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A B S T R A C T

Previous studies to simulate brain tumor progression, often investigate either temporal changes in cancer cell
density or the overall tissue-level growth of the tumor mass. Here, we developed a computational model to
bridge these two approaches. The model incorporates the tumor biomechanical response at the tissue level and
accounts for cellular events by modeling cancer cell proliferation, infiltration to surrounding tissues, and in-
vasion to distant locations. Moreover, acquisition of high resolution human data from anatomical magnetic
resonance imaging, diffusion tensor imaging and perfusion imaging was employed within the simulations to-
wards a realistic and patient specific model. The model predicted the intratumoral mechanical stresses to range
from 20 to 34 kPa, which caused an up to 4.5 mm displacement to the adjacent healthy tissue. Furthermore, the
model predicted plausible cancer cell invasion patterns within the brain along the white matter fiber tracts.
Finally, by varying the tumor vascular density and its invasive outer ring thickness, our model showed the
potential of these parameters for guiding the timing (83–90 days) of cancer cell distant invasion as well as the
number (0–2 sites) and location (temportal and/or parietal lobe) of the invasion sites.

1. Introduction

Dysfunctional cells exhibiting uncontrolled proliferation give rise to
malignant growths (tumors) that are able to invade and ultimately
destruct vital organs. In recent years, as mathematical and computa-
tional models evolve, their application to neuro-oncology enables the
formation of predictive systems that can model and simulate malig-
nancies in the brain. Such systems can improve our understanding of
growth and invasive patterns, and potentially lead to useful clinical
tools (Martirosyan et al., 2015; Engwer et al., 2016). In regards to brain
tumor modeling this can be viewed from two perspectives: i) the mi-
croscopic approach that accounts for cellular processes within the
tumor and in the surrounding tissue, and ii) the macroscopic approach
that investigates the tissue-level growth of the tumor (Konukoglu et al.,
2010; Martirosyan et al., 2015).

The microscopic models account for the discrete nature of cells ei-
ther by single cell approaches or by approaches modeling the tumor as a
collection of interacting self-organizing cells (Juffer et al., 2008). In
cellular automation studies, the cells are considered as discrete entities,
in a particular state (dead, alive, vacant, etc.) within a large lattice,
which proliferate, with the daughter cell occupying a neighboring

vacant lattice site (Juffer et al., 2008). Such lattice-based models with
discrete cellular components have managed to address the tumor cell
heterogeneity, growth pattern, invasiveness (Rubenstein and Kaufman,
2008; Zhang et al., 2009; Baker et al., 2014) and response to treatment
(Alfonso et al., 2014). The migration-proliferation dichotomy of the
cells has also been investigated by phenomenological models (Alfonso
et al., 2017) applying continuous time random walks (Iomin, 2015), “go
or grow” mechanisms (Hatzikirou et al., 2012), as well as phenotypic
switching (Tektonidis et al., 2011; Alfonso et al., 2016). Finally, evo-
lutionary game theory has been used to study the interplay between
different cell phenotypes and how these affect tumor progression
(Basanta et al., 2008).

Continuum-based models focus on the evolution of cancer cell
density over time, using the diffusion-reaction equation to describe
tumor growth and infiltration. These models initially assumed a
homogeneous and isotropic diffusion/invasion of cancer cells in the
entire brain (Tracqui et al., 1995; Swanson et al., 2000). Later efforts
increased the level of sophistication by accounting for different diffu-
sion coefficients for each of the brain's substances (Swanson et al.,
2003; Szeto et al., 2009; Unkelbach et al., 2014). More recently, models
for brain tumor growth recognize the importance of incorporating the
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inhomogeneous and anisotropic diffusion of cancer cells in the brain
and are most often driven by data acquired from magnetic resonance
diffusion tensor imaging (DTI-MRI) (Konukoglu et al., 2010; Roniotis
et al., 2012; Colombo et al., 2015; Engwer et al., 2016).

The realization that not only biological factors but also biomecha-
nical forces affect tumor dynamics (Jain et al., 2014) drove mathema-
tical models of brain tumors to investigate the macroscopic, tissue-level
behavior of the tumor and its mechanical interaction with the sur-
rounding structures (Konukoglu et al., 2010). Earlier models of this
type, assumed the brain to consist of a single solid phase and modeled
its mechanical response using an external force proportional to the
concentration gradient of cancer cells (Wasserman et al., 1996; Clatz
et al., 2005; Hogea et al., 2008; Zacharaki et al., 2008). More com-
prehensive biomechanical models have also been developed that ad-
dress the biphasic (i.e., fluid and solid phase) nature of the brain and
simulate brain tumor growth by accounting for the varying mechanical
properties of the brain's grey and white matter and cerebrospinal fluid
using a realistic geometry extracted from MRI data (Angeli and
Stylianopoulos, 2016).

The need of an approach to couple cellular and tissue-level events,
becomes imperative in the case of brain tumors. The infiltration and
invasion of glioma cells frequently causes relapse after treatment
(Yangjin and Soyeon, 2013; Hunt and Surulescu, 2017), whereas the
inhomogeneous and irregular growth patterns of brain tumors are af-
fected by the physical anatomical structures of the surrounding tissue
(Tysnes and Mahesparan, 2001; Esmaeili et al., 2018). Furthermore, as
population-level data are shown to be poor predictors of patients' re-
sponse to treatment due to an increased inter-individual variability
(Johnson and O'Neill, 2012), the necessity of patient specific models
becomes more essential (Jackson et al., 2015).

To address these limitations, we build on previous work (Mpekris
et al., 2015; Angeli and Stylianopoulos, 2016; Mpekris et al., 2017) and
developed a biomechanical finite elements model of brain tumor
growth accounting for the entire human brain as well as for the in-
filtration of cancer cells in the surrounding normal tissue and their
invasion to distant areas within the brain. Cancer cell infiltration and
distant invasion were described by the diffusion-reaction equation
using an anisotropic and inhomogeneous diffusion tensor acquired from
DTI-MRI (Tuch et al., 2003; Zhang et al., 2009), in accordance with
previous studies reporting that the preferred dispersion routes of tumor
cells is along white matter fiber tracts (Vertosick Jr and Selker, 1990;
Yangjin and Soyeon, 2013; Alfonso et al., 2017). The vascular density of
the tumor was derived from human data of perfusion MRI, while the
biphasic and continuum mechanics basis of the formulation enabled the
calculation of solid stresses, tissue displacements and interstitial fluid
pressure (IFP).

Our mathematical formulation is therefor able to, i) couple the
diffusion-reaction models with the tissue level tumor behavior, ii) ac-
count for the effects of mechanical forces and perfusion on tumor
growth and distant invasion and iii) predict satellite/secondary growths

in distant sites within the brain. Additionally, we employed the model's
predictions to investigate the effect of the tumoral vascular density (i.e.,
perfusion) and the invasive potential of cancer cells on the number,
location and time of appearance of the secondary growths. The pro-
posed mathematical framework along with the utilization of informa-
tion acquired from various imaging protocols, produces a patient tai-
lored “personalized” outcome, which can ultimately have considerable
clinical impact and utility.

2. Methods

2.1. MR imaging and 3D geometry extraction

Brain morphological imaging followed by geometrical model ex-
traction was performed according to our previously described metho-
dology (Angeli and Stylianopoulos, 2016). The model, included the full
brain and consisted of two different computational domains, corre-
sponding to the grey and white matter. Additionally, a third domain
was manually positioned at the left parietal lobe to act as the initial
tumor seed. The final model is presented in Fig. 1 along with its size in
meters. It consisted of 777,397 tetrahedral and 202,349 triangular
elements resulting in 2,335,057 degrees of freedom.

In the same session as the morphological brain imaging, using the
same slice stack positioning and orientation, DTI-MRI was performed
for the same healthy volunteer employing an 1.5 Philips Achieva
Magnetic Resonance Imaging Scanner (Philips Healthcare, Netherlands)
and a SENSE 16-channel head coil. The spatial resolution of the scan
was 1.75× 1.75× 2 mm with a repetition time of 4907ms an echo
time of 80ms, 15 gradient directions and b-values of 0 and 800 s/mm2.
The acquired magnetic resonance (MR) images were exported as stan-
dard DICOM format and imported into the Diffusion Toolkit
(Massachusetts General Hospital, Boston, MA) along with the corre-
sponding gradient table and b-values to enable the calculation of the
diffusion tensors for every imaged voxel (Angeli et al., 2014). The
calculated diffusion tensors were then imported in Matlab (Mathworks,
MA) and were used to direct tumor cells invasion within the healthy
tissue domains as described in the Section 2.3.

2.2. Biomechanical model of brain tumor growth

The model accounted for both the solid and fluid phase of the tumor
and normal brain tissue (white and grey matter) as well as for tumor
growth and oxygen transport. To model tumor growth, the decom-
position of the total deformation gradient tensor F was employed ac-
cording to the expression (Skalak et al., 1996; Ambrosi and Mollica,
2002):

=F F Fe g (1)

where Fe is the elastic component of F used to account for interactions
with the normal brain and Fg was assumed to be an isotropic tensor that

Fig. 1. (Left) Three-dimensional representation of
the computational mesh showing the individual do-
mains for the grey (green), white (purple) matter and
tumor seed (light green). (Right) Computational fi-
nite element mesh employed in the present study
consisting of 777,397 tetrahedral and 202,349 tri-
angular elements. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the web version of this article.)
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describes tumor growth due to cancer cell proliferation and it was as-
sociated with the growth stretch ratio λg as follows (Roose et al., 2003;
Kim et al., 2011; Stylianopoulos et al., 2013; Mpekris et al., 2015):

= λF Ιg g (2)

where Ι is the identity tensor. The elastic component Fe was determined
by rearranging Eq. (1).

The growth stretch ratio was formulated by considering a growth
rate which accounts for the effects of Cauchy solid stress (σs) and
oxygen on tumor growth, the volume fraction of the solid (Φs) and fluid
phase (1−Φs), along with the normalized cancer cell density (Tcell),
according to the following expression (Roose et al., 2003; Kim et al.,
2011; MacLaurin et al., 2012; Voutouri and Stylianopoulos, 2014;
Mpekris et al., 2015):

=
dλ
dt

R λ1
3

g
tumor g (3)
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where Rtumor describes the proliferation rate of cancer cells,
= + +σ σ σ σ( )/3rr

s
θθ
s

φφ
s is the average (bulk) of the solid phase Cauchy

stress and β is a constant to describe the dependence of growth on solid
stress. The term + βσ(1 ) is taken to be positive but less than unity when
the bulk stress was compressive, and set equal to unity when the bulk
stress was tensile (Helmlinger et al., 1997; Cheng et al., 2009). The ⅓
multiplier in the right-hand side of the equation appears owing to the
assumption of isotropic tumor growth. The growth stretch ratio, λg,
describes tumor growth in each of the three coordinate directions. For
isotropic growth λg becomes the same in all three directions and thus,
the ⅓ denotes that the cancer cell proliferation term, Rtumor is equally
divided among the three coordinates. Finally, the term G describes the
effect of oxygen on tumor growth. A Michaelis-Menten expression is
used for G, reflecting the fact that an increase in oxygen concentration
will increase cancer cell proliferation rate, until a plateau is reached
corresponding to the state that oxygen supply is higher than the max-
imum consumption capacity of cancer cells (Casciari et al., 1992):
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+
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ox
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1
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where cox is the oxygen concentration and k1, k2 are growth rate con-
stants, the values of which are listed in Table 1, along with all other
parameter values used in this study.

The equations for the mass balance of the fluid and solid phase, for
the interstitial fluid transport as well as the constitute equation for the
mechanical behavior of the tumor and normal tissues are presented in
the Appendix A - Supplementary Material.

2.3. Cancer cell proliferation and diffusion

The normalized/dimensionless density of cancer cells, Tcell was

derived by division of the cancer cell density to a reference cancer cell
density (To= 107 cells/cm3) (Stein et al., 2007). Such a normalization
does not affect model predictions and acts towards eliminating their
quantitative reliance from the dimensional cancer cell density. Tcell in
the tumor and normal brain was given by a diffusion-reaction type
equation that accounted for the proliferation of cancer cells and their
invasion to the adjacent healthy tissues (Mpekris et al., 2017):

∂

∂
+ ∇⋅ − ∇ =

T
t

D x T R( ( ) )cel
T cells (6)

where DT(x) is the inhomogeneous and anisotropic diffusion tensor
acquired from the DTI-MRI in accordance with previous studies
(Roniotis et al., 2012; Engwer et al., 2016) and R is a reaction term used
to describe cancer cell proliferation. Within the tumor domain, R is
given by Eq. (4), while for the cells that invade into the normal brain is
given by:

=R ρ Ttissue cell cell (7)

where ρcell is the proliferation rate of cancer cells diffusing away from
the tumor found from the literature (Table 1).

2.4. Oxygen transport

Transport of oxygen is modeled taking into account: the oxygen
entering the brain from the blood vessels, the convective and diffusive
oxygen transport within the brain, and the amount of oxygen consumed
by cancer cells (Roose et al., 2003; Kim et al., 2011; Mpekris et al.,
2015), that is,
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where Dox is the diffusion coefficient of oxygen in the tumor interstitial
space, Aox is the oxygen consumption rate and kox is the oxygen con-
centration at which the reaction rate is half, Per is the vascular per-
meability of oxygen that describes diffusion across the tumor vessel
wall, and Ciox is the oxygen concentration in the vessels.

The values of the model's parameters were taken from the literature
and are summarized in Table 1. The vascular density of the tumor, Sv,
was calculated from human perfusion data derived from MR imaging
(Section 2.5).

2.5. Perfusion data from human brain tumors

The perfusion MRI data of 12 adult patients with an intra-cranial
brain lesion (age: 44 ± 16 y) were acquired at Oslo University Hospital
and allowed for the calculation of normalized cerebral blood volume
(CBV), i.e. the fraction of blood-to-tissue in a given voxel, for 69 ag-
gregated tumor volumes as follows; Dynamic susceptibility contrast
MRI was performed by gradient-echo echo-planar imaging during
contrast agent administration (0.2 mmol/kg of gadobutrol) with re-
petition time 1430ms, echo time 46ms, 1.8× 1.8 mm in-plane

Table 1
Values of model's parameters employed in the simulation.

Parameter Description Domain Value Reference

β Growth stress dependence Tumor 0.000025 Pa−1 (Voutouri et al., 2014)
Ciox Initial oxygen concentration All 0.2 mol·m−3 (Casciari et al., 1992)
Dox Oxygen diffusion coefficient All 1.55× 10−4 m2·day−1 (Kim et al., 2011)
Aox Oxygen consumption rate All 2200mol·m−3·day−1 (Casciari et al., 1992; Kim et al., 2011)
kox Oxygen concentration at which the reaction rate is half All 0.00464mol·m−3 (Casciari et al., 1992; Kim et al., 2011)
k1 Growth rate parameter Tumor 0.16 day−1 This Study
k2 Growth rate parameter Tumor 0,0083mol m−3 (Casciari et al., 1992)
ρTcell Tumor cell proliferation rate Brain 0.012 day−1 (Swanson et al., 2008)
To Reference cancer cell density Tumor 107 cells/cm3 (Stein et al., 2007)
Tcell,i Normalized initial cancer cell density Brain 0 –

Tumor 1
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resolution and 5mm slice thickness. Normalized CBV maps were cre-
ated using nordicICE (NordicNeuroLab, Oslo, Norway) as previous de-
scribed (Emblem et al., 2015). This included a fully automatic estima-
tion of the area under the contrast-enhanced first-pass curve, voxel-wise
normalization to a combined grey- and white-matter reference tissue
value and correction for contrast agent extravasation. The resulting
CBV values were then fitted with a 5th order polynomial function and
the obtained fit, presented in Fig. 2, was used to relate the functional
vascular density (Lin et al., 2002) of the tumor with the tumor size.
Such a fit was chosen since it was the lowest degree polynomial that
was able to cross the vertical axis at the point y]1 (i.e., in the absence
of the tumor, vascular density becomes equal to the vascular density of
the normal tissue), and provided a proper qualitative response
throughout the data range.

2.6. Implementation of computational model and boundary conditions

The model equations were solved in COMSOL Multiphysics 5.2
(COMSOL, Inc., Burlington, USA). During the preparation phases of the
simulation, a COMSOL – Matlab integration was employed to read the
anisotropic and inhomogeneous diffusion tensors for all the nodes of the
computational mesh. Such diffusion tensors were subsequently used
throughout the time evolution of the tumor growth model to drive tumor
cell diffusion within the grey and white matter as described in Section 2.3.

At all internal boundaries (i.e., internal interfaces of the computa-
tional domains namely between the grey matter, the white matter and
the tumor), COMSOL automatically assigned continuity of the stress and
displacement fields, i.e., n · σs|+= n · σs|− and n · u|+= n · u|− where n is
the unit normal to the surface vector, u the displacement field and the
plus(+) and minus(−) signs denote the two sides of the interface.
Furthermore, the interstitial fluid flux exiting from one domain was set
equal to the fluid flux entering the other domain of the interface, i.e.,
n · kth∇p|+= n · kth∇p|−, where kth is the hydraulic conductivity of the
tissue and ∇p is the IFP gradient at both sides of the interface.

At the external boundaries, a no-flux condition was employed for
the fluid phase (i.e., ∇p=0) to avoid fluid leakage from the boundaries
of the brain while the solid phase was set fixed, to allow deformation
only within the brain and not at the periphery, which is in contact with
the fixed skull.

A thin layer around the tumor was defined to limit the cells evading
the tumor domain and act as its invasive front. While being a compu-
tational barrier to the diffusion of cancer cells, this layer allows only a
portion of cancer cells to evade the tumor in inverse proportion to its
thickness i.e., the thicker the layer the less cells evade the tumor. Such a
layer is employed in an effort to approximate previous reports of cells'
dichotomy, stating that only a portion of intratumoral cancer cells, with

migratory phenotype, have the tendency to escape the tumor through a
tumoral outer ring (Tektonidis et al., 2011; Hatzikirou et al., 2012;
Alfonso et al., 2016). Additionally, a parametric study was performed to
investigate the effect of the thickness of this layer on the model pre-
dictions by varying its thickness from 1.0–2.5mm, considering as
baseline the 2mm thickness. Moreover, the effect of the vascular den-
sity on the model predictions was also studied by changing its value by
50% and 150%.

3. Results

3.1. Baseline simulations for tumor growth and cancer cell infiltration

Fig. 3 (left y-axis) presents the growth curve of the initial tumor
seed (tumor domain) appearing to increase in size from 32 to 660mm3.
The growth rate of the simulated tumor, defined by the Volume Dou-
bling Time (VDT) (Yamashita and Kuwabara, 1983), was found to be
18.0 days, which is in agreement with the human data of 16.7 and
14.9 days reported in previous studies (Huang et al., 1995; Stensjoen
et al., 2015).

Volume estimation was also performed to account for the tumor
cells escaping the tumor domain and infiltrating the surrounding tissue.
Such volume estimations were performed for isosurfaces with cell po-
pulation, Tcell, of 0.1, 0.05 and 0.025 and resulted in final tumor

Fig. 2. (Left) Typical relative Cerebral Blood Volume
(rCBV) maps extracted from perfusion MRI. (Right)
rCBV as a function of tumor volume along with the
performed 5th order fit used to correlate the vascular
density and the tumor size within the simulation setup
according to the equation rCBV=1.0+ (7.8×10−4)
Vt− (3.4×10−7)Vt

2+ (5.8×10−11)Vt
3− (4.4×

10−15)Vt
4+ (1.2×10−19)Vt5.

Fig. 3. (Left y-axis) Tumor volume as a function of time for the tumor domain
and the three isosurfaces corresponding to different cell densities infiltrating
the proximal tissues. (Right y-axis) Cell density as a function of time for the
tumor domain showing the proliferation of cancer cells as the tumor grows. The
dashed grey arrows connect each curve with its corresponding vertical axis.
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volumes of 5296, 10,680 and 18,639mm3, respectively. The average
cell population within the tumor domain increased from the normalized
initial unitary value to 17.2, corresponding to a 17-fold increase,
(Fig. 3, right y-axis).

3.2. Tissue deformation and stress accumulation in normal and tumor tissue

A direct consequence of tumor growth is the displacement and
compression of the tumor and the surrounding structures. Such dis-
placements increased from 0.2 mm within the tumor center to 4.5 mm
at the tumor periphery. Similarly, in the surrounding tissue the de-
formations also peaked at 4.5mm. Contour plots of the displacement
distribution are presented in Fig. 4 for both the tumor and the sur-
rounding tissue domains.

The continuum mechanics basis of the model allows for the calcu-
lation of the mechanical stresses exhibited during tumor growth. These
stresses were found to be heterogeneously distributed and to range from
−20 to−34 kPa (−150 to−255mmHg) within the tumor domain and
from −35 to +49 kPa (−262.5 to 367.5mmHg) in the surrounding
tissues (Fig. 4), with negative values to denote compressive stress.

3.3. Tumor cells infiltrate and invade within the brain to form satellite
nodes

The inhomogeneous and anisotropic diffusion coefficients acquired
from DTI-MRI and incorporated into the model, resulted in anisotropic
diffusion of cancer cells from the tumor to the normal brain. Fig. 5
presents two slice plots of the population of the cancer cells within the
tumor and the normal tissue for two different orientations (transversal
and sagittal).

Interestingly, the simulation showed cell invasion from the tumor
and its proximal areas, to distant locations in the brain. Within the
computational domains, we consider a satellite node to be defined as
any cell density with no apparent connection to the primary tumor
domain and exceeds 1% of the initial cancer cell density. Such cell
density was formed in the right temporal lobe at day 83 and is marked
by the yellow arrow in Fig. 5 (see also Fig. 6B).

3.4. Tumoral outer ring size is crucial for the number of distant satellite
nodes

In an effort to investigate the effect of the tumoral outer ring on the
simulation results, its thickness was varied from 1.0–2.5mm. Fig. 6A
presents the tumor growth curves (left y-axis) of the parametric ana-
lysis. The curves show the tumor domain to reach at day 83 a volume of
284, 658 and 814mm3 for the 1.0, 1.5 and 2.5 mm of tumoral outer
ring thickness, respectively. Additionally, the volume estimation for the
0.05 isosurface resulted in tumor volumes of 1826, 7947 and

Fig. 4. (Top) Displacement maps and (bottom) stress = + +σ σ σ σ( )/3rr
s

θθ
s

φφ
s for the host tissue presented over the reference configuration (right), and for the tumor

presented over the final/deformed mesh configuration (left).

Fig. 5. Sagittal and axial surface plots of cancer cell density showing in-
homogeneous distribution within the tumor and anisotropic infiltration at the
proximal tissue, owing to the inhomogeneous and anisotropic geometry and
diffusion tensors. Distant invasion of cancer cells to the right temporal node
formed satellite lesion indicated by the yellow arrow in the zoomed region. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)
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10,024mm3 (5481, 15,086 and 17,691mm3 for the 0.025 isosurface) at
the same day. Fig. 6A depicts the cancer cell proliferation curves (right
y-axis), showing the tumor cells to increase from 3.4, to 19.9 at day 83
following the increase in the tumoral outer ring thickness. Also, pre-
sented in Supplementary Fig. 1 (A-C) are two slice plots of the popu-
lation of the cancer cells within the tumor and the surrounding tissue
for two different orientations (transversal and sagittal) of the para-
metric study.

Fig. 6B presents a sagittal view of the brain, depicting the cell
density outside the original tumor domain. The formation of satellite
nodes was observed only for the 1.5 and 2.5 mm thickness of tumoral
outer rings to the right temporal lobe and first appeared at day 77 and
70, respectively. For outer ring thickness of 1mm, cancer cells did not
form any secondary growths.

3.5. Vascular density significantly affects tumor growth rate, cancer cell
infiltration and number of satellite nodes

To simulate and investigate the effect of functional vascular density
on the model's predictions, its value was decreased by 50% (low vas-
cular density) and increased by 150% (high vascular density) compared
to that of the baseline. Fig. 7 shows the oxygen concentration calculated
within the tumor during the time evolution of its growth. A marked
variability is observed among the different conditions showing that at
day 83 the oxygen concentration ranged from 0.004 to 0.16mol/m3.

Fig. 8A shows the tumor growth curves (left y-axis) for low and high
vascular density, which is related to the number of functional tumor
vessels. The curves show the tumor domain to reach a volume of 647
and 824mm3 at day 83 for low and high vascular densities, respec-
tively. Additionally, the volume estimation for the 0.05 isosurface re-
sulted in tumor volumes of 9945 and 10,511mm3 (17,908 and
18,365mm3 for the 0.025 isosurface) at the same day and for low and
high vascular densities, respectively. The cancer cell proliferation
curves (right y-axis) show the tumor cell density to increase to 17, at
day 83. In Supplementary Fig. 1 (D,E) the slice plots of the population
of the cancer cells within the tumor and the surrounding tissue for two

different orientations (transversal and sagittal) are presented while in
the brain sagittal views shown in Fig. 8B, the cell density outside the
original tumor domain is plotted. The formation of a satellite node in
the right temporal node is first observed in both runs at day 77, in-
terestingly however, for low vascular density a second satellite region
was formed in the right posterior parietal lobe at day 83.

3.6. Connectivity of satellite regions to the initial tumor location using fiber
tractography

In order to visualize the fiber tracts connecting the initial tumor
location to the secondary locations, tractography was performed at the
Philips MR Console and results are presented in Fig. 9A and C showing
numerous fiber bundles connecting the initial to the satellite locations.

Fig. 6. (Α) Tumor volume as a function of time (Left y-axis) for the tumor domain and the 2.5% isosurface of cancer cell density, along with the tumor domain's cell
density as a function of time (right y-axis) for the additional runs of the parametric study. The dashed grey arrows connect each curve with its corresponding vertical
axis. (Β) Sagittal view of Tcell outside the tumor domain showing secondary nodes (yellow arrows) only in the right temporal lobe for the 1.5, 2.5 mm thickness tumor
outer rings. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Intratumoral oxygen concentration as a function of time for varying
tumoral outer ring and vascular density conditions. Low and high vascular
density corresponds to values 50% and 150% of that of the baseline, respec-
tively.
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Fig. 8. (Α) Tumor volume as a function of time (Left y-axis) for the tumor domain and the 2.5% isosurface of cancer cell density, along with the tumor domain's cell
density as a function of time (right y-axis) for the additional runs of the parametric study. (Β) Sagittal view of Tcell outside the tumor domain showing secondary nodes
(yellow arrows) the right temporal posterior parietal lobe for the 50% vascular density run and the only the right temporal lobe for the 150% vascular density run.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. (A, C) Tractography depicting numerous fiber tracts connecting the initial tumor location with the secondary nodes. (B, E) Distant invasion of cancer cells at
distant locations within the brain, forming secondary nodes at the right posterior parietal lobe (B) and the right temporal lobe (E) (yellow arrows) along with the
intermediate “cell pool” (D). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Interestingly, while for the case of the right posterior parietal lobe,
in which the DTI-based fiber bundles connect the primary tumor to the
secondary site directly (Fig. 9A), this is not the case with the temporal
lobe where no apparent DTI-based fiber bundles connect the primary
lesion to the secondary node. Instead, fibers passing through the tumor
encounter the fibers passing through the temporal lobe near the
brainstem (Fig. 9C). At this specific location, a “cell pool” is observed
(Fig. 9D), indicating that the cells move from the primary tumor to this
region, and then relocate to the temporal lobe to form the satellite node
(Fig. 9E).

4. Discussion

In this study, a mathematical framework was proposed to in-
vestigate brain tumor progression in a patient specific model using data
acquired from MRI. The model was based on principles from continuum
mechanics (Mpekris et al., 2015; Angeli and Stylianopoulos, 2016) and
accounted for the infiltration and distant invasion of cancer cells to the
surrounding tissues. Our approach attempts to bridge the gap of ex-
isting models, which either model the temporal evolution of cancer cell
density (Wang et al., 2009; Chen et al., 2011; Mi et al., 2014) or the
macroscopic/tissue-level response of tumor growth (Kyriacou et al.,
1999; Hogea et al., 2007; Zacharaki et al., 2008). Even though coupling
of cancer cell invasion with the generation of intratumoral mechanical
stresses has recently been investigated (Hormuth 2nd et al., 2017; Weis
et al., 2017), our model accounts additionally for the interstitial fluid
pressure, the oxygen concentration and the anisotropic nature of the
diffusion tensors within the brain; in a patient specific three-dimen-
sional, whole brain geometry, employing distinct computational do-
mains for the tumor, the white and the grey matter. Furthermore, while
in previous studies, mechanical stress was indirectly accounting for, as
a function of cancer cell concentration gradient (Chen et al., 2013; Liu
et al., 2014), here we directly model the effects of mechanical stress
with the explicit solution of the biomechanical formalism presented. In
spite of the strenuous computational demands of our approach, its ap-
plication is justified by its ability to provide information not only about
the heterogeneous tumor growth, the exhibited stresses, and the sur-
rounding tissue displacements, but also about the cancer cell infiltration
to the vicinity of the tumor and the invasion to distal locations within
the brain.

To our knowledge, this is the first model to predict non-random
cancer cell distant invasion, to secondary foci within the brain. Unlike a
less sophisticated, directionless and uniform growth, these secondary
growths are connected to the primary tumor domain through numerous
fiber bundles, as shown in Fig. 9 and are presumed to guide cells distant
invasion. The above mechanisms support the validity of the model and
show that the cellular formations away from the initial tumor domain
are not due to errors of the computational solution.

The parametric study performed herein, highlights the importance
of the tumoral outer ring and the vascular density for tumor cell in-
filtration and distant invasion. We observed that in all simulations, the
tumor formed satellite nodes away from its initial location except for
the case of the 1mm outer ring thickness. In this case, even though the
distant invasion potential of the cells increases, the population of cancer
cells drops significantly, the tumor does not grow big enough to reach a
fiber bundle suitable to guide cell distant invasion and/or the cancer
cell density is not high enough to establish a diffusion gradient suffi-
cient to drive invasion to distant sites. Therefore, while the percentage
of cells evading the tumor is greater than in the other scenarios due to
the presence of a thinner outer ring, cancer cells are not able to migrate
away from the tumor owing to insufficient density. Additionally, our
conclusion is further supported by the fact that for the 2.5 mm outer
ring thickness, the formation of the satellite node occurs 7 days earlier
than in the other cases. The thickest outer ring accounts for more
proliferative cells by reducing the percentage of cells evading the
tumor. Therefore, the cells reach a sufficient density for distant invasion

earlier, they do invade and form the temporal lobe node, one week
earlier than in the other simulations. An additional observation is that
the 2mm ring thickness and 50% vascular density favors the formation
of multiple satellite nodes, not observed for the other values tested. This
fact, points towards the conclusion that apart from the outer ring size,
the change in perfusion, affected tumor growth rate and cancer cell
population, enabling distant invasion to the posterior parietal lobe.
There appears to be a balance between cancer cell density, tumor
growth rate and tumoral outer ring thickness that benefits cancer cell
distant invasion and allows formation of multiple secondary nodes.

The two parameters (tumor growth rate/cell density and fiber
bundles) shown to affect the formation of satellite nodes are directly
affected by the mechanical forces. Therefore, mechanical forces are
related to cancer cell invasion to distant sites. Firstly, mechanical forces
(in terms of solid stress) determine in the model both the growth of the
tumor and the density of cancer cells (Eqs. (3) and (4)), and thus they
should affect the formation of secondary nodes. Secondly, mechanical
forces deform the healthy tissue, which affects the fiber bundles con-
figuration. Fiber bundles, in turn, guide cancer cells to distant regions
(Fig. 9).

The model has several limitations. A first limitation is that even
though the simulated geometry and the diffusion tensors corresponded
to the same healthy volunteer and during the same imaging session, the
perfusion data were acquired independently from other imaging stu-
dies, at a different institution, for patients with brain tumors who re-
ceived treatment after scanning. This restrains the comparison of the
model results with actual medical data, limiting its clinical validation.
However, the accuracy of the model is supported by the physiologically
meaningful results of stress, displacement and VDT, which compare
well with previous studies (Huang et al., 1995; Stensjoen et al., 2015;
Angeli and Stylianopoulos, 2016), and by the identification of a me-
chanism to support the formation of secondary nodes in all simulations
(Fig. 9).

Another limitation of our study is the fact that the values of several
model's parameters, listed in Table 1 and in the Supplementary Mate-
rial, were not derived from patient data but instead they were found in
the literature. Incorporation in the model of patient-specific data, could
further improve the model's accuracy and specificity. A more detailed
specification of the model would require other relevant imaging tech-
niques such as MR elastography (Johnson et al., 2013) to accurately
characterize the mechanical properties of the brain tissue and the tumor
in individual patients, while arterial spin labeling could be used to
acquire perfusion data without the need of a contrast agent (Noguchi
et al., 2008).

An additional limitation of the model is the approximation of the
cells' dichotomy using the tumoral outer ring. The model's precision
could benefit from the explicit description of the migratory phenotype
of cells and their behavior (Tektonidis et al., 2011; Hatzikirou et al.,
2012). In the model, however, the effect of the invasive potential of
cancer cells was indirectly accounted for by varying the thickness of the
tumoral outer ring. A direct description of the population of such cells,
and employing equations from related studies (Altrock et al., 2015),
could improve the accuracy and the specificity of the model.

Collectively, in this study we attempted to unite the bulk mechan-
ical response of a tumor with the tumor's cellular environment in a
realistic geometry. The formalism of the model is general and can ac-
count for additional cell types shown to affect tumor growth and
therapy, such as different phenotypes of cancer cells, immune cells and
macrophages (Mpekris et al., 2017). Ultimately, this study could prove
to be a valuable tool, capable of describing realistically tumor growth
and cell kinetics, with the ability to eventually assist towards a perso-
nalized treatment planning.
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