibit Aβ aggregation Fab-mediated function Cortical Neuron
Endothelial cell [63]

Neutralize Aβ-induced toxicity Oligomeric Aβ1-42 Primary Neuron [51]

Reduce tau toxicity Tau Microglia [64]

PD

Neutralize the intracellular
α-syn aggregation

α-syn

Neuron [65]

Remove the extracellular
α-syn proteins Microglia [66]

Prevent α-syn transfer between
neuron and astrocyte

Pathogenic Role

Disease Function Antibody Target Effector Cell Reference

AD

Induce the neuroinflammation
as Immune complexes FcγR-mediated function FcγR-expressing

cells in the CNS [67–69]

Increase Aβ plaque formation Ceramide Neuron
Endothelial cell [70]

Release the proinflammatory
cytokines FcγR-mediated function Microglia [71]

Release the proinflammatory
cytokines Tau [64]

PD
Induce neuronal damage via

microglial activation FcγR-mediated function Microglia [72,73]

Promote the α-syn transfer Neuron [74]

AD: Alzheimer’s disease; Aβ: beta-amyloid; PD: Parkinson’s disease; α-syn: α-synuclein; FcγR: Fc gamma receptor.

Increased expression of FcγRs in human brain tissue from individuals with neurodegenerative
diseases, such as AD and PD, along with ligation of specific FcγRs in the CNS by IgG immune complexes
and alternate ligands, promotes neuroinflammation and increases neurodegeneration [67,69,78].
For example, neuronal cells exposed to synthetic Aβ and the hippocampus of AD brains both show
upregulation of FcγRIIb, which activates endoplasmic reticulum stress and caspase-12; knockout of
FcγRIIb induces resistance to synthetic Aβ-induced cell death in vitro. Moreover, genetic depletion of
FcγRIIb rescued memory impairment in an AD mouse model [80]. A study using the APOE-deficient
mouse showed upregulation of Fc receptors, predominantly type IV, and increased amounts of serum
and brain IgGs compared with controls. Interestingly, FcγR engagement induces Aβ accumulation
in neurons, but genetic deletion of the γ-chain of activating Fc receptors reduces learning and
memory impairment. In vitro tests show that activation of Fc receptors increases expression of
mitogen-activated protein kinases and β-site amyloid precursor protein cleaving enzymes, which cause
hyperphosphorylation of tau, Aβ accumulation, and synapse loss in primary neurons [81]. This suggests
that immune complexes induce FcγR overexpression by neurons and that activation of neuronal FcγRs
induces AD-like pathology. Some antibodies can have pathogenic effects in AD, depending on the
target antigen. AD model mice show age-dependent increases in expression of antibodies targeting
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ceramide, suggesting that autoimmune reactions against ceramide play a role in AD pathogenesis. In
addition, induction of serum anticeramide IgG by ceramide administration increases the plaque burden
in female mice compared with controls, suggesting that systemic anticeramide IgG and exosome levels
correlate with increased plaque formation [70].

Activation of microglia also has functional effects on neurodegeneration. Activation of microglia
increases phagocytosis, clearance, and degradation of Aβ, which prevents formation of Aβ plaques
in the brain. However, prolonged activation of microglia leads to release of proinflammatory
cytokines, which initiate a proinflammatory cascade [71]. Immune complexes play important roles
in IgG-mediated phagocytosis by microglia, and these cells are also affected by cytokines in the
CNS [82]. However, immune complexes also induce inflammatory reactions in the brain parenchyma
and induce neuronal tissue damage indirectly through activation of FcγR on microglia [69]. IgG in
lupus serum induces M1 polarization of brain microglia. IgG antibodies bind to microglia through
the Fc region; then, the B cell activating factor in lupus serum upregulates expression of FcγR on the
surface of microglia, thereby triggering FcγR-mediated signaling pathways to induce inflammatory
responses [83]. Another study revealed that tau antibodies (both with and without full effector function)
in the presence of microglia protect neurons from tau toxicity, but effector tau antibodies induce release
of proinflammatory cytokines by microglia [64].

IgG from AD and PD are more toxic to neurons than control IgG [72,84]. In addition, disease alters
IgG Fc sugar moieties, known as N-glycans, which affect the affinity of the Fc domain [85,86].
Therefore, antibody function is complex; in particular, function can differ depending on enviromental
conditions, effector cell type, and target antigen (Table 1). Therefore, it is necessary to comprehensively
consider various factors, including FcγR-IgG ligation, when developing treatment modalities based
on antibodies. Some studies show that anti-Aβ and -tau antibodies with no effector function can
inhibit AD pathogenesis, suggesting utilization of immunotherapies based on modified antibodies that
lack adverse effects [64,87,88]. Figure 1 summarizes a model of antibody-mediated pathogenesis in
neurodegenerative disease.

2.6. Diagnostic Application of Antibodies for AD

As the number of people developing AD is expected to increase, we need to develop low-cost and
patient-friendly diagnostic techniques based on blood biomarkers. Autoantibodies are one candidate
blood biomarker; indeed, anti-Aβ and -tau protein antibodies have been used as biomarkers [44].
Autoantibodies targeting Aβ have been studied by many groups. A meta-analysis of 2901 individuals
(1311 AD patients and 1590 healthy control subjects) revealed a significant increase in the amount of
endogenous IgG autoantibodies targeting Aβ in the blood; by contrast, anti-Aβ IgM autoantibody
levels were markedly lower in patients with AD than in control subjects, suggesting the possibility
that alterations in autoantibody levels may be a biomarker [89]. With respect to anti-tau antibodies,
several groups have measured concentrations in the blood. However, there were no statistically
significant differences between healthy controls and AD patients [90]. This lack of difference was also
shown in another study [91].

Various technological advances related to high-throughput antibody screening have meant that
many studies are attempting to identify other antibodies that may be blood biomarkers for AD.
Microarrays for screening of autoantibodies have identified a combination of autoantibodies in blood
that can differentiate patients with mild cognitive impairment from age-matched controls with high
accuracy. The target proteins are a variety of receptors, adapters, kinases, cytoskeletal components,
potassium channel subunits, ribosomal and mitochondrial proteins, and other accessory proteins [25].
Furthermore, 44 autoantibodies from the panel enrolled in a previous study can distinguish prodromal
AD pre-surgically and with high accuracy in individuals admitted to the hospital for hip fracture
repair surgery [92]. In addition, various protein and peptide arrays have led to identification of
autoantibodies specific to patients with AD [4,93]. These antibodies target proteins involved in synaptic
activity, including neurotransmitters [94,95] and receptors [96], and autoantibodies specific for proteins
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modulating inflammation [95] and the BBB [96]. The levels of autoantibodies targeting proteins
involved in energy metabolism, such as aldolase and adenosine triphosphate synthase β, are higher
in the serum of patients with AD than in controls [93]. This suggests that the antibody repertoire
responsible for AD pathogenesis changes; such changes could be utilized as blood biomarkers for
AD. However, actual application would require clear criteria for calculating clinical scores on which a
diagnosis of AD would be based.
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Figure 1. A model showing antibody-mediated pathogenesis of Alzheimer’s disease (AD)
and Parkinson’s disease (PD). Changes in brain conditions in AD and PD (for example, cell death,
inflammation, and aggregation of abnormal proteins) promote the outflow of neo-antigens through
lymphatic vessels, causing changes in antibody repertoires. Damage to the blood–brain barrier (BBB)
generated in AD and PD induces infiltration by antibodies. Antibodies activate FcR expression by
brain cells, thereby promoting pathogenesis of AD and PD in the brain. Aβ: beta-amyloid; α-syn:
α-synuclein.

2.7. Therapeutic Application of Antibodies in AD

Several immunotherapies have been developed using antibodies against Aβ, the major marker of
AD. Two immunotherapeutic strategies, active immunization and passive immunization, have been
used as immune therapies [76]. Passive immunotherapy with antibodies against Aβ is based on binding
of transferred IgG to Aβ, which may prevent or inhibit AD pathogenesis. However, the lack of clinical
benefit has led to repeated failures of clinical trials. Phase 3 clinical trials (NCT01900665) revealed
that solanezumab, a monoclonal antibody against Aβ, showed no significant benefit with respect to
preventing cognitive decline in patients with mild AD [97]; this failure suggests that earlier treatment
may be critical for cognitive benefits. Phase III trials (NCT00667810 and NCT00676143) also confirmed
that bapineuzumab (as a passive vaccination for mild to moderate AD) lacks efficacy [98]. A study of
gantenerumab was halted early due to lack of a positive effect (NCT01224106) [99], but high doses of
gantenerumab did result in robust Aβ plaque removal (NCT01224106 and NCT02051608) [100].
An active vaccine against Aβ was also used to stimulate antibody production. One of these,
AN-1792, comprises synthetic full-length Aβ peptide plus a QS-21 adjuvant. Long-term follow-up



Int. J. Mol. Sci. 2020, 21, 5295 8 of 19

patients immunized with AN1792 revealed sustained anti-AN1792 antibody titers and a marked
reduction in functional decline and plaque numbers [101,102]. However, the vaccination caused
meningoencephalitis in some cases [103]. Nevertheless, to date, researchers are developing and
testing several possible interventions in clinical trials; these are based on anti-Aβ, anti-tau antibodies,
and agents that prevent neuroinflammation (Table 2) [76,104].

Table 2. Clinical trials of immunotherapies for neuronal degenerative diseases.

Drug Antibody Type
(Target) FDA Status NCT

(Patients)

Solanezumab Passive
(Mid-domain of the Aβ peptide) Phase 3

NCT02008357
(Older individuals who may be at risk

for memory loss)
NCT02760602

(Prodromal AD)

Bapineuzumab Passive
(N-terminal region of Aβ) Discontinued NA

Gantenerumab Passive
(Conformational epitope on Aβ fibrils) Phase 3 NCT03443973 and NCT03444870

(Early AD)

Crenezumab Passive
(Multiple forms of aggregated Aβ) Phase 2

NCT02670083
(Prodromal to mild AD)

NCT01998841
(Autosomal-dominant AD)

NCT01397578
(Mild to moderate AD)

Aducanumab Passive
(Conformational epitope on Aβ) Phase 3 NCT02477800 and NCT02484547

(Early AD)

BAN2401 Passive
(Large, soluble Aβ protofibrils) Phase 3 NCT01767311 and NCT03887455

(Early AD)

AN-1792
Active

(Synthetic full-length Aβ peptide with
QS-21 adjuvant)

Discontinued NA

Gosuranemab Passive
(N-terminal fragments of tau) Phase 2 NCT03352557

(Early AD)

AADvac1
Active

(Synthetic tau peptide withaluminum
hydroxide adjuvant)

Phase 2 NCT01117818
(Early AD)

Prasinezumab Passive
(Against aggregated α-syn) Phase 2 NCT02157714 and NCT03100149

(PD)

BIIB054 Passive
(α-syn residues 1-10) Phase 2 NCT03318523 and NCT02459886

(PD)

ABBV-0805 Passive
(Oligomeric/protofibrillar α-syn) Phase1 NCT04127695

(PD)

Activa Affitope
(PD01A)

Active
(Synthetic α-syn peptide with adjuvant) Phase1 NCT02618941

(PD)

Aβ: beta-amyloid; AD: Alzheimer’s disease; α-syn: α-synuclein; PD: Parkinson’s disease.

3. Role of Igs in PD

3.1. Changes to the Adaptive Immune System in PD

PD is a progressive neurodegenerative disease that affects 2–3% of the population aged ≥65 years.
PD results in impaired movement and cognitive problems, which become increasingly prevalent as the
disorder progresses. The major hallmarks of PD are accumulation and aggregation of α-synuclein
(α-syn) and loss of neurons in the substantia nigra (SN) [105]. Although neuroinflammation may not be
the first step in PD, neuroinflammation is strongly implicated in disease pathogenesis [20]. Therefore,
several studies have profiled the lymphocyte populations in PD to identify the role of the adaptive
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immune system. The data show that in human and mouse models of PD, there are fewer naïve T
cells, CD4+ Th (helper) cells, and Treg cells than in controls. Also, there is an increasing tendency
toward clonally expanded CD45RA+ cells, activated microglial cells, and activated T cells in the CSF
of patients with PD [28,106,107]. Another study reports that the CD4+ T cell population in PD has a
Th1-biased profile [108]. However, there is a lack of evidence related to changes in the B cell population
in PD [107].

3.2. Evidence for an Association Between Ig Response and PD

PD is associated with altered Ig levels. One study identified an increased CSF/serum IgG ratio in
cases of advanced PD [109]. Another showed that the subthalamic nucleus of the brain in PD patients
showed widespread extravascular staining for IgG, indicating BBB impairment; however, IgG staining
was restricted to the lumen of vessels in the brains of healthy controls [110]. Another study revealed
that some pigmented dopamine neurons in the SN of PD patients have more IgG than those of healthy
controls, and that the IgG co-localizes with α-syn. IgG-positive neurons correlate negatively with the
degree of cell loss and positively with the number of HLA-positive microglia. The most common
subclass of neuronal IgG in the damaged SN is IgG1; in addition, the high-affinity activating IgG
receptor, FcγRI, is expressed on nearby activated microglia [111]. These results suggest that Igs play
functional roles related to activation of microglia, leading to loss of dopamine nigral neurons in PD.

The majority of studies of Igs have focused on changes in the amounts of α-syn antibodies,
but the results are inconsistent and contradictory [112,113]. However, a study that measured the
affinity of these antibodies revealed that the amount of high-affinity α-syn antibodies in the plasma of
PD patients is lower than that in healthy controls, and that there are markedly fewer α-syn–antibody
immunocomplexes in the plasma of PD patients. Furthermore, cross binding of α-syn antibodies
to β- and γ-synuclein monomers suggests that antibodies target mainly C-terminal epitopes [114].
Another group showed that glycosylation of IgG was significantly different between patients with
PD and controls. They suggest that the type of IgG glycosylations in PD decrease its capacity to
inhibit Fcγ-RIIIα binding, so IgG may trigger antibody-dependent cell cytotoxicity and inflammation
in individuals with PD [86].

3.3. BBB Breakdown in PD

Similar to AD, studies report BBB breakdown in PD, which may allow antibody infiltration.
One study used positron emission tomography to show BBB dysfunction in the midbrain of PD patients
relative to controls [115]. Cerebral microbleeds are more common in PD patients with dementia than in
those without, suggesting that the burden of cerebral microbleeds may contribute to further cognitive
impairment in PD [116]. In addition, studies show markedly increased permeability of the BBB in the
post-commissural putamen of PD patients [117], as well as microvascular changes in post-mortem
SN samples [110]. There are high levels of αvβ3 expression in the locus ceruleus and the SN pars
compacta of PD brains, and the presence of αvβ3 reactive vessels suggests newly created vessels that
have not developed restrictive properties of the BBB [118]. This evidence suggests that the brain of PD
patients is susceptible to infiltration by antibodies, as in AD.

3.4. Protective Role of Natural Antibodies in PD

Igs play a bifunctional role (protecting or accelerating) in PD pathogenesis. In particular, antibodies
against α-syn protect against PD. One of the antibodies secreted by memory B cells in PD patients
has high affinity for epitopes at the C terminus of α-syn. An in vitro α-syn seeding assay revealed
that these antibodies neutralize the seeding of intracellular syn aggregates [65]. Immunization against
α-syn results in reduced α-syn accumulation and synaptic loss in mouse models of Lewy body
disease [66,119,120]. Antibodies against α-syn induce clearance of extracellular α-syn proteins by
microglia through FcγR binding. In addition, stereotaxic administration of antibodies into the brain
prevent neuron-to-astroglia transmission of α-syn, thereby inducing increased co-localization of α-syn
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and the antibody on microglia [66]. These findings suggest that antibodies against α-syn play protective
roles and can be utilized as potential therapeutic targets (Table 1).

3.5. Pathogenic Role of Natural Antibodies in PD

Igs also play a role in disease pathology, principally through FcγR activation. Activation of
FcγR expression by neurons induces PD pathogenesis as follows: α-syn fibrils bind to FcγRIIB of
neurons; FcγRIIB then mediates cell-to-cell transmission of α-syn via activation of Src homology
region 2 domain containing phosphatase-1/2. Blocking this signaling pathway attenuates formation
of Lewy-body-like inclusion bodies [74]. FcγRs are expressed on the plasma membrane of microglia;
these receptors bind IgG and activate microglia, resulting in damage to dopaminergic neurons in
the SN. Virus-induced overexpression of α-syn in wild-type animals induces activation of NF-κB p65
and other proinflammatory molecules, which activate microglia and result in loss of DA neurons
from the SN. However, FcγR−/− mice exhibit no neuritic changes in the absence of α-syn-induced
neurodegeneration; these mice show attenuated microglial activation [73]. In vitro experiments show
that IgG in PD activates microglia via the FcγR to induce dopaminergic cell injury. Stereotaxic injection
of PD IgG into the SN of mice increases the number of microglial cells, accompanied by a 40% loss in
tyrosine hydroxylase (TH)-positive neuronal cells in the SN. However, there is no significant increase
in the number of microglia and no loss of TH-positive cells in FcγR−/− mice [121]. In PD patients,
antimyelin-associated glycoprotein (MAG)–IgM autoantibody levels are significantly higher than those
in healthy control or patients with atypical parkinsonism. Furthermore, studies report increasing
levels of antimyelin basic protein and antiproteolipid protein IgM autoantibodies in PD [122,123].
The MAG–IgM autoantibodies induce neuropathy, which is a common symptom of PD [124–126].
IgG from PD and recombinant human C5a act synergistically to induce selective dopaminergic
neurodegeneration in rat mesencephalic neuron–glia cultures; however, IgG from disease controls and
normal controls does not show dopaminergic neurotoxicity. The results from microglia-supplemented
neuronal cultures indicate that microglia play pivotal roles in neurotoxicity. PD IgG and C5a act
synergistically to activate microglia, which produce superoxide and nitric oxide, both of which
are neurotoxic. Finally, F(ab′)2 fragments of PD IgG play important roles in neurotoxicity [72].
Taken together, these results suggest that FcγR-IgG interactions, especially IgG from PD
patients, activate microglia, resulting in loss of neurons and activated synuclein transmission
(Table 1 and Figure 1).

3.6. Diagnostic Application of Antibodies in PD

Identifying blood biomarkers for PD is the goal of much research, however an effective biomarker
remains elusive. However, antibodies in the blood of PD patients are promising candidate PD
biomarkers. In particular, α-syn IgG is a strong candidate. A study of four IgG subclasses (IgG1, IgG2,
IgG3, and IgG4) found higher levels of anti-α-syn IgG2 and lower levels of anti-α-syn IgG4 in PD
than in controls. Anti-α-syn IgM levels were also lower in PD. Increased or decreased levels of IgG
subclasses are expected to be one biomarker of PD [112]. A recent study reports that the repertoire
of high-affinity or -avidity IgG autoantibodies targeting a-syn is significantly reduced in PD [127].
The pathological changes associated with PD might contribute to the levels of naturally occurring
α-syn autoantibodies in both serum and CSF. Both of these are potential biomarkers for PD
patients [128,129]. However, studies of α-syn antibodies report inconsistent measurements of antibody
levels. Several studies demonstrated that serum α-syn antibody titers in patients are different
depending on age, disease duration, severity, and genetic inheritance. The distinct pattern of pathology
and symptom progression associated with some isolated naturally occurring human anti-α-syn
antibodies might be a potent diagnostic marker for PD [65,112,113]. However, a systematic review
and meta-analysis highlight many caveats to this conclusion based on the limitations of the assays
used, the clinical heterogeneity of the study cohorts, the lack of longitudinal data, and poor matching
of controls to patients; thus, the overall quality of the evidence is poor. Hence, the value of α-syn
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autoantibodies as diagnostic or prognostic biomarkers remains uncertain [113]. Another study tried to
identify changes in a panel of autoantibodies in the blood of PD. They selected a panel of blood-borne
autoantibodies as biomarkers, which distinguished early-stage PD subjects from controls with an
overall accuracy of 87.9%; it also distinguished PD from neurological diseases. These autoantibodies
target microtubule-affinity-regulating kinase 1, pseudouridine synthase-like 1, interleukin 20, and C-C
motif chemokine ligand 19, among others [24].

3.7. Therapeutic Application of Antibodies in PD

Since α-syn is a major marker for PD pathogenesis, use of α-syn antibodies has been put forward
as a potential immunotherapy. Anti-α-syn antibodies may stimulate microglial cells to scavenge
extracellular α-syn and prevent its transfer from one neuron to another. Current immunotherapies
for PD target microglia activation, which regulates lysosome function for effective clearance from the
brain [130]. A passive vaccination for PD, prasinezumab (PRX002; a humanized IgG1 monoclonal
antibody), has been developed. Clinical phase 1 (NCT02157714) trials show that the antibody can
regulate serum α-syn levels in a dose-dependent manner [131]; thus, passive vaccination for PD
is being examined in a clinical phase 2 trial (NCT03100149). Active vaccination with a synthetic
α-syn-mimicking peptide called Affitope (PD01A) resulted in a significant increase in PD01-specific
antibody titers; these antibodies bind to both oligomeric and fibrillar α-syn. At week 26, there was a
trend toward a reduction in the levels of oligomeric α-syn in plasma and CSF after treatment with
PD01A. Therefore, PD01A is being prepared for a phase 2 clinical trial. A second vaccination with
PD03A resulted in a clear dose-dependent immune response against the α-syn-targeted epitope over
time, with antibody reactivation upon booster immunization (NCT02267434); however, a parallel phase
1 study did not find any immune responses (NCT02270489) [132,133]. Multiple immunotherapeutic
agents for PD are currently in clinical trials (Table 2) [134].

4. Conclusions

The increased or decreased risk of AD and PD due to autoimmune mechanisms suggests that
autoantibodies produced in those with autoimmune diseases can affect neurodegeneration. A previous
study showed that primary SS patients have a 2.69-fold increased risk of developing AD; the risk is
even higher in older people [135]. Another study found that 18 out of 25 autoimmune diseases were
significantly associated with a risk of dementia [136]. Patients with autoimmune rheumatic diseases
such as RA and SS have a significantly higher risk of PD [137]. By contrast, patients of SLE have a lower
risk of PD [138]. These results suggest that autoimmune disease, possibly through autoantibodies,
can either induce or prevent neurodegenerative conditions. However, further research is needed
to identify the specific autoantibodies that are associated with neurodegeneration and to identify
their functions.

In recent decades, extensive efforts by researchers, together with advances in molecular and
biochemical techniques, have made it possible to elucidate the lymphatic drainage system in the brain
and examine infiltrating adaptive immune components in the CNS. In particular, the appreciation of
the relationship between Igs and neurodegenerative disease such as AD and PD and the potential role
of Igs in disease pathology have grown markedly. Our summary indicates that the functional roles
of Igs depend on effector cells and target antigens. Igs or immune complexes can be neurotoxic by
inducing proinflammatory responses through microglia activation in the CNS via activation of FcγR.
By contrast, they may exert protective effects through triggering immune-complex-mediated
phagocytosis by microglia via FcγR activation. Interestingly, IgG from PD and AD patients are
more neurotoxic than those from controls, suggesting that regulation of Ig-mediated FcγR signaling
is a complicated process controlled by additional factors. Recently, studies have shown that Ig
glycosylation affects the affinity of antibodies for FcγR. In addition, microarray studies identified
promising autoantibodies in the blood of AD and PD patients. Data suggest that changes in both Fab
and Fc regions of Igs have important roles with respect to interactions with CNS cells in neuronal
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disease. Although many attempts have been made to develop vaccines based on antibodies specific for
Aβ and α-syn, most have failed. A more comprehensive understanding of the function and roles of Fc
and Fab fragments may enable us to develop advanced vaccines for the treatment of CNS disease.
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Abbreviations

Ig Immunoglobulin
SS Sjögren’s syndrome
SLE Systemic lupus erythematosus
RA Rheumatoid arthritis
AD Alzheimer’s disease
PD Parkinson’s disease
CNS Central nervous system
CSF Cerebrospinal fluid
NK Natural killer
BBB Blood–brain barrier
α7 nAChR Nicotinic acetylcholine receptor α7
Syk Spleen tyrosine kinase
FcγR Fc gamma receptor
SGs Stress granules
Aβ Beta-amyloid
SN Substantia nigra
α-syn α-Synuclein
TH Tyrosine hydroxylase
MAG Myelin-associated glycoprotein
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