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Hepatocellular carcinoma (HCC) is one of the most important causes of cancer-related deaths and remains a major public health
challenge worldwide. Considering the extensive heterogeneity of HCC, more accurate prognostic models are imperative. The
circadian genes regulate the daily oscillations of key biological processes, such as nutrient metabolism in the liver. Circadian
rhythm disruption has recently been recognized as an independent risk factor for cancer. In this study, The Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were compared and 248 differentially expressed genes (DEGs) of the
circadian rhythm were identified. HCC was classified into two subtypes based on these DEGs. The prognostic value of each
circadian rhythm-associated gene (CRG) for survival was assessed by constructing a multigene signature from TCGA cohort. A
6-gene signature was created by applying the least absolute shrinkage and selection operator (LASSO) Cox regression method,
and all patients in TCGA cohort were divided into high- and low-risk groups according to their risk scores. The survival rate
of patients with HCC in the low-risk group was significantly higher than that in the high-risk group (p < 0:001). The patients
with HCC in the Gene Expression Omnibus (GEO) cohort were also divided into two risk subgroups using the risk score of
TCGA cohort, and the overall survival time (OS) was prolonged in the low-risk group (p = 0:012). Based on the clinical
characteristics, the risk score was an independent predictor of OS in the patients with HCC. The Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that multiple metabolic pathways, cell cycle, etc., were
enhanced in the high-risk group. Using the metabolic pathway single-sample gene set enrichment analysis (ssGSEA), it was
found that the metabolic pathways in the high- and low-risk groups between TCGA and GEO cohorts were altered essentially
in the same way. In conclusion, the circadian genes play an important role in HCC metabolic rearrangements and can be
further used to predict the prognosis the patients with HCC.

1. Introduction

Liver cancer is the sixth most commonly diagnosed cancer
and the fourth leading cause of cancer-related deaths world-
wide. Hepatocellular carcinoma (HCC) is the most common
type of liver cancer because it is clinically and biologically
heterogeneous and hence unresponsive to most conven-

tional treatments; the 5-year overall survival rate remains
below 20% [1]. Hepatectomy is an effective method to erad-
icate early-stage HCC. Additionally, transarterial chemoem-
bolization (TACE) is recommended for patients with
unresectable HCC, but it is not yet satisfactory in improving
the patient’s prognosis [2]. As HCC is a highly heteroge-
neous cancer, the conventional models that use clinical
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tumor lymph node metastases (TNMs), vascular infiltration,
and other factors to predict mortality are still not able to
provide satisfactory predictions. Therefore, it is imperative
to develop effective prognostic models.

The circadian rhythm is an intrinsic, 24-hour time-
keeping system that operates in all the cells of the body
and governs the rhythmicity of the cellular functions,
including metabolism, gene expression, and trafficking and
transport of the cellular proteins. The hypothalamic supra-
chiasmatic nucleus (SCN) acts as the central clock that
receives time signals from the light and synchronizes the
peripheral clock through the neural, somatic, and behav-
ioral pathways [3–6]. In the mammalian cells, SCN regu-
lates the circadian rhythm through the core interlocked
transcriptional-translational feedback loops (TTFLs) and
clock-controlled genes enabling the tissues to adapt to their
biological functions and predict the external changes. The
core clock consists of transcriptional activators, brain and
muscle ARNT-like 1 (BMAL1) and circadian locomotor out-
put cycles kaput (CLOCK) (or neuronal PAS domain protein
2 (NPAS2)), and transcriptional repressors, Period (Per1/2)
and Cryptochrome (Cry1/2); the primary TTFL is stabilized
by the clock-controlled genes [6, 7]. In recent years, the
World Health Organization (WHO) has designated circa-
dian disruption as a possible carcinogen based on both pop-
ulation and laboratory findings. The loss of circadian control
is also associated with poor treatment efficacy and early mor-
tality among patients with cancer, such as cancers of the
breast, colon, liver, prostate, pancreas, ovary, and lung
[8–12]. Circadian gene dysregulation affects key cancer
development and the progression pathways, including meta-
bolic regulation, cell cycle control, apoptosis, and DNA dam-
age response [13].

The peripheral tissue clock is regulated by SCN and the
hepatocyte clock, and the hepatocyte clock appears to
occupy a higher position in the peripheral clock hierarchy
[14]. The liver is a central metabolic organ that governs
the whole-body homeostasis, and the circadian rhythm plays
a major role in liver homeostasis, including hepatic metabo-
lism. Over 50% of liver metabolites have a circadian rhythm
that is coupled with transcription of the clock genes [15].
Hepatocyte clock-metabolism crosstalk has been found to
play an important role in the liver. For example, the core cir-
cadian molecule NPAS2 plays an important role in repro-
gramming glucose metabolism in HCC cells through
upregulation of the glycolytic genes and downregulation of
peroxisome proliferator-activated receptor-γ coactivator 1-
α (PGC-1α) expression; BMAL1 in the mouse liver increases
fatty acid oxidation and partially reduces ethanol-induced
fatty liver and liver injury through overexpression of the adi-
pogenic transcription factor carbohydrate-response element-
binding protein (ChREBP) [16–18].

In this study, the transcriptome profiles and clinical
information of patients with HCC were obtained from The
Cancer Genome Atlas (TCGA) and Genotype-Tissue
Expression (GTEx) and the circadian rhythm-related genes
(CRGs) from the Explore the Molecular Signatures Database
(MSigDB). After Cox regression analysis of the differential
CRGs, the CRGs associated with overall survival (OS) were

identified and a risk model was developed. The risk model
was used to determine the metabolism-related features of
HCC to better understand the interactions between the cir-
cadian rhythm and metabolic rearrangement in HCC as well
as the mechanism of the progression of malignant HCC.
Therefore, the risk model will further be able to guide the
prognosis and treatment of HCC.

2. Materials and Methods

2.1. Datasets. The RNA sequencing (RNA-seq) data of 371
patients with HCC with clinical information and 50 normal
samples were obtained from TCGA database (https://portal
.gdc.cancer.gov/repository) on 25 June 2021. To increase
the number of normal liver samples, we obtained RNA-seq
data for 110 normal liver samples in the GTEx dataset at
UCSC Xena (https://xenabrowser.net/datapages/). We use a
perl script for data processing to logarithmically scale the
FPKM values to log 2 (1 + FPKM). GSE14520 is a dataset
of mRNA expression in tumors and paired nontumor tissues
from patients with liver cancer. The data from the compre-
hensive Gene Expression Omnibus (GEO) (https://www
.ncbi.nlm.nih.gov/) was downloaded from the GPL3921
platform including 216 tumor and 220 nontumor samples
and their clinical information. The baseline characteristics
of patients with HCC in TCGA and cohort GSE14520 are
shown in Table S1.

2.2. Identification of Differentially Expressed Circadian
Rhythm-Related Genes. 248 genes related to the circadian
rhythm were extracted from 13-gene sets in MSigDB, and
they are presented in Table S2-3. To obtain more accurate
DEGs between the normal and tumor tissues, 110 normal
liver samples were obtained from the GTEx portal to
expand the number of normal samples. The expression
data were normalized to fragment per kilobase million
(FPKM). Differential expression analysis was performed
using the Wilcoxon test, and differential CRGs were
identified with p < 0:01 and jlog 2FCj ≥ 1.

2.3. Construction of the Protein-Protein Interaction (PPI)
Network. The PPI network was constructed using the
STRING database (https://string-db.org/) and visualized
using the Cytoscape 3.8.2 software, and the hub genes were
identified using Cytoscape Apps CytoHubba. To build the
correlation network of the CRGs, the “igraph” package in
R was used.

2.4. Consensus Clustering of Circadian Rhythm-Related Genes.
A consistent cluster analysis was performed on the 54 DEGs
listed in Table S4 using the “ConsensusClusterPlus” package.
The number of clusters is denoted by the letter “k” from k =
2 to 9. It was determined that k = 2 had the best clustering
stability. Finally, the patients with HCC were classified into
two subtypes.

2.5. Development and Validation of the CRG Prognostic
Model. To assess the prognostic value of DEGs, Cox regres-
sion analysis was used to assess the correlation between each
gene and survival status in TCGA cohort. The cut-off of p
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value was 0.01, and the 10 survival-related genes were
selected for further analysis. In order to narrow down the
candidate genes and develop the prognostic model, LASSO
Cox regression analysis (R package “glmnet”) was used. In
the end, 6 genes and their coefficients were retained, and
the penalty parameter (λ) was decided according to the min-
imum criteria. After centralization and standardization
(using the “scale” function in R) of TCGA expression data,
the risk score formula used was as follows: risk score = Σ6i
Xi × Yi (X is coefficients, and Y is gene expression level).
According to the median risk score, the patients with HCC
in TCGA cohort were divided into low- and high-risk sub-
groups, and the OS time was compared between the two
subgroups via Kaplan–Meier analysis. The “prcomp” func-
tion provided by the “Rtsne” package in the R was used to
calculate the PCA and t-SNE based on the 6-gene signature.
For the analysis of ROC curves, the “survival,” “survminer,”
and “time-ROC” R packages were used. An HCC cohort
from GEO (GSE14520) was implemented in the validation
studies. Similarly, the expression levels of DEGs were nor-
malized using the “scale” function, and the risk scores were
calculated the same way as TCGA cohort. The GSE14520
cohort risk score was calculated based on the risk score for-
mula for TCGA cohort, and categorized patients were

divided into low- and high-risk subgroups to validate the
genetic model.

2.6. Independent Prognostic Assessment of the Risk Score. The
patients’ clinical information on TCGA and GEO cohorts
was extracted (age, grade, stage, gender, AFP, etc.). In our
regression model, these variables were analyzed in conjunc-
tion with the risk score. The analysis was conducted using
both univariate and multivariate Cox regression models.

2.7. Functional Enrichment Analysis of the DEGs between the
Subgroups. TCGA cohort of patients with HCC was strati-
fied into two subgroups according to the median risk score.
A comparison of DEGs between the low- and high-risk
groups was filtered based on a set of specific criteria ðjlog 2
FCj ≥ 1 and FDR < 0:05). The GO and KEGG analyses based
on these DEGs were performed using the OmicShare tool, a
free online data analysis platform (https://www.omicshare
.com/tools). The ssGSEA was conducted with the “gsva”
package to calculate the assessment of metabolism-
associated pathway expression levels [19].

2.8. Statistical Analysis. One-way analysis of variance
(ANOVA) was used to compare the gene expression levels

TCGA/GTEX (Tumor = 374;
Normal =160)

248 circadian rhythm-related genes

54 differently expressed circadian
rhythm-related genes

Cluster analysis

Survival analysis

Validation in a GEO cohort
(GSE14520, N = 445)

Clinicopathologic characters,
K-M survival

Consensus analysis, PPI
network, correlation network

TCGA cohort GO and KEGG pathway
analysis

Metabolism associated pathways
expression levels analysis

Cox regression analyssis and LASSO
regression model to identify 6-gene

signature

Figure 1: The flow diagram of the integral analysis. Gene expression profiles and corresponding clinical data were obtained from TCGA and
GTEx for tumor and normal tissues, excluding samples with incomplete information. Differential expression analysis was performed to
identify 53 differentially expressed circadian rhythm-associated genes. Next, HCC patients in TCGA dataset were classified into two
distinct molecular subtypes (C1 and C2 clusters) by consistent clustering analysis of these 53 genes. The two HCC molecular subtypes
differed significantly in terms of clinicopathological characteristics and overall survival. We then used Cox regression analysis and
LASSO regression to build a risk model based on six circadian rhythm-related genes, and we used TCGA cohort and the GEO cohort as
the training and validation sets for the model, respectively. Finally, variance analysis, enrichment analysis, and ssGSEA were performed
based on the risk model.
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Figure 2: Continued.
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between the normal liver and HCC cancer tissues, while the
Pearson chi-square test was used to compare the categorical
variables. Based on a two-sided log-rank test, Kaplan–Meier
method was employed to compare OS between the patient
subgroups. The univariate and multivariate Cox regression
models were used to assess the independent prognostic value
of the risk model. Comparing metabolism-associated path-
way expression levels between the two groups was carried
out by using the Mann–Whitney test. We conducted all sta-
tistical analyses with the R software (v4.0.2).

3. Results

3.1. Comparative Analysis of the CRGs from the Normal and
Cancerous Tissues. The flow diagram of the integral analysis
is shown in Figure 1. Out of the obtained 248 CRGs
expressed in 371 patients with HCC and 160 controls, 54
DEGs (p < 0:01) were identified. Additionally, 23 genes
(HOMER1, EZH2, CHEK1, TYMS, NOS2, CDK1, TOP2A,
SLC9A3, etc.) were overexpressed in the tumor group while
31 genes (PROK2, ADORA2A, NPAS2, SREBF1, ATOH7,
PER1, NTRK1, HOMER1, etc.) were downregulated. A heat-
map of the RNA levels for these genes is shown in
Figure 2(a). For a deeper understanding of the interactions
between these CRGs, the protein-protein interaction (PPI)
network was analyzed (Figure 2(b)). It was determined that
TOP2A, TYMS, NGFR, TH, CHEK1, EZH2, IL6, CDK1,
SREBF1, and ARNTL were the hub genes (Figure 2(c)).
The correlation network containing these DEGs is shown
in Figure 2(d).

3.2. Classification of the Tumors Based on the DEGs. Consen-
sus clustering analysis was performed on all 371 patients
with HCC from TCGA cohort to investigate the association
between the expression of DEGs and HCC subtypes. With

the clustering variable (k) increased from 2 to 9, the
intragroup correlations increased while the intergroup cor-
relations dropped, indicating that the patients with HCC
could be well divided into two clusters based on 54 DEGs
(Figure 3(a)). In the heatmap, gene expression profiles and
clinical characteristics such as age (≤60 or >60 years), AFP
(≤300 or >300ng/mL), stage (I–IV), and grade (G1–G4)
had significant differences (Figure 3(b)). There was a signif-
icant difference in OS between the two clusters (p < 0:001,
Figure 3(c)).

3.3. Modeling of Prognostic Gene Expression in TCGA
Cohort. In total, 371 HCC samples were matched with the
corresponding patients whose survival records were avail-
able. For the primary screening of the survival-related genes,
Cox regression analysis was used. 10 genes (TOP2A,
CHEK1, EZH2, CDK4, ARNTL2, PPARGC1A, PER1,
TYMS, TIMELESS, and CDK1) met the p < 0:01 criteria
and were, thus, retained for further analysis. Among them,
8 genes (TOP2A, CHEK1, EZH2, CDK4, ARNTL2, TYMS,
TIMELESS, and CDK1) were associated with increased risk
with hazard ratios ðHRsÞ > 1; the other two genes
(PPARGC1A and PER1) were protective with HRs < 1
(Figure 4(a)). Based on the optimum λ value, a 10-gene sig-
nature was constructed by using the least absolute shrinkage
and selection operator (LASSO) Cox regression analysis
(Figures 4(b) and 4(c)). The risk score was calculated as
follows: risk score = ð0:058 ∗ CHEK1 exp:Þ + ð0:38 ∗ EZH2
exp:Þ + ð0:074 ∗ CDK4 exp:Þ + ð0:046 ∗ARNTL2 exp:Þ + ð
−0:14 ∗ PPARGC1A exp:Þ + ð−0:11 ∗ PER1 exp:Þ. The risk
score formula calculated the median score of 371 patients,
which was divided evenly into low- and high-risk subgroups
(Figure 4(d)). In the high-risk group, more deaths and a
shorter survival time were observed than in the low-risk group
(Figure 4(e)). Based on the principal component analysis

1 0.5 0 –0.5 –1

(d)

Figure 2: Expression of the circadian rhythm-related genes (CRGs) and their interactions. (a) Heatmap (green: low expression level; red:
high expression level) of the CRGs between the normal (N, brilliant blue) and the tumor tissues (T, red). (b) Protein-protein interaction
(PPI) network showing the interactions of the CRGs. (c) Calculation of the hub genes in PPI based on CytoHubba plug-in. (d) The
correlation network of the CRGs (red line: positive correlation; blue line: negative correlation. The depth of the colors reflects the
strength of the relevance).
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(PCA) and t-distributed Stochastic Neighbor Embedding
(tSNE), patients with different risk scores were divided into
two clusters (Figure 4(f)). Also, the OS time differed signifi-
cantly between the two groups (p < 0:001, Figure 4(g)). To
evaluate the sensitivity and specificity of the prognostic model,
the time-dependent receiver operating characteristic (ROC)
analysis was used, and it shows that the area under the curve
(AUC) was 0.741 for 1-year, 0.724 for 3-year, and 0.655 for
5-year survival (Figure 4(h)).

3.4. External Validation of the Risk Signature. The normalized
gene expression data from the GEO cohort (GSE14520) of 216
patients with HCC was used as a validation cohort. According
to the median risk score in TCGA cohort, 105 patients in the
GEO cohort were classified as low-risk, while the other 116
patients were classified as high-risk (Figure 5(a)). The results
showed that low-risk patients (Figure 5(b), to the left of the
dashed line) lived longer and had lower mortality than those
in the high-risk group. The separation of the two subgroups
was satisfactory by the PCA and t-SNE (Figure 5(c)). The
Kaplan–Meier analysis indicated a significant difference in
the survival rates between the two groups (p = 0:012,
Figure 5(d)). In the ROC curve analysis of the GEO cohort,
it was found that this model was a good predictor of event out-
come (AUC = 0:625 for 1-year, 0.645 for 3-year, and 0.59 for
5-year survival) (Figure 5(e)).

3.5. Independent Prognostic Value of the Risk Model. The
univariate and multivariate Cox regression analyses were
used to assess whether the risk score derived from the 10-

gene signature model could be used as an independent prog-
nostic factor. The univariate Cox regression analysis indi-
cated that the risk score was an independent factor
predicting poor survival in both TCGA and GEO cohorts
(HR = 2:667, 95% confidence interval (CI): 1.548–4.596
and HR: 1.950, 95%, CI: 1.237–3.072, respectively,
Figures 6(a) and 6(b)). Furthermore, multivariate analysis
of the results showed that the risk score was a significant
prognostic factor for patients with HCC in TCGA cohort
but not in the GEO cohort after controlling for other con-
founding factors (HR = 2:043, 95% CI: 1.115–3.743,
Figures 6(a) and 6(b)). As circadian dysregulation is strongly
associated with the efficacy of cancer chemotherapy [12, 20],
the GSE14520 dataset was divided into transcatheter arterial
chemoembolization (TACE) and surgical resection groups
according to the treatment modalities [21]. The univariate
and multivariate Cox regression analyses were used to assess
whether the risk scores from the genetic signature models can
be used as independent prognostic factors for the patients
with HCC under different treatment modalities. The analyses
showed that the risk score was an independent predictor of
poor prognosis in the TACE treatment group, whereas in
the surgery group, it was not a prognostic factor (TACE
group univariate HR: 2.666, 95% CI: 1.458–4.875 and multi-
variate HR: 2.102, 95% CI: 1.111–3.977, Figures 6(c) and
6(d)). In addition, a heatmap of the clinical characteristics
of TCGA cohort (Figure 6(e)) was generated and differences
between the low- and high-risk subgroups were found in
terms of patient age, alpha-fetoprotein (AFP), stage, and
grade.
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Figure 3: Tumor classification based on the pyroptosis-related DEGs. (a) 371 patients with HCC were grouped into two clusters according
to the consensus clustering matrix (k = 2). (b) Heatmap and the clinicopathologic characters of the two clusters classified by these DEGs
(∗p < 0:05; ∗∗∗p < 0:001). (c) Kaplan–Meier OS curves for the two clusters.
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3.6. Risk Model-Based Functional Analyses. Further, the dif-
ferences in the gene pathways and functions between sub-
groups were explored using the “limma” R-package in
order to extract DEGs by applying the false discovery rate ð
FDRÞ < 0:05 and jlog 2FCj ≥ 1 criteria. A total of 184 DEGs
were identified between the low- and high-risk groups in
TCGA cohort. Within the high-risk group, 77 of these genes
were upregulated, while 107 were downregulated (Table S5).
These DEGs were used to perform the Gene Ontology (GO)
enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses. The GO enrichment analysis

showed that DEGs were mainly associated with the cell
cycle and cell mitotic processes, and the results of KEGG
analysis focused on multiple cellular metabolism-related
and cell cycle-related signaling pathways (Figures 7(a) and
7(b)).

3.7. Analysis of the Metabolism-Associated Pathway
Expression Levels between the Subgroups. After the func-
tional analyses on TCGA cohort, the single-sample gene
set enrichment analysis (ssGSEA) was done to analyze the
metabolism-associated pathway expression levels between

–20 –10 0 10

tSNE1

20

–20

–10

0

10

20

tS
N

E2

2

1

0

–1

–2

–4 –2 0 2

PC1

3

PC
2

Risk
High
Low

(f)

0.00

0.25

0.50

0.75

1.00

10 2 3 4 5 6 7 8 9 10

Time (Years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.001

10 2 3 4 5 6 7 8 9 10

112185 55 30 19 9 7 2 1 1 1
149185 85 60 44 31 19 7 5 3 0

High risk
Low riskRi

sk

Time (Years)
Risk

High risk
Low risk

+
+

(g)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.741
AUC at 3 years: 0.724
AUC at 5 years: 0.655

(h)

Figure 4: Constructing risk characteristics in TCGA cohort. (a) Univariate Cox regression analysis of OS for each DESs with p < 0:01 for 10
genes. (b) LASSO regression of 10 OS-associated genes. (c) Cross-validation adjusted parameter selection for LASSO regression. (d) Patient
distribution based on the risk score. (e) Survival status of each patient (low-risk population: left side of the dashed line; high-risk population:
right side of the dashed line). (f) PCA and t-SNE plot for HCC based on the risk score. (g) Kaplan–Meier curve groups for OS in the high-
and low-risk patients. (h) The ROC curves show the predictive efficiency of the risk score.
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the low- and high-risk groups, with reference to the method
of Zhang et al. [19]. TCGA cohort showed that 34 metabolic
pathway expression levels differed between the two groups,
with 31 metabolic pathway expression levels downregulated
and 3 upregulated in the high-risk group. A total of 33 met-
abolic pathways were altered in the GEO cohort, and those
altered in the high-risk and low-risk groups were consistent
with TCGA cohort, apart from “niacin and nicotinamide
metabolism,” which were downregulated in TCGA cohort.
There was a striking similarity in the changes in the meta-
bolic patterns in different HCC datasets after grouping
according to this risk model (Figure 8).

4. Discussion

The physiological activities of the human body are affected
by the circadian rhythm. However, this process is inter-
rupted in tumors, such as breast and prostate cancer.
Because of circadian disruption, the constitutive aldosterone
receptor (CAR) is activated, leading to cholestasis and tumor
in the liver. This overexpression of CAR ultimately leads to
the progression from nonalcoholic fatty liver disease
(NAFLD) to nonalcoholic steatohepatitis (NASH) and,
eventually, to HCC [16]. In this study, a prognostic model
was constructed, and it was demonstrated that abnormal cir-
cadian rhythm is associated with altered metabolic pathways
of HCC. In the study, the expression levels of 248 genes
known to be related to the circadian rhythm were examined
first in both normal and HCC tissues, and it was found that
54 genes were differentially expressed significantly. Accord-
ingly, based on the consensus clustering analysis of the
DEGs, the clinical characteristics of the two clusters also
showed significant differences. In order to assess the prog-

nostic value of these CRGs further, an additional risk score
model with a 6-gene risk signature was constructed using
Cox univariate analysis and LASSO Cox regression analysis,
which was then validated to perform well in an external
dataset. The functional analyses indicated that the DEGs
between the low- and high-risk groups had altered metabolic
characteristics. In TCGA and GEO datasets, 33 metabolic
pathways with altered expression had the same pattern of
expression in high- and low-risk subgroups.

Epidemiological studies have shown that circadian
rhythm disturbances (e.g., jet lag, shift work, sleep disrup-
tion, and exposure to the light at night) are associated with
increased risk of cancer, including prostate, breast, colon,
liver, pancreatic, ovarian, and lung cancers [22–25]. The
relationship between the dysregulation of the circadian
genes and the development and malignant progression of
HCC has been confirmed by studies in animal models. The
knockdown of PER2 increases c-Myc expression and dis-
rupts clock-controlled pathways and patterns; complete
knockdowns of Cry1 and Cry2 also disrupt the molecular
circadian clock and increase the chemically induced hepato-
carcinogenesis. The analysis of the miRNA profiles in the
liver of the Clock mutant mice shows that Clock-regulated
miRNAs may be involved in cancer development or progres-
sion by controlling genes that are involved in cell prolifera-
tion, invasion, and/or metabolism. These studies suggest
that the normal circadian rhythm has the potential to sup-
press tumors while disrupted circadian rhythm is an impor-
tant risk factor for HCC. Therefore, the intervention of the
circadian rhythm may be an important strategy to prevent
the development of HCC and to design novel treatment
options. In HCC, the interactions of CRGs and whether they
are related to the survival time of the patients remain
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Figure 5: Validation of the risk model in the GEO cohort. (a) Distribution of the patients in the GEO cohort based on the median risk scores
in TCGA. (b) Survival status of each patient (low-risk population: left side of the dashed line; high-risk population: right side of the dashed
line). (c) PCA and t-SNE plot of HCCs. (d) Kaplan–Meier curves were used to compare OS in the low- and high-risk groups. (e) Time-
dependent ROC curves for HCCs.
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Figure 6: Univariate and multivariate Cox regression analyses of the risk scores. (a) Univariate and multivariate analyses for TCGA cohort.
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unknown. Our study discovered that a signature featuring
six CRGs (CHEK1, EZH2, CDK4, ARNTL2, PPARGC1A,
and PER1) could be used to predict the OS of the patients
with HCC. CHEK1, a member of the CHEK family, is a

serine/threonine-specific protein kinase; it is mainly
involved in the coordination of DNA repair and is, there-
fore, an area of great interest in cancer development and
therapy [26]. This gene can affect the downstream
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signaling pathways of TP53 and CHEKs through activa-
tion of ataxia-telangiectasia mutation (ATM)/ataxia-telan-
giectasia and Rad3-related protein (ATR), leading to G2/M
blockade and initiation of DNA repai [27, 28]. This gene
has been shown to be overexpressed in several solid tumors.
The correlation of CHEK1 expression with the tumor grade
and disease recurrence has also been reported, suggesting a
role in tumor development, which may be a result of its reg-
ulatory role in the circadian rhythm [29]. EZH2 (enhancer of
zeste homolog 2) is a member of the Polycomb histone gene
(PcGs) family, which is a group of important epigenetic reg-
ulators that induce chromatin-mediated transcriptional
repression through deacetylation and methylation of histone
H3. EZH2 regulates cell cycle progression, and the dysregula-
tion of EZH2 accelerates cell proliferation and prolonged cell
survival, which may lead to cancer development [30]. It was
shown that EZH2 is a component of the CLOCK-BMAL1

complex, and that EZH2 enhances CRY protein-mediated
transcriptional repression in HCC [31]. The high expression
of EZH2 is associated with poor survival outcomes. The cell
cycle protein-dependent kinases (CDKs) were discovered
first in 1970, and 40 years later, the first small molecule
CDK inhibitors were approved for the treatment of human
cancers. A recent genome-scale clustered regularly inter-
spaced short palindromic repeats (CRISPR)-dCas9 activa-
tion screen in bladder cancer cells showed that CDK4/6
inhibitors bind effectively to a variety of compounds tar-
geting PI3K, AKT, mTOR, FGFR1/2, MEK1/2, VEGFR1/2/
3, PDGFRb, cKIT, and even pan-CDK inhibitors [32]. It
has shown that long-term circadian rhythm disruption pro-
motes proproliferative signaling events that stimulate G1/S
phase progression through CDK4/6-dependent aggregation
of retinoblastoma protein phosphorylation [33]. In this
study, CDK4 showed procancer effects as it was upregulated
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Figure 8: Comparison of the expression levels of metabolism-related pathways ssGSEA. Heatmap of the expression levels of 41 metabolism-
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in the HCC tissues, and then, it further shortened the lifespan
of the patients with HCC as it was enriched in the high-risk
group. ARNTL2 encodes a basic helix-loop-helix transcrip-
tion factor belonging to the PAS (PER, ARNT, and SIM)
superfamily. PAS proteins play an important role in the
adaptation to low atmospheric and cellular oxygen levels,
exposure to certain environmental pollutants and circadian
oscillations of the light and temperature. ARNTL2 is
involved in tumor progression. It is associated with aggres-
sive, metastatic, and invasive colorectal and breast cancers
[34]. ARNTL2 induces complex primary metastatic secre-
tions and makes metastasis self-sufficient in lung adenocarci-
noma [35]. In this study, ARNTL2 was highly expressed in
tumors and predicted a poor prognosis. PPARGC1A encodes
PGC-1α and is a multifunctional transcriptional coactivator;
it is involved in many metabolic processes and has been
associated with several human diseases, e.g., it activates
the transcription factor peroxisome proliferator-activated
receptor-α (PPARα) to enhance fatty acid metabolism
[36]. In addition, PPARGC1A binds the transcription fac-
tors hepatocyte nuclear factor-4α (HNF-4α) and glucocorti-
coid receptor to stimulate gluconeogenesis [37]. It was found
that PPARGC1A is downregulated in the tumor tissues,
and its low expression predicts poor survival, suggesting
its function as a tumor suppressor gene. The situation of
PPARGC1A and PER1 is similar in this study. PER1 is a
member of the Period family of genes and is expressed in a
circadian pattern in the SCN, the primary circadian pace-
maker in the mammalian brain. PER1 is upregulated by
CLOCK/ARNTL heterodimers but then it represses this
upregulation in a feedback loop using PER/CRY heterodi-
mers to interact with CLOCK/ARNTL. Polymorphisms in
this gene may increase the risk of developing certain cancers.
PER1 is the most common clock gene that is implicated in
the endocrine neoplasms; in most cases, their expression is
downregulated in tumoral compared to normal tissues,
including in HCC [38]. In general, 6 genes in the prognostic
model were identified as possible circadian rhythm executors
or promoters in patients with HCC. However, these pro-
moters and executors were not all associated with better
HCC prognosis in this study. How these genes interact with
each other during dysregulation of the circadian rhythm in
HCC remains to be further investigated.

Altered metabolism is a well-recognized hallmark of
cancer [39]. The adverse effects of circadian dysregulation
on hepatic metabolism have been extensively studied. In
fact, more than 50% of liver metabolites have a circadian
rhythm, which is associated with clock gene transcription,
and in the results of the two cohorts, both nucleotide and
sphingolipid metabolism were upregulated in the high-risk
group [15]. Nucleotide metabolism is typically increased in
HCC and predicts the rapid proliferation of tumor cells.
The biosynthesis of purine and pyrimidine requires the par-
ticipation of glutamine, aspartic acid, glycine, and phospho-
ribosyl pyrophosphate. Therefore, inhibition of the urea
cycle (one of the significant pathways of glutamine use) is
also common in HCC because the promoter region of the
urea cycle rate-limiting enzyme, carbamylphosphatase syn-
thetase-I, is highly methylated in HCC, leading to reduced

levels of mRNA expression in the cell lines and tumors,
resulting in increased nucleotide synthesis because of the
elevated glutamine levels [40]. In many studies, sphingoli-
pids including two central bioactive lipids, ceramide and
sphingosine-1-phosphate (S1P), have been shown to cause
apoptosis at elevated ceramide levels and to inhibit apoptosis
at elevated S1P levels. The high expression of S1P has also
been associated with resistance to various tumor drugs, a
phenomenon observed in the TACE treatment group that
may be related to sphingolipid metabolism [41, 42].

5. Conclusions

This study demonstrated that the circadian rhythm is closely
associated with HCC, as most of the CRGs between the nor-
mal and HCC tissues were differently expressed. Moreover,
the score generated from the novel risk signature based on
the six CRGs was an independent risk factor for predicting
OS in both TCGA and GEO cohorts. The DEGs between
the low- and high-risk groups were associated with
metabolism-associated pathway expression levels. Our study
provides a novel gene signature for predicting the regulation
role of the circadian rhythm in patients with HCC and offers
a significant basis for future studies of the relationships
between CRGs and metabolism in HCC.
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