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Abstract: Ovarian Cancer is the fifth most common cancer in females and remains the most lethal
gynecological malignancy as most patients are diagnosed at late stages of the disease. Despite initial
responses to therapy, recurrence of chemo-resistant disease is common. The presence of residual
cancer stem cells (CSCs) with the unique ability to adapt to several metabolic and signaling pathways
represents a major challenge in developing novel targeted therapies. The objective of this study is to
investigate the transcripts of putative ovarian cancer stem cell (OCSC) markers in correlation with
transcripts of receptors, transporters, and enzymes of the energy generating metabolic pathways
involved in high grade serous ovarian cancer (HGSOC). We conducted correlative analysis in data
downloaded from The Cancer Genome Atlas (TCGA), studies of experimental OCSCs and their
parental lines from Gene Expression Omnibus (GEO), and Cancer Cell Line Encyclopedia (CCLE). We
found positive correlations between the transcripts of OCSC markers, specifically CD44, and glycolytic
markers. TCGA datasets revealed that NOTCH1, CD133, CD44, CD24, and ALDH1A1, positively and
significantly correlated with tricarboxylic acid cycle (TCA) enzymes. OVCAR3-OCSCs (cancer stem
cells derived from a well-established epithelial ovarian cancer cell line) exhibited enrichment of the
electron transport chain (ETC) mainly in complexes I, III, IV, and V, further supporting reliance on
the oxidative phosphorylation (OXPHOS) phenotype. OVCAR3-OCSCs also exhibited significant
increase in CD36, ACACA, SCD, and CPT1A, with CD44, CD133, and ALDH1A1 exhibiting positive
correlations with lipid metabolic enzymes. TCGA data show positive correlations between OCSC
markers and glutamine metabolism enzymes, whereas in OCSC experimental models of GSE64999,
GSE28799, and CCLE, the number of positive and negative correlations observed was significantly
lower and was different between model systems. Appropriate integration and validation of data
model systems with those in patients’ specimens is needed not only to bridge our knowledge gap
of metabolic programing of OCSCs, but also in designing novel strategies to target the metabolic
plasticity of dormant, resistant, and CSCs.
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1. Introduction

Ovarian cancer (OvCa) is the fifth most common cancer in females and remains the most lethal
gynecologic malignancy in the present day [1]. The five-year survival rate of women diagnosed
with early localized disease is over 90%, but drops precipitously when diagnosed at stages III or
IV [1]. The standard of care clinical management for OvCa includes debulking surgery followed
by adjuvant chemotherapy or neoadjuvant chemotherapy followed by surgery [2]. Despite initial
responses to chemotherapy, recurrence of chemo-resistant disease is encountered in almost 75% of
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patients with OvCa [2]. Recurrence has been attributed to suboptimal resection and the presence of
residual chemo-resistant OCSCs [3,4] that hold the unique ability to adapt to environmental, metabolic,
immunological, and pharmacological cues. While CSC clones may carry identical genetic signatures,
increasing evidence has shown significant intra-clonal heterogeneity [5,6]. For example, some subsets of
CSCs are maintained in a quiescent non-proliferative state in G0 phase, and upon environmental stimuli,
may escape to reenter the cell cycle [7–10]. Of note, cellular quiescence is not a passive state, but rather
is highly regulated by several pathways enabling CSCs swift reactivation [11–13]. The activated CSC
subsets can undergo a phenotypic switch to a more proliferative epithelial-like state [14] accompanied
by a metabolic shift towards increased aerobic glycolysis, OXPHOS, fatty acid oxidation (FAO), and
glutaminolysis [15,16]. Active CSCs can metabolize glucose via the pentose phosphate pathway (PPP),
producing an abundance of reduced NADPH and macromolecules that serve as the energetic building
blocks needed for increased proliferation. Several factors affect this metabolic switch [17]. For example,
hypoxic conditions favor a more undifferentiated CSC state with reduced proliferation and decreased
cell-fate commitment [18]. Despite the fact that quiescent CSCs possess higher concentrations of ATP
than their differentiated counterparts in solid tumors, they are less glycolytic [19,20]. Additionally,
in glucose-deprived conditions, CSCs shift to a quiescent state and depend on OXPHOS for ATP
production. Due to the extensive spatial and temporal heterogeneity of glucose, glutamine, and oxygen
levels in the tumor itself, CSCs are forced to exhibit high metabolic plasticity to meet the increased
demands of proliferation and metastasis [21]. Hence, OCSCs reprogram their metabolic and signaling
machinery to maximize their survival and re-populate the tumor bulk [3]. This intrinsic ability of OCSCs
to switch between different energy sources is viewed as “metabolic plasticity” and continues to pose as
a challenge in cancer treatment [4]. Since OCSCs have a pluripotent undifferentiated phenotype, it is
widely accepted that they exhibit metabolic plasticity and can switch between glycolysis, TCA cycle, FAO,
glutaminolysis, and OXPHOS [22]. Importantly, oncogenes as Protein Kinase B (AKT), Hypoxia-Inducible
Factor 1-alpha (HIF-1α), and tumor suppressors as p53 and Phosphatase and Tensin Homolog (PTEN)
have been shown to play key roles in metabolic programing in OCSCs [23].

CSCs have been long established in hematologic malignancies; the first reports of CSCs in solid
tumors were published in 2003 [24], demonstrating that breast CSCs exhibiting CD44highCD24low

cell surface markers isolated from metastatic tumors were able to self-renew and re-establish tumors
when injected in immune-deficient mice [24]. In addition to CD44 and CD24, these CSCs expressed
the transcriptional machinery associated with epithelial to mesenchymal transition (EMT), including
Snail Family Transcriptional Repressor 1 (SNAI1/SNAIL), Snail Family Transcriptional Repressor
2 (SNAI2/SLUG), Twist-related protein 1 (TWIST1), and Zinc Finger E-Box Binding Homeobox 1
(ZEB1) concomitant with down-regulation of the epithelial marker E-cadherin and upregulation of
mesenchymal markers, N-cadherin and vimentin [25]. Since these initial studies, CSCs have been
reported to express stem cell surface markers as CD117/KIT as well as AC133, the epitope of CD133. [26].
Interestingly, several reports indicated that during differentiation, there is a pronounced decrease in
the transcript and protein levels of AC133, but not of CD133 itself [27]. Transcription factors that
are implicated in embryonal, hematopoietic, endothelial and neuronal stemness, and differentiation
such as SRY (sex determining region Y)-box 2 (SOX2), POU domain, class 5, transcription factor
1/Octamer-binding transcription factor 4 (POU5F1/OCT4), Nanog homeobox (NANOG), and Notch
homolog 1 (NOTCH1) have also been identified in CSCs [28]. Moreover, aldehyde dehydrogenase
1 enzyme (ALDH1), specifically its isotype ALDH1A1, has been recently identified as a useful CSC
marker for further enrichment of subpopulations expressing one or more of the aforementioned stem
cell markers [29]. It is noteworthy that the expression of CSC markers does not always correlate with
disease stage or clinical outcome in many cancers due to their expression in small subpopulations or
due to technical variations in measuring the expression of these markers [29].

OCSCs were first identified by Bapat and colleagues in 2005 in an experimental model system as a
small subset of the cancer cells associated with sustained self-renewal, ability to drive tumor growth,
metastatic dissemination, and chemo-resistance [30]. OCSCs have also been reported to express CSC
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markers that not only serve as markers of stemness, but were also implicated in different aspects of
tumor growth, invasiveness, metastasis, chemo-resistance, and recurrence [31].

Most reports of OCSCs relied on in vitro phenotypic behavior, specifically their ability to form
spheroids that express one or multiple CSC markers, and their resistance to the standard of care therapy.
Chemo-resistant OvCa cells were also reported to exhibit the unique ability to form spheroids in vitro
and express CSC markers as CD24, CD44, cKit/CD117, PROM1/CD133, ALDH1A1, SOX2, NANOG,
POU5F1/OCT4, and NOTCH1 as well as multi-drug resistance markers [10,31–37]. Notably, the
expression of markers of OCSCs does not depend on the OvCa subtype, but rather on environmental
cues [38] as evidenced by varying expression of these markers in OCSC subpopulations under different
in vitro cell culture conditions, along with the expression of distinctive transcriptomic signatures [38].

Several studies reported the signaling pathways implicated in the maintenance of cancer cells
stemness. However, the metabolic pathways associated with the regulation of stemness are in infancy.
CSCs were believed to exhibit the same metabolic programing as non-cancer stem cells, however,
recent reports indicated that CSCs rely on multiple metabolic pathways depending on the cancer
type, environmental cues, and the experimental model system that induces and/or supports the CSC
phenotype [16,39,40]. The goal of this study is to unravel the correlations between putative stem cell
markers with perturbed metabolic pathways in OvCa cells, OCSC model systems, as well as in patients’
tumors with the ultimate goal of bridging the knowledge gap in metabolic programing of OCSCs
which can serve to guide researchers and physicians in developing and testing model systems and
therapeutics targeting recurrent and resistant OvCa.

2. Material and Methods

2.1. Microarray Extraction

Gene expression profiles of two studies of OCSC GSE28799 [41] and GSE64999 [42] with
platform information of GPL570 and GPL17077, respectively, were extracted from Gene Expression
Omnibus (GEO). Both included ovarian cancer spheroids and their parental cells. GSE28799
included OVCAR3-derived spheroids and their parental OVCAR3 in triplicates. GSE64999 included
undifferentiated spheroids and their parental differentiated spheroids in quadruplicates. Studies were
selected using keywords: ovarian cancer and stem cells. Only data from studies with 3–4 biological
replicates were used for analysis.

2.2. Data Analysis

The differential expression of the OCSCs markers and the enzymes involved in the metabolic
pathways in OCSCs and their parental cells was analyzed by the multiple t-test with Holm–Sidak
method, and each gene was analyzed individually between the two groups, without assuming
a consistent SD with p ≤ 0.05. Data of the OvCa cell lines were downloaded from the Broad
Institute Cancer Cell Line Encyclopedia (CCLE) portal (https://portals.broadinstitute.org/ccle/) and
were similarly analyzed. The transcripts of OCSC markers and metabolic enzymes were correlated
in the OCSC populations using Pearson’s correlation. All analyses were performed using GraphPad
Prism 7.0 (San Diego, CA, USA). Correlations of the genes from The Cancer Genome Atlas (TCGA)
data were performed using Gene Expression Profiling Interactive Analysis (GEPIA) web tool (http:
//gepia.cancer-pku.cn/) [43]. Bar graphs representing the prevalence of positive and negative correlations
were generated in Microsoft Excel.

3. Results and Discussion

3.1. Correlation Between Putative OCSCs Markers

First, we sought to determine whether the various OCSC markers correlate with each other in
patients’ tumors at the transcript level. Correlation analysis of TCGA data using GEPIA web tool

https://portals.broadinstitute.org/ccle/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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revealed that CD44 transcripts significantly correlated with other putative OCSCs markers SOX2,
NOTCH1, OCT4/POU5F1, ALDH1A1, but not with CD24, CD117/KIT, CD133/PROM1, or NANOG
(Figure 1A). It should be noted that CD44 contains over one hundred splice variants and is the
most ubiquitous marker of CSCs. While not all CD44 variants have been correlated with cancer
stemness, several prominent variants, including CD44v6 and CD44v8-10 were upregulated in a variety
of epithelial malignancies, including ovarian cancer [44,45]. The presence of CD44v8-10 correlated
strongly with transition of OCSCs to an epithelial phenotype in ascites while CD44v6 played a role in
PI3K/AKT and MAPK pathways, and hence led to enhanced peritoneal dissemination [37,44,46,47].
Significant positive correlations were observed between NOTCH1 and CD133/PROM1 and CD24,
between CD117/KIT and ALDH1A1, and between SOX2 and NANOG (Figure S1). Interestingly,
modeling the interactions of these OCSC markers using STRING protein-protein interaction web tool,
predicted interactions based on experimental evidence between NOTCH1, SOX2, OCT4, NANOG,
CD117, and CD133; whereas CD44 connected with drug resistance marker ABCB5 (Figure 1B).Cancers 2020, 12, x 5 of 31 
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Figure 1. (A) Pearson’s correlation of CD44 with other ovarian cancer (OvCa) stem cell (OCSC) markers.
(B) Predicted protein-protein interactions of OCSC markers using STRING web tool.

Next, we analyzed data of publicly available datasets from studies that compared OCSCs with their
parental cells. In a study that characterized OCSCs from OVCAR3 cell line, GSE28799 [41], we found that,
consistent with the original report, CD44, CD24, CD117/KIT, CD133/PROM1, ALDH1A1, and SOX2 were
significantly upregulated in OVCAR3 spheroid- derived stem cells compared to their parental OVCAR3
cells. No significant changes were detected in OCT4/POU5F1 and NANOG, however, NOTCH1
expression was significantly down-regulated in spheroid-derived OCSCs compared to parental
OVCAR3 cells (Figure 2A). In another study GSE64999 [42], CSC-related features of established serially
diluted spheroid cells were examined in vitro under serum-containing and CSC culture conditions (will



Cancers 2020, 12, 1267 5 of 27

be referred to thereafter as differentiated and undifferentiated OCSCs, respectively). In this study [42],
differentiated spheroids cultured in the presence of serum-containing media underwent epithelial
differentiation with epithelial-like morphology and reduction of stem cell markers ALDH1A1 and
SOX2 compared to parental undifferentiated spheroids cultured in stem cell media. Further analysis of
the associated GSE64999 dataset confirmed the significant upregulation of ALDH1A1 and SOX2 but
not the other putative OCSCs’ markers (Figure 2B).
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Figure 2. Expression of OCSC markers in OvCa stem cells and their parental cells. Bars represent mean
± SEM of the relative mRNA expression of the indicated OCSC markers in (A) OVCAR3 stem-cells vs.
their parental cells (n = 3 each) in GSE28799, and (B) differentiated vs. undifferentiated OCSCs (n = 4
each) in GSE64999. Significance was determined using multiple t-test and Holm–Sidak method with
each row analyzed individually with p < 0.05, without assuming a consistent SD.

3.2. Correlation between OCSCs Markers and Glycolysis

Glycolysis is an oxygen-independent metabolic pathway that occurs in the cytosol, generating
ATP from the conversion of glucose into pyruvate. Glycolytic metabolic reprogramming is critical for
the maintenance of CSCs and is associated with cancer progression and chemo-resistance [48]. OCSCs
share a similar pattern of glycolytic events with CSCs in cancers of the brain, breast, lung, liver, and
bone, that they significantly increase their glucose uptake and lactate production compared with their
non-CSC counterparts [49–51].

We first compared the expression of the enzymes involved in glycolysis in OCSCs and their
parental cells in both GSE28799 and GSE64999. We found that the glucose transporter SLC2A1,
Hexokinase 1 (HK1), and pyruvate dehydrogenase kinase 1 (PDK1) were significantly upregulated in
OVCAR3 spheroid-derived OCSCs compared to their parental OVCAR3 cells (Figure 3A). In contrast,
there was no significant difference in glycolytic enzymes between undifferentiated and differentiated
spheroids in GSE64999 (Figure 3B). There was a general trend of positive correlations between OCSC
markers and glycolytic enzymes in OVCAR3-spheroids OCSCs compared to their parental OVCAR3.
CD44 and CD24 exhibited significant positive correlation with HK1 and phosphoglycerate kinase 1
(PGK1). NOTCH1 exhibited significant positive correlation with HK2. None of the other stemness
markers exhibited significant positive correlation with glucose transporters or glycolysis (Figure 3C
and Table S1). Consistently, OCSC markers in undifferentiated spheroids in GSE64999, did not
exhibit a glycolytic enrichment. CD44 positively correlated with SLC2A6, while CD24 negatively
correlated with PHGDH. CD117/KIT exhibited significant negative correlations with SLC2A1 and
SLC2A5. CD133/PROM1 exhibited significant positive correlation with HK2, PGK1, PDK1, and enolase1
(ENO1). ALDH1A1 and SOX2 positively correlated with SLC2A3, whereas POU5F1/OCT4 and NANOG
positively correlated with SLC2A2. However, NOTCH1 did not exhibit any significant correlation with
glycolytic enzymes or glycolysis (Figure 3D and Table S2).
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Table 1. Pearson Correlation between the expression of CSC transcripts and the transcripts of glucose transporters and the key enzymes involved in glycolysis in
ovarian cancer specimens from TCGA and curated from GEPIA. Red indicates significant positive and blue indicates negative correlations.

TCGA CD44 CD24 CD117 CD133 ALDH1A1 SOX2 4-Oct NANOG NOTCH1

Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value

HK1 0.29 0.00 7e−04 0.99 0.15 0.00 0.14 0.00 0.13 0.01 0.03 0.60 0.03 0.61 0.06 0.25 0.40 0.00

HK2 0.13 0.01 0.09 0.08 0.20 2.9e−05 0.14 0.00 0.09 0.07 0.01 0.82 0.11 0.03 0.03 0.60 0.30 4.9e−10

SLC2A1 0.09 0.07 0.00 0.95 0.23 1.7e−06 0.04 0.42 0.10 0.03 0.00 0.87 0.00 0.95 0.03 0.60 0.22 2.9e−06

SLC2A2 0.07 0.16 −0.03 0.60 0.12 0.02 −0.04 0.42 0.08 0.09 −0.03 0.48 −0.04 0.43 0.01 0.77 0.19 0.00

SLC2A3 0.31 9.7e−11 −0.02 0.68 0.19 0.00 0.00 0.95 0.07 0.15 0.11 0.02 −0.03 0.54 0.03 0.49 0.24 3.3e−07

SLC2A4 0.01 0.77 0.04 0.37 0.19 9.4e−05 0.01 0.87 0.00 0.97 0.09 0.06 0.01 0.77 0.09 0.06 0.18 0.00

SLC2A5 0.45 0.00 0.02 0.74 0.06 0.24 0.00 0.98 −0.03 0.61 −0.03 0.57 0.03 0.52 −0.05 0.29 0.18 0.00

SLC2A6 0.24 5e−07 −0.12 0.01 0.00 0.90 0.00 0.89 0.05 0.31 0.00 0.86 −0.04 0.40 −0.05 0.28 0.29 1e−09

PGK1 0.30 4.4 × 1010 −0.01 0.82 0.02 0.63 0.02 0.69 0.19 8.7e−05 0.10 0.04 0.00 1.00 0.04 0.45 0.14 0.00

PFKFB3 0.35 0.00 0.00 0.93 0.11 0.02 0.11 0.03 0.04 0.39 0.10 0.03 0.09 0.07 −0.01 0.77 0.28 6.9e−09

LDHA 0.20 3.5e−05 −0.03 0.60 −0.02 0.74 −0.03 0.60 0.13 0.01 0.06 0.24 0.04 0.46 0.00 0.97 −0.02 0.65

FBP1 0.40 0.00 −0.11 0.02 −0.06 0.24 0.00 0.98 0.11 0.03 0.06 0.19 0.00 0.96 0.00 0.93 0.03 0.48

PDK1 0.12 0.01 0.02 0.66 0.04 0.38 0.06 0.23 0.24 3.9e−07 0.04 0.41 0.04 0.42 0.01 0.80 0.13 0.01

PDHA 0.12 0.01 −0.02 0.75 −0.02 0.70 0.07 0.13 0.14 0.01 0.09 0.06 0.08 0.11 0.03 0.51 0.22 5.4e−06

TPI1 0.07 0.15 0.05 0.33 −0.04 0.47 −0.06 0.25 0.03 0.56 0.02 0.75 −0.01 0.77 0.08 0.10 −0.02 0.74

ENO1 0.23 1.3e−06 0.07 0.17 −0.02 0.71 0.09 0.08 0.10 0.05 0.01 0.86 0.13 0.01 −0.04 0.47 0.12 0.02

PHGDH 0.02 0.71 0.03 0.50 0.19 5.3e−05 0.10 0.05 0.20 4.8e−05 0.22 6.4e−06 −0.05 0.30 0.14 0.00 0.14 0.00
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Figure 3. Expression of glycolysis markers in GSE28799 and GSE64999: (A,B) Bars represent mean ±
SEM of the relative mRNA expression of the indicated glycolytic enzymes in OVCAR3 stem-cells vs.
their parental cells in GSE28799, and undifferentiated vs. differentiated OCSCs in GSE64999, respectively.
Significance was determined using multiple t-test and Holm–Sidak method with each row analyzed
individually with p < 0.05, without assuming a consistent SD. (C–E) Bar graphs represent the prevalence
of positive (red) and negative (blue) correlations of the indicated markers in OVCAR3-spheroids and
the glycolytic enzymes in Supplement Tables S1–S2 and Table 1. * indicates the number of significant
correlations either positive or negative.

Analysis of patients’ tumors, from TCGA data revealed that CD44 and NOTCH1 were the
top CSC markers whose expression exhibited positive correlations with glucose transporters and
glycolytic enzymes (Figure 3E and Table 1). NOTCH1 positively correlated with six glucose transporters
(SLC2A1-6), HK1 and HK2, the rate limiting enzymes in glycolysis, and nine out of thirteen mapped
enzymes involved in glycolysis. Similarly, CD44 was significantly positively correlated with three
out of the six glucose transporters, hexokinases as well as nine out of thirteen enzymes involved
in glycolysis. CD117/KIT was positively correlated with SLC2A1-4, HK2, and two out of thirteen
mapped glycolytic enzymes, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and
phosphoglycerate dehydrogenase (PHGDH); CD133/PROM1 correlated with HK1 and HK2, and two
out of the thirteen enzymes in glycolysis. ALDH1A1 correlated with HK1, SLC2A1, and seven out of
the thirteen enzymes involved in glycolysis. SOX2 correlated positively with SLC2A3 and four out
of the thirteen enzymes in glycolysis. Other cell stemness markers as CD24, OCT4, and NANOG did
not significantly correlate with glucose transporters, but positively correlated with only two of the
glycolytic enzymes.

Transcriptomic profiling of data of the OvCa cell lines in CCLE revealed that the transcripts of
CD44 positively correlated with a glycolytic signature with significant positive correlation with HK2,
lactate dehydrogenase A (LDHA), and ENO1, but a negative correlation with SLC2A4 (Figure S2).
CD117/KIT exhibited a positive correlation with SLC2A4 and fructose-bisphosphatase (FBP1) which
catalyzes hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate, the rate-limiting step in
gluconeogenesis. CD133/PROM1 expression significantly negatively correlated with SLC2A3, PFKFB3,
LDHA, and triosephosphate isomerase 1 (TPI1), and positively correlated with FBP1 and PHGDH.
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ALDH1A1 negatively correlated with SLC2A4 and SLC2A6. SOX2 expression is negatively correlated
with PFKFB3 and positively correlated with SLC2A2 and SLC2A4. POUF5F1/OCT4 was negatively
correlated with HK1, SLC2A3, and PHGDH and positively correlated with SLC2A1. NANOG negatively
correlated with PGK1, LDHA, TPI1, and positively correlated with PHGDH. NOTCH1 was negatively
correlated with SLC2A5 and positively correlated with LDHA (Figure S2).

Taken together, data from GSE28799 and TCGA show positive correlations between the transcripts
of OCSC markers and glycolytic markers, whereas in GSE64999, fewer positive correlations were
observed with a tendency towards a negative correlation with glycolytic markers. These discrepancies
may be due to technical variabilities in experimental model systems using different cell lines under
diverse cell growth media; whereas in patients’ tumor samples, the correlations are influenced by
tumor heterogeneity and environmental cues. The high glucose and supplemental growth factors
and serum present in culture media, combined with normoxic conditions and other pharmacologic
inhibitors as Rho-associated protein kinase (ROCK) inhibitor used in the OCSC model in GSE64999 [42]
do not represent the glucose and oxygen deprived conditions resulting from dysfunctional vasculature
and lack of perfusion that characterizes the OvCa tumor microenvironment (TME) [52]. Specifically,
OvCa cells are highly sensitive to oxygen conditions; it is known that to survive hypoxic conditions,
OCSCs are forced to upregulate their stem-like properties and behave more aggressively when brought
back to higher oxygen environments [53]. Hypoxia also induced a decrease in OXPHOS and fatty-acid
desaturation [52]. Further limitations that should be considered are that the in vitro culture models
lack vital extracellular matrix components including immune cells, stromal cells, and structural
matrices, all of which are known to influence OCSC expression, growth, and differentiation. The
absence of biophysical properties including interstitial flow, oxygen partial pressure, and surrounding
environmental stiffness as well as the lack of biochemical cues are all factors that must be considered
when comparing cell culture systems to in vivo CSC properties [54]. In CCLE databases, the correlations
represent the behavior of OvCa cell lines under optimal growth conditions. The expression of CD44
positively and significantly correlated with most glycolytic phenotype in OCSC model systems, patients’
tumors as well as non-stem OvCa cells. This finding is consistent with earlier reports that CD44 is
crucial for the regulation of glycolytic metabolism [55].

3.3. Correlation between OCSCs Markers and TCA Cycle

The TCA cycle is a hub for the integration of multiple catabolic and anabolic pathways, as glycolysis,
gluconeogenesis, mitochondrial electron transport chain, fatty acid, and cholesterol synthesis as well
as glutamine metabolism. TCA cycle generates metabolic intermediates that are not only critical for
anabolic and catabolic pathways and redox homeostasis, but are also implicated in the regulation of
transformation, carcinogenesis, inflammation, and immunity [22,56–58]. The expression and function
of the TCA enzymes and metabolites in cancer cells in general and OvCa in particular are unfolding;
however, in OCSCs, these are not yet unraveled. Therefore, we sought to determine the association of
TCA enzymes with OCSC model systems and in correlation with OCSC markers in patients’ specimens
and model systems. We further analyzed the expression of the transcripts of TCA cycle enzymes
in OVCAR3-stem cells and their parental controls in GSE28799. We found that aconitase 1 (ACO1),
isocitrate dehydrogenase (IDH1), IDH3A, succinate-CoA ligase GDP-forming subunit beta (SUCLG2),
and malate dehydrogenase 2 (MDH2) were significantly upregulated in OVCAR3-stem cells, whereas
malic enzyme 2 (ME2) was significantly downregulated (Figure 4A). In GSE64999, no significant
differences were found between the transcripts of TCA cycle enzymes between differentiated and
undifferentiated OCSCs (Figure 4B). In GSE28799, there was a correlation between the expression of
the enzyme transcripts and OCSC markers in OVCAR3-stem cells revealed a trend towards positive
correlations with TCA enzymes. NANOG positively correlated with ten enzymes with significance only
with CS. ALDH1A1 exhibited positive though insignificant correlations with nine enzymes. CD117/KIT
positively correlated with six enzymes with significance only with IDH2 and MDH2. Other factors
exhibited positive though insignificant correlations with TCA enzymes. CD44 and CD24 exhibited
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similar five positive and six negative correlation patterns with significant negative correlation with
ME2. However, significant negative correlations were observed between CD133 with IDH3B, and
SOX2 with IDH2. Neither POU5F1/OCT4 nor NOTCH1 bear significant correlation with key TCA
enzymes (Figure 4C and Table S3). Correlating the expression of CSC transcripts with those transcripts
of TCA in undifferentiated and differentiated spheroids in GSE64999 revealed a more negative trend.
CD44 positively correlated with five enzymes with significance only with ACO1. ALDH1A1 and SOX2
exhibited identical five positive and six negative profiles with significant positive correlation with
SUCLG1. POU5F1/OCT4 positively correlated with four enzymes, of them significance was noted with
citrate synthase (CS), IDH3B, and SUCLG1. NANOG negatively correlated with seven enzymes with
significant negative correlation with MDH2; while NOTCH1 negatively correlated with six enzymes
with significance with ACO1. CD24, CD117, and CD133 were all not found to be significantly correlated
with enzymes involved in the TCA cycle (Figure 4D and Table S4).
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Figure 4. Expression of TCA markers in OCSC models. (A,B) Bars represent mean ± SEM of the relative
mRNA expression of the indicated TCA enzymes in OVCAR3 stem-cells vs. their parental cells in
GSE28799 and undifferentiated vs. differentiated OCSCs in GSE64999. Significance was determined
using the multiple t-test and Holm–Sidak method with each row analyzed individually with p < 0.05,
without assuming a consistent SD. (C–E) Bar graphs represent the prevalence of positive (red) and
negative (blue) correlations of the indicated OCSC markers and TCA enzymes in Supplement Tables
S3–S4 and Table 2. * indicate the number of significant correlations either positive or negative.
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Table 2. Correlation of OCSC markers with TCA enzymes in TCGA. Pearson Correlation between the expression of CSC transcripts and the transcripts of the key TCA
enzymes in ovarian cancer specimens from TCGA and curated from GEPIA. Red indicates significant positive, blue indicates negative correlations, and black indicates
insignificant p-values of either positive or negative correlations.

TCGA CD44 CD24 CD117 CD133 ALDH1A1 SOX2 4-Oct NANOG NOTCH1

Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value

CS 0.19 8.2e−05 0.16 0.00 0.23 9.9e−07 0.09 0.06 0.15 0.00 0.00 0.96 0.07 0.18 0.11 0.02 0.39 0.00

ACO1 0.30 1.6e−10 0.08 0.09 0.21 1.1e−05 0.24 7.6e−07 0.30 5.1e−10 0.10 0.05 0.11 0.02 0.00 0.99 0.34 2.8e−13

ACO2 0.18 0.00 0.11 0.02 −0.06 0.17 0.04 0.41 −0.03 0.58 −0.03 0.58 0.10 0.05 −0.04 0.45 0.24 3.6e−07

IDH1 0.12 0.01 0.08 0.11 0.01 0.77 0.06 0.21 0.16 0.00 0.09 0.08 0.01 0.88 0.02 0.63 0.17 0.00

IDH2 0.16 0.00 0.07 0.13 0.11 0.03 0.07 0.14 0.09 0.08 0.05 0.27 −0.03 0.51 0.04 0.39 0.25 2.6e−07

IDH3A 0.16 0.00 −0.09 0.06 −0.04 0.44 0.07 0.15 0.09 0.06 0.04 0.37 −0.03 0.58 −0.01 0.77 0.24 4.2e−07

IDH3B −0.08 0.12 0.09 0.06 0.09 0.07 0.04 0.48 0.03 0.60 −0.05 0.35 0.06 0.21 0.04 0.47 0.24 6e−07

SUCLG1 0.13 0.01 0.16 0.00 0.01 0.86 0.01 0.81 0.13 0.01 0.00 0.90 0.00 0.99 0.03 0.50 0.04 0.41

SUCLG2 0.19 9.3e−05 0.01 0.89 −0.08 0.12 0.05 0.27 0.06 0.22 0.08 0.12 0.11 0.02 0.00 0.90 0.05 0.28

MDH2 0.20 4.4e−05 0.00 0.92 −0.1 0.05 0.00 0.96 0.00 0.97 0.01 0.79 0.07 0.17 0.01 0.87 0.10 0.04

ME2 0.27 9.6e−09 0.16 0.00 0.05 0.33 0.08 0.09 0.09 0.07 0.04 0.45 0.13 0.01 −0.03 0.65 0.12 0.01
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Analysis and correlation of the OCSCs’ markers with TCA enzymes from TCGA datasets (Figure 4E
and Table 2) revealed that NOTCH1 positively correlated with all TCA enzymes with significant
correlations with all enzymes except SUCLG1/2. Similarly, CD133 positively correlated with all eleven
TCA enzymes with significance observed with CS and ACO1. CD44 positively and significantly
correlated with ten out of the eleven enzymes namely CS, ACO1/2, IDH1/2/3A, SUCLG1/2, MDH2, and
ME2, while CD24 positively correlated with ten out of the eleven enzymes with significant correlations
with CS, ACO2, CD117, SUCLG1, and ME2. ALDH1A1 positively correlated with nine out of the eleven
enzymes with significance observed with CS, ACO1, IDH1, and SUCLG1. POU5F1/OCT4 positively
correlated with eight out of the eleven enzymes with significance observed with ACO1/2, SUCLG2, and
ME2. CD117/KIT positively correlated with seven out of eleven enzymes with positive significance
observed with CS, ACO1, and IDH2 and significant negative correlation with MDH2. SOX2 positively
correlated with seven enzymes with significance observed only with ACO1, whereas NANOG positively
correlated with six enzymes with significance observed with CS.

Correlation of OvCa cell line data acquired from CCLE demonstrated a generalized trend of
negative correlation between OCSC markers and TCA cycle enzymes. Although CD117/KIT positively
correlated with all enzymes, no significance was noted. SOX2 positively correlated with eight enzymes,
of them, only CS and IDH3A were significant. ALDH1A1 and POU5F1/OCT4 negatively correlated with
nine enzymes with significant negative correlation with CS2 and ME2 as well as IDH3A, respectively.
Similarly, CD133/PROM1 negatively correlated with nine enzymes with significance only with ACO1
and SUCLG2. Consistently, CD44 negatively correlated with eight enzymes with significance observed
with ACO2 and MDH2; whereas NANOG negatively correlated with five enzymes with significant
negative correlation with SUCLG2. NOTCH1 did not significantly correlate with any enzyme in the
TCA cycle with a trend towards negative correlations with six enzymes (Figure S3).

These data indicate that the reliance of OCSCs cells on the TCA is demonstrated in TCGA data by
the positive correlations between OCSC markers and TCA enzymes. Spheroids from characterized
OVCAR3 not only exhibited significant upregulation of most of the TCA enzymes but also exhibited
positive correlations with OCSC markers and TCA enzymes suggestive of their reliance on TCA
cycle. The discrepancies between the two OCSC model systems further highlight the influence of
environmental cues on the expression of their metabolic programing and plasticity.

Conversely, OCSC-like spheroids relied on anaerobic glycolysis and the PPP with decreased
reliance on the TCA cycle compared to their parental cells [59]. Another study demonstrated that
in SKOV3 and lung A549 model systems, cell populations with high telomerase activity, exhibited
significantly higher ability to form spheroids (and hence CSC phenotype), and exhibited enhanced
glycolysis, OXPHOS, and increased mitochondrial mass [60]. Consistently, a subset of cancer cells
with stem like properties, called side population (SP) cells, were identified in OvCa and other cancer
types and exhibited higher glycolytic activity than non-SP cells. The percentage of SP cells significantly
increased in glucose-rich conditions. Paradoxically, glucose deprivation or the presence of a glycolytic
inhibitor, 3-BrOP, significantly decreased the number of SP cells and decreased their tumor forming
ability in mice xenografts [61]. Glucose-induced CSC-like SP proliferation was mediated through an
ATP-dependent suppression of AMPK and activation of the AKT pathway [61].

3.4. OXPHOS in Ovarian Cancer Stem Cells

OXPHOS is a process by which NADH and FADH2 generated in TCA cycle transfer electrons to
the mitochondrial ETC and occurs via several redox reactions that take place in the inner mitochondrial
membrane (IMM). These reactions facilitate the generation of an electrochemical proton (H+) gradient,
which subsequently drives the synthesis of energy rich adenosine triphosphate (ATP) by ATP
synthases [62].

CSCs may exhibit highly glycolytic or OXPHOS phenotypes with plasticity of metabolic switch
between phenotypes depending not only on cancer type and environmental cues, but also upon
glucose starvation or OXPHOS blockade [55,63]. For example, CD44+/CD117+ OCSCs isolated from
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patients’ ascitic fluid exhibited enhanced glucose uptake with heightened OXPHOS. Upon glucose
starvation, these OCSCs underwent complete quiescence and down-regulated most metabolic activities,
while maintaining an OXPHOS profile [63]. In further support of this, cellular bio-energetic profiling
of established and patient-derived OvCa cell lines showed that chemo-sensitive cancer cell lines
displayed a glycolytic phenotype while their chemo-resistant counterparts developed an adaptive
switch between OXPHOS and glycolysis [64]. Integrated proteomic, metabolomic, and bioenergetic
analyses of OVTOKO cells growing in 3D spheroids and expressing high ALDH1A1 levels, showed a
high-OXPHOS subtype relying on OXPHOS, supported by glutamine and FAO and a low-OXPHOS
subtype that was mainly glycolytic [65].

Comparative analysis of the expression of ETC complexes in OVCAR3-OCSCs in GSE28799
revealed significant upregulation of most of the transcripts of complex I (NADH:ubiquinone
oxidoreductases, NDUFA Figure 5A), with inconsistent changes of enzymes of complex II (succinate
dehydrogenases, SDHA-D, Figure 5B). Significant increase was observed in six out of eight transcripts
of complex III enzymes (ubiquinol: cytochrome C oxidoreductases, UQCR) in OVCAR3-OCSCs
compared to parental cells (Figure 5C), but only in four out of thirteen transcripts of complex IV
enzymes (cytochrome C oxidases, COX4I1, COX6B1, COX7A1, and COX7C, Figure 5D). Whereas,
OVCAR3-OCSCs exhibited significant increase in all the transcripts of complex V enzymes (ATP
synthases) compared to parental cells (Figure 5E). In GSE64999, undifferentiated OCSCs exhibited
significant upregulation only in one complex I enzyme, NDUFA2, compared to differentiated OCSCs
(Figure 5F) with no significant changes in complex II enzymes (Figure 5G). In addition, undifferentiated
OCSCs exhibited an upregulation trend of complex III enzyme transcripts with significance observed
in three out of the eight enzymes investigated (Figure 5H), whereas for complex IV, they exhibited
significant upregulation of COX7C with an upregulation trend in the other transcripts (Figure 5I).
Concordantly, the transcripts of ATP synthases were upregulated in undifferentiated OCSCs with
significance observed only in ATP5E (Figure 5J). Together, this data indicates that OCSC spheroids
exhibit enrichment of the ETC mainly in complexes I, III, IV, and V, further supporting reliance on
the OXPHOS phenotype. Interestingly, correlations between the expression of OCSC transcripts and
the transcripts of the key ETC enzymes revealed that in OVCAR3-OCSCs in GSE28799, there was
a trend of positive correlations with complex I enzymes with NOTCH1, NANOG, and ALDH1A1
exhibiting significant correlations with the transcripts of one of the twelve enzymes. However, there
were inconsistent positive and negative correlations between the transcripts of OCSC markers and
the transcripts of complexes II, III, IV, and V (Figure 6A and Table S5). In contrast, in GSE64999 the
transcripts of OCSC markers in undifferentiated OCSCs exhibited inconsistent positive and negative
correlations with transcripts of complexes I, III, IV, and V, with CD24 and CD44 exhibiting positive
though insignificant correlations with complex II enzymes (Figure 6B and Table S6). Interestingly,
the correlation patterns of the transcripts of OCSC markers and ETC enzymes in patients’ tumors in
TCGA data (Figure 6C and Table 3) phenocopied those of undifferentiated OCSCs. These data suggest
that OCSC markers do not correlate with those of ETC enzymes in the model systems or in patients’
tumors. The inconsistencies in the positive and negative correlations and their significance may be due
to the existence of multiple isoforms for ETC enzymes with redundant activity, or compensation of the
activity by mitochondrially encoded ETC enzymes.

Of note, is that analysis of OvCa cell line data curated from CCLE also revealed similar inconsistent
pattern of positive and negative correlations with ETC enzymes (Figure S4). CD44 exhibited negative
correlations with all investigated enzymes of complexes I and V with significant negative correlations
with NDUFS1 and NDUFS2 of complex I. CD44 also exhibited negative correlations with four out of
nine enzymes in complex III with significant negative correlation with UQCRC2. In addition, CD44
exhibited negative though insignificant correlation with two out of four complex II enzymes and four
out of thirteen complex IV enzymes. SOX2 exhibited positive correlations with all ETC complexes with
significant positive correlations with NDUFS3 and NDUFV1 of complex I, CYSC of complex III, and
ATP5J of complex V. POU5F1/OCT4 negatively correlated with most of the enzymes of complexes I-V
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with significant negative correlations with NDUFA10, NDUFAF4, and NDUFAS1-3 of complex I, SDHC
of complex II, UQCRC1 and UQCRH of complex III, COX5A of complex IV as well as ATP5D of complex
V. However, POU5F1/OCT4 only positively correlated with COX7A1 of complex IV. PROM1/CD133
exhibited a trend of a negative correlations with complexes II, III, and V with significant negative
correlation with NDUFA10 of complex I and UQCR10 of complex III as well as significant positive
correlation with COX4I1 and COX6B1 of complex IV. KIT/CD117 exhibited positive correlation with
complex I, III, and V, and a negative correlation with complex IV, with a significant positive correlation
only with NDUFS1 of complex I. ALDH1A1 exhibited negative correlation with complex I and II
enzymes with significant negative correlation with NDUFA10 of complex I, and COX6A2 and COX7A1
of complex IV. However, ALDH1A1 positively correlated with COX6A1. Furthermore, NANOG
exhibited positive correlation with complexes I, II, and V, with significant positive correlation only
with NDUFA11, SDHC, and ATP5J. Finally, NOTCH1 exhibited negative correlations with complexes
II, IV, and V, with significant negative correlation only with COX4I2 and COX6B1 as well as ATP5C1.
Together, data from CCLE further imply that the expression of the transcripts of OCSC markers CD44,
POU5F1/OCT4, and NOTCH1 exhibit most of the significant negative correlations.
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represent mean ± SEM of the relative mRNA expression of the indicated enzymes involved in complex
I, (A–F); complex II, (B–G); complex III, (C–H); complex IV, (D–I), and complex V, (E–J) in OVCAR3
stem-cells vs. their parental cells in GSE28799 and differentiated vs. undifferentiated OCSCs in
GSE64999. Significance was determined using the multiple t-test and Holm–Sidak method with each
row analyzed individually with p < 0.05, without assuming a consistent SD. * indicate the number of
significant correlations either positive or negative.
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Figure 6. Correlations of the transcripts of OCSC markers and ETC complexes. Pearson Correlation
between the expression of OCSC transcripts and the transcripts of the key enzymes involved in ETC
in OVCAR3-OCSCs curated from GSE28799 (A) and GSE64999 (B), as well as patients’ tumors from
TCGA (C). Bar graphs represent the prevalence of positive (red) and negative (blue) correlations of the
indicated OCSC markers and ETC enzymes. Significance was determined using the multiple t-test and
Holm–Sidak method with each row analyzed individually with p < 0.05, without assuming a consistent
SD. * indicate the number of significant correlations either positive or negative.
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Table 3. Pearson correlation between the expression of CSC transcripts and the transcripts of the key enzymes involved in the ETC in patients’ data curated from
TCGA. Red indicates significant positive, blue indicates negative correlations, and black indicates insignificant p-values of either positive or negative correlations.

TCGA

CD44 CD24 CD117 CD133 ALDH1A1 SOX2 4-Oct NANOG NOTCH1

Complex I Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value

NDUFA10 0.04 0.44 0.02 0.72 −0.02 0.72 −0.03 0.52 0.09 0.06 −0.02 0.62 −0.03 0.53 0.00 0.93 0.10 0.05

NDUFA11 −0.02 0.62 0.08 0.10 0.00 0.93 −0.05 0.29 −0.01 0.86 −0.02 0.67 −0.07 0.16 0.05 0.30 −0.15 0.00

NDUFAF4 −0.12 0.01 0.23 1.6e−06 −0.06 0.22 −0.09 0.05 0.03 0.54 −0.02 0.76 0.00 1.00 0.05 0.29 −0.13 0.01

NDUFA2 −0.13 0.01 −0.03 0.48 −0.19 1e−04 −0.11 0.02 −0.02 0.66 −0.02 0.64 −0.09 0.06 0.01 0.83 −0.29 1.7e−09

NDUFB7 −0.12 0.01 −0.02 0.67 −0.15 0.00 −0.09 0.06 −0.05 0.32 −0.04 0.40 −0.07 0.15 0.03 0.49 −0.18 0.00

NDUFS1 0.20 2.8e−05 0.16 0.00 0.14 0.00 0.14 0.00 0.17 0.00 0.02 0.69 0.07 0.14 0.03 0.57 0.39 0.00

NDUFS2 0.18 0.00 0.13 0.01 0.15 0.00 0.13 0.01 0.06 0.23 0.09 0.06 0.15 0.00 0.16 0.00 0.36 1.3e−14

NDUFS3 0.12 0.01 −0.05 0.29 −0.12 0.01 −0.02 0.74 0.00 0.93 0.04 0.39 0.04 0.39 0.02 0.62 −0.10 0.05

NDUFS7 0.15 0.00 −0.02 0.73 −0.18 0.00 −0.08 0.10 −0.03 0.49 −0.01 0.89 −0.01 0.86 −0.02 0.69 −0.11 0.02

NDUFV1 0.05 0.33 −0.02 0.71 −0.13 0.01 −0.01 0.80 −0.04 0.43 0.03 0.51 0.18 0.00 0.03 0.61 0.08 0.11

NDUFV2 −0.02 0.71 0.05 0.29 −0.11 0.02 0.15 0.00 0.02 0.65 0.06 0.18 −1e−04 1.00 0.05 0.35 0.01 0.88

NDUFV3 0.06 0.24 −0.01 0.84 −0.03 0.56 0.07 0.14 0.09 0.07 0.03 0.52 0.10 0.03 0.08 0.10 0.15 0.00

Complex II

SDHA 0.11 0.03 0.03 0.52 −0.04 0.46 0.05 0.35 0.03 0.52 0.11 0.03 0.06 0.20 0.04 0.39 0.16 0.00

SDHB 0.18 0.00 0.09 0.07 −0.05 0.28 0.05 0.29 −0.02 0.76 −0.05 0.29 0.08 0.10 −0.03 0.56 0.03 0.54

SDHC 0.16 0.00 0.11 0.03 0.10 0.04 0.07 0.15 0.21 1.4e−05 0.06 0.23 −0.0029 0.95 0.11 0.03 0.11 0.02

SDHD 0.03 0.59 0.08 0.09 −0.12 0.01 0.02 0.72 0.00 0.96 0.02 0.75 0.04 0.46 −0.04 0.43 −0.03 0.48

Complex III

UQCRB −0.12 0.02 −0.06 0.19 −0.20 2.6e−05 −0.08 0.09 −0.14 0.00 −0.06 0.20 −0.1 0.04 −0.04 0.47 −0.20 2.1e−05

UQCRC1 0.03 0.54 0.08 0.09 0.00 0.94 0.06 0.25 0.08 0.09 0.04 0.39 0.06 0.20 0.13 0.01 0.17 0.00

UQCRC2 0.21 1.3e−05 0.17 0.00 0.05 0.31 0.07 0.17 0.00 0.92 −0.06 0.23 0.15 0.00 0.04 0.37 0.07 0.16

UQCRH −0.04 0.42 −0.13 0.01 −0.13 0.01 −0.01 0.82 −0.01 0.84 0.00 1.00 −0.03 0.58 −0.08 0.12 −0.17 0.00

UQCRQ −0.05 0.34 −0.06 0.20 −0.17 0.00 −0.06 0.19 −0.03 0.60 −0.02 0.70 −0.01 0.77 −0.04 0.41 −0.31 3.6e−11

UQCR10 0.04 0.43 0.15 0.00 −0.1 0.04 0.03 0.50 0.00 0.97 −0.02 0.70 0.06 0.23 −0.02 0.66 −0.11 0.02

UQCR11 −0.03 0.57 −0.05 0.32 −0.21 9.6e−06 −0.10 0.04 −0.07 0.18 −0.03 0.50 −0.1 0.04 −0.03 0.59 −0.29 8e−10

CYCS 0.09 0.05 0.07 0.18 −0.06 0.20 −0.04 0.43 0.09 0.06 −0.02 0.73 0.02 0.64 0.03 0.60 0.11 0.03
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Table 3. Cont.

TCGA

CD44 CD24 CD117 CD133 ALDH1A1 SOX2 4-Oct NANOG NOTCH1

Complex I Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value

Complex IV

COX4I1 0.01 0.81 0.10 0.05 −0.15 0.00 0.03 0.57 −0.09 0.07 −0.06 0.26 0.03 0.50 −0.06 0.21 −0.19 1e−04

COX4I2 −0.07 0.18 0.06 0.22 0.25 2.2e−07 0.01 0.83 0.17 0.00 −0.01 0.82 −0.08 0.10 0.16 0.00 0.15 0.00

COX5A 0.00 0.95 −0.09 0.08 −0.19 9.3e−05 −0.04 0.42 0.00 0.95 −0.04 0.43 −0.04 0.42 −0.05 0.31 −0.13 0.01

COX5B −0.22 6.6e−06 0.10 0.04 −0.18 0.00 −0.07 0.13 −0.09 0.08 −0.02 0.64 −0.02 0.68 −0.04 0.36 −0.27 1.7e−08

COX6A1 −0.1 0.04 0.03 0.53 −0.11 0.03 −0.06 0.23 0.07 0.13 0.01 0.87 −0.10 0.04 0.06 0.19 −0.12 0.02

COX6A2 −0.13 0.01 0.09 0.06 0.20 3.1e−05 0.00 0.92 0.14 0.00 0.02 0.69 −0.07 0.14 0.24 3.6e−07 0.04 0.39

COX6B1 −0.06 0.21 −0.03 0.61 −0.02 0.73 −0.06 0.23 0.07 0.15 −0.01 0.87 0.01 0.85 0.07 0.15 −0.19 0.00

COX6B2 −0.04 0.38 −0.01 0.77 0.06 0.20 −0.03 0.54 0.00 0.94 −0.03 0.48 0.00 0.96 0.07 0.15 0.23 2.6e−06

COX6C −0.09 0.05 −0.12 0.01 −0.20 5e−05 −0.032 0.51 −0.13 0.01 −0.04 0.39 −0.12 0.01 −0.01 0.91 −0.12 0.01

COX7A1 −0.02 0.64 −0.06 0.24 0.13 0.01 −0.03 0.56 0.08 0.09 −0.04 0.38 −0.06 0.19 0.02 0.67 0.00 0.99

COX7A2 −0.08 0.09 0.09 0.05 −0.04 0.40 −0.09 0.06 0.02 0.74 0.00 0.93 −0.08 0.09 0.01 0.87 −0.19 5.8e−05

COX7B −0.02 0.70 −0.01 0.78 −0.19 1e−04 −0.07 0.14 0.01 0.78 0.00 0.95 −0.07 0.15 0.00 0.98 −0.27 1.1e−08

COX7C −0.21 9.9e−06 0.03 0.55 −0.08 0.09 −0.09 0.08 −0.10 0.04 −0.09 0.06 0.00 0.96 −0.01 0.84 −0.30 2.8e−10

Complex V

ATP5C1 0.03 0.51 0.08 0.11 −0.06 0.24 −0.06 0.22 −0.02 0.62 0.01 0.87 −0.05 0.36 −0.05 0.28 −0.07 0.13

ATP5D −0.02 0.63 −0.01 0.91 −0.22 7.6e−06 −0.11 0.02 −0.15 0.00 −0.06 0.26 0.00 0.93 −0.04 0.38 −0.18 0.00

ATP5E −0.14 0.00 0.00 0.93 −0.05 0.33 −0.03 0.54 0.03 0.52 0.06 0.26 −0.10 0.04 0.02 0.76 −0.19 0.00

ATP5G3 0.07 0.14 −0.04 0.36 −0.16 0.00 −0.08 0.08 −0.01 0.87 −0.06 0.23 −0.05 0.34 −0.07 0.17 −0.13 0.01

ATP5J −0.03 0.52 −0.02 0.65 −0.10 0.05 −0.04 0.44 0.17 0.00 −0.01 0.84 0.01 0.89 0.00 0.97 −0.17 0.00

ATP5O −0.10 0.04 −0.02 0.75 −0.10 0.03 −0.06 0.23 −0.07 0.14 −0.07 0.14 0.06 0.25 0.04 0.46 −0.19 0.00

ATP5S 0.02 0.71 0.00 0.99 0.08 0.10 0.10 0.03 0.14 0.00 −0.01 0.78 0.05 0.32 0.13 0.01 0.10 0.04
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3.5. Correlation of OCSC Markers With Lipid Metabolism

Lipid-associated pathways are essential for the maintenance of CSCs [66]. Lipid metabolism is
inherently bound to the glucose and amino acid metabolic pathways in order to meet the increasing
bio-energetic needs of CSCs. Specifically, epithelial OCSCs utilize OXPHOS and FAO to overcome
glucose starvation, and this metabolic trait confers resistance to chemotherapy [64]. It has been shown
that when CD44+CD117+ CSCs were isolated from OvCa primary culture, and detached from a
monolayer into a suspension state, they reprogramed their metabolism from glycolysis to TCA cycle
with active lipid metabolism compared to adherent cultures [67]. Consistently, ALDH+CD133+ OCSCs
and spheroids have increased levels of unsaturated lipids compared to non-CSCs in monolayers [68];
an effect that was inhibited by inhibition of lipid desaturases that significantly reduced stemness and
eliminated sphere formation in vitro and tumor initiation in vivo [68]. Moreover, overexpression of
fatty acid synthase (FASN), a key enzyme in lipogenesis correlated with poor disease outcome [69].
Accordingly, the inhibition of FASN reversed platinum resistance in resistant OvCa cells [70].

Analysis of OVCAR3-OCSCs transcripts in GSE28799 dataset, revealed that compared to parental
OVCAR3, OVCAR3-OCSCs exhibited significant increase in the transcripts of fatty acid transporter
(CD36), acetyl CoA carboxylase A (ACACA) that catalyzes the first committed step in fatty acid (FA)
synthesis from acetyl CoA to malonyl CoA [71], stearoyl-CoA desaturase (SCD), that is also involved in FA
biosynthesis, mainly unsaturated FAs, as well as carnitine palmitoyltransferase 1A (CPT1A) that catalyzes
the first committed step in FAO [72,73] (Figure 7A). Analysis of the transcripts in undifferentiated
vs. differentiated OCSC models in GSE64999 dataset revealed a significant increase in SCD in the
undifferentiated OCSCs with an increase, though insignificant, in the enzymes involved in FA synthesis
and oxidation as well as CD36 (Figure 7B). This data indicates that OCSCs exhibit a lipid metabolic
phenotype that is consistent with the OvCa in the lipid-rich peritoneal TME.

Correlation of the putative OCSC markers and lipid transporters and enzymes in OVCAR3-OCSCs
in GSE28799 dataset revealed that NOTCH1, NANOG, OCT4, ALDH1A1, and CD117 exhibited more
positive, though insignificant, correlations with lipid metabolism markers than CD44, CD24, CD133,
or SOX2. The latter markers exhibited a trend towards negative correlations, with CD44 and CD24
exhibiting significant negative correlations with fatty acid-binding protein 4 (FABP4) (Figure 7C and
Table S7). In GSE64999, CD44, CD133, and ALDH1A1 exhibited more positive correlations with
lipid metabolic enzymes with significance between CD44 and CPT1B as well as CD133 and CPT1A.
OCT4 exhibited significant positive correlation with CD36, but negatively correlated with ACACA.
NANOG was negatively correlated with ACACA (Figure 7D and Table S8). TCGA data indicated
significant positive correlation between NOTCH1 and CD44, with lipid metabolic markers, followed
by CD133, ALDH1A1, and CD117 with significant positive correlations exhibited by SOX2 (Figure 7E
and Table 4). Conversely, in CCLE datasets, CD44 negatively correlated with ACACB, CPT1A, and
CPT2. CD117 positively correlated with ACACB, CPT2, FASN, and SCD1. CD133 positively correlated
with CPT1A. ALDH1A1 was negatively correlated with ACACB. SOX2 was positively correlated with
CPT1A and CPT2 and negatively correlated with FABP4. OCT4 was negatively correlated with FABP4,
ATP citrate lyase (ACLY), ACACA, FASN, and SCD1 and positively correlated with CPT1A/B. NANOG
was positively correlated with CPT2. NOTCH1 was not significantly correlated with the enzymes
investigated (Figure S5). These data further support the distinct metabolic phenotypes and “metabolic
plasticity” of OCSCs as the acquisition of the OCSC phenotype is associated with enrichment of a lipid
metabolic signature. These may explain the ability of OCSCs to survive in the lipid-rich peritoneal
TME leading to recurrence after optimal or suboptimal surgery and chemotherapy.
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Table 4. Correlation between OCSC markers and lipid transporters and key enzymes in lipid metabolism in TCGA. Red indicates significant positive, and black
indicates insignificant p-values of either positive or negative correlations.

TCGA CD44 CD24 CD117 CD133 ALDH1A1 SOX2 4-Oct NANOG NOTCH1

Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value

FABP4 0.04 0.43 −0.04 0.44 0.05 0.28 −0.07 0.13 0.05 0.33 −0.04 0.43 0.00 0.87 −0.06 0.21 0.07 0.13

CD36 0.17 0.00 −0.02 0.63 0.11 0.02 −0.07 0.14 0.09 0.07 0.03 0.51 −0.03 0.55 0.00 0.90 0.24 4e−07

ACLY 0.21 9e−06 0.13 0.01 0.37 3.1e−15 0.21 1.8e−05 0.15 0.00 0.04 0.43 0.01 0.85 0.12 0.02 0.51 0.00

ACACA 0.16 0.00 0.20 3.1e−05 0.19 0.00 0.22 4.5e−06 0.10 0.03 0.01 0.79 0.08 0.11 0.02 0.73 0.32 6.3e−12

ACACB 0.10 0.04 0.00 0.99 0.27 1.7e−08 0.11 0.02 0.13 0.01 0.03 0.58 0.10 0.04 0.12 0.02 0.40 0.00

CPT1A 0.12 0.01 0.03 0.56 0.11 0.02 0.16 0.00 0.09 0.07 0.06 0.20 0.09 0.07 0.00 0.89 0.35 7.1e−14

CPT1B 0.16 0.00 −0.07 0.15 −0.05 0.30 −0.02 0.64 0.00 0.93 0.12 0.02 0.13 0.01 0.08 0.11 0.17 3e−04

CPT2 0.19 7.7e−05 0.03 0.57 0.08 0.08 0.18 0.00 0.18 0.00 0.09 0.06 0.06 0.20 0.09 0.07 0.29 7.1e−10

FASN 0.08 0.08 0.06 0.25 0.10 0.03 0.05 0.31 0.05 0.28 0.00 0.85 −0.02 0.66 0.02 0.67 0.42 0.00

SCD1 0.27 1.3e−08 0.06 0.20 0.11 0.02 0.08 0.10 0.08 0.12 0.11 0.03 −0.05 0.28 −0.02 0.67 0.27 1.5e−08
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8 and Table 4. * indicate the number of significant correlations either positive or negative. 
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Figure 7. Expression of transporters and enzymes of lipid metabolism in OCSC models. (A,B) Bars
represent mean ± SEM of the relative mRNA expression of the indicated transporters and lipid
metabolism enzymes in OVCAR3 stem-cells vs. their parental cells in GSE28799 and undifferentiated
vs. differentiated OCSCs in GSE64999. Significance was determined using the multiple t-test and
Holm–Sidak method with each row analyzed individually with p < 0.05, without assuming a consistent
SD. (C–E) Bar graphs represent the prevalence of positive (red) and negative (blue) correlations of the
indicated OCSC markers and lipid metabolism enzymes in Supplement Tables S7–S8 and Table 4. *
indicate the number of significant correlations either positive or negative.

3.6. Glutamine/Glutamate Metabolism in OCSCs

Glutamine metabolism provides the carbon and amino-nitrogen that are necessary for biosynthesis
of amino acids, nucleotides, and lipids [74–76]. As an anabolic process, glutaminolysis promotes the
production of macromolecules with lower energetic potential [77]. Furthermore, glutamine enters
cancer cells through the alanine, serine, cysteine transporter 2 (ASCT2; also known as SLC1A5) and is
subsequently hydrolyzed to glutamate and ammonia by glutaminase (GLS). Glutamate has dual roles:
while it can be combined with cysteine and glycine to form the reduced glutathione (GSH), a major
antioxidant that regulates oxidative stress [78], it can also be converted into α-ketoglutarate (αKG) by
glutamate dehydrogenases (GLUD) to provide TCA cycle intermediates and, hence, energy production [79].
Furthermore, OCSCs like other CSCs exploit glutamine metabolism for therapeutic resistance.
Glutaminolysis significantly correlated with poor survival of OvCa patients [80]. Additionally,
glutamine and glutamate concentrations were higher in spheroids than in adherent OCSCs [65].
Targeting glutamine metabolism using a pan-transaminase inhibitor hindered the growth of spheroids
from ovarian clear cell carcinomas with inhibition of the mTOR pathway [65], suggesting a promising
therapeutic strategy.

Analysis of the expression of the enzymes involved in glutamine metabolism in OCSCs and their
parental cells in GSE28799 revealed that the glutamine transporter SLC1A1 and the enzyme GLS, were
significantly upregulated in OVCAR3 spheroid-derived OCSCs compared to their parental OVCAR3
cells (Figure 8A). In contrast, there was no significant difference in glutamine metabolism enzymes
between undifferentiated and differentiated spheroids in GSE64999 (Figure 8B). In both datasets, very
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few correlations between stem cell markers and glutamine transporters were noted. In GSE28799,
both CD24 and CD44 positively correlated with SLC1A1, while CD133 positively correlated with GLS
and negatively correlated with GLUD2. ALDH1A1 positively correlated with SLC1A2 while OCT4
positively correlated with SLC1A3 (Figure 8C and Table S9). In GSE64999, CD133 positively correlated
with GLS. CD24 negatively correlated with GLUD1. ALDH1A1 and SOX2 both negatively correlated
with SLC1A6. NOTCH1 negatively correlated with SLC1A1 (Figure 8D and Table S10).
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Figure 8. Expression of transporters and enzymes of glutamine/glutamate metabolism in OCSC models.
(A,B) Bars represent mean ± SEM of the relative mRNA expression of the indicated transporters and
glutamine/glutamate metabolism enzymes in OVCAR3 stem-cells vs. their parental cells in GSE28799
and undifferentiated vs. differentiated OCSCs in GSE64999. Significance was determined using the
multiple t-test and Holm–Sidak method with each row analyzed individually with p < 0.05, without
assuming a consistent SD. (C–E) Bar graphs represent the prevalence of positive (red) and negative
(blue) correlations of the indicated OCSC markers and glutamine/glutamate metabolism enzymes in
Supplement Tables S9–S10 and Table 5. * indicate the number of significant correlations either positive
or negative.
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Table 5. Correlation between OCSC markers and glutamate transporters and key enzymes in glutamate/glutamine metabolism in TCGA. Red indicates significant
positive and black indicates insignificant p-values of either positive or negative correlations.

TCGA CD44 CD24 CD117 CD133 ALDH1A1 SOX2 4-Oct NANOG NOTCH1

Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value Pearson

R p-Value Pearson
R p-Value

SLC1A1 0.32 1.2e−11 0.10 0.05 0.04 0.39 0.20 3.9e−05 0.12 0.01 0.15 0.00 0.18 0.00 −0.04 0.40 0.09 0.06

SLC1A2 0.16 0.00 0.00 0.93 0.25 1e−07 0.12 0.01 0.22 4.1e−06 0.05 0.31 0.04 0.44 0.07 0.13 0.14 0.00

SLC1A3 0.20 4.6e−05 0.08 0.12 0.09 0.08 0.18 0.00 −0.04 0.47 0.08 0.11 0.20 4.8e−05 −0.01 0.82 0.15 0.00

SLC1A4 0.27 1.5e−08 −0.03 0.60 0.27 1.8e−08 0.13 0.01 0.25 2.3e−07 0.11 0.02 0.00 0.99 0.09 0.06 0.36 1.4e−14

SLC1A5 0.24 3.7e−07 −0.08 0.10 0.06 0.21 0.03 0.56 0.05 0.35 0.15 0.00 0.03 0.50 −0.03 0.58 0.22 7.4e−06

SLC1A6 −0.02 0.64 0.02 0.76 0.03 0.53 0.02 0.69 0.00 0.96 0.01 0.78 −0.04 0.38 0.06 0.21 0.04 0.40

SLC1A7 0.09 0.08 −0.06 0.21 0.43 0.00 0.25 2.4e−07 0.16 0.00 −0.05 0.35 −0.03 0.50 −0.04 0.47 0.33 2e−12

GLS 0.15 0.00 −0.01 0.86 0.11 0.02 −0.01 0.86 0.18 0.00 0.03 0.49 0.05 0.30 0.13 0.01 0.36 2.8e−14

GLUD1 0.10 0.03 0.02 0.73 0.11 0.03 0.06 0.20 0.11 0.02 −0.02 0.68 0.14 0.00 0.05 0.35 0.25 2.2e−07

GLUD2 0.19 7.8e−05 0.04 0.73 0.25 2.6e−07 0.05 0.31 0.26 4.8e−08 0.09 0.08 0.15 0.00 0.31 9.3e−11 0.27 1.3e−08
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Further analysis of patients’ tumors from TCGA data indicated that CD44, ALDH1A1, and NOTCH1
exhibited significantly positive correlations with enzymes involved in glutamine metabolism. CD44
positively correlated with SLC1A1-5, GLS, and GLUD1/2. Similarly, ALDH1A1 exhibited significant
positive correlation with four out of the seven glutamine transporters, along with GLS and GLUD1/2.
NOTCH1 significantly positively correlated with five out of the seven glutamine transporters, along
with GLS and GLUD1/2. CD133 positively correlated with five out of the seven glutamine transporters,
while CD117 correlated with three out of seven glutamine transporters, as well as with GLS and
GLUD1/2. SOX2 and OCT4 positively correlated with three and two glutamine transporters, respectively.
OCT4 also positively correlated with GLS and GLUD1/2. CD24 positively correlated with one glutamine
transporter, as well as SLC1A1, but no other significant correlations with other glutamine transporters.
NANOG was not positively correlated with any of the glutamine transporters yet was correlated with
GLS and GLUD2 (Figure 8E and Table 5). Of note is that transcriptomic profiling of data of the OvCa
cell lines in CCLE demonstrated that the transcripts of CD44 and OCT4 both positively correlated with
SLC1A1 and GLS; whereas OCT4 negatively correlated with SLC1A2 and SLC1A5. CD117 positively
correlated with SLC1A3, while CD133 positively correlated with SLC1A5. Additionally, ALDH1A1
negatively correlated with SLC1A7, while NANOG negatively correlated with SLC1A1 (Figure S6). In
summary, data from TCGA show positive correlations between the transcripts of OCSC markers and
glutamine metabolism enzymes, whereas in OCSC experimental models of GSE64999, GSE28799, and
CCLE, the number of positive and negative correlations observed was significantly lower implying
that glutamine metabolism is indispensable for OCSCs and OvCa cells grown in normal conditions,
whereas in their complex TME, OvCa cells utilize glutamine metabolism in an anaplerotic reaction for
generating energy and metabolic intermediates to fulfill their increasing demands.

While our findings are based on OCSC transcript levels, it is necessary to clarify that the transcript
level and proteome levels may not necessarily correlate due to post transcriptional modifications,
including splice variation. Alternative splicing accounts for the major difference between the number
of protein-coding genes and the number of proteins that are ultimately produced from translation [81].
Through the various splicing mechanisms, as constitutive splicing, mutually exclusive exons, cassette
alternative exon, alternative 3′ or 5′ splice site, and intron retention, splicing plays a key role in protein
diversification. In effect, by allowing several functionally distinctive proteins to be encoded by the
same original gene, splicing does not allow for the direct conversion of the transcriptomic signature
into the proteomic signature [81]. Moreover, due to intra-clonal heterogeneity, it is challenging to assign
a specific set of stemness markers that define the different subsets of CSCs [82]. Such heterogeneity
includes quiescent, precancerous, primary, migrating, chemo-resistant, and radio-resistant CSCs [83].
In OCSCs specifically, multiple subtypes have been identified including proliferating CSCs expressing
OCT4, ALDH1/2, CD44, and LGR5/Ki67+ markers and non-proliferating CSCs expressing SSEA4+/Ki67−

or ALDH1/2+/Ki67− markers. Other subsets of OCSCs include CD133+ and CD44+/CD117+ all of which
can be influenced by tumor microenvironmental cues, upregulation of signaling pathways, and tumor
grade, making it difficult to confine OCSCs to a standardized list of markers [4,82].

4. Conclusions

In this study, we sought to investigate the predictive significance of the gene expression of OCSCs
in correlation with transcripts of metabolic pathways that are upregulated in HGSOC, that could
inform about the metabolic plasticity of tumors, predict the behavior of recurrent or chemo-resistant
disease, and ultimately may guide on therapeutics targeting the enriched pathways in combination
with standard of care therapy. Comparison of transcripts of OCSC markers with those of enzymes
involved in metabolic pathways in OCSC spheroid model systems with patients’ data revealed several
distinctive differences in the expression of the stem cell markers. Correlations with energy metabolic
pathways, not only between the two model systems investigated, but also with patients’ tumors and
cumulative behavior of OvCa cell data from CCLE were elucidated. While these differences between
spheroid model systems could be attributed to technical variability in establishing and maintaining
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of OCSCs as spheroids, nevertheless, they highlight the significance of OvCa heterogeneity, and the
influence of micro-environmental cues on metabolic plasticity of OCSCs that may influence their
survival and self-renewal capabilities.

It is noteworthy that the limitation of the present study is the paucity of data from established
model systems of OCSCs with adequate biological replica that can be used for systematic biological,
metabolic as well as transcriptomic analyses to bridge the gap of metabolic programing in OCSCs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/1267/s1,
Figure S1: Pearson’s correlation between OvCa stem cell (OCSC) markers. Figure S2: Correlations of OCSC
markers with glucose transporters and glycolysis enzymes in OvCa cell lines’ data curated from CCLE. Figure
S3: Correlations of OVSC markers with TCA cycle enzymes in OvCa cell lines’ data curated from CCLE. Red
indicates positive correlations. Figure S4: Pearson Correlation between the expression of OCSC transcripts and the
transcripts of the key enzymes involved in ETC in OvCa cell lines’ data curated from CCLE. Figure S5: Correlations
of OCSC markers with fatty acid transporters and lipid metabolism enzymes in OvCa cell lines’ data curated from
CCLE. Figure S6: Correlations of OCSC markers with glutamine/glutamine transporters and metabolic enzymes in
OvCa cell lines’ data curated from CCLE. Table S1: Pearson Correlation between the expression of CSC transcripts
and the transcripts of glucose transporters and the key enzymes involved in glycolysis in OVCAR3 spheroids stem
cells curated from GSE28799. Table S2: Pearson Correlation between the expression of CSC transcripts and the
transcripts of glucose transporters and the key enzymes involved in glycolysis in undifferentiated spheroids stem
cells curated from GSE64999. Table S3: Pearson Correlation between the expression of CSC transcripts and the
transcripts of the key TCA enzymes in OVCAR3 stem cells from GSE28799. Table S4: Pearson Correlation between
the expression of CSC transcripts and the transcripts of the key TCA enzymes in undifferentiated OCSCs from
GSE64999. Table S5: Pearson Correlation between the expression of CSC transcripts and the transcripts of the key
enzymes involved in the Electron Transport Chain in OvCa cell lines curated from GSE28799. Table S6: Pearson
Correlation between the expression of CSC transcripts and the transcripts of the key enzymes involved in the
Electron Transport Chain in OvCa cell lines curated from GSE64999. Table S7: Pearson Correlation between OCSC
markers and lipid transporters and key enzymes in lipid metabolism in GSE28799. Table S8: Pearson Correlation
between OCSC markers and lipid transporters and key enzymes in lipid metabolism in GSE64999. Table S9:
Pearson Correlation between OCSC markers and glutamate transporters and key enzymes of glutamate/glutamine
metabolism in GSE28799. Table S10: Pearson Correlation between OCSC markers and glutamate transporters and
key enzymes in glutamate/glutamine metabolism in GSE64999.
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