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Abstract

Background: Few existing protein-protein interface design methods allow for extensive backbone rearrangements during
the design process. There is also a dichotomy between redesign methods, which take advantage of the native interface, and
de novo methods, which produce novel binders.

Methodology: Here, we propose a new method for designing novel protein reagents that combines advantages of redesign
and de novo methods and allows for extensive backbone motion. This method requires a bound structure of a target and
one of its natural binding partners. A key interaction in this interface, the anchor, is computationally grafted out of the
partner and into a surface loop on the design scaffold. The design scaffold’s surface is then redesigned with backbone
flexibility to create a new binding partner for the target. Careful choice of a scaffold will bring experimentally desirable
characteristics into the new complex. The use of an anchor both expedites the design process and ensures that binding
proceeds against a known location on the target. The use of surface loops on the scaffold allows for flexible-backbone
redesign to properly search conformational space.

Conclusions and Significance: This protocol was implemented within the Rosetta3 software suite. To demonstrate and
evaluate this protocol, we have developed a benchmarking set of structures from the PDB with loop-mediated interfaces.
This protocol can recover the correct loop-mediated interface in 15 out of 16 tested structures, using only a single residue as
an anchor.
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Introduction

Because so many human diseases are caused by dysregulation of

proteins or protein-protein interactions, the need to experimen-

tally or therapeutically adjust these systems is great. A powerful

tool for probing protein networks is other proteins engineered to

bind particular naturally-occurring target proteins and modify or

illuminate their behavior. To that end, many authors have

introduced computational methods for creating these tool proteins,

including both de novo binding partners and redesigns of existing

interfaces.[1] One modeling suite used for this purpose, and many

others, is Rosetta.[2]

Placing past successes in context, it remains quite challenging to

create binding partners with desired functionality, and even minor

successes are not routine.[3,4] This is because interface design

combines all the challenges of protein design, itself an incompletely

solved problem, with the additional complication of docking

orientation between the two proteins.

The protein design problem requires decisions on how to best search

the sequence space, how (or even if) to best search the backbone

conformational space, and how to combine the two searches

efficiently.[5] In Rosetta, flexible design methods are often only

iteratively flexible: their design protocol runs on a fixed backbone, and

then backbone flexibility is modeled using a fixed sequence. This is

because the algorithmic optimizations necessary to efficiently sample

conformations and sequences preclude sampling both simultaneously.

Recent flexible-backbone design methods modifying protein interfaces

or loops include methods using local backbone minimization [6] and

fragment insertion plus loop closure and design.[7,8]

A second decision must be made when designing new interfaces:

which proteins should interact? The two major methods for

protein interface design include de novo design, which creates an

interface between previously non-interacting proteins, and inter-

face redesign, which modifies the properties of existing interactors

or homologs thereof. De novo designs offer the opportunity to

engineer new functions into the interaction, at the great cost of

having to create the interface from scratch.[6,9,10] Redesigns offer

the opposite tradeoff: there is an interaction in place to start from,

but the designs are restricted to modifying existing functions by

increasing affinity [11–15] or altering specificities [16–18].

Here we propose a new method offering a blend of these strengths

which we call AnchoredDesign. The method has been implemented

as a protocol in the Rosetta3 software suite.[19] The method creates

an interface between an arbitrary (and arbitrarily functional) scaffold

and a target, but it also creates the interface along a known

interacting surface of the target, using information from a preexisting

binding partner. The method accounts for backbone flexibility at the

interface by iterating between loop remodeling and design.

This method requires a known structure of the target complexed

to some binding partner, as well as a structure of the desired

scaffold. The scaffold should have flexible surface loops amenable
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to design, and otherwise be chosen for desirable experimental

characteristics. For example, the fibronectin domain type 3 repeat

10 (10FNIII or FN3) scaffold used by many researchers is an

appropriate design scaffold.[20–25]

The first step of this new method is to create a nascent interface

between the target and the scaffold, as described in Figure 1. A

small sequence-contiguous portion of the target’s known partner is

extracted, and its sequence identity and coordinates are inserted

into a surface loop on the scaffold. This becomes the anchor.

Standard Rosetta loop closure techniques can be used to close the

scaffold’s modified loop.[26] This results in an intermediate

structure containing the target, the scaffold, and a small interface

between them where the scaffold mimics the original binding

partner. It is ripe for flexible redesign to create a real interface

between the partners. Note that the use of this anchor guarantees

that the new designed binder will bind to a surface area of the

target overlapping the original partner’s area. This helps control

the activity of the new binder by ensuring that experimenters know

where it is binding. It also controls for the residue composition of

the target surface as suggested by Lo Conte et al.[27]

Grafting interactions into interfaces is not unknown in the

literature, suggesting that the grafted anchor is likely to function as

hypothesized. Potapov et al. searched for noncontiguous protein

fragments (clusters of residues) from the Protein Data Bank (PDB)

[28] matching the known backbone structure of an interface, and

showed that mutating a new cluster into a pre-existing interface

resulted in the maintenance of stability and specificity.[29] Liu et

al. performed the opposite experiment: they created a new

interface between shape-compatible but nonbinding proteins by

grafting three residues from one interactor’s normal partner onto

the new binding partner.[30]

After creating a nascent interface via grafting, the next step is

flexible redesign. Normally one considers the docking problem

when thinking about designing protein-protein interfaces. Here,

the anchor precludes the use of whole-protein rigid-body motion

as in docking, because this would cause the loss of the anchor.

Instead, loop remodeling of the loop containing the anchor is used

to sample the rigid body space between the proteins, as in Figure 2.

Holding the anchor in its original binding conformation, rigidly

affixed to the target, and remodeling its loop will result in rigid-

body transformations between the target and scaffold. This allows

us to use loop modeling to generate backbone flexibility at the

interface and simultaneously sample possible binding modes of the

scaffold. Other surface loops on the scaffold can be concurrently

sampled to produce further surface complementarity.

For computational methods like these, benchmarking tests both

help develop the protocol and demonstrate its utility. For the

AnchoredDesign protocol, we have assembled a set of 16 protein

structures from the PDB. These structures were chosen on the

basis of having an interfacial loop with an appropriate residue to

serve as an anchor. The protocol can then be tested against these

structures by deleting the conformation of the anchor-containing

loop and using the protocol to predict the proper binding

orientation of the two proteins. This serves as a test of the loop

modeling and interface predictions of the protocol. Here we

present the protocol itself, as used for design or in these

benchmarks, and the results of these fixed-sequence structure

prediction benchmarks.

Figure 1. Anchor insertion. Panel A demonstrates the AnchoredDesign process with a simple cartoon. At left, we start with a known interaction
between a target (cyan) and a natural partner (orange) with a characteristic interaction (the anchor, yellow). In the middle, we graft the anchor into
the scaffold (magenta) to create a rough starting structure. At right, we fill out the scaffold-target interface with the AnchoredDesign protocol. Panel
B demonstrates the process using protein structures for greater clarity (using the same color scheme).
doi:10.1371/journal.pone.0020872.g001
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Methods

AnchoredDesign protocol
The AnchoredDesign protocol is written as an application in the

Rosetta3 software suite, and first released with the 3.3 release. It

was designed from the ground up within the Rosetta3 framework

and thus takes advantage of all the modularity and ease-of-use

offered by that foundation.[19] The protocol uses a multistage

Metropolis Monte Carlo search protocol, with large perturbational

movements in a reduced centroid representation and smaller

refining changes in a higher-resolution fully atomic phase. This

sort of multistage centroid/fullatom protocol is common for

Rosetta protocols.[26,31,32] Conceptually, the centroid phase is

meant to sample conformational space widely and jump over

relatively high energy barriers between conformations, whereas

the fullatom phase is meant to minimize a centroid candidate

structure into its local energy minimum. To accomplish this, the

protocol iteratively samples loop conformations and sidechain

conformations, with interspersed opportunities for design. Figure 3

offers a diagram of program flow summarizing the major steps of

the protocol.

The first phase of the protocol is the centroid sampling phase,

using Rosetta’s reduced-sidechain centroid representation and

scorefunction.[31] Centroid mode reduces the complexity of the

side-chain packing problem while the search function tries to

consider larger changes to the protein structure. The centroid

sampling phase consists of many Monte Carlo cycles of loop

remodeling and minimization. Two types of loop remodeling can

be performed here: perturbation followed by cyclic coordinate

descent closure (CCD) [26,33], or ‘‘kinematic’’ (KIC) loop

remodeling [34,35]. Note that for either case, loop modeling

proceeds slightly differently than previously published to account

for the anchor; see details below. No sidechain optimization is

necessary during centroid-mode perturbation, so after loop closure

the algorithm proceeds directly into gradient minimization.[31]

Backbone torsions at flexible loop positions are minimized to

ensure good loop conformations and to perfect loop closure in the

CCD case.

The second phase of the protocol is the refinement phase, which

uses a fully atomic representation of the proteins. The use of a

fullatom scorefunction, along with smaller-scale changes tested by

Monte Carlo, allows this phase to refine the candidate structure

produced in the perturbation phase. Here, CCD and KIC loop

remodeling are also both available, although the CCD steps are

softened to suggest smaller protein changes (described below).

After each loop closure step, a quick fixed-sequence rotamer

relaxation is performed [36], followed by a gradient minimization.

The design portion of AnchoredDesign is incorporated during the

fullatom phase by performing a sequence design and/or rotamer

repacking on the interface region at user-defined intervals between

loop remodeling cycles. Note that to reduce time spent repacking,

all rotamer rearrangements used in AnchoredDesign feature

automatic detection of the relevant residues: loop residues, their

neighbors, and interface residues are automatically included,

whereas residues outside those regions (the protein cores and distal

surfaces) are not modified during repacking.

Loop modeling for AnchoredDesign. The KIC loop

modeling protocol has been modified slightly from its original

published implementation to allow for the constancy of the

anchor. Normally, KIC solves an equation to determine phi and

psi torsions for 3 loop residues, the pivots. The solutions to the

equation are those torsions that close the loop. KIC also optionally

selects new values for non-pivot torsions.[34] The modifications

used here allow for the anchor positions to be excluded from the

list of allowable pivots and modifiable non-pivot torsions; they do

not otherwise affect the underlying algorithm at all.

CCD loop closure has also been slightly modified to account for

the anchor. Normally, CCD closes a broken loop by iteratively

altering phi and psi angles to attempt to bring the broken loop

ends together.[33] Here, the anchor’s torsions are held fixed

during CCD; it has no effect on the algorithm other than

introducing inflexible regions which act as a particularly long

bond.

Rosetta loop sampling with CCD is normally paired with a

perturbation step which breaks the loop and introduces diversi-

ty.[26] Here, multiple methods are offered for perturbation before

CCD closure. In the perturbation phase, the simplest method

offered is randomization of the phi/psi angles (within Ramachan-

dran constraints) of several residues in the loop. Other options

include several varieties of fragment-based [31] perturbation:

pregenerated fragment sets, automatically generated sequence-

specific fragment sets, or automatically generated sequence-

nonspecific fragment sets are allowed. The former options are

more useful for structure prediction; the latter for design (where

the final sequence is not known during the perturbation phase, so

fragments of varying sequence are appropriate). In the refinement

phase, large loop rearrangements are not desired, so only

randomization of phi/psi angles, within a few degrees and

Ramachandran constraints, is offered as a method of generating

variation before CCD. Fragment insertion is not performed during

the fullatom refinement.

Because AnchoredDesign is an interface design tool, but not

quite a docking tool, it is necessary to explain how loop remodeling

can effect rigid-body sampling without modifying the anchor or

core of either protein. Figure 4 is a Rosetta fold tree diagram

representing an AnchoredDesign fold tree, modeled after those in

Wang et al.[26] Rosetta regularly updates atomic coordinates from

internal coordinates (bond lengths, angles, and torsions) held by

the atom tree and fold tree data structures.[19] The group of

Figure 2. AnchoredDesign treatment of rigid-body and loop
degrees of freedom. These complexes demonstrate how the
AnchoredDesign protocol samples the rigid-body degree of freedom
via loop sampling. These complexes are colored as in Figure 1: cyan for
the target, yellow for the anchor, and magenta for the scaffold. The
flexible residues of the loop containing the anchor are colored red. The
two complexes are related only by the alteration of the backbone
torsion angles of the red positions; the overall viewpoint has not been
rotated (notice the targets are identical). Remodeling of this loop (and
no other changes) produces a large rigid-body like change between the
two partners, while leaving the anchor/target interface and both
protein cores intact. This allows sampling of the target/scaffold
interface without losing the anchor information.
doi:10.1371/journal.pone.0020872.g002
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Figure 3. Protocol flowchart. This flowchart summarizes the AnchoredDesign protocol and process. In the top part, preliminary steps are marked
in green. These steps are primarily manual but can be assisted with AnchorFinder and AnchoredPDBCreator. Initial steps vary depending on whether
the benchmarking case for this paper, or the more general design case, is being addressed. The steps of the AnchoredDesign protocol are shown in
blue and pink. The perturbation steps, performed in centroid mode, are in blue. The refinement steps, performed with a fully atomic representation,
are in pink. In both portions of the protocol, many Monte Carlo cycles are performed; the results here used 500 perturb and 1000 refine cycles, but
optimal cycle counts are best determined on a per-experiment basis.
doi:10.1371/journal.pone.0020872.g003
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atoms moved by the rotation of any one bond is controlled by the

connectivity of the atom tree, which is in turn set by the more

general fold tree. In AnchoredDesign, the fold tree is built in such

a way that the anchor residues are dependent only on the target

protein, the anchor’s loop depends on the anchor, and the scaffold

(which is rigid around the loop) is dependent on the loop. This

setup ensures that conformational changes to the anchor loop

result in relative motion of the two proteins’ cores: rigid-body

sampling. Other surface loops are treated with a standard loop fold

tree as in Wang et al.[26]

Methods for target selection. Because appropriate

interfaces for testing the AnchoredDesign approach are only a

small fraction of the available interfaces in the PDB, an automated

method was created to find interfaces with loops resembling

an anchored loop. This method has been released alongside

AnchoredDesign as AnchorFinder within the 3.3 release. The

AnchorFinder algorithm was written to help find appropriate

benchmarking structures, but it can also suggest useful anchors

against targets of biological interest.

AnchorFinder searches any number of input structures for the

qualities that define an anchored interface. In particular, it

searches for protein regions that are dominated by loop secondary

structure (as determined by Rosetta’s internal implementation of

the DSSP secondary structure algorithm [37]) and contain large

numbers of protein contacts involving two chains (which are

therefore across an interface). AnchorFinder will output a listing of

the DSSP assignment and cross-interface neighbors for each

residue in each structure studied, plus summaries for contiguous

regions that meet user-specified thresholds for length, secondary

structure, and number of cross-interface neighbors. Regions with

many cross-interface neighbors represent candidate anchors.

When using AnchoredDesign to create new interfaces, Anchor-

Finder can help identify plausible anchors, but for small numbers

candidate target/partner structures, manual examination is

sufficient.

To choose our benchmarking set, the highest-ranking results

from AnchorFinder were examined individually. AnchorFinder

was run against the entire PDB (snapshot May 2009). The top

several hundred structures returned by AnchorFinder were filtered

to ensure that the hits were biological dimers and had identifiable

anchors. The remaining hits contained redundant copies of many

biological interactions due to multiple structures of some

interactions, and multiple copies of one interaction within an

asymmetric unit. Single representatives of each biological

interaction were chosen. In general benchmarking systems were

chosen to have a variety of biological sources, structures, and

functions. One benchmarking structure, 2obg [24], was chosen for

its identity as a fibronectin monobody structure without it

appearing in the top fraction of AnchorFinder results: it represents

the sort of structure AnchoredDesign is intended to create.

Choosing anchors, loops, and designable posi-

tions. AnchorFinder’s results strongly suggest candidate

anchors for use with AnchoredDesign. In general, the anchors

used for benchmarking in this work were chosen by examining the

loop residues suggested by AnchorFinder and picking one that

either buried large amounts of surface area across the interface or

choosing a residue with a cross-interface hydrogen bond. For the

purposes of this benchmarking, only single-residue anchors were

allowed, although the algorithm is compatible with longer

contiguous anchors.

For the design case, anchors will be grafted into a different

protein. It is therefore important to choose an anchor with some

internal structure and/or a very well-defined interaction with the

protein partner; examples might be 4 residues of a hairpin turn

binding into a cleft or a phosphotyrosine binding an SH2 domain,

respectively. Another possibility is the use of hot-spot residues

[38,39], including those determined by fast computational tools

[40,41]. Ultimately, anchor choice is a dimension of conforma-

tional space that must be searched by testing different anchors.

Anchors can be evaluated computationally by examining the

scores assigned by Rosetta to models using different anchors.

For the benchmarking presented here, the length for the

remodeled loop containing the anchor was chosen by simply

accumulating residues out from the anchor in both directions until

non-loop secondary structure was encountered. Only this single

loop was varied, although the code is compatible with multiple

(non-anchored) surface loops on both sides of the interface.

In the design case, choice of flexible loops will be dependent on

knowledge of the scaffold. Loops must have an absolute minimum

of three mobile positions for KIC modeling to work.[34] Which

loops and residues should be considered flexible, which scaffold

loop should accept the anchor insert and at what position, and

what length the loops should be must be determined manually by

feeding different inputs to AnchoredDesign and comparing the

quality of the resulting models.

Similarly, the choice of designable positions is dependent on

knowledge of the scaffold. Scaffolds are presumably chosen on the

basis of experimental experience with their tolerance to mutation

Figure 4. Fold tree diagram. This figure, modeled after the fold tree diagrams in Figure 1 of Wang et al. [26], demonstrates the kinematic
connectivity that makes AnchoredDesign work. The arrows trace the direction of folding as Rosetta recalculates 3D coordinates from internal
coordinates, starting at the green root residue. The upper and lower sections represent the target and scaffold respectively. Shaded regions represent
rigid torsions (including the entire target and the core of the scaffold, in this case). Unshaded regions represent mobile torsions: the loops. All jumps
between noncontiguous residues (dotted lines) are held rigid. AnchoredDesign embeds rigid torsions (the anchor, red) inside a loop, and affixes the
anchor to the target by having the anchor’s coordinates depend on the target instead of the scaffold in which the anchor is embedded. The scaffold
is then dependent on the anchor via the mobile loop containing the anchor. Also allowed are arbitrarily placed other loops, handled with the
standard loop fold tree.
doi:10.1371/journal.pone.0020872.g004
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(for example, fibronectin monobodies [22] or diverse other

scaffolds [25]). The protocol assumes, but does not require, that

the designable positions are all on flexible loops on one side of the

interface (one-sided design). It will nevertheless accept two-sided

design problems or non-loop design positions. Designable positions

that are near neither flexible loops nor the interface may fail to be

designed as desired, because the protocol automatically freezes

those portions of the protein.

Creating starting structures. For the benchmarking in this

paper, inputs for AnchoredDesign were generated from the crystal

structure interaction with little modification. Nonprotein atoms

(waters, cryoprotectants, and in some cases ligands) were deleted.

These were passed through a simple structure minimizer to relax

out any clashes with the Rosetta scorefunction. This protocol,

InterfaceStructMaker (Peter Benjamin Stranges, unpublished

protocol) performs a full-protein minimization and packing. It

was determined that this preparatory step had no effect on the

RMSD of the best scoring models (data not shown); its purpose

was to remove data artifacts due to clashes in the crystal structures.

These minimized structures were then fed directly to Anchored-

Design. AnchoredDesign internally deletes unwanted starting

structure information (loop conformation, sidechains) when

performing the benchmarks described in this paper.

In the design case, preparation of AnchoredDesign starting

structures is much more complicated, because the anchor must be

grafted from one structure into another. AnchoredDesign has a

companion protocol also released with Rosetta3.3, AnchoredPDB-

Creator, designed to take care of this process. Two structures

embodying three protein regions are necessary: a structure of the

target protein with the protein containing the anchor bound, and a

structure of the scaffold. Coordinates for the anchor, target, and

scaffold are extracted into separate PDB files and offered as inputs

to AnchoredPDBCreator, along with a file specifying what scaffold

positions form the anchor loop and which positions the anchor

should occupy. AnchoredPDBCreator inserts the anchor into the

scaffold loop, closes the scaffold loop using CCD, and aligns the

anchor (still rigid within the scaffold) with its binding site on the

target. This resulting structure has the anchor and target correctly

oriented (although the scaffold might interact poorly or eclipse the

target), and is suitable as input to AnchoredDesign. The process is

described in the first three subpanels of Figure 1, panel B.

Performing modeling. Workflow for AnchoredDesign is

much like other Rosetta protocols: create and tweak input files, feed

them to a cluster supercomputer to run tens of thousands of

trajectories, then sift through the results. AnchoredDesign requires

starting structures (outlined above), anchor and loop specifications

(also outlined above), optionally a fragments file, and a resfile when

performing design. These file formats and AnchoredDesign command

line options are described in the Rosetta3.3 documentation. Briefly,

options can be used to tweak the intensity of packing, control

scorefunction and minimization settings, and control the length and

temperature of the two Monte Carlo sampling phases.

For the benchmarking case, sufficient results to generate a score

vs. RMSD metric plot are all that is required; this tends to be

several thousand structures.

For the design case, the search space is much larger and the

correct answer is not known, so generating many tens of thousands

of structures for a particular design problem is appropriate. The

protocol cannot perform insertions or deletions, or slide the

anchor’s position within the loops, so testing scaffold variants in

this vein is highly recommended. It is also a good idea to use the

results of one round of modeling to inform the next: if one round

of modeling shows that a particular loop length never results in a

tight interface, throw that series of structures out.

The starting structure produced by AnchoredPDBCreator is

very rough and does not consider scaffold-target interactions. It is

always necessary to run AnchoredDesign on these structures with

sufficient perturbation-phase cycles to get a reasonable alignment

of the two partners. Later modeling beginning from better

structures can run through only the refinement phase (option

AnchoredDesign::refine_only) to find the lowest energy sequences

possible.

The optimum settings for the length of the perturbation and

refinement phases of AnchoredDesign are system-specific. A good

starting point would be 500–1000 perturbation cycles, followed by

twice that many refinement cycles. The option AnchoredDesign::

refine_repack_cycles controls how often a full repacking/design

step is performed during the refinement phase; this option should

not be less than 50 (more than that is designing needlessly

frequently) and should not be more than 1/4 of the total refine

cycles (or design is too infrequent).

Analyzing results. AnchoredDesign results are analyzed

similarly to other Rosetta protocols’. The resulting structures

and scorefile will contain the summed and individual scores, per-

residue, for each term in the Rosetta scorefunction. Choosing the

most likely models means choosing the lowest-scoring structures.

AnchoredDesign also features a series of extra analysis tools to

help highlight the better structures. These tools are implemented

as Movers [19] which allows their analysis to be easily added to

other protocols. Table 1 annotates the scorefile, and Figure S1

annotates the extra analysis output appended to result PDB files.

InterfaceAnalyzerMover examines the quality of the interface in

the final model. Included considerations are the burial of solvent-

accessible surface area (SASA), the energy of binding, and the

number and location of unsatisfied hydrogen bonds in the

interface. These are important because AnchoredDesign optimizes

stability of the complex (total energy), not binding energy.

LoopAnalyzerMover examines the quality of the flexible loops.

It emphasizes the scorefunction terms relevant to loop closure

(standard terms rama, dunbrack, and omega, [31] along with the

chainbreak [26] term. It also prints the torsion angles of loop

residues and the peptide bond distances. These data make it easy

to spot poorly closed loops underpenalized by the Score12

scorefunction. These data are included at the end of the PDB

output, as shown in Figure S1.

The benchmarking presented here also triggers an extra suite of

RMSD analyses which examine the similarity of the result

structure to the correct complex. These include the RMSD fields

in Table 1, and are further discussed in the Results.

Results

Selected models
In order to test the AnchoredDesign protocol, we used the

AnchorFinder protocol to search for protein dimers with naturally-

occurring anchor sequences where a residue of one partner is

deeply buried into the other partner and part of an interfacial

loop. Table 2 lists the structures’ identities along with the anchors

and loops chosen for benchmarking. All anchors are single

residues. Loop length varies from 8 to 16 residues. Represented

structures include homodimers of various functions (1fc4, 1qni,

2qpv, 3dxv, 1u6e, 2bwn, 2hp2, 2wya, 3cgc, 3ean, 1fec), two

antibody/antigen complexes (1jtp, 2i25), one enzyme/inhibitor

complex (1zr0), one engineered binder/target complex (2obg), and

one nonbiological crystal dimer (1dle) chosen as a test of weak

interactions. The crystal structures’ resolution ranges from 1.7–

2.75 Å, and the SASA buried in the interface ranges from 1400 to

11,800 Å2.

Anchored Design of Protein-Protein Interfaces
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Table 1. Annotated scorefile headers.

Metric Purpose

CA_sup_RMSD Whole complex Ca RMSD after superimposition

I_sup_bb_RMSD Interface main chain atom RMSD, after superimposition

ch1_CA_RMSD Chain 1 Ca RMSD without superimposition

ch1_CA_sup_RMSD Chain 1 Ca RMSD with superimposition

ch2_CA_RMSD Chain 2 Ca RMSD without superimposition

ch2_CA_sup_RMSD Chain 2 Ca RMSD with superimposition

loop_CA_sup_RMSD Loop residues’ Ca RMSD with superimposition

dSASA_int SASA buried by the interface

dG_cross Interface binding energy, calculated from residue interactions between chains

dG_cross/dSASAx100 dG_cross, scaled by dSASA_int and a constant factor

dG_separated Interface binding energy, calculated by separating components

dG_separated/dSASAx100 dG_separated, scaled by dSASA_int and a constant factor

delta_unsatHbonds Number of unsatisfied hydrogen bonds in the interface

total_score Weighted, summed score of the scorefunction

LAM_total A sensitive descriptor of loop closure quality

description The trajectory label (e.g., 2OBG_0001)

This table annotates the regions of the scorefile produced by AnchoredDesign. The first column lists metrics useful for analyzing benchmark or designed structures, and
the second lists the meanings of those metrics. Of particular interest are total_score, loop_CA_sup_RMSD (loop RMSD), I_sup_bb_RMSD (IRMSD), and ch2_CA_RMSD
(LRMSD), which provide the metrics used for the other plots and tables in this paper. Scorefile columns not listed here are either scorefunction terms [31,36] or
InterfaceAnalyzerMover metrics not useful for AnchoredDesign.
doi:10.1371/journal.pone.0020872.t001

Table 2. Input structures and accessory data.

PDB Chains Res. (Å) Dimer type SASA (Å2) Anchor Chain Loop Loop length

1dle A/B 2.1 crystal dimer** 2,800 38 B 36–40*** 8

1fc4 A/B 2 homodimer 10,000 74 B 69–79 11

1qni A/B 2.4 homodimer 11,800 408 B 397–411 15

2qpv A/B 2.35 homodimer 2,900 55 B 50–57 8

3dxv A/B 2.21 homodimer 7,900 291 B 288–299 12

1u6e A/B 1.85 homodimer 6,700 86 B 80–89 10

2bwn A/B 2.1 homodimer 8,500 85 B 77–90 14

1jtp M/B 1.9 heterodimer 1,600 104 B 99–108 10

2hp2 A/B 2.7 homodimer 9,500 2306 B 2294–2309 16

2wya B/C 1.7 homodimer 5,900 1009 C 1003–1012 10

2obg A* 2.35 heterodimer 1,600 1080 A 1077–1086 10

2i25 M/O 1.8 heterodimer 1,400 91 O 86–93 8

3cgc A/B 2.3 homodimer 5,400 429 B 421–434 14

3ean A/B 2.75 homodimer 7,900 473 B 467–474 8

1fec A/B 1.7 homodimer 6,400 459 B 456–463 8

1zr0 A/B 1.8 heterodimer 1,400 15 B 10–17 8

This table collects structural parameters for the complexes used in this work, along with chosen parameters like anchor placement. The PDB column identifies the
structure. The chains column identifies which complex within the PDB file was used (several have many complexes in the asymmetric unit). *: 2obg was not crystallized
as a heterodimer; it was expressed as a fusion protein and crystallized as an infinitely domain-swapped polymer.[24] The resolution column contains the reported crystal
structure resolution; all are reasonable. The dimer type column identifies the type of dimer. **: 1dle represents a crystal dimer rather than a biological one, making it a
good test of weak interactions. The SASA column notes the area buried by the interface. The anchor and chain columns together identify the residue used as an anchor.
The loop column identifies which residues (on the same chain as the anchor) were flexible. The loop length column collects the lengths of these loops. ***: 1dle has
residues with insertion codes in the loops, leading to a longer loop than is obvious. The name column identifies the name and function of the protein as listed in the
PDB.
doi:10.1371/journal.pone.0020872.t002
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Overall quality of predictions
The AnchoredDesign protocol was challenged with a bench-

mark where it was given a dimer structure with the rigid-body

orientation, interface side chains, and an interfacial loop’s

conformation deleted. With knowledge of the position and

conformation within the interface of one residue (the anchor) of

the deleted loop, AnchoredDesign was asked to predict the correct

loop structure and rigid-body orientation of the two proteins. Due

to the fixation of the anchor, the backbone degrees of freedom and

rigid-body orientation are treated simultaneously by loop closure

(Figures 2 and 4). Beyond this prediction experiment, two further

experiments were performed to diagnose the source of failed

predictions and provide performance comparisons. In one, the

starting structure’s loop and side chain information is not deleted:

the simulation starts at the correct answer; the test is whether and

how far the result drifts from the correct starting structure. These

are often called ‘‘relaxed natives’’. In the second, the same

information is not deleted, plus the AnchoredDesign protocol is

instructed to skip the broad-sampling centroid perturbation step,

and perform only the high-resolution refinement step. This is a

more conservative calculation of the relaxed native population. If

differences between these two forms of relaxed natives occur, it

indicates that data are being lost during the centroid phase due to

the low resolution of that protein representation.

AnchoredDesign’s prediction of the interface was measured with

three root-mean-square deviation (RMSD) metrics. The first metric

was Ca RMSD of loop residues after superimposition, which gives a

measure of how well the crystal loop was recapitulated. The second

was backbone atom RMSD (after superimposition) of residues

found at the interface, IRMSD, which measures how well the shape

of the interface was recovered. The third metric was Ca RMSD for

all residues on the moving side of the interface, LRMSD. This was

calculated with superimposition on the nonmoving side of the

interface, and thus gives a measure of whether the moving side of

the interface is placed in its proper rigid-body position and

orientation by AnchoredDesign. IRMSD and LRMSD are

approximately equivalent to the metrics used in the communitywide

CAPRI docking prediction experiment for gauging the quality of

docked interfaces.[42] These three RMSD calculations are labeled

loop_CA_sup_RMSD, I_sup_bb_RMSD, and ch2_CA_RMSD in

AnchoredDesign output (Table 1, Figure S1).

Table 3 lists the RMSD metrics for the lowest-score structure

predicted by AnchoredDesign for each input (compared to the

minimized crystal structure used as input). In most cases,

AnchoredDesign produces extremely accurate models for which

each metric is below 1 Å RMSD; exceptions are further discussed

below. Figures 5 and S2 show each of the 16 complexes, including

the minimized crystal structure and lowest-scoring result from

AnchoredDesign. For most cases, the prediction is indistinguish-

able from the correct structure. Note that lowest-scoring is defined

purely by Rosetta’s standard Score12 scorefunction, plus a

chainbreak term used in CCD loop modeling; these weights are

listed in Table S1.

Figures 6, S3 and S4 show score versus RMSD plots for each

structure for each of the three metrics. These plots demonstrate

that AnchoredDesign produces ‘‘funnels’’ for most of these

experiments: all low-energy points are also low-RMSD, and

RMSD rises with energy. This indicates the scorefunction grades

these structures accurately and AnchoredDesign samples possible

structures effectively. To visualize the space which AnchoredDe-

sign samples, Figure S5 shows the result of 100 trajectories for two

PDBs (2obg and 1fc4). The protocol clearly samples many possible

interfaces and rigid body orientations, but is nevertheless able to

determine which is correct.

For most experiments, these predictions required 1 day on 128 2.33

GHz processors per experiment, which produces thousands to tens of

Table 3. RMSD of lowest-scoring models.

PDB Input loop RMSD (Å) Crystal loop RMSD (Å) Input IRMSD (Å) Crystal IRMSD (Å) Input LRMSD (Å) Crystal LRMSD (Å)

1dle 0.09 0.42 0.04 2.24 0.16 1.69

1fc4 0.40 0.43 0.08 0.57 0.08 0.70

1qni 1.99 1.98 0.53 0.94 0.47 1.00

2qpv 0.63 0.68 0.19 0.78 0.23 0.97

3dxv 0.62 0.65 0.14 0.55 0.13 0.60

1u6e 0.13 0.35 0.06 0.59 0.12 0.62

2bwn 1.30 1.35 0.30 0.75 0.29 0.86

1jtp 0.08 0.29 0.07 0.73 0.30 0.97

2hp2 3.43 3.43 1.37 1.52 1.24 1.45

2wya 0.24 0.28 0.06 0.54 0.06 0.88

2obg 0.34 0.36 0.26 0.61 0.58 0.74

2i25 0.11 0.28 0.28 0.61 2.18 2.28

3cgc 2.23 2.26 4.74 4.90 14.16 14.41

3ean 0.06 0.38 0.03 0.91 0.06 0.91

1fec 0.14 0.39 0.03 0.60 0.04 0.72

1zr0 0.17 0.40 0.14 0.47 0.47 1.63

This table summarizes predictions of the AnchoredDesign benchmark. Each value represents the RMSD of the lowest-scoring model produced by AnchoredDesign for
that structure using its standard protocol. The PDB column identifies the structure. The loop RMSD, IRMSD, and LRMSD columns describe the RMSD of the lowest-
scoring prediction against the relaxed input structure. The input columns compare AnchoredDesign’s output to the scorefunction-minimized crystal structures used as
input. The crystal columns compare the same output to the unrelaxed crystal structures. The low values throughout indicate that AnchoredDesign does a good job
recovering native interfaces starting from extended loops. The similarity of the input and crystal columns indicates that the relaxed starting structures are not far from
the crystal structures.
doi:10.1371/journal.pone.0020872.t003
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thousands of trajectories depending on the size of the input structure.

Some experiments required extra computer time to accommodate

larger proteins. Similar quantities of sampling were used for the

relaxed native experiments; only 512 models per structure were

produced for the conservative, fullatom-only relaxed natives.

Sampling errors
The most significant failure in this benchmark is the inability of

AnchoredDesign to predict a correct interface for structure 3cgc.

This structure is of a bacterial Coenzyme A disulfide reduc-

tase.[43] Figures 6, S3 and S4, panel 3cgc, show no low-RMSD

points and no real score discrimination for the prediction

experiment (black points). When the loop is not deleted prior to

prediction, lower score, low-RMSD conformations are created

(red and blue points). This demonstrates that it is not a flaw in the

fullatom scorefunction but rather in sampling: the protocol never

examines a loop resembling the correct loop, but it does give low

scores to correct loops for relaxed natives. The relaxation

experiment (red points), which runs AnchoredDesign as normal

on an intact input loop, can be seen to hop out of the score well for

correct structures and produces a smear of isoenergetic high-

RMSD points. The fact that relaxed natives can lose their correct

conformation implies that the problem may be a combination of

errors. It could be that the low-resolution centroid scorefunction is

unable to recognize the correct structure, and the fullatom phase’s

sampling is insufficient or ineffective in recovering low-RMSD

structures for 3cgc.

Loop conformation errors
Structures 1qni and 2hp2 represent a pair of partial failures.

These two structures score well on IRMSD and LRMSD metrics,

but have relatively poor predicted loop RMSDs. In these two

cases, AnchoredDesign finds and recognizes the correct interface

between proteins without folding the anchor loop correctly.

Figure 7 shows the ten lowest-energy predictions for these two

structures. In each case, all structures have the correct interface,

but the loop itself is not predicted correctly, and does not converge

onto a single prediction. Apparently, the energy well containing

the correctly-bound interface is deep enough that the scorefunc-

tion can find it through minimization of loop degrees of freedom

without accurately sampling the loop itself. Figure S4 indicates

that AnchoredDesign is probably failing to sample the correct loop

in both cases, because the conservative relaxed natives (which

maintain the correct loop conformation) are lowest RMSD and

Figure 5. Best scoring prediction for 8 complexes. This figure demonstrates the relaxed crystal structure input and AnchoredDesign’s lowest-
score prediction for 8 of the 16 structures. The first and third rows show whole structures, and the second and fourth zoom in on the predicted loops.
The nonmoving side of the interface is in green, the actual partner in cyan and the prediction in yellow. The predicted loop is red and the anchor is
white. Structures are labeled with their PDB code in the lower right of each cell. For most structures, the predicted rigid-body placement and loop is
indistinguishable from the relaxed crystal structure; 3cgc (lower left) is the exception. The other 8 structures are shown similarly in Figure S2.
doi:10.1371/journal.pone.0020872.g005
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lowest scoring. This is probably related to the fact that these loops

are longer than most loops in this benchmark (see Table 2,

Discussion). AnchoredDesign’s assignment of varied incorrect

loops as isoenergetic is probably due to the lack of nearby steric

restraints. The 1qni loop is mostly solvent-exposed, meaning that

many solutions are possible. The 2hp2 loop borders a ligand

absent during the modeling, freeing volume which then allows for

many solutions.

Rigid body placement errors
Table 3 shows that the three metrics are slightly inconsistent for

structure 2i25, a shark antibody bound to lysozyme.[44]

Specifically, the loop RMSD and IRMSD metrics indicate a

correct solution, while the LRMSD metric indicates a deviation.

Examination of this structure (Figure 5, panel 2i25) shows that the

interface and the loop are nearly the same set of residues: the

CDR3 loop of the antibody. The relatively elongated antibody

fold and the presence of a C-terminal tail pointing away from the

interface amplify tiny errors in loop structure between the interface

and antibody core to produce a relatively large displacement of the

opposite side of the antibody. The prediction shows clearly that

AnchoredDesign is correct despite the slightly high LRMSD.

Comparison of loop closure methods
To test whether CCD or KIC loop closure was more

appropriate for AnchoredDesign, all experiments were repeated

using only CCD or KIC loop remodeling. Three general trends

were found. First, AnchoredDesign with only CCD sampling is

Figure 6. IRMSD versus score plots. This figure shows score versus IRMSD plots for each of the 16 structures. RMSD was calculated between the
relaxed crystal structure (input) and AnchoredDesign’s output. Plots are labeled with their PDB ID in the lower right of each cell. Black points are
predictions, red points are relaxed native trajectories, and blue points are conservative relaxed native trajectories which skipped the centroid phase
(see main text). Blue points may lie under red points, and red points may lie under black points. Some high-score points are out of view on all plots;
all low-score points are present. On the RMSD (X) axis, the first, second, and third tic marks represent 1, 2.5, and 5 Ångstroms. Some plots are zoomed
in beyond 5 or 2.5 Ångstroms and fewer tics appear.
doi:10.1371/journal.pone.0020872.g006
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usually slower than AnchoredDesign with only KIC sampling; the

default protocol using both falls in the middle (data not shown).

Second, for a few structures (2obg and 2i25), more trajectories

were required with KIC sampling to get results equivalent to CCD

or combined sampling. Finally, all three methods produce results

of equivalent qualities, as shown in Table 4. We also found that

structure 2bwn, which can be seen in Figures 6, S3 and S4 to

rarely sample the correct conformation, samples the correct

conformation even less efficiently with only one style of loop

remodeling. Taken together, these results imply that the default

protocol, using both methods, is most appropriate for the design

case where the correct structure is not known. KIC-only closure

offers a speed benefit but may not work as well on all structures.

Effects of anchor displacement
To test how sensitive our results were to the exact position of the

anchor, we performed an experiment where the anchor was

randomly displaced from its correct position. The protocol was

modified to allow the anchor to move freely, to allow relaxation of

clashes introduced by the random displacement. The anchor was

gently constrained to its original position to prevent these initial

clashes causing a total ejection of the anchor. Table S2 shows that

AnchoredDesign is able to correctly predict the interface in most

cases in this modified experiment. This demonstrates that

AnchoredDesign is not hypersensitive to the exact starting

conformation at the interface; small errors and flexibility in

anchor placement do not pose a problem.

Summary of results
Overall, these results are very encouraging for AnchoredDesign.

Most structures tested are predicted with a very high level of

accuracy, as seen in Figure 6 and Table 3. Note that none of the

IRMSD versus score plots in Figure 6 demonstrate false funnels

(there are no populations of low-energy, high-RMSD points). This

indicates a lack of scoring failures, where incorrect structures are

scored better than correct structures. Figure 6 also indicates that

sampling failures are rare: only one case (3cgc) has no sub 2.5 Å

RMSD points, and most cases have many sub-1 Å interface

Figure 7. Poorly predicted 1qni and 2hp2 loops. This figure
shows the insufficiency of AnchoredDesign’s loop predictions for 1qni
and 2hp2. In gray is the nonmoving side of the interface and in black is
the correct structure. Each of the ten colors represents the loops of one
of the top ten predictions by lowest energy. The predictions’ protein
cores are green. Notice that the loops themselves do not converge, but
that the rigid-body placement and interface as a whole is correct (the
green and black portions are overlaid towards the top of each panel).
doi:10.1371/journal.pone.0020872.g007

Table 4. Comparison of loop closure methods.

RMSD (Å) for default protocol RMSD (Å) for CCD protocol RMSD (Å) for KIC protocol

PDB loop IRMSD LRMSD loop IRMSD LRMSD loop IRMSD LRMSD

1dle 0.09 0.04 0.16 0.25 0.10 0.17 0.11 0.10 0.39

1fc4 0.40 0.08 0.08 0.34 0.09 0.12 0.50 0.11 0.10

1qni 1.99 0.53 0.47 2.85 0.60 0.56 2.21 0.48 0.43

2qpv 0.63 0.19 0.23 0.66 0.20 0.30 0.34 0.11 0.24

3dxv 0.62 0.14 0.13 0.51 0.13 0.12 0.78 0.20 0.18

1u6e 0.13 0.06 0.12 0.17 0.05 0.09 0.09 0.05 0.09

2bwn 1.30 0.30 0.29 1.77 0.40 0.58 1.80 0.36 0.39

1jtp 0.08 0.07 0.30 0.20 0.11 0.21 0.19 0.12 0.42

2hp2 3.43 1.37 1.24 4.56 1.60 1.44 4.68 1.43 1.28

2wya 0.24 0.06 0.06 0.71 0.14 0.12 0.12 0.02 0.03

2obg 0.34 0.26 0.58 0.45 0.33 1.05 0.47 0.36 0.70

2i25 0.11 0.28 2.18 0.22 0.40 3.17 0.11 0.24 2.00

3cgc 2.23 4.74 14.16 3.08 19.38 56.97 2.66 6.63 21.68

3ean 0.06 0.03 0.06 0.06 0.02 0.04 0.07 0.03 0.06

1fec 0.14 0.03 0.04 0.14 0.03 0.02 0.11 0.02 0.03

1zr0 0.17 0.14 0.47 0.10 0.07 0.70 0.06 0.04 0.20

This table demonstrates the rough equality of results from KIC, CCD, and combined loop sampling. The default protocol columns are the same as in Table RMSD; the
CCD and KIC columns were generated using either loop modeling type alone. Each column represents one of the RMSD metrics described in the Results. Each of the
loop modeling choices is broadly equivalent. Notice that structure 3cgc has in lower RMSDs under the combined protocol than either loop sampling type alone; this is a
falsely optimistic interpretation because AnchoredDesign is never correctly predicting 3cgc under any of these protocols. The structures produced for 3cgc are
isoenergetic and it is coincidental that the combined protocol happens to have lower RMSDs.
doi:10.1371/journal.pone.0020872.t004
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RMSD predictions. The few failures of the protocol can be

attributed with some confidence to issues in the input (missing

ligands, loop placement and length) rather than problems with the

protocol itself. Additionally, the protocol is robust against small

errors in anchor placement.

Discussion

The novel AnchoredDesign protocol described in this paper is

capable of predicting the proper conformation of loop-mediated

interfaces, as demonstrated by its benchmarking performance

against 15 of 16 structures. In these predictions, AnchoredDesign

is able to assemble one fixed, correct backbone with another

mostly fixed, mostly correct backbone by knowing one point of

contact and performing loop modeling to search rigid-body and

loop conformational space. AnchoredDesign’s success should not

come as a surprise: Rosetta and many other docking protocols

have been proven to perform very well in fixed-backbone docking

from bound backbones.[32,42,45] Rosetta has also succeeded at

docking with loop remodeling.[26] That protocol was similar in its

degrees of freedom to the one presented here, but different in its

treatment of those freedoms. Recently, Rosetta-based docking

algorithms were shown to correctly predict a trypsin/inhibitor

complex like 1zr0 [46]; CAPRI Target 40, which Rosetta

predicted at the highest level of accuracy.[47] We recently used

AnchoredDesign to model an unknown interface between a

fibronectin monobody and SH3 domain target, using a canonical

polyproline binding interaction as an anchor.[48] We found that

AnchoredDesign’s models of fluorophore-tagged protein produced

results consistent with experimental fluorescence.

The total (3cgc) and partial (1qni, 2hp2) failures of Anchor-

edDesign in this benchmark all share a common thread: these tests

have loops longer than other, better-predicted complexes. These

three tests have the longest loops at 14, 15, and 16 residues,

respectively. Structure 2bwn, with a 14-residue loop, represents a

borderline success. The lowest-energy structures are low in

RMSD, but they are quite rare: careful examination of Figures 6,

S3 and S4 (panel 2bwn) reveals only two low-energy points (both

also low-RMSD) for structure 2bwn. For the other 12 structures

that are clearer successes, the loops are 8, 10, or 12 residues. Loops

were chosen not based on length but rather local structure

characteristics: the loop length is the length of the loop in the

native structure, chosen by extending from the anchor out to the

closest sheet or helix. This dependence of result quality on loop

length is not surprising; other authors have found similar

dependencies with Rosetta’s loop modeling protocols. The KIC

protocol was proven to work well on loops of length less than 13

residues [34] and Rosetta’s other loop prediction techniques also

work better on loops shorter than 13.[49]

Benchmarking successes and failures aside, the purpose of

AnchoredDesign is not to provide another docking tool to work on

known interfaces; it is to provide an interface design tool for the

creation of new interfaces. This work demonstrates the ability of

AnchoredDesign to address the flexible-backbone interface

prediction aspect of the interface design problem. A necessary

ingredient not tested here is the design aspect of AnchoredDesign,

present in the protocol but not showcased by this benchmark.

Known-structure benchmarking of this variety is not capable of

testing both backbone flexibility and design quality at the same

time: there is no way to know that the natural protein is the best

possible structure and sequence at the interface, and so there is no

reason to believe flexible-backbone design will converge to

nature’s solution. Fortunately, Rosetta has also proven to be very

effective at the design problem.[6,8,36,50] The anchor displace-

ment experiment suggests that in the design case, small

displacements and rotations at the anchor position could be

searched to increase the probability that designable interfaces are

sampled.

A complete test for the AnchoredDesign protocol will be a full

pass from separated target and scaffold starting structures, through

computational prediction of a binding sequence, to experimental

verification that the model is correct.

Supporting Information

Figure S1 Annotated AnchoredDesign results. This text

represents excerpts from a PDB file result from an AnchoredDe-

sign run. Vertical or horizontal ellipses (…) indicate where text has

been excised for space or section boundaries. As in most PDB files,

there are many thousands of ATOM records that compose the

bulk of the file (A). The next section is the Rosetta-standard score

section, listing the whole-structure and per-residue scores for all

scorefunction terms. After B comes the output from Loop-

AnalyzerMover, including per-residue listings for several statistics

(along with an annotation); C demarcates skipped residue lines.

The utility of LoopAnalyzerMover is in finding small loop errors;

for example residue 322 has a slightly longer peptide bond (1.339

Å, pbnd_dst) than the Rosetta standard 1.329 Å. Section D

includes the protein sequence (useful in design mode) followed by

output from InterfaceAnalzyerMover. This includes a listing of

residues with unsatisfied, buried hydrogen bonds near the interface

(clipped by E) and PyMOL selections of interface residues (clipped

by F). The file ends with a long list of added statistics, which also

appear in the scorefile (clipped by G) (see also Table 1).

(EPS)

Figure S2 Best scoring prediction for 8 complexes. This

figure demonstrates the relaxed crystal structure input and

AnchoredDesign’s lowest-score prediction for 8 of the 16

structures. The first and third rows show whole structures, and

the second and fourth zoom in on the predicted loops. The

nonmoving side of the interface is in green, the actual partner in

cyan and the prediction in yellow. The predicted loop is red and

the anchor is white. Structures are labeled with their PDB code in

the lower right of each cell. For most structures, the predicted

rigid-body placement and loop is indistinguishable from the

relaxed crystal structure. The other 8 structures are shown

similarly in Figure 5.

(TIF)

Figure S3 LRMSD versus score plots. This figure shows

score versus LRMSD plots for each of the 16 structures. RMSD

was calculated between the relaxed crystal structure (input) and

AnchoredDesign’s output. Plots are labeled with their PDB ID in

the lower right of each cell. Black points are predictions, red points

are relaxed native trajectories, and blue points are conservative

relaxed native trajectories which skipped the centroid phase (see

main text). Blue points may lie under red points, and red points

may lie under black points. Some high-score points are out of view

on all plots; all low-score points are present. On the RMSD (X)

axis, the first, second, and third tic marks represent 1, 2.5, and 5

Ångstroms.

(TIF)

Figure S4 Loop RMSD versus score plots. This figure

shows score versus loop RMSD plots for each of the 16 structures.

RMSD was calculated between the relaxed crystal structure (input)

and AnchoredDesign’s output. Plots are labeled with their PDB ID

in the lower right of each cell. Black points are predictions, red

points are relaxed native trajectories, and blue points are
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conservative relaxed native trajectories which skipped the centroid

phase (see main text). Blue points may lie under red points, and

red points may lie under black points. Some high-score points are

out of view on all plots; all low-score points are present. On the

RMSD (X) axis, the first, second, and third tic marks represent 1,

2.5, and 5 Ångstroms. Some plots are zoomed in beyond 5 or 2.5

Ångstroms and fewer tics appear.

(TIF)

Figure S5 2obg and 1fc4 sampling. This image shows the

range of sampling in 100 convenience-sample result structures

from the standard protocol. Panel A contains 100 predictions for

PDB 2obg, and panel B contains the correct 2obg structure for

comparison. Panels C and D contain the same for the 1fc4 system.

In each panel, the fixed side of the interface is at the bottom in

green and the spread of possible docking orientations are across

the top in a rainbow of colors. It can be seen that many possible

interfaces and rigid body degrees of freedom are sampled.

Furthermore, this sample represents result structures; many more

orientations are sampled within a trajectory but rejected by Monte

Carlo or superseded by better structures.

(TIF)

Table S1 AnchoredDesign scorefunction. This table lists

the Rosetta scorefunction terms used in the benchmarking

experiments for AnchoredDesign. All terms and weights except

chainbreak are the standard Score12 terms used for many Rosetta

experiments. Chainbreak is used with CCD loop modeling; the

weight of 2 was determined empirically and can be modified by an

AnchoredDesign command line flag.

(DOC)

Table S2 Effects of anchor displacement. This table lists

the RMSD metrics (see results) for both the standard and anchor-

displaced AnchoredDesign benchmarking experiment. The ‘‘stan-

dard’’ columns duplicate Table 3 for ease of reading; the

‘‘displaced’’ columns list the values from this new experiment.

To produce displacement, the alpha carbon of the anchor residue

(and accordingly, all other residues in the moving side of the

interface) was translated to a random position within one

Ångstrom in x, y, and z (an 8 square-Ångstrom cube) of its

original position. To relax possible clashes caused by this

displacement, the anchor was allowed to move instead of being

held in its original position. It was gently constrained to its correct

position using constraints were automatically generated between

the anchor position’s alpha carbon and the closest four alpha

carbons across the interface. Each constraint was scored by a

harmonic potential weighted to produce a score penalty of half a

unit at 1 Ångstrom deviation. For comparison, total protein scores

for these systems are in the range of hundreds to thousands, so half

a score unit is weak.

(DOC)
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